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Abstract
We propose an efficient method for determining optimal solu-
tions to such skill-based solitaire card games as Freecell. We
use A* search with an admissible heuristic function based on
analyzing a directed graph whose cycles represent deadlock
situations in the game state. To the best of our knowledge,
ours is the first algorithm that efficiently determines optimal
solutions for Freecell games. We believe that the underlying
ideas should be applicable not only to games but also to other
classical planning problems which manifest deadlocks.

Introduction
Games have always been a fertile ground for advances in
computer science, operations research and AI. Solitaire card
games, and Freecell in particular, have been the subject of
study in both the academic and popular literature. Our work
applies to skill-based solitaire games in which all cards are
dealt face up. For these games, there is no element of chance
involved after the initial deal, and hence they are classical
planning problems (Ghallab, Nau, and Traverso 2004). We
use Freecell because it is the most widely played and ana-
lyzed skill solitaire card game. It is NP-hard (Helmert 2003)
and thus provides a demanding test for heuristic search ap-
proaches. While a number of computer solvers for Freecell
are available, we know of no work which provides provably
optimal solutions to solitaire games.

One of the fundamental properties of skill-based games
like Freecell is that there are deadlocks where actions con-
tributing towards the goal cyclically depend on each other.
In order to resolve the deadlocks, actions that do not directly
contribute to the goal are required. Deadlocks have long
been known to make optimal planning hard (Gupta and Nau
1992). A key insight of this work is that very strong admis-
sible heuristic functions for Freecell can be constructed by
analyzing such deadlocks.

In the following, we describe our approach, present re-
sults of our solver implementation and discuss related work
and future research directions. For space reasons, all these
aspects are discussed very briefly, and few references to re-
lated work are provided. We refer to a longer version of
this paper for details, including a description of the rules of
Freecell (Paul and Helmert 2016).
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Freecell Heuristics for A*
We propose optimally solving Freecell deals using the A*
algorithm with an admissible heuristic. The simplest non-
trivial heuristic we consider is the card counting heuristic,
which uses the number of cards that still need to be moved
to the foundation piles as its heuristic estimate.

Card counting is admissible but very optimistic, because
some cards are usually blocked from movement to the foun-
dations. The simplest example of this is a tableau pile where
a card of a given suit and lower rank is buried underneath a
card of the same suit and higher rank. Until the higher-rank
card is moved to a temporary location, the lower-rank card
cannot be moved to the foundations, and hence the higher-
rank card must be moved at least twice. This is an example
of a deadlock involving two cards.

More complex deadlocks involve more than two cards. In
general, we define a directed graph with one vertex for each
card that has not yet been moved to the foundations and a
directed edge from card c to card c′ whenever c must wait
for c′ to be moved before c can be moved to the foundations.
There are two scenarios that cause such edges. Firstly, if c is
located underneath c′ in a tableau pile, we obtain a blocking
edge, as c′ must be moved out of the way to access c. Sec-
ondly, if c and c′ belong to the same suit and c is of higher
rank than c′, we obtain a foundations edge, as c′ must be
moved to the foundations before c. For every cycle of edges
in this directed graph, at least one card involved in the cycle
must be moved twice.

Usually many such cycles exist, and because they can
overlap, merely counting the number of cycles leads to an
inadmissible heuristic. For any given set of cycles C, an ad-
missible heuristic can be obtained by computing a minimum
hitting set H for C, i.e., a set of cards of minimum cardinal-
ity that includes at least one card from every cycle. Adding
|H| to the card counting heuristic is admissible.

