edoc

Length dependence of the coil beta-sheet transition in a membrane environment

Meier, M. and Seelig, J.. (2008) Length dependence of the coil beta-sheet transition in a membrane environment. Journal of the American Chemical Society, 130 (3). pp. 1017-1024.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5257374

Downloads: Statistics Overview

Abstract

The most abundant structural element in protein aggregates is the beta-sheet. Designed peptides that fold into a beta-sheet structure upon binding to lipid membranes are useful models to elucidate the thermodynamic characteristics of the random coil beta-structure transition. Here, we examine the effect of strand length on the random coil beta-sheet transition of the (KIGAKI)n peptide with the total chain length varying between 7 and 30 amino acids. The beta-sheet content of the peptides in the presence and absence of membranes was measured with circular dichroism spectroscopy. The peptides were titrated with small unilamellar lipid vesicles, and the thermodynamic binding parameters were determined with isothermal titration calorimetry (ITC). Membrane binding includes at least two processes, namely (i) the transfer of the peptide from the aqueous phase to the lipid surface and (ii) the conformational change from a random coil conformation to a beta-sheet structure. CD spectroscopy and ITC analysis demonstrate that beta-sheet formation depends cooperatively on the peptide chain length with a distinct increase in beta-structure for n < 10-12. Binding to the lipid membrane is an entropy-driven process as the binding enthalpy is always endothermic. The contribution of the beta-sheet folding reaction to the overall process was determined with analogues of the KIGAKI repeat where two adjacent amino acids were replaced by their D-enantiomers. The folding reaction for peptides with n <or= 12 is characterized by a negative free folding energy of DeltaG(degree)beta approximately equal -0.15 kcal/mol per amino acid residue. The folding step proper is exothermic with DeltaH(degree)(beta) approximately equal -0.2 to -0.6 kcal/mol per residue and counteracted by a negative entropy term TDeltaS(degree)(beta) = -0.1 to -0.5 kcal/mol per residue, depending on the chain length (18 >or= n >or= 30). For a short chain with n = 12, beta-sheet formation is unfavorable with DeltaG(degree)beta approximately +0.08 kcal/mol per residue. Small changes of environmental parameters like pH or temperature can thus be anticipated to have profound effects on aggregation reactions, leading to amyloid fibril formation.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Biophysical Chemistry (Seelig J)
UniBasel Contributors:Seelig, Joachim
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Chemical Society
ISSN:0002-7863
e-ISSN:1520-5126
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
Last Modified:14 Nov 2017 09:46
Deposited On:22 Mar 2012 13:30

Repository Staff Only: item control page