A fingerprint based metric for measuring similarities of crystalline structures

Zhu, Li and Amsler, Maximilian and Fuhrer, Tobias and Schaefer, Bastian and Faraji, Somayeh and Rostami, Samare and Ghasemi, S. Alireza and Sadeghi, Ali and Grauzinyte, Migle and Wolverton, Chris and Goedecker, Stefan. (2016) A fingerprint based metric for measuring similarities of crystalline structures. Journal of Chemical Physics, 144 (3). 034203.

PDF - Published Version

Official URL: http://edoc.unibas.ch/53947/

Downloads: Statistics Overview


Measuring similarities/dissimilarities between atomic structures is important for the exploration of potential energy landscapes. However, the cell vectors together with the coordinates of the atoms, which are generally used to describe periodic systems, are quantities not directly suitable as fingerprints to distinguish structures. Based on a characterization of the local environment of all atoms in a cell, we introduce crystal fingerprints that can be calculated easily and define configurational distances between crystalline structures that satisfy the mathematical properties of a metric. This distance between two configurations is a measure of their similarity/dissimilarity and it allows in particular to distinguish structures. The new method can be a useful tool within various energy landscape exploration schemes, such as minima hopping, random search, swarm intelligence algorithms, and high-throughput screenings.
Faculties and Departments:05 Faculty of Science > Departement Physik > Physik > Physik (Goedecker)
UniBasel Contributors:Goedecker, Stefan
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:AIP Publishing
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
edoc DOI:
Last Modified:22 Feb 2017 13:31
Deposited On:22 Feb 2017 13:30

Repository Staff Only: item control page