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Abstract 
Positive feedback commonly displays bistability, the ability to maintain overtime in the same 

conditions two alternative states of activity. The presence and the range of bistability depend on 

ultrasensitive reactions within the loop. To investigate bistability in genetic network, we 

constructed synthetic feedback loops in yeast where a transcription factor activates its own 

expression. By measuring the presence of hysteresis behavior, which is a sign of bistability, in 

those loops we identified the ultrasensitive reactions supporting bistability: homodimerization 

and cooperative binding of transcription factor. In the absence of those reactions the feedback 

loop was strictly monostable and when combined an even wider range of bistability arises than 

when there was only a single reaction. The detection of those reactions was made possible 

because we introduced RNA stem-loop upstream of the coding sequence of the transcription 

factor to reduce its translation rate. Indeed, the initial constructs had strong growth defect due to 

the overexpression of the transcription factor. Next, we aimed to predict transition rates between 

the two states of activity. Indeed, Even though the activity converges to either of the two states in 

the bistable range, due to the noise arising from the low number of some chemical species, 

transitions between the two states occur. The prediction of those transitions is difficult as the 

noise is amplified by feedback loop. First, we obtained a deterministic description of the loops by 

the open-loop approach. By breaking the loops at the mRNA of the transcription factor, we were 

able to fit the main parameter values of the system and map the steady states and the bistable 

range. Then, we determined the transient kinetics which is the activation delay which is not 

inherent to feedback loop, in our case it was the slow diffusion or binding of a ligand of the 

transcription factor. We determined also the noise of the system by measuring the distribution of 

mRNA at the steady states of the feedback loops. By building a stochastic model with the 

information from open-loop approach and expending it and fitting its parameter values to match 

the transient kinetics and noise observed, we were able to predict the transition rates observed in 

the feedback loops. With this better understanding, we discovered that the transitions are led by 

either noise or slow transient kinetics depending whether the system is inside or outside in the 

vicinity of the bistable range, respectively. Finally, we showed that the transition rates were 

abruptly changing around the boundaries of the bistable region. Therefore, the bistable region can 

be estimated in similar feedback loops by simply measuring transition rates. 
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Thesis outline 
In the first chapter, a brief and general introduction is given for the basic concepts behind the 

work presented in the forthcoming chapters. The result section is composed of two published 

papers and the draft of a third manuscript. The three manuscripts used the same feedback loop 

constructs. In the second chapter, the first manuscript described how we optimized the initial 

feedback loop to avoid growth defect and how we determined the reactions with an 

ultrasensitivity response. In the third chapter corresponding to the second manuscript, we applied 

to open-loop approach on the feedback loop and we predicted the transition rates from the open-

loop approach and noise and transient kinetics measurement. In the fourth chapter corresponding 

to the third manuscript, we estimated the bistable region and modulated it. Finally in fifth chapter 

we concluded the work. 
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I. Introduction 
Transcription factor 
The expression level of proteins in the cell is controlled by many molecular mechanisms from 

transcriptional initiation to post-translational modification. Transcription factors, which are 

protein that bind specific DNA sequence, play an important role on this expression modulation as 

they help to form the transcription initiation complex [1]. Indeed, the transcription factor can 

promote or inhibit the recruitment of the RNA polymerase for a specific gene by binding to a 

specific sequence in the vicinity of the regulated gene. These specific sequences are named DNA 

binding sites. The number and the identity of binding sites in the promoter give to every gene a 

specific pattern of expression, as different transcription factors will bind [2]. 

A number of mechanisms can modulate the transcription factor activity including ligand binding 

and post-translational modification. For instance, nuclear estrogen receptors are transcription 

factors, which binds DNA once their ligand, estrogen activated them [3]. This permits the cell to 

communicate or to sense its environment and to adjust the expression level of its protein 

accordingly. 

Cooperative binding of the transcription factors 

In order to have a more switch-like response to an increase of the transcription factor 

concentration, gene often has more than one copy of the binding sites in their regulatory 

sequence. Indeed, when multiple identical binding sites are present in the regulatory sequence, 

cooperative binding of the TF is observed. Cooperative binding meant that the binding of 

transcription factor is enhanced if already another transcription factor is already bound on a near 

site. The Hill function is generally used in biochemistry to describe cooperative binding. This 

function describes the fraction of a macromolecule saturated by a ligand as a function of the 

ligand concentration: 

( )
n

n n
d

xf x
x K

=
+

 

Where x stands for the ligand concentration, n for the Hill coefficient and Kd is the equilibrium 

dissociation constant. Here the macromolecule is DNA and the ligand is the transcription factor. 

This model assumes that the transcription factor has identical affinity to all binding sites, which 
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may vary in-vivo as the DNA sequence of the binding sites varies. A Hill coefficient higher than 

1 indicates positive cooperative binding whereas a coefficient lower than 1 indicates negative 

cooperative binding where the binding of transcription factor is inhibited if another transcription 

factor binds a near site. A Hill coefficient of 1 indicates that the binding is non-cooperative, 

independent. 

 

Figure 1: Hill function for different values of the Hill coefficient. 

When a single binding site is present in the promoter, the Hill coefficient is 1 and the gene 

expression as function of the concentration of the transcription factor will be a hyperbolic 

response (Figure 1). This function saturates at high transcription factor concentration, as the 

binding site is almost all the time bound and therefore a further increase of transcription factor 

concentration increases only slightly its occupancy. 

When two or more identical binding sites are present in the promoter, the Hill coefficient can be 

higher than 1 and therefore the response can be sigmoidal (Figure 1). The Hill coefficient is not 

identical to the number of binding sites as the binding of the transcription factor is not perfectly 

cooperative. There is some sequential binding so that partially saturated intermediates can exist. 

This results in a Hill coefficient lower than the number of binding sites (Segel, 1980). 

The presence of multiple binding sites is widely used to generate sigmoidal response in gene 

regulation like in the galactose network where most of genes have more than one binding sites for 

gal4p in their promoter [4]. A sigmoidal response has the advantage to increases steeply for a 

narrow range of input. 

  

1 
2 
4 

n: 



 
Introduction 

 

8 

Positive Feedback loops 
More complex mechanisms are often needed to control gene expression patterns like oscillations 

or cellular memory where the gene expression remains high even when the initial trigger is not 

anymore present. Those more complex patterns can be only achieved in the presence of feedback 

loops. Depending on net effect of the interactions, the feedback loop can be either characterize as 

negative or positive. Transcription factor can generate feedback loop when they activate or 

inhibit their own gene expression in a direct or indirect way. Here we will introduce only the 

positive feedback loop. 

Monostable positive feedback 

Let analyses first a simple positive feedback where a transcription factor activates its own 

promoter. Here a single differential equation is needed to characterize the system: 

max  
n

n n
d

x
dx xV b
dt x K

xd= + −
+

 

Where Vmax and b correspond to the maximal and basal transcription factor production rate 

constant, respectively. δx stands for the degradation rate constant of the transcription factor. The 

first term of the equation is a Hill function multiplied by the maximal production rate. This 

represents the protein production due to binding of transcription factor which initiate the 

transcription. The second term stands for the basal production rate of the protein and together 

with the first term they are the total production rate. The third term accounts for the protein 

degradation as biochemical molecules naturally experience decay. The rate at which it happens 

depend on how much of the molecule is present. 

When the Hill coefficient is 1, the transcription factor concentration will converge to a single 

steady-state which is at the intersection of the total production and degradation rate curves 

(Figure 2). This can be understand by looking at the rate curves, when the concentration of 

transcription factor is higher than the steady-state concentration, the degradation rate is higher 

than the production rate therefore the concentration will decrease. In opposite, when the 

transcription factor concentration is lower than its steady-state value, the production rate is higher 

than the degradation rate and therefore the concentration will increase. The system is classified as 

monostable as the transcription factor will converge to a single steady-state. 
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Figure 2: Phase portrait and trajectories for the monostable feedback loop. The stable steady-state 

concentration of transcription factor is indicated by a full circle. The arrows on the x-axis indicate 

in which direction the concentration converges by taking the rate difference. 

Bistable positive feedback 

   

Figure 3: Phase portrait and trajectories for the bistable feedback loop. The stable and unstable 

steady-state concentrations of transcription factor are indicated by full and empty circles, 

respectively. The arrows on the x-axis indicate in which direction the concentration converges by 

taking the rate difference. 

When the Hill coefficient is higher than 1, the transcription factor concentration can converge to 

two different stable steady states (Figure 3). In this case, the production rate and the degradation 

rate have three intersections. The middle intersection is an unstable steady-state, i.e. if the 

transcription factor concentration is slightly higher or lower it will converge to the highest or 

lowest steady states, respectively. The lowest and the highest intersections are stable steady states 

as in the monostable system. This system is classified as bistable as the transcription factor 

concentration can converge to two different steady states. 

