Hemoglobin-based oxygen carrier provides heterogeneous microvascular oxygenation in heart and gut after hemorrhage in pigs

van Iterson, Mat and Siegemund, Martin and Burhop, Kenneth and Ince, Can. (2003) Hemoglobin-based oxygen carrier provides heterogeneous microvascular oxygenation in heart and gut after hemorrhage in pigs. Journal of Trauma, 55 (6). pp. 1111-1124.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/54311/

Downloads: Statistics Overview


In this study, the hypothesis was tested that resuscitation with hemoglobin-based oxygen carriers (HBOCs) affects the oxygenation of the microcirculation differently between and within organs. To this end, we tested the influence of the volume of an HBOC on the microcirculatory oxygenation of the heart and the gut serosa and mucosa in a porcine model of hemorrhage.; In anesthetized open-chested pigs (n = 24), a controlled hemorrhage (30 mL/kg over 1 hour) was followed by resuscitation with 10, 20, or 30 mL/kg diaspirin-crosslinked hemoglobin (DCLHb) or isovolemic resuscitation with 30 mL/kg of a 6% hydroxyethyl starch solution (HAES). Measurements included systemic and regional hemodynamic and oxygenation parameters. Microvascular oxygen pressures (microPO2) of the epicardium and the serosa and mucosa of the ileum were measured simultaneously by the palladium-porphyrin phosphorescence technique. Measurements were obtained up to 120 minutes after resuscitation.; After hemorrhage, a low volume of DCLHb restored both cardiac and intestinal microPO2. Resuscitation of gut microPO2 with a low volume of DCLHb was as effective as isovolemic resuscitation with HAES. Higher volumes of DCLHb did not restore cardiac microPO2, as did isovolemic resuscitation with HAES, but increased gut microPO2 to hyperoxic values, dose-dependently. Effects were similar for the serosal and mucosal microPo2. In contrast to a sustained hypertensive effect after resuscitation with DCLHb, effects of DCLHb on regional oxygenation and hemodynamics were transient.; This study showed that a low volume of DCLHb was effective in resuscitation of the microcirculatory oxygenation of the heart and gut back to control levels. Increasing the volume of DCLHb did not cause an additional increase in heart microPO2, but caused hyperoxic microvascular values in the gut to be attained. It is concluded that microcirculatory monitoring in this way elucidates the regional behavior of oxygen transport to the tissue by HBOCs, whereas systemic variables were ineffective in describing their response.
Faculties and Departments:03 Faculty of Medicine > Bereich Querschnittsfächer (Klinik) > Anästhesiologie > Anästhesiologie (Steiner)
03 Faculty of Medicine > Departement Klinische Forschung > Bereich Querschnittsfächer (Klinik) > Anästhesiologie > Anästhesiologie (Steiner)
UniBasel Contributors:Siegemund, Martin
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Lippincott, Williams & Wilkins
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
Last Modified:09 Oct 2017 06:38
Deposited On:09 Oct 2017 06:38

Repository Staff Only: item control page