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5 Forschungszentrum Jülich, EURATOM Association, 52425 Jülich, Germany
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Abstract.

Cleaning systems of metallic first mirrors are needed in more than 20 optical

diagnostic systems from ITER to avoid reflectivity losses. Currently, plasma sputtering

is considered as one of the most promising techniques to remove deposits coming

from the main wall (mainly beryllium and tungsten). This work presents the results

of plasma cleaning of rhodium and molybdenum mirrors exposed in JET-ILW and

contaminated with typical tokamak elements (including beryllium and tungsten).

Using radio frequency (13.56 MHz) argon or helium plasma, the removal of mixed

layers was demonstrated and mirror reflectivity improved towards initial values. The

cleaning was evaluated by performing reflectivity measurements, Scanning Electron

Microscopy, X-ray Photoelectron Spectroscopy and ion beam analysis.
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1. Introduction

Several optical diagnostics foreseen in ITER will rely on metallic First Mirrors (FMs)

enabling light originating from the plasma or from probing light sources to travel

through the neutron shielding towards detectors. Because these FMs are in such a

close proximity to the fusion plasma, they will experience high particle fluxes (from

charge-exchange neutrals and neutrons to ultraviolet, X-ray and gamma radiations)

and inevitably suffer from erosion and/or deposition. Studies showed that the main

concern for FMs reflectivity was the deposition of material sputtered from the main

wall, i.e. mainly beryllium (Be) and tungsten (W) [1,2]. Along with laser cleaning [3–6]

in situ plasma sputtering is currently considered as one of the most promising cleaning

techniques to remove deposits from FMs [7,8]. For the latter, several studies conducted

worldwide have shown successful plasma cleaning on molybdenum (Mo) or stainless

steel mirrors (up to a size of 90 mm diameter) contaminated with aluminium (Al),

alumina (Al2O3), W or mixture of them [9–13]. Various gases (argon (Ar), neon (Ne),

helium (He) or deuterium (D2)) were employed and the discharges were sustained using

different techniques (capacitively coupled radio-frequency (RF), penning discharge or

RF magnetron sputtering).

Nevertheless, all the previous mentioned experiments were accomplished by using

a Be proxy with similar chemical properties, i.e. aluminium [14]. Indeed due to the

toxicity of Be, deposition or sputtering experiments can only be performed in dedicated

environment such as the JET Be handling facility installed in the Culham Science Centre

in England (JET-BeHF). So far, no experiments on plasma sputtering of tokamak-like

films containing Be have been performed. The aim of this experimental campaign was

to confirm the removal efficiency of plasma cleaning on 8 tokamak deposits grown in

JET-ILW [15] on Mo and rhodium (Rh) coated mirrors (both considered as candidates

for FM [16]). For this purpose a vacuum chamber (see figure 1) was mounted in the

JET-BeHF to perform plasma cleaning with different gas composition (helium (He), Ar

or a mix of both) and ion energy (from 200 to 600 eV). The effects of such cleanings on

the mirror’s optical properties were investigated.

2. Experimental conditions

The 8 mirror samples were 10×10×10 mm3 cubes of polycrystalline Mo with one polished

face. Among those 8 mirrors, 4 were coated with 1 µm of Rh at the University of Basel

using magnetron sputtering [17]. The mirrors were exposed in JET-ILW in various

locations of the tokamak including the divertor base, the outer and inner divertor and

the outer wall as described in [15, 18]. More information can be found in table 1. All

mirrors used in this study were characterized before and after the exposure in JET-

ILW. Due to the toxicity of the JET-ILW mirrors (contaminated with Be and tritium

and activated), a vacuum chamber was built and installed in the JET-BeHF where

a pressure of about 1×10−6 mbar was achieved with a conventional pumping system.
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Figure 1: (a) Picture of the vacuum chamber installed inside the JET-BeHF in front of

a window and of (b) the equipment needed to control the experiments located outside

of the JET-BeHF.

The plasma was generated by applying 13.56 MHz RF directly to the electrode where

the mirror is mounted (RF capacitively coupled discharge). Due to the asymmetry of

the powered to grounded areas, a negative DC component (called self-bias) is created

on the electrode/mirror, accelerating the plasma ions towards the mirror’s surface (Ar+

and/or He+). In addition to the negative self-bias on the mirror, the plasma is positively

charged (plasma potential measured by Langmuir Probe in the range of 25 to 40 V) and

therefore the ion energy (in eV) is equal to the sum of self-bias and plasma potential.