However, in general minimum hitting sets are expensive
to compute. The computational effort can be reduced, at
some loss in heuristic accuracy, by limiting attention to a
restricted set of cycles. For p ∈ {0, . . . , 4}, let hp be the
heuristic that only considers cycles involving at most p dif-
ferent suits in foundations edges. (Hence h0 is the card
counting heuristic.) Then hp can be computed in a time that
scales exponentially (only) in p, and p controls the trade-off
between heuristic accuracy and evaluation speed.
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game h2(I) h∗(I) time states
#1 73 82 30.8s 567699
#2 68 73 1.9s 101186
#3 70 70 0.6s 20499
#4 72 79 31.0s 1220026
#5 78 85 122.0s 3687136
#6 73 75 1.1s 31912
#7 72 76 1.7s 74369
#8 70 74 13.2s 367784
#9 77 81 2.0s 77990

#10 73 80 7.7s 315643

Table 1: Results for the Freecell games 1–10. Columns,
in order: game number, h2 value for initial state, optimal
solution length, runtime, evaluated states.

Experimental Evaluation
We evaluated the deadlock-based heuristics for Freecell
within an A* implementation with standard efficiency en-
hancements such as bucket-based priority queues and dupli-
cate detection via Zobrist hashing.

Preliminary investigations showed that deadlock reason-
ing is clearly necessary: h0 is too weak to solve Freecell
deals. The best overall performance was obtained with h2,
and hence this heuristic was used for the main experiment.

The main experiment was run on an Intel core i3 4160
processor running at 3.60 GHz with 8 GB of memory. Our
test cases were games 1–5000 of Microsoft Freecell. Opti-
mal solutions were found for all test cases. Runtime varied
between 0.4 and 6579 seconds, with an average of 39.9 sec-
onds. Optimal solution lengths varied in the range 64–93,
with an average of 77. Detailed results for games 1–10 are
shown in Table 1.

Related Work
The use of deadlocks as a central concept in our heuristic is
reminiscent of the classic blocks world domain, where com-
puting optimal solutions is NP-hard due to the existence of
deadlocks in ordering dependencies of essentially the same
kind as those which arise in Freecell (Gupta and Nau 1992;
Slaney and Thiébaux 2001). Indeed, the Freecell heuristics
described in this paper can be understood as a two-stage re-
laxation:

• Firstly, relax the Freecell game into a blocks world task.
• Secondly, compute an admissible heuristic for this blocks

world task.

Indeed, the case where we consider all deadlocks (i.e., the
h4 heuristic) is equivalent to mapping the Freecell task to a
blocks world task and solving the resulting blocks world task
optimally, and this is in turn equivalent to solving a relax-
ation of the original Freecell task with unlimited free cells.

In other words, the h4 heuristic completely solves the
“move ordering” aspect of the problem while ignoring the
“space contention” aspect. We discuss these relationships in
more detail in an extended version of this paper (Paul and
Helmert 2016).

Future Work
Looking beyond solitaire games and blocks world, are there
wider implications of these results? We believe that this is
the case: that deadlocks are a phenomenon that occurs in a
much wider range of domains than Freecell games or blocks
world tasks, and that heuristic functions based on cover-
ing deadlocks are a promising direction for a wide range of
search problems.

For example, deadlocks of essentially the same form as
in the blocks world domain are the major source of hard-
ness in a number of standard planning benchmarks, includ-
ing Logistics, Miconic-STRIPS and Miconic-SimpleADL
(Helmert 2001). Many other planning domains with
a “transportation” component share this problem aspect,
though often mixed with other aspects. Deadlock covering
problems also occur at the computational core of many opti-
mization problems outside of planning, such as many of the
implicit hitting set problems identified by Chandrasekaran et
al. (2011). Slaney (2014) describes deeper connections be-
tween blocks world, implicit hitting sets, and combinatorial
optimization in general.

Finally, a similar form of deadlocks (actions cyclically
supporting each other’s preconditions without being ulti-
mately supported by effect/precondition links from the cur-
rent state) is the major source of inaccuracy in flow heuristics
that have recently attracted much attention (van den Briel et
al. 2007; Bonet and van den Briel 2014; Pommerening et al.
2014). A better understanding of the general role of depen-
dency deadlocks could go a long way towards overcoming
the limitations of these heuristics.
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