Degradation rate 
Total production rate 

Degradation rate 
Total production rate 
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Bistability 
In the previous section, we presented a bistable system. Here we will go further in the analysis of 

the bistability as it is the main topic of this work. First, we will discuss the condition for a system 

to be bistable, then the bistable range as function of the system parameter and finally hysteresis 

behavior.  

Condition for bistability 

The presence of a positive feedback is a necessary condition for bistability [5]. However it is not 

a sufficient condition as we saw earlier with the monostable positive feedback loop. In order to 

have a bistable system, a reaction within the positive feedback loop should have an ultrasensitive 

response [6-8]. 

Goldbeter and Koshland defined input–output relationships to be ultrasensitive if it took less than 

an 81-fold change in input stimulus to drive the output from 10% to 90% of maximum[9, 10]. We 

used in this work an alternative definition: An response is ultrasensitive if its logarithm 

sensitivity is higher than 1 for at least one value of the input [11]. The logarithm sensitivity is 

defined as ln (x)(x) ln(x)
fS ∂= ∂  . For a Hill function, when the logarithm sensitivity is strictly 

below or equal to 1, the function has hyperbolic shape. When the logarithm sensitivity is higher 

than 1, the Hill function has a sigmoidal shape. 

For instance cooperative binding of the promoter by transcription factors is a reaction with an 

ultrasensitive response and also sequestration by inhibitor molecules, dimerization and multiple 

phosphorylation of a protein [9]. 

Bistable range 

In a system where bistability exists, the bistable range is restricted to a specific parameter space. 

Indeed, if we take the same model as before for bistable positive feedback example and we now 

reduce considerably the value of Kd, which corresponds to shift horizontally on the left the total 

production rate in figure 3, the production and degradation rates will intersect only once. The 

system will be then monostable. This is also true if Kd is increased sufficiently, the system will be 

also monostable. Therefore the system is bistable for a specific range of Kd. This can be easily 

visualized with the help of bifurcation diagram where the steady-state levels are plotted as 

function of a system parameter in this case Kd (Figure 4). The points at the end of the bistable 
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range, where the system changes from one to three steady states, are called saddle-node 

bifurcation points. 

 

Figure 4: Bifurcation diagram of the bistable feedback loop as function of inverse of Kd. The 

concentrations of transcription factor at stable and unstable steady states are indicated by a full and 

dashed lines, respectively. 

Hysteresis 

An interesting feature of this system is that it exhibits hysteresis as the parameter Kd passes back 

and forth through the bistable range (Figure 5). That is, for low Kd, the system is at the lower 

stable steady state. As Kd increases, the system remains at the lower steady state, even after 

entering the bistable range as the lower steady state is stable. Finally, when Kd passes the bistable 

range the system abruptly jump to the high steady state. Now, if we decrease Kd, the system 

would remain to the high steady-state until the end of the bistable range where it will switch back 

to the low steady state. This non-reversibility is called hysteresis [6, 12]. 

Open-loop approach 
As mentioned earlier, the presence of an ultrasensitive response is a necessary condition for 

bistability. Experimentally, it is not always easy to measure certain parameter values like 

dimerization affinity constant and therefore to assess if the dimerization in this case is 

ultrasensitive or not. There is an approach, loop opening, which permits to determine if the 

system has a bistable range and to map this range [7]. For that, a component in the loop is broken 

into an input and output. This creates a reaction chain starting by the input passing through all the 

components of the broken loop and ending at the output. The open-loop function indicates the 

output as function of the input. This function represents the total response of all reactions within 

the loop, without the need to resolve any of them separately. If the open-loop function is 
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ultrasensitive, the feedback loop has a bistable range. The steady states of the system can also be 

determined by identifying the intersection of the open-loop function with the identity line. 

 

 

Figure 5: Hysteresis. Bistable circuit exhibits hysteresis, meaning different response curves are 

obtained depending upon whether the system began at the low or high steady-state concentrations. 

Open-loop approach 
As mentioned earlier, the presence of an ultrasensitive response is a necessary condition for 

bistability. Experimentally, it is not always easy to measure certain parameter values like 

dimerization affinity constant and therefore to assess if the dimerization in this case is 

ultrasensitive or not. There is an approach, loop opening, which permits to determine if the 

system has a bistable range and to map this range [7]. For that, a component in the loop is broken 

into an input and output. This creates a reaction chain starting by the input passing through all the 

components of the broken loop and ending at the output. The open-loop function indicates the 

output as function of the input. This function represents the total response of all reactions within 

the loop, without the need to resolve any of them separately. If the open-loop function is 

ultrasensitive, the feedback loop has a bistable range. The steady states of the system can also be 

determined by identifying the intersection of the open-loop function with the identity line. 

Stochastic nature of gene expression 
Chemical reactions in living cells are driven by random collisions between molecules. If a 

sufficient number of same events occur per time lapse, this randomness could be averaged out 

and the process can be considered as behaving deterministically in cells. However, many 

reactions occur so rarely that substantial relative fluctuations arise spontaneously [13-16]. These 

going up coming 
down 
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fluctuations can propagate through the network as the rates of the other reactions are affected 

[17]. The gene expression is particularly sensitive as substantial phenotypical variation can be 

observed [18, 19]. 

Stochastic state transition 

In the bistable system, the fact that the concentration of the component of the system fluctuate 

make it possible that the system switches to the other steady state in the bistable range [20]. The 

transition rates are fitted from the measurement of the proportion of cell at the low expression 

state overtime from a population initially where all cells were at the high expression state for the 

high initial condition or at the low expression state for the low initial condition. Those transitions 

are also simulated by using the Gillespie algorithm [21]. This algorithm generates a statistically 

possible trajectory of a stochastic equation. By performing several trajectories, statistics can be 

obtained similarly as single-cell measurements in a population. 
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Aim of the study 
Bistable systems, where the expression switches between two distinct states of activity are widely 

present in cellular network in processes like cell-fate determination, microbial adaptation by bet-

hedging strategy or cancer onset [22-25]. Despite, this large presence, it is only less than 20 years 

that the first artificial feedback loops were built and therefore permit a better understanding of 

bistability. The first artificial loop was a double negative feedback loop using prokaryotic 

transcriptional repressors [26]. A bistable system can however arises from a simple positive 

feedback loop and this was demonstrated later on in eukaryote [20]. In this artificial positive 

feedback they observed as expected that the cells clustered in either of the two states but they also 

observed that time to time the cells switch between the two states. Those transitions arise from 

the small number of components in the transcription regulation which can relatively substantially 

fluctuate in a short period of time. This was the beginning of the quantification of the cellular 

memory. The cellular memory is the capacity of a system to maintain an established phenotype 

despite the presence of significant fluctuations which tend to switch it to another phenotype. The 

first attempt to quantify and modulate cellular memory was done with the galactose network in 

yeast [27]. In addition to map the different stability, monostability and bistability of the system 

like it was done in the lac operon [28], they also measured the transition rates to characterize 

further the bistable region between destabilized and persistent memory area. 

 

Bistability is not present in a positive feedback in absence of an ultrasensitive response [6-8]. 

Different reactions have been found to exhibit ultrasensitivity like cooperative binding, 

sequestration by inhibitor molecules, dimerization and multiple phosphorylations of a protein [9]. 

When the feedback system contain many components or when not all reaction rates are known, a 

powerful method, the open-loop approach can be used to detect the presence of reaction having 

an ultrasensitive response and map the steady states and therefore the bistable range [7]. The 

open-loop approach was already applied on transcriptional feedback loop by fusing the 

transcription factor with a fluorescent protein [29, 30]. 

 

Our work built on these findings. They were two main goals in this project. The first was to 

develop an improved version of the open-loop approach where we opened at mRNA and not by 

using florescent protein fusion. This was in order to obtain precise value of the main parameters 
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of the feedback loop and with it, the steady states can be predicted with precision as well as the 

bistable range and of course the presence of ultrasensitive reactions. The second aim was to 

predict the transition rates between the two states. For that, we used the information from the 

open-loop and in addition we measured and extended the model to fit the noise and the transient 

kinetics. The transient kinetics is the activation delay which is not inherent to feedback loop, in 

our case it was the slow diffusion or binding of a ligand of the transcription factor. The good 

match between the predicted and the observed transition rates were in good agreement validating 

both the open-loop approach and the framework used to predict the transition rates. 