The discharge conditions (gas, pressure, ion energy) can be found in table 2. All the

electronic devices to control the experiment were located outside and connected to the

chamber via a feedthrough panel mounted on the JET-BeHF wall. The chamber was

mounted on a frame in front of a JET-BeHF window in order to monitor the change of

specular R of the mirror during the cleaning process: a reflectometry system developed

in Basel [19] was adapted outside of the JET-BeHF for measurements from 400 to

800 nm. The informations obtained were guiding the cleaning times (estimated from

calculation using Be sputtering yield and ion flux from Langmuir probe measurements

done in Basel) as no surface characterisation techniques were available directly on-site.

The cleanings were confirmed by ex situ measurements of the total R of each mirror

between 400 and 1600 nm by using a spectrophotometer. In addition, total and diffuse R

for cleaned mirrors with low Be content was measured with a Varian Cary 5 apparatus

(250–2500 nm). The total reflectivity recovery (see table 2) was calculated by using

the measurements performed before exposure, before cleaning and after cleaning at two

wavelengths, namely in the visible (400 nm) and in the infra-red (1600 nm) according
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Table 1: List of mirrors from JET-ILW and their location during exposure.

Mirror Material Location Position in the channel

61 Rh Outer wall 1.5 cm

69 Rh Inner divertor 2.5 cm

77 Rh Outer divertor 1.5 cm

80 Rh Divertor base 0.0 cm

96 Mo Outer wall (unit 4B) 0.0 cm

98 Mo Outer wall (unit 4B) 1.5 cm

99 Mo Outer wall (unit 4B) 3.0 cm

100 Mo Outer wall (unit 4B) 4.5 cm

to equation 1:

Reflectivity recovery (%) = Ra − Rb

Ri − Rb
× 100 (1)

where Ri, Rb and Ra correspond to the total reflectivity of the mirror before JET-

ILW exposure (pristine mirror), after JET-ILW exposure (before cleaning) and after

cleaning, respectively. A complete recovery of the total reflectivity would give a value

of 100 % while a degradation of the total reflectivity through cleaning would lead to a

negative value. In the case were this value is greater than 100 %, the mirror has a higher

total reflectivity after cleaning than before exposure in JET-ILW. Surface analysis of

all test mirrors was performed with nuclear reaction analysis (NRA) using a 2.5 MeV
3He+ beam for light elements and time of flight elastic recoil detection analysis (ToF-

ERDA) using a 36 MeV 127I8+ beam for heavy elements and compared with the values

obtained after the exposure in JET-ILW. X-ray photoelectron spectroscopy (XPS) was

added for samples with low Be content (setup and fitting procedure described in [20]).

Surface images were done using a Field Emission Scanning Electron Microscope (SEM)

from ZEISS (MERLIN) equipped with an Oxford Instruments Energy Dispersive X-Ray

(EDX) analyser for surface composition measurements. After the first cleaning in JET-

BeHF, some Mo mirrors were Be free but still oxidized. A second RF plasma cleaning

was therefore performed in Basel in a vacuum chamber with a base pressure of 1×10−7

mbar with conditions listed in table 2.

3. Results and Discussion

3.1. Rhodium mirrors

All 4 mirrors were heavily coated with typical JET elements (Be, inconels (Inc), nitrogen

(N), carbon (C), oxygen (O), ...) and mirror 77, close to a Be coater has the highest Be

content of all. The inconels group denotes a sum of nickel, iron and chromium which

cannot be separated. The mirrors optical properties were strongly degraded after the

exposure as can be seen in [15] and that the reflectivities are well below those of Be

from the handbook of Palik [21] (see mirror 77 in figure 2). This confirms that even
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Table 2: List of experimental conditions applied for each mirror in the JET-BeHF (A)

and in Basel (B). When a gas mixture is used, the partial pressure ratio are expressed

in brackets.

