edoc

Spread and global population structure of the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) and its larval parasitoids Diadegma semiclausum and Diadegma fenestrale (Hymenoptera: Ichneumonidae) based on mtDNA

Juric, I. and Salzburger, W. and Balmer, O.. (2017) Spread and global population structure of the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) and its larval parasitoids Diadegma semiclausum and Diadegma fenestrale (Hymenoptera: Ichneumonidae) based on mtDNA. Bulletin of Entomological Research , 107 (2). pp. 155-164.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/54731/

Downloads: Statistics Overview

Abstract

The diamondback moth (DBM) (Plutella xylostella) is one of the main pests of brassicaceous crops worldwide and shows resistance against a wide range of synthetic insecticides incurring millions of dollars in control costs every year. The DBM is a prime example of the introduction of an exotic species as a consequence of globalization. In this study we analyzed the genetic population structure of the DBM and two of its parasitic wasps, Diadegma semiclausum and Diadegma fenestrale, based on mitochondrial DNA sequences. We analyzed DBM samples from 13 regions worldwide (n = 278), and samples of the two wasp species from six European and African countries (n = 131), in an attempt to reconstruct the geographic origin and phylogeography of the DBM and its two parasitic wasps. We found high variability in COI sequences in the diamondback moth. Haplotype analysis showed three distinct genetic clusters, one of which could represent a cryptic species. Mismatch analysis confirmed the hypothesized recent spread of diamondback moths in North America, Australia and New Zealand. The highest genetic variability was found in African DBM samples. Our data corroborate prior claims of Africa as the most probable origin of the species but cannot preclude Asia as an alternative. No genetic variability was found in the two Diadegma species. The lack of variability in both wasp species suggests a very recent spread of bottlenecked populations, possibly facilitated by their use as biocontrol agents. Our data thus also contain no signals of host-parasitoid co-evolution.
Faculties and Departments:09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH)
UniBasel Contributors:Balmer, Oliver and Salzburger, Walter
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Cambridge University Press
ISSN:0007-4853
e-ISSN:1475-2670
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
Last Modified:25 Oct 2017 15:29
Deposited On:29 May 2017 11:47

Repository Staff Only: item control page