The work was divided in three manuscripts. The first manuscript described how we optimized the 

initial feedback loop to avoid growth defect and how we determined the reactions with an 

ultrasensitive response. In the second manuscript, we applied the open-loop approach on the 

feedback loop and we predicted the transition rates. In the third manuscript, we estimated the 

bistable region and modulated it.  
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II. Protein Dimerization generates bistability in 
positive feedback loops 
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SUMMARY

Bistability plays an important role in cellular memory
and cell-fate determination. A positive feedback loop
can generate bistability if it contains ultrasensitive
molecular reactions. It is often difficult to detect bist-
ability based on such molecular mechanisms due to
its intricate interaction with cellular growth. We con-
structed transcriptional feedback loops in yeast. To
eliminate growth alterations, we reduced the protein
levels of the transcription factors by tuning the trans-
lation rates over two orders of magnitude with
designed RNA stem loops. We modulated two ultra-
sensitive reactions, homodimerization and the coop-
erative binding of the transcription factor to the pro-
moter. Either of them is sufficient to generate
bistability on its own, and when acting together, a
particularly robust bistability emerges. This bistabil-
ity persists even in the presence of a negative feed-
back loop. Given that protein homodimerization is
ubiquitous, it is likely to play a major role in the
behavior of regulatory networks.
INTRODUCTION

Bistability, the persistence of two alternative stable-activity

states under identical conditions, can uphold alternative cell

fates and differentiation states, store cellular memory of past

stimuli, and enhance adaptation in organisms ranging from

bacteria to mammals (Angel et al., 2011; Arnoldini et al., 2014;

Bouchoucha et al., 2013; Chickarmane et al., 2009; Park et al.,

2012).

Positive feedback is a necessary, but not sufficient, condition

for bistability in a gene regulatory network. The second

requirement is that the feedback loop contains reactions such

as cooperative binding, sequestration by inhibitor molecules,

and multiple phosphorylation of a protein by a kinase (Chen

and Arkin, 2012; Ferrell and Ha, 2014;Májer et al., 2015; Shopera

et al., 2015; Thomson and Gunawardena, 2009). These reactions

display a sigmoidal, switch-like nonlinear response, also termed

ultrasensitive response. Without ultrasensitive responses, a
1204 Cell Reports 16, 1204–1210, August 2, 2016 ª 2016 The Author
This is an open access article under the CC BY-NC-ND license (http://
feedback loop can have only a single steady-state expression

level, i.e., the system is monostable.

In transcriptional regulation, dimerization and cooperative

binding of a transcription factor are expected to be common

sources of ultrasensitivity (Buchler and Louis, 2008). Most tran-

scription factors bind to DNA as dimers, and binding can be

cooperative when more than one binding site is present in a

promoter (Becskei et al., 2005). Despite the ubiquity of protein

homodimerization, its ability to generate bistability remained

elusive.

The difficulty to identify the sources of bistability may be

explained by the effect of the feedback loop on cell growth. In

positive feedback loops, the transcription factors are often ex-

pressed at high levels; therefore, they can sequester mediators

of transcription (Becskei et al., 2001; Kelleher et al., 1990). This

results in squelching of global gene expression, which reduces

cellular growth and alters the behavior of networks. Even more,

growth alterations rather than ultrasensitivity in the feedback

can generate bistability (Brophy and Voigt, 2014; Tan et al.,

2009).

In this work, we illustrated a design principle to tackle this dif-

ficulty with synthetic feedback loops. We show that alteration of

the cell growth caused by overexpression of the transcription

factor can be circumvented by using RNA stem loops to adjust

translation rates. After translation rate adjustment, we show

that either of the two ultrasensitive reactions, cooperative bind-

ing to the promoter or homodimerization, can support bistability.

When they were both present, a particularly robust bistability

emerged.
RESULTS

Design of Synthetic Loop and Control Elements
Synthetic positive feedback loops were created by placing the

gene encoding the transcription factor rtTA (reverse tetracycline

transactivator) under the control of a promoter containing tet

operators and inserted into the chromosome of the yeast

S. cerevisiae (Table S1). rtTA is composed of the bacterial rTetR

DNA-binding domain and the VP16 activation domain; rtTA

binds to the tet operators only in dimeric form (Kamionka et al.,

2006). The ligand doxycycline enables rtTA to bind to tet opera-

tors; thus, the affinity of rtTA binding to DNA was adjusted by the

ligand concentration (Figure 1A).
(s).
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Design and Models of Feedback

Loops with Cooperative Binding and Homo-

dimerization

(A) Feedback loop design. Two examples are

shown for the feedback loops: the loop with two

ultrasensitive reactions: cooperative binding and

dimerization (upper panel) and the loop without

ultrasensitive reaction (lower panel).

(B) The effect of cooperative binding and protein

dimerization on the steady-state levels in the

feedback loop as a function of the binding strength

of transcription factor to DNA, as indicated by the

doxycycline concentration. When three (one un-

stable and two stable) steady-state expression

levels are found in a certain range of doxycycline

concentration, the system is bistable. The Hill

coefficient of the cooperative binding was 1.45,

and the equilibrium dissociation constant (KD) for

dimerization was 1,000 (in concentration units

identical to that of the transcription factor).

See also Supplemental Information.
To study the effect of dimerization, we compared the original

dimeric rtTA with a monomeric form. To create this monomeric

form, two rTetR DNA-binding domains were fused. The resulting

single-chain monomer (sc-rtTA) alone is capable of binding to

the palindromic operators, eliminating the ultrasensitive dimer-

ization reaction (Zhou et al., 2007). To study the effect of cooper-

ativity, we changed the number of tet operators in the promoter.

The binding of rtTA to a single tet operator is non-cooperative,

while binding to seven operators in a promoter is cooperative

(Becskei et al., 2005) (Figure 1A).

If a transcriptional positive feedback loop incorporates coop-

erative binding or dimerization, bistability is expected in a certain

doxycycline concentration range. This range is expected to be

broader when both reactions are present (Figure 1B). To test

the individual and joint effect of these mechanisms, we con-

structed all four variants of the feedback loop. We measured

the activity of a feedback loop with a GFP reporter controlled

by a promoter with tet operators (Figure 2A).

Growth Alteration by Overexpression of the
Transcription Factor Caused Atypical Hysteresis
We evaluated bistability with hysteresis experiments that test

whether the system activity depends on the initial condition,

i.e., on its history. Pre-cultures with either low or high expression

states of rtTA were prepared, which defines the initial conditions,

and the cells were further cultured at different doxycycline con-

centrations. The range of doxycycline concentrations at which

the expression in each culture remains close to the respective

initial condition—and, therefore, different from each other—de-

fines the range of hysteresis. To adjust the initial condition, we in-

tegrated an inducible rtTA construct into the chromosome. Its

expression was controlled by the PGAL promoter. By a transient

exposure of cells to galactose, the rtTA is expressed at a high

level to establish the high initial condition (Figure 2A).

When hysteresis experiments were performed for the cooper-

ative-dimeric feedback loop, the cell expression deviated mark-

edly from the initial state. Even more, the high expression level

was observed only in cells with the low initial condition, while
cells with the high initial condition failed to maintain high expres-

sion (Figure 2B). This is the exact opposite of the conventional

hysteresis behavior. Similarly unusual was the behavior of the

non-cooperative-dimeric feedback loop (Figure S1A).

We suspected that the high expression of the rtTA affects the

cell growth and alters the system’s behavior. Indeed, a reduced

growth rate was observed at a high doxycycline concentration at

which the system should have been fully activated (Figure 2C).

Translation Rate Tuning with RNA Stem Loop and
Feedback Loop Optimization
To eliminate the growth rate alteration, we lowered the protein

expression level by decreasing the translation rate with RNA

stem loop. A stem loop upstream of the start codon is expected

to reduce the translation rate by preventing ribosome from initi-

ating the translation. When a stem loop with a stem containing

six G-C base pairs (or SL6[AT]0) (Beelman and Parker, 1994)

was incorporated into the cooperative-dimeric feedback loop,

no growth defect was detected anymore, and the growth rates

in all conditions were identical (Figure 2C). However, the reporter

gene expression was very weak, indicating that the rtTA protein

concentration was too low to activate the system (Figure 2B).

To reach a sufficient protein expression level without causing

growth defect, we synthesized stem loops and measured their

respective translation rates. The strength of translation inhibition

of the stem loop depends on its structure. We weakened the

stem structure of the initial SL6[AT]0 by shortening the stem length

to five base pairs and by increasing the proportion of A-T base

pairs. The absolute translation rate was calculated from the

steady-state expression levels of RNA and protein and the pro-

tein decay rate. The molecule numbers of RNAs and proteins

were measured with single-molecule fluorescence in situ hybrid-

ization (smFISH) and mass spectrometry, respectively (Experi-

mental Procedures; Supplemental Experimental Procedures).

We obtained a variety of stem loops that can tune the translation

rate over two orders of magnitude (Figure 3A). We also checked

how robust the stem loops behave in different sequence context.

For this purpose, we inserted these stem loops upstream of the
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Figure 2. Hysteresis Experiments with Altered Growth Rates

(A) Circuit design. The activity of the cooperative-dimeric loop is reported with a GFP reporter (green) under P[tetO]2 and measured with flow cytometry. High and

low initial conditions (transcription factor expression levels) were established with the PGAL promoter (red), which can be induced transiently by galactose.

Expression of PGAL is independent of the doxycycline-inducible promoters. To reduce the expression level of the transcription factor, a stem loop was incor-

porated in the RNA upstream of the start codon.

(B) The hysteresis experiment of the dimeric-cooperative loop without (upper panel) or with (lower panel) incorporated non-optimized RNA stem loop (SL6[AT]0) to

modulate translation. Cells with the low (gray dots) or the high (orange dots) initial condition were grown at the indicated doxycycline concentration for 24 hr.

(C) Growth curves of cells containing the cooperative-dimeric loop without (upper panel) or with (lower panel) incorporated RNA stem loop under indicated initial

conditions and doxycycline concentrations during the hysteresis experiments.

See also Figure S1.
start codon of a fluorescent reporter gene, YFP (yellow fluores-

cent protein). The decrease of fluorescence with increasing

stem-loop strength was very similar to that observed for the ab-

solute translation rates of the rtTA mRNA (Figure 3A).

A specific stem loopwas selected for each feedback construct

in order to eliminate growth alterations without reducing protein

concentration tobelow the level required toactivate the feedback

loops (Figures 3B and S1).

The decay rates of the rtTA and the sc-rtTA proteins were

similar, with half-lives of 79 and 83 min, respectively (Figure 3C).

The similar decay rates of the two proteins permit their

consistent comparison of the feedback loops in the hysteresis

experiments.

Homodimerization and Cooperativity Generate
Bistability
With the optimized feedback loops, we observed classical hys-

teresis behavior: cells with the high initial condition had higher

or equal expression than cells with the low initial condition (Fig-

ure 4A). The non-cooperative-monomeric loop displayed no hys-

teresis, the expressions of cells were very similar, independent of

the initial condition. When one of the ultrasensitive reactions—

either cooperative binding or dimerization—was included in

the feedback loop, bistability emerged. The non-cooperative-
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dimeric loop displayed hysteresis over one order of magnitude

of doxycycline concentration, which is broader than that for

the cooperative-monomeric circuit. Combining the two mecha-

nisms, a particularly broad range of hysteresis emerged. The

cells with a high initial condition remained in the high expression

state; and cells with the low initial condition remained in the low

expression state over at least two orders of magnitude of doxy-

cycline concentrations. This represents a robust form of cellular

memory. These results confirm the expectations from the theo-

retical model (Figure 1B).

Negative Feedback Reduces the Robustness of
Bistability
Positive feedback loops are often combined with negative ones.

This combination is expected to reduce the bistable range (Tian

et al., 2009). To extend the cooperative-dimeric positive feed-

back loop with a negative loop, additional tet operators were

integrated downstream of the TATA box in the promoter (Fig-

ure 4B). The binding of rtTA to these two tet operators was

shown to repress transcription. At low doxycycline concentra-

tion, the binding to the seven upstream tet operators activates

gene expression, while at higher doxycycline concentration,

repression predominates. Consequently, the promoter displays

a bell-shaped response (Figure S2A) (Buetti-Dinh et al., 2009).



Figure 3. Optimization of Protein Expres-

sion Levels with Various RNA Stem Loops

(A) Translation rates of mRNAs with different stem

loops. Stem loops with different lengths and AT/

GC contents were incorporated upstream of the

start codon of the transcription factor rtTA or a

fluorescence reporter under control of the PGAL

promoter as indicated. The absolute translation

rates and the relative fluorescence signals were

measured. The following values were obtained for

the translation rates (left to right): 18.6, 4.8, 1.6,

0.54, and 0.2 min�1.

(B) The effect of stem loop optimization on growth

in different feedback constructs. The growth rates

of cells containing the indicated feedback loops

with various RNA stem loops were determined by

linear regression under different initial conditions

(init.) and doxycycline (dox) concentrations during

the hysteresis experiments.

(C) The decay rates of proteins were measured

by shut-off assay (Supplemental Experimental

Procedures). The fitted decay rate constants of

rtTA protein are 0.0126 ± 0.0009 and 0.0088 ±

0.0006 min�1 (estimate ± SE) with and without

20 mM dox, respectively. Both values are 0.0084 ±

0.0004 min�1 for sc-rtTA.

See also Supplemental Experimental Procedures

and Figure S1.
In theory, a feedback loop with this promoter has a narrower

range of bistability compared to the cooperative-dimeric feed-

back loop (Figure S2B). Furthermore, the higher expression state

is predicted to be lower. This may explain why no growth alter-

ation was observed and no stem loop was needed for this feed-

back loop. The range of hysteresis of this dual positive-negative

feedback system was narrower than that of the corresponding

positive feedback (cooperative-dimeric). However, it was still

wider than the hysteresis range of loops with a single ultra-

sensitive reaction step (Figure 4C), which indicates again the

robustness of the bistability when cooperative binding and

homodimerization act together.

DISCUSSION

We observed bistability due to ultrasensitive molecular mecha-

nisms only when cell growth alterations due to the feedback

loops were eliminated. This behavior stands in contrast to those

systems where bistability arises due to the interaction of the

feedback loop and cellular growth. For example, regulators

have been identified that slow down cell growth, which then es-

tablishes a positive feedback loop to control cell differentiation

(Chiodini et al., 2013; Kueh et al., 2013; Tan et al., 2009).

Coupling of feedback loops with growth rate is likely to represent

an important phenomenon, since differentiating cells that enter
Cell Re
distinct cell lineages often have disparate

growth rates (Cheeseman et al., 2014).

In our system, the reduction of cell

growth was due to the squelching of

gene expression of a highly expressed

activator. Interestingly, endogenous tran-
scriptional activators are also known that can repress gene

expression by squelching (Guertin et al., 2014; Schmidt et al.,

2015).

To eliminate growth alterations, we reduced protein con-

centration by translational inhibition. Interestingly, the range of

inhibition was quite narrow that permitted the activation of the

feedback loops without affecting growth rate. This requirement

was met by the stem-loops we created because it was possible

to modulate the translation rate over a broad dynamic range,

which makes them an ideal tool in systems and synthetic biology

(Chappell et al., 2015; McKeague et al., 2016). Furthermore, the

stem loops reduce the translation of different proteins similarly

(Figure 3A). The absolute translation rate without stem-loop

was around 20 min�1, while it was around 0.2 min�1 with the

stem loop having the highest GC content. This means that, on

average, 20 protein molecules are translated from an RNAmole-

cule per minute without the stem loop. To our knowledge, no

absolute translation rate has beenmeasured in yeast, but a com-

parison of genome-wide studies on yeast mRNA, protein abun-

dances, and protein half-lives yields similar estimates for the

average translation rate (23 min�1) (Belle et al., 2006; To and

Maheshri, 2010).

The loop with the monomeric transcriptional activator and a

single site in the promoter lacks any ultrasensitive reaction,

and bistability was absent. By adding either dimerization or
ports 16, 1204–1210, August 2, 2016 1207



Figure 4. Hysteresis in Feedback Circuits

Incorporating Protein Homodimerization or

Cooperative Binding to the Promoter

(A) Hysteresis experiments with circuits with opti-

mized stem loops as indicated in Figure 3. Cells

with the low (gray dots) or the high (orange dots)

initial condition were grown at the indicated

doxycycline concentration for 24 hr.

(B and C) Hysteresis in dual positive-negative

feedback based on the cooperative-dimeric cir-

cuit. The negative feedback was established by

inserting transcription factor binding sites down-

stream of the TATA box site in the promoter, which

inhibits transcription (red) (B). Hysteresis experi-

ments were performed with the cells containing

this feedback construct without RNA stem loop

for 24 hr.

See also Figure S2.
cooperative binding to the circuit, we can assess their contri-

bution to bistability separately. In principle, the following two

feedback loops can generate identical bistable ranges: (1)

the dimeric transcription factor that binds to a single site in

the DNA, provided the concentration of the protein is less

than its dimerization equilibrium dissociation constant; and

(2) a monomeric factor that binds cooperatively to multiple

sites in a promoter with a Hill coefficient of 2 (Májer et al.,

2015). However, the binding of rtTA to the cooperative pro-

moter has a Hill coefficient of 1.45 (Becskei et al., 2005).

Thus, the larger potential ultrasensitivity of dimerization may

explain why bistability had a broader range in the presence

of homodimerization than in the presence of cooperative bind-

ing (Figure 4A).

Bistability based on dimerization reactions has eluded

detection, although the majority of proteins di- or multi-

merize across all domains of life (Lynch, 2012; Maria-

nayagam et al., 2004). This apparent paradox may have

several reasons. First, it is difficult to separate the specific

effect of dimerization exactly, because it is ubiquitous. In

typical networks, dimerization is combined with other, more

evident, ultrasensitive reactions exemplified by sequestration

or cooperative binding. Second, a dimerization reaction be-

comes ultrasensitive and, thus, can support bistability only

if the protein concentration is low enough (Buchler and
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Louis, 2008; Májer et al., 2015). The

reduced concentration of the dimerizing

protein in our circuits is likely to have

facilitated the emergence of bistability.

Positive feedback loops have been

uncovered in a broad range of reg-

ulatory processes (Chiodini et al.,

2013; Kueh et al., 2013; Park et al.,

2012). Our study provides clues on

how to detect the bistability due to

homodimerization in feedback loops.