Mirror Conditions Cleaning Total R recovery (%)

(pressure in mbar) time 400 nm 1600 nm

61 (Rh) 5×10−3 Ar; 225 eV 4h30 87.2 81.1

69 (Rh) 2×10−2 He; 630 eV 15h 85.6 96.5

77 (Rh) 2×10−2 He; 630 eV 7h − 3.8 − 7.2

80 (Rh) 1×10−2 He + Ar (90/10); 340 eV 11h 92.2 94.3

96 (Mo) 2×10−2 He; 340 eV 6h30 67.6 45.5

98 (Mo)
A) 2×10−2 He; 630 eV 1h30 − 91.1 44.1

B) 1.5×10−2 H2 + Ar (50/50); 175 eV 5h 134.2 126.8

99 (Mo)
A) 2×10−2 He; 240 eV 3h30 35.6 41.0

B) 1.5×10−2 H2; 100 eV 5h 73.9 38.6

100 (Mo)
A) 5×10−3 Ar; 225 eV 1h30 22.1 97.5

B) 1.5×10−2 H2 + Ar (50/50); 175 eV 5h 104.5 120.8

if material from the vessel can theoretically be highly reflective (Be, W), it will not

necessarily be the case for the redeposited films [15, 22]. The deposits on mirror 61, 69

and 80 were reduced and for some entirely removed (see table 3). Special attention has

to be paid to W which was fully removed from mirror 69 and 80 by using either pure He

at high energies (630 eV) or mixture of He and Ar with lower energies (340 eV). This is

of prime interest for ITER has W will be used for the divertor and might end up on FMs.

The three previous mentioned mirrors exhibited similar post-cleaning behaviour: partial

recovery of the total R, increase of the diffuse R (see example of mirror 69 in figure 2)

and metallic Rh surface after cleaning (measured by XPS). The largest changes in diffuse

reflectivity before JET-ILW exposure and after cleaning were observed at 675 nm for

mirror 61 and at 250 nm for mirror 69 and 80. For mirror 61, 69 and 80 those values

went from 1%, 2% and 2% to 7%, 11% and 17%, respectively. From that result, one

could deduce that the use of He and Ar at 340 eV damages mostly the mirror’s surface

while using Ar at 225 eV is the least harmful. Still due to unknown damage coming

from the exposure in JET-ILW and different deposits and cleaning times, it is difficult

to conclude on the most appropriate cleaning condition to use. For mirror 77, the

Be content decreased by more than 90% although not fully removed due to lack of

experimental time in the JET-BeHF. Using ion flux determined by Langmuir probe and

sputtering yield for BeO corresponding to the used ion energy [23], the time needed to

remove 400 nm of oxidized Be is equal to 6 h and is in very good agreement to the 7 h

applied experimentally. Because Be was still present the reflectivity did not change and

did even slightly decrease. After cleaning in the JET-BEHF, the mirror 77 exhibited

buckling observed by SEM in figure 3. EDX measurements performed on position A
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Table 3: NRA and ToF-ERDA characterisations after exposure in JET-ILW and after

cleaning in the JET-BeHF. Units are 1015 atoms per cm2. The equivalent Be thickness

was calculated using the standard Be density of 1.848 g.cm−3.

Mirror D Be Equivalent Be thickness C N O Inc W

61(Rh) before 0 94 8 nm 14 2.1 52 89 0

61(Rh) after 0 20 2 nm 4.5 0.6 8.9 20 0

69(Rh) before 180 710 58 nm 120 150 190 11 9.1

69(Rh) after 0 0.7 < 1 nm 5.6 0.9 4.1 4 0

77(Rh) before 520 5400 437 nm 51 130 590 57 0

77(Rh) after 130 460 37 nm 35 94 590 55 0

80(Rh) before 18 390 32 nm 87 22 420 20 33

80(Rh) after 0 2.2 < 1 nm 13 0.7 6.4 8.9 0

96(Mo) before 6 400.4 32 nm 44 4.4 100 3.8 0

96(Mo) after 1.4 86 7 nm 17 1 23 1.1 0

98(Mo) before 1.2 12 1 nm 38 1.6 17 2.8 0

98(Mo) after 0 0.1 < 1 nm 8.6 0.3 9.6 0.8 0

99(Mo) before 1.6 3.2 < 1 nm 32 1.2 11 2 0

99(Mo) after 0 0.3 < 1 nm 12 0.8 5.9 0.9 0

100(Mo) before 1.8 0.8 < 1 nm 30 0.8 5.4 1.6 0

100(Mo) after 0 0 < 1 nm 2.8 0.3 3.2 0.5 0

and B have shown that the dark grey surface is corresponding to the contaminants layer

(mainly Be) while the light grey circles are Rh film. On the surface, formation of bubbles

of different sizes can be seen and for some of them the top layer is already delaminated.