It has the potential to contribute to

other dynamical behaviors, such as

oscillation and pattern formation (Ferrell
and Ha, 2014). Given the ubiquity of homodimerization, it

is likely that it plays an important role in these processes as

well.

EXPERIMENTAL PROCEDURES

Design of Synthetic Circuits and Yeast Strains

Each feedback strain contained a feedback circuit, a fluorescent reporter

construct (P[tetO]2- yEGFP), and a PGAL-rtTA/sc-rtTA expression cassette.

The PGAL-rtTA/sc-rtTA expression cassette was utilized to generate the high

initial condition by adding 0.5% galactose for the hysteresis experiments.

Galactose activates expression driven by the PGAL promoter through

the endogenous Gal4p. The PGAL is a modified version of PGAL1 (denoted as

P_GAL1UAS-CYC1c in Table S1).

All yeast strains are derivatives of S. cerevisiae W303 (Table S1). All genetic

constructs were integrated into the chromosome with a single copy, with the

exception of the P[tetO]2-GFP construct, which has three copies. To minimize

the position effect, genes with promoters containing tet operators were inte-

grated to the ura3 locus, and those with PGAL were integrated to the ade2

locus.

The synthetic genetic components share a common core promoter

and transcriptional terminator of CYC1, unless otherwise specified. The

CYC1 core promoter, CYC1c, is a 137-bp sequence upstream of the start

codon of CYC1, which contains the TATA box. The upstream activation

sequences (UASs), including tetO and GAL1, were attached to this core

promoter sequence. The Mig1p-binding site in the UAS from GAL1 was in-

activated. A BamHI site was introduced between CYC1c and the start

codon.



The stem loop sequenceswere derived from the followingSL6[AT]0 sequence,

50-CCGCGGTTCGCCGCGG-30 (Beelman and Parker, 1994): 50-CCGCG

TTCGCGCGG-30 (SL5[AT]0), 50-CCTCGTTCGCGAGG-30 (SL5[AT]1), 50-CCTTG
TTCGCAAGG-30 (SL5[AT]2) and 50-CCTTATTCGTAAGG-30 (SL5[AT]3). The stem

loops were inserted into the CYC1c region of the promoter with a 13-bp

spacing before the start codon. The sequences upstream and downstream

of the stem loop were ATTACCGGATCA and ATTCGGGggatccATG; the

ATG at the 30 end is the start codon, and ggatcc is a BamHI recognition site.

The design of the stem loop was checked by the free energy calculated

from the Vienna RNA Websuite (Gruber et al., 2008).

For the rtTA protein, the S2 version of the reverse tetracycline transactivator

was used (Becskei et al., 2005). sc-rtTA is a chain of two connected tetRs fol-

lowed by a single VP16 activation domain. The F86Y and G138D mutations

(FYGD) were introduced in both tetRs to enhance transcription activity (Zhou

et al., 2007). To reduce recombination within the sc-rtTA sequence, an extra

HinDIII site was introduced to the rtTA sequence (silent mutation, position

102 in ORF [open reading frame]), and the sequence of a codon-humanized

FYGD version of tetR (Zhou et al., 2007) containing the linker was inserted

into the HinDIII site. The StuI and BamHI sites in the ORF sequence were

inactivated.

Hysteresis Experiment

General growth conditions and flow cytometry are described in the Supple-

mental Experimental Procedures. Low and high expression states were

created as initial conditions, termed low and high initial conditions. The high

initial condition was generated by culturing cells overnight with 2 mM doxycy-

cline and 0.5% galactose, while no inducers were added for the low initial con-

dition. Subsequently, the cultures were transferred to fresh media starting at

an optical density at 600 nm (OD600) of 0.2 and grown for additional 4 hr. These

cells were then inoculated into media containing a doxycycline concentration

range so that cells with different initial conditions were grown in identical con-

ditions. There was no need to wash the cells prior to inoculation to remove the

inducers, since the inoculumwas diluted at least 1,000 times. The initial culture

density was adjusted so that the OD600 reaches values between 0.6 and 1.0

at 24 hr.

Translation Rate Constant Determination

The translation rate was determined in steady-state conditions. The protein

concentration ½P� is governed by:

d½P�
dt

=r½mRNA� � dP½P�:

dP is the protein decay rate constant; r is the translation rate constant; and [P]

and [mRNA] represent the copy numbers of protein and mRNA in a cell,

respectively.

Therefore, r is equal to ðdP½P�=½mRNA�Þ in steady state.

The decay rate constant of the protein was determined as explained in the

Supplemental Information. To determine the effect of stem loops on transla-

tion, strains (indicated by ‘‘Translation rate determination’’ in the Function col-

umn of Table S1) were constructed that express rtTA with different stem loops

under the control of GEV. GEV also binds to and activates the GAL promoters,

but only in the presence of estradiol. The RNA expression can be tuned over a

broad range by adjusting the estradiol concentration (Bonde et al., 2014). In

this way, it was possible to express rtTA without growth alterations. Cells

were grown for 24 hr with 10 nM or 100 nM estradiol to reach steady-state

expression. The culture was split for the quantification of RNA with qPCR

and protein with absolute protein quantification by mass spectrometry. To

convert the mRNA data measured by qPCR to absolute counts, we measured

the ratio of the RNA levels obtained by qPCR to that by smFISH (Supplemental

Experimental Procedures). The reported translation rates are averages calcu-

lated from the two steady-state expression levels induced with 10 nM or

100 nM estradiol.

The absolute translation rates were verified by assessing relative translation

efficiencies with fluorescent reporters, in which the same stem loops were in-

serted. These haploid strains, indicated in Table S1 with ‘‘translation efficiency
strains,’’ were incubated with 80 nM estradiol for 24 hr to reach steady-state

expression levels of the fluorescent reporter.

Mathematical Modeling

Details are provided in the Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

two figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.celrep.2016.06.072.
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Májer, I., Hajihosseini, A., and Becskei, A. (2015). Identification of optimal

parameter combinations for the emergence of bistability. Phys. Biol. 12,

066011.

Marianayagam, N.J., Sunde,M., andMatthews, J.M. (2004). The power of two:

protein dimerization in biology. Trends Biochem. Sci. 29, 618–625.

McKeague, M., Wong, R.S., and Smolke, C.D. (2016). Opportunities in the

design and application of RNA for gene expression control. Nucleic Acids

Res. 44, 2987–2999.

Park, B.O., Ahrends, R., and Teruel, M.N. (2012). Consecutive positive feed-

back loops create a bistable switch that controls preadipocyte-to-adipocyte

conversion. Cell Rep. 2, 976–990.

Schmidt, S.F., Larsen, B.D., Loft, A., Nielsen, R., Madsen, J.G., and Mandrup,

S. (2015). Acute TNF-induced repression of cell identity genes is mediated by

NFkB-directed redistribution of cofactors from super-enhancers. Genome

Res. 25, 1281–1294.

Shopera, T., Henson, W.R., Ng, A., Lee, Y.J., Ng, K., and Moon, T.S. (2015).

Robust, tunable genetic memory from protein sequestration combined with

positive feedback. Nucleic Acids Res. 43, 9086–9094.

Tan, C., Marguet, P., and You, L. (2009). Emergent bistability by a growth-

modulating positive feedback circuit. Nat. Chem. Biol. 5, 842–848.

Thomson, M., and Gunawardena, J. (2009). Unlimited multistability in multisite

phosphorylation systems. Nature 460, 274–277.

Tian, X.J., Zhang, X.P., Liu, F., and Wang, W. (2009). Interlinking positive and

negative feedback loops creates a tunable motif in gene regulatory networks.

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80, 011926.

To, T.L., and Maheshri, N. (2010). Noise can induce bimodality in positive tran-

scriptional feedback loops without bistability. Science 327, 1142–1145.

Zhou, X., Symons, J., Hoppes, R., Krueger, C., Berens, C., Hillen, W., Berkh-

out, B., and Das, A.T. (2007). Improved single-chain transactivators of the

Tet-On gene expression system. BMC Biotechnol. 7, 6.

http://refhub.elsevier.com/S2211-1247(16)30841-5/sref11
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref11
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref11
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref12
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref12
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref12
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref13
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref13
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref13
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref13
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref14
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref14
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref15
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref15
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref15
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref16
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref16
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref16
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref16
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref17
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref17
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref18
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref18
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref19
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref19
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref19
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref20
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref20
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref20
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref21
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref21
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref21
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref22
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref22
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref22
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref23
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref23
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref24
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref24
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref24
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref25
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref25
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref26
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref26
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref26
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref27
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref27
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref27
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref28
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref28
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref28
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref28
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref29
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref29
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref29
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref30
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref30
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref31
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref31
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref32
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref32
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref32
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref33
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref33
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref34
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref34
http://refhub.elsevier.com/S2211-1247(16)30841-5/sref34


Cell Reports, Volume 16
Supplemental Information
Protein Dimerization Generates Bistability

in Positive Feedback Loops

Chieh Hsu, Vincent Jaquet, Mumun Gencoglu, and Attila Becskei



Supplemental Information to  

Protein dimerization generates bistability in positive feedback loops  
Chieh Hsu, Vincent Jaquet, Mumun Gencoglu & Attila Becskei 
 

Supplemental Figures 

 

 

Figure S1. Hysteresis experiments of the non-optimized non-cooperative-dimeric feedback loops.  

Related to Figure 2. 

Cells with low (gray dots) or high (orange dots) initial condition were grown at the indicated doxycycline 
concentrations for 24 h. (A) Without stem-loop, the non-cooperative-dimeric feedback loop displayed 
atypical hysteresis; cells with both initial conditions had low expression at high doxycycline 
concentration.   (B-C) Too strong stem-loops prevented the system from reaching the high expression 
state.   

P[tetO]1 // SL5[AT]0 // rtTA  

P[tetO]1 // SL5[AT]1 // rtTA  

A 

C 

P[tetO]1 // w/o SL // rtTA 

B 

High 
Low initial condition  



 

Figure S2. Comparison of bistability in positive and dual positive-negative feedback loops. 

Related to Figure 4. 

(A) Response of promoters incorporated into the positive and the dual positive-negative feedback loops. 
The blue line stands for the response of the cooperative promoter to the dimeric transcription factor, with 
the same parameters as in Figure 1B. The purple line denotes the corresponding bell-shaped response. 
The promoter response is the gene expression controlled by the transcription factor (TF). The TF is 
expressed in units of the mRNA encoding the TF. The ultrasensitivity of the two responses is similar, as 
indicated by the similar relative slopes (see in comparison gray lines, which mark the minimal steepness 
for an ultrasensitive response). (B) Bistability in the feedback loop incorporating the promoter with 
cooperative (sigmoidal, blue curve) or bell-shaped response (purple curve). The stable (solid) and 
unstable (dashed) steady-state expression levels are shown. The blue curve is identical to that in Figure 
1B. Details for equations are provided in the Supplemental Experimental Procedures. 
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Supplemental Table 

Table S1. Yeast strains. Related to Experimental Procedures. 

Diploid 
Strain 

Haploid 
parents Integration locus (plasmid) Function 

 
A 

ade2:: ADE2_ ura3:: URA3_ his3::  HIS3_  
alpha 

Yvj87.2 
Yvj79.2  P_[tetO]7- CYC1c ǀ 

SL_5[AT]1 ǀ rtTA (pCH068)  
P_MRP7  ǀ GEV 
(pPR1) 

Feedback 
Yvj70.1 P_GAL1UAS-CYC1c ǀ 

SL_5[AT]1 ǀrtTA  (pVJ46)   
P_[tetO]2- CYC1c ǀ yEGFP 
(pABG10)   

Yvj99 
Yvj89.1  P_[tetO]1- CYC1c ǀ 

SL_5[AT]2 ǀ rtTA (pVJ42)  
P_MRP7  ǀ GEV 
(pPR1) 

Feedback 
Yvj91.6 P_GAL1UAS-CYC1c ǀ 

SL_5[AT]2 ǀrtTA  (pCH094) 
P_[tetO]2-CYC1c ǀ yEGFP 
(pABG10)   

Ych260.2 

Yvj80.1  P_[tetO]7- CYC1c ǀ 
SL_5[AT]3 ǀ sc-rtTA (pCH91)  

P_MRP7 ǀ GEV 
(pPR1) 

Feedback  
Ych250.2 

P_GAL1UAS-CYC1c ǀ 
SL_5[AT]3 ǀ sc-rtTA  
(pCH102) 

P_[tetO]2- CYC1c ǀ yEGFP 
(pABG10)   

Yvj109.5 

Yvj107.5  P_[tetO]1- CYC1c ǀ 
SL_5[AT]3 ǀ sc-rtTA (pCH083)  

P_MRP7  ǀ GEV 
(pPR1) 

Feedback 
Ych250.2 

P_GAL1UAS-CYC1c ǀ 
SL_5[AT]3 ǀ sc-rtTA  
(pCH102) 

P_[tetO]2- CYC1c ǀ yEGFP 
(pABG10)   

Yvj151.3 
Yvj150.3 P_[tetO]7-TATA-[tetO]2 

CYC1c ǀ rtTA (pMG01)  P_MRP7  ǀ GEV 
(pPR1) 

Feedback 
Ych178.2 P_GAL1UAS-CYC1c ǀ rtTA  

(pCH099) 
P_[tetO]1- CYC1c ǀ yEGFP 
(pCH001)  

Ych270 
Yvj92.7  P_[tetO]1- CYC1c ǀ yEGFP 

(pCH001) 
P_MRP7  ǀ GEV 
(pPR1) Translation 

rate 
determination Ych171.2 P_GAL1UAS-CYC1c ǀ rtTA  

(pCH099)   

Ych267 
Yvj92.7  P_[tetO]1- CYC1c ǀ yEGFP 

(pCH001) 
P_MRP7  ǀ GEV 
(pPR1) Translation 

rate 
determination Ych240.8 P_GAL1UAS-CYC1c ǀ 

SL_5[AT]3 ǀrtTA  pCH101   

Ych235.7 
Yvj92.7  P_[tetO]1- CYC1c ǀ yEGFP 

(pCH001) 
P_MRP7  ǀ GEV 
(pPR1) Translation 

rate 
determination  Ych169.7 P_GAL1UAS-CYC1c ǀ 

SL_5[AT]2 ǀrtTA  (pCH094)   

Ych268 
Yvj92.7  P_[tetO]1- CYC1c ǀ yEGFP 

(pCH001) 
P_MRP7  ǀ GEV 
(pPR1) Translation 

rate 
determination Yvj67.4 P_GAL1UAS-CYC1c ǀ 

SL_5[AT]1 ǀ rtTA  (pVJ46)     

      



Diploid 
Strain 

Haploid 
parents Integration locus (plasmid) Function 

 
A 

ade2:: ADE2_ ura3:: URA3_ his3::  HIS3_  
alpha 

Ych271 
Yvj92.7  P_[tetO]1- CYC1c ǀ yEGFP 

(pCH001) 
P_MRP7  ǀ GEV 
(pPR1) Translation 

rate 
determination Ych084.1 P_GAL1UAS-CYC1c ǀ 

SL_6[AT]0 ǀ rtTA  (pCH059)     

Yvj10.1 
Yvj8.1 P_[tetO]7- CYC1c  ǀ rtTA  

(pJK34)   Initial  
feedback 
construct Yvj1.3  P_[tetO]2- CYC1c ǀ yEGFP 

(pABG10)  
P_GAL1UAS ǀ 
rtTA  (pMG2)   

Yvj47.4 
Yvj44.4 P_[tetO]1- CYC1c  ǀ rtTA 

(pJK32)   Initial  
feedback 
construct Yvj1.3  P_[tetO]2- CYC1c ǀ yEGFP 

(pABG10)  
P_GAL1UAS ǀ 
rtTA  (pMG2)   

Yvj130 
Yvj29 *  

   Initial  
feedback 
construct Yvj36.5 P_[tetO]7- CYC1c  ǀ 

SL_6[AT]0 ǀ rtTA (pVJ11) 
P_[tetO]2- CYC1c ǀ yEGFP 
(pABG10) 

P_GAL1UAS ǀ 
rtTA  (pMG2)   

Yvj131 
Yvj29 *  

   Initial  
feedback 
construct Yvj49.1 P_[tetO]1- CYC1c  ǀ 

SL_5[AT]0ǀ rtTA (pVJ23) 
P_[tetO]2- CYC1c ǀ yEGFP 
(pABG10) 

P_GAL1UAS ǀ 
rtTA  (pMG2)   

Yvj132 
Yvj29 *  

   Initial  
feedback 
construct Yvj55.8 P_[tetO]1- CYC1c  ǀ 

SL_5[AT]1ǀ rtTA (pVJ26) 
P_[tetO]2- CYC1c ǀ yEGFP 
(pABG10) 

P_GAL1UAS ǀ 
rtTA  (pMG2)   

Ych294 
Yvj40.3   P_MRP7 ǀ GEV 

(pPR1) smFISH 
negative 
control Ych89.2 (pRS402)  P_[tetO]2- CYC1c ǀ yEGFP 

(pABG10)   

MAT A Ych242.6 P_GAL1UAS-CYC1c ǀ ǀ 
rtTAΔ(45/45)::YFP (pCH93)   P_MRP7  ǀ GEV 

(pPR1) 
Translation 
efficiency 

MAT A Ych248.5 
 P_GAL1UAS-CYC1c ǀ 
SL_5[AT]3 ǀ 
rtTAΔ(45/45)::YFP (pCH100)  

 P_MRP7  ǀ GEV 
(pPR1) 

Translation 
efficiency 

MAT A Ych247.3 
P_GAL1UAS-CYC1c ǀ 
SL_5[AT]2 ǀ 
rtTAΔ(45/45)::YFP (pCH095)  

 P_MRP7  ǀ GEV 
(pPR1) 

Translation 
efficiency 

MAT A Ych211.2 
P_GAL1UAS-CYC1c ǀ 
SL_5[AT]1 ǀ 
rtTAΔ(45/45)::YFP (pVJ47)  

 P_MRP7  ǀ GEV 
(pPR1) 

Translation 
efficiency 

MAT A Yvj136.5 
P_GAL1UAS-CYC1c ǀ 
SL_6[AT]0 ǀ 
rtTAΔ(45/45)::YFP (pCH60) 

 P_MRP7  ǀ GEV 
(pPR1) 

Translation 
efficiency 

* Yvj29: leu2::LEU2 (pRS305) 



Supplemental Experimental Procedures 

Growth conditions 

Cells were cultured at 30°C in synthetic medium containing yeast nitrogen base, 2% filter-sterilized 

raffinose and 0.02% glucose as carbon source and the -Ade/-His/-Ura drop-out supplement, unless  

otherwise indicated. Overnight and refreshment cultures (5ml) were grown in 50 ml culture flasks. 