It is not yet known if the delaminated film is only composed of contaminants or if a

fraction of the Rh film is delaminated too.
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Figure 2: Total and diffuse reflectivity measured in JET (J) and/or Basel (B) before

exposure in JET-ILW (denoted before JET-ILW), before cleaning and after cleaning in

the JET-BeHF for mirror 69 and 77.
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Figure 3: SEM image of mirror 77 after cleaning in the JET-BeHF with two different

magnifications. EDX measurements were performed on point A and B.

3.2. Mo mirrors

The 4 polycrystalline mirrors exposed in JET-ILW did not experience the same balance

between deposition and erosion in JET-ILW. As can be seen in table 3, mirror 96 suffered

from high quantity of contaminants while mirror 98, 99 and 100 only had low deposition

and probably experienced more erosion through plasma: the total reflectivity increased

after plasma exposure compared to the reflectivity measured just before installation

in JET probably due to the removal of the Mo surface oxide layer (see figure 12

of [15]). Nevertheless, due to air storage for a few months between the retrieval of

mirrors from JET and the plasma cleaning, the mirrors 98, 99 and 100 got oxidized

again (see total reflectivity “After JET-ILW (J)” and “Before cleaning (J)”, figure 4

(a)). All cleanings performed in the JET-BeHF were effective as the contaminants

were almost fully removed for mirror 98, 99 and 100, and strongly decreased for mirror

96 as displayed in table 3. Mirror 96 whose reflectivity was low after JET exposure

experienced a consequent increase of its total reflectivity (see table 2) while the diffuse

reflectivity did not change. Similar evolution of reflectivity was observed for mirror 98,

99 and 100, namely a small or non-existent increase in the total reflectivity as seen in

figure 4 (a) by taking a closer look to the black curve “Before cleaning (J)” and the blue

curve “After JET-BeHF cleaning (B)” while no increase was observed for the diffuse

component (see figure 4 (b)). As the contaminants were almost fully removed, the main

explanation is the presence of a oxidized Mo surface: the reflectivity was similar to

calculated reflectivity of a Mo mirror oxidized over 15 nm and was confirmed by XPS

measurements.

As the samples were Be free, a second cleaning in Basel was carried out using

either pure H2 for mirror 99 or a mixture of H2 and Ar for mirror 98 and 100 (see table

2). Using only H2 it was not possible to fully remove the oxide layer: after 5 h, the

surface was still oxidized (35% MoO2 measured by XPS) and the total reflectivity was

not completely recovered. By adding Ar and increasing the ion energy (98 and 100

Mo), the oxide was completely removed (Mo metallic state measured by XPS) and the

total reflectivity was restored and even slightly enhanced compared to original values.

Comparing the two methods, the one using only H2 at low energies seems to be the less
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damaging as the diffuse reflectivity did not change while the cleaning with H2 and Ar

at higher energies led to an increase (1.5 to 2 times more than before cleaning in Basel).

Such effects are expected when using polycrystalline material and should disappear for

single or nano crystalline mirrors.
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Figure 4: (a) Total reflectivity and (b) diffuse reflectivity measured in JET (J) and/or

Basel (B) before exposure in JET-ILW (denoted before JET-ILW), before and after

cleaning in the JET-BeHF and after additional cleaning in Basel.

4. Conclusion and Outlook

The cleaning of JET-ILW mirrors (Rh and Mo) deposited with Be, W and other tokamak

impurities using RF plasma with He and/or Ar was performed. For all mirrors, the co-

deposit thickness was significantly reduced and the reflectivity was improved though not

fully recovered in most of the cases. Mo mirrors were oxidized after the cleaning in the

JET-BeHF but the oxide was removed by adding a cleaning step in Basel. In contrary to

Mo, Rh mirrors which are interesting for ITER due to their high initial reflectivity [17]

were fully metallic after cleaning and did not delaminate.

New cleaning experiments on films deposited in tokamak and especially similar in

composition to ITER shall be performed by varying the plasma conditions to optimize

the cleaning. Up-stream investigations should also be done on the material resilience

to plasma sputtering with various gas composition and ion energy. A special effort has

to be undertaken regarding the use of low energy deuterons to remove Be deposits as

BeD might be formed on the surface, weakening the surface binding energy of Be atoms

hence increasing their sputtering yield [24]. In addition, low energy deuterons have low

sputtering yields on Mo and Rh, thus preserving the mirrors integrity. Still for mixed

layers containing heavy material e.g. W, the efficiency of D2 could be questionable and

should be investigated.
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