Cultures of 0.6 ml were induced by doxycycline (dox) and were grown in 96-well plates with 1.2 ml 

capacity. The doxycycline concentration did not exceed 40 μM, above which toxic effects can arise 

(Ratna and Becskei, 2011). The plates were covered with breathable rayon films and shaken at 600 rpm. 

Alternative growth conditions are specified in context. 

Shutting off gene expression to determine protein decay rate 

To determine protein decay rate constants shut-off assays were performed. The cells were cultured 

overnight with 0.5 % galactose and transferred to a refreshment medium containing 0.05% galactose for 

further growth for 4 hours. To shut off PGAL expression, the cells were pelleted and cultured further in 

medium without galactose. 5 ml culture was collected at each indicated time point. The cell density was 

kept below an OD600 of 1.0 throughout the course of the experiment. 

Flow cytometry  

The flow cytometry was used to read out the activity of rtTA through reporter genes. GFP fluorescence 

was measured by FACSCanto™ II (BD bioscience) Flow Cytometer using the 488 nm laser and the 

530/30 nm band pass emission filter, coupled to a 502 nm long pass dichroic mirror. Gating based on the 

forward- and side-scatter signal was performed to omit the cell debris and clusters. At least 5,000 cell 

events were recorded for a single measurement. 

Single mRNA fluorescence in situ hybridization (smFISH) 

Cell handling, image acquisition and quantification methods for smFISH were performed as previously 

described (Bonde et al., 2014) with minor modifications. The Stellaris probe set for rtTA (fluorescence 

label: quasar 670, 30 probes) was designed to cover the sequence of the TetR domain of rtTA (S2 

version) which detect both rtTA and sc-rtTA RNA species. The probe set did not cover the VP16 

sequence to prevent cross-detection of GEV. Probe set for a proteasome gene, PRE2, (quasar 570, 39 

probes) was used as a positive control for cell integrity.  



The following sequences were used to detect rtTA / scrTA: (5’->3’): TAAGCCCCCTAGGTACGGAT, 

AATCTATTTTCATTTCACTA, GTCGCGTAATCTCGACGAAT, CCCCAGCCTTAGCTTCCAAA, 

GTTGGGCATTTGAGCGGGTC, CTGCTGTTCCTTTGAGCGAG, TTCGAACCACATCTCGTCGG, 

GTAACATAACCGTACATTTT, ATTCGCCCGAAACGAGCTGC, AATGGGTAACTCTACAATCT, 

CCGTGGTATGAGTGAAAACG, AAATCTTCCCCTTTCGACCG, CTAAAAAATGCATTATTGCG, 

TTTCAATATCTACACGAAAT, TTCAGTAGCGCTACCTCGTT, CATGTAAATCCATGTGCCGG, 

GTCTTTTTGTCATACTTTGA, GCTTTTAGTTAATCGGAAAA, ACGGTTGTTCCAAAAAGTGA, 

TCTTACGTAATATACGTGAG, GCGACACCTGGTGAAATGAA, CCAACGCATAACCTTCTTGT, 

TCGTAGTTCAGCGATTTCTT, TTCCCTTTGTGGATGATGAC, TCATACGGCGGTAATAATGC, 

TTCGATAGCTTAATAAACTA, GGTTCCACGTCTCGGTCGGA, AATAAGCCGGAACTTAACTA, 

ATACGCCTAATCTTTTTGTT & ATTTACACTTTCACCCAGGC. 

 The following sequences were used to detect PRE2: (5’->3’): TACGTTCGATAACGGCTATC, 

AGTCACATGGTTTGTCTAAC, ATTCCTTGAAGTTATACTGT, CTTGTTTTGAATCTCTCGCT, 

AGCATTGCCCGCGGAGGGTC,AGTTGCAAACCGTGGTAGCG, TGCCAAGGTGGTTAACGCAG, 

GTGTCGTCAAAAATTCTCGT, GTGTCTACTAAGTGCTTTGG, CTGACATTTTAGTTCTAGCG, 

TACCATGATGTTGGAATCGT, ATCTAAAGTTCCGCCATAAT, CACCGTCATCTAAGAGCACG, 

GACGGCCGTTAACCCAACGA, AGTTTGACACTTCTTTCAAT, CTCTAGTTGGGTAAAAATAA, 

CATGTTACCGACCACCACGC, TCTAACAGTTAAAACCCTTT, ACCGATCCAAGAGTCACATC, 

ACGTGCTCGACTCCCTTTTC, TGCATATAGACAGCGTCGGC, AGGTTCTAAAATTCGTTAAA, 

ATATGGTTATATTTCCCCGG, AAATAGTTACCCATGATACT, ACACCAATGTGATCCTTCCT, 

CGGGTTGGTAAATAATGCAG, GAGTCTGCCATGTTCTAATT, CCACTGTATAAGACGCAACC, 

GTCCAGTTTGTAAACGTATA, ACAAGATCTGAGATTGATAT, ACCCTAAATAGGCAACTTCT, 

ATATAGATCCATTCTCTAGA, AAATCGACGACGGGTATCTC, CGAATGAGACCACCAAGACA, 

TATAGTACAATGGCTCCTAC, ACCTATATAGTGCCATTAGT, TGCATCCACTTGATAAAACC, 

CCAGTTCCTTCTCCTTCCTA & AAGTTGTTGCAATAACCGAT. 

Images were obtained with Deltavision microscopic system and the exposure settings were fixed within 

an acquisition batch. RNA spots were detected by FISH-quant toolbox in MATLAB (Mueller et al., 

2013).  At least 140 cells were quantified for the measurement.  

Quantification of RNA by qPCR 

The quantification of mRNA was performed by qPCR unless otherwise specified. Cell samples were 

snap-frozen with liquid nitrogen and the RNA was isolated with the RiboPure Kit (Ambion). oligo(dT) 

was used to prime reverse transcription (Superscript III, Invitrogen). The qPCR was performed with 



KAPA SYBR FAST qPCR Kit (Kapa Biosystems) using the Lightcycler 480 II system (Roche). To 

quantify the intact full-length rtTA and sc-rtTA RNA, we used primer pairs for qPCR that anneal to the 

upstream parts of the cDNA. The forward primer sequence covers the start codon and part of the 5’UTR 

and it is identical for both rtTA / sc-rtTA (F: 5’-CGGGGGATCCATGCCTAGATTA-3’, R: 5’-

GCGAGTTTACGGGTTGTTAAACCTT-3’) primer pairs. 

The obtained Cp values were used to calculate RNA levels taking account of the efficiency of reverse 

transcription and amplification (see below). RNA expression levels were normalized by the geometric 

mean of UBC6 and TFC1 expression, which were shown to have minimal variations across different 

growing conditions (Teste et al., 2009). 

We measured the overall efficiency of the enzymatic steps in the RNA quantification process, comprising 

the reverse transcription (RT) and PCR amplification. For this purpose, a series of target RNA 

concentrations was prepared by mixing RNA isolated from cells having the target genes and that lacking 

it, in different ratios. Before mixing, the RNA samples were diluted to have equal concentrations. The 

concentration of RNA was assessed with the help of spectrophotometer at a wavelength of 260 nm. The 

overall efficiency of the enzymatic steps was determined with linear regression to model the relationship 

between the cycle numbers (Cp) and mixing ratio of the target RNA. The efficiency for the rtTA/ sc-rtTA 

primer pair was 1.931. 

The specificity of the primer set was checked in silico with primer-Blast. In addition, we verified 

experimentally this specificity and we obtained Cp values of 32.08 for a control strain, lacking the above 

sequences. In comparison, Cp value of 25.59 was obtained for the cooperative-dimeric feedback strain 

where the gene is expressed at a basal level. Thus, the nonspecific background signal is around 100 times 

less than the signal corresponding to the lowest RNA levels encountered in our experiments. 

Absolute mRNA quantification with qPCR and smFISH 

To convert the RNA quantified in qPCR to the absolute mRNA number in the cell, we performed both 

qPCR and smFISH at high expression states with the non-cooperative – dimeric feedback strain (Yvj99). 

The mRNA was measured as 27.03 (relative to the geometric mean of UBC6 and TFC1 expression) with 

qPCR and 77.30±1.72 (mean±SE) with smFISH (n=143 cells). We obtained a constant ratio of these two 

measurements:  

[ ]
[ ]

       77.30  2.86
  27.03

Number of mRNA per cell as in smFISH
qPCR RNAquantification

= =   



As the control of smFISH detection, all cells were PRE2 positive with 10.97±0.32 (mean±SE) RNA 

molecule per cell in the same experiment. The background level of rtTA RNA (false positive) count was 

~0.03 spots per cell, in cells without the rtTA construct (Ych294). The spot intensity distribution was 

unimodal, indicating that a single molecule was detected at each spot (Raj et al., 2008). 

Absolute protein quantification by mass spectrometry  

Protein quantification was performed by mass spectrometry as previously described, with minor 

modifications (Picotti et al., 2009). Cell samples were snap-frozen with liquid nitrogen. Cell pellets were 

resuspended in 100µl lysis buffer (100 mM ammoniumbicarbonate, 8M urea, 0.1% RapiGest™). The 

cells were disrupted by vortexing for 3 x 30 seconds followed by sonication (100% amplitude, 0.5 cycle, 

3 × 10 s) in a VialTweeter (Hielscher). 10 µl aliquot of the supernatant was taken to determine the protein 

concentration of each sample using a BCA assay (Thermo Fisher Scientific). Proteins obtained from the 

different samples were reduced with 5 mM tris(2-carboxyethyl)phosphine (TCEP) for 60min at 37°C and 

alkylated with 10 mM iodoacetamide for 30min in the dark at 25°C. After quenching the reaction with 12 

mM N-acetyl-cysteine, the proteins were proteolyzed for 4 h at 37°C using sequencing-grade Lys-C 

(Wako Chemicals) at 1/200 w/w. Then, the samples were diluted with 100 mM ammoniumbicarbonate 

buffer to a final urea concentration of 1.6 M and further digested by incubation with sequencing-grade 

modified trypsin (1/50, w/w; Promega, Madison, Wisconsin) over night at 37°C. The samples were 

acidified with 2 M HCl to a final concentration of 50 mM, incubated for 45 min at 37°C and the cleaved 

detergent removed by centrifugation at 14,000 g for 5min. Subsequently, an aliquot of the heavy reference 

peptide mix were spiked into each sample at a concentration of 200 fmol of heavy reference peptides per 

1µg of total endogenous protein mass. All peptide samples were then desalted by C18 reversed-phase spin 

columns according to the manufacturer’s instructions (Macrospin, Harvard Apparatus), separated in 

aliquots of 150 µg peptides, dried under vacuum and stored at -80ºC until further use. For LC-MS 

analysis, samples were solubilized in solvent A (98% water, 2% acetonitrile, 0.15% formic acid) at a 

concentration of 0.5 µg/µl and 3 µl were injected per LC-MS run.  

For absolute quantification of rtTA, heavy reference peptides were selected matching the sequence of the 

endogenous peptide with the highest precursor ion MS-intensity determined in the label-free 

quantification experiment. Peptides containing missed cleavages or a glutamine at the N-terminus were 

excluded. The following endogenous peptides were detected after scan run for the full spectrum: (1) 

ALLDALPIEMLDR, (2) ETPTTDSMPPLLR, (3) FEGDTLVNR, (4) FSVSGEGEGDATYGK, (5) 

LGVEQPTLYWHVK, (6) LSFLPAGHTR, (7) VHLGTRPTEK, (8) VINSALELLNGVGIEGLTTR, (9) 



CALLSHR, (10) QAIELFDR. To synthesize heavy isotope labelled peptides, five peptide sequences were 

selected (2, 3, 5, 6, 7) that had the highest peaks.  

To generate the selective reaction monitoring (SRM) assays, a mixture containing 500 fmol of each 

reference peptide was analyzed by shotgun LC-MS/MS using high collision dissociation (HCD) 

fragmentation, database searched by Mascot applying the same settings as above with two changes; 

isotopically labeled arginine (+10 Da) and lysine (+8 Da) were added as variable modifications and the 

mass tolerance for MS2 fragments was set to 0.02 Da. The resulting dat-file was imported to skyline 

version 1.4 (https://brendanx-uw1.gs.washington.edu/labkey/project/ home/software/Skyline/begin.view) 

to generate a spectral library and select the best transitions for each peptide. After collision energy 

optimization, the final transition list were imported to a triple quadrupole mass spectrometer (TSQ 

Vantage) connected to an electrospray ion source (both ThermoFisher Scientific). Peptide separation was 

carried out using an Easy-LC systems (ThermoFisher Scientific) equipped with a RP-HPLC column (75 

μm x 20 cm) packed in-house with C18 resin (Magic C18 AQ 3 μm; Michrom BioResources) using a 

linear gradient from 95% solvent A (0.15% formic acid, 2% acetonitrile) and 5% solvent B (98% 

acetonitrile, 0.15% formic acid) to 35% solvent B over 90 minutes at a flow rate of 0.2 μl/min. Each 

sample was analyzed in duplicate. All raw-files were imported into Skyline for protein quantification.  

Based on the number of cells counted for each sample, absolute abundances for the selected proteins (in 

copies/cell) were calculated across all samples.  

Mathematical modeling of positive feedback loops 

The response of the promoter to the transcription factor C is denoted f(C): 

( )
n

n max

C bf C K VC
dox

= +
+

         (1a) 

Vmax and b defines the maximum and minimum expression rate; n is the Hill number, which indicates the 

cooperativity of the transcription factor (TF) binding to the promoter; dox represents concentration of the 

ligand, doxycycline, which controls the binding strength (K) of the transcription factor to the promoter.  

For the promoter with a bell-shaped response, C has both an activating and inhibitory effect:  

( )
n

n n max

K
C bdoxf C K K VC C

dox dox

= ⋅ +
+ +

        (1b) 



When the TF dimerizes, the following set of differential equations describe the feedback loop: 

( )   max M
dM V f C M
dt

d= −          (2) 

2ρ 2 2   a d A
dA M k A k C A
dt

d= − + −         (3) 

2   a d C
dC k A k C C
dt

d= + −          (4) 

where M stands for mRNA, ρ for translation rate, and A and C for the monomeric and dimeric forms of 

the transcription factor, respectively; ka and kd denote for the association and dissociation constants; all 

species are subjected to exponential decay with decay rates (δM, δA & δC). 

For the cooperative-dimeric loop, the system’s parameters were assigned as following: Vmax = 238; b = 

Vmax/1000;  n=1.45; K = 1; δM = 2.079; ρ = 32.4; ka = 1; kd = 1000; δA = δC = 0.528 . The time units are 

given in hr, so that the translation rate corresponds to 0.54 min-1. 

For the monomeric feedback loop, only equations (2) and (5) are used: 

 C
dC M C
dt

ρ d= −           (5) 

C stands for the monomeric TF in (5). For the feedback loop with non-cooperative promoter binding,  n = 

1. 

The total protein concentration of the TF (2C+A for the dimeric TF, and C for the monomeric TF) was 

solved numerically at steady state and plotted against dox in Figure 1B and S2B. In Figure S2A, the 

promoter functions (1) were plotted with (3) and (4) at steady state and against mRNA, M. The binding 

strength of transcription factor to DNA was fixed at dox = 1.  
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Abstract

Alternative cell fates represent a form of non-genetic diversity, which can promote adaptation and functional
specialization. It is difficult to predict the rate of the transition between two cell fates due to the strong effect of
noise on feedback loops and missing parameters. We opened synthetic positive feedback loops
experimentally to obtain open-loop functions. These functions allowed us to identify a deterministic model
of bistability by bypassing noise and the requirement to resolve individual processes in the loop. Combining
the open-loop function with kinetic measurements and reintroducing the measured noise, we were able to
predict the transition rates for the feedback systems without parameter tuning. Noise in gene expression was
the key determinant of the transition rates inside the bistable range. Transitions between two cell fates were
also observed outside of the bistable range, evidenced by bimodality and hysteresis. In this case, a slow
transient process was the rate-limiting step in the transitions. Thus, feedback opening is an effective approach
to identify the determinants of cell fate transitions and to predict their rates.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Genetically identical cellswith two distinct phenotypes
can coexist and persist in an identical environment,
provided they were exposed to different conditions in
the past and can display bistability. Bistability plays
important rules in adaptation and cell differentiation in
uni- and multicellular organisms. Typically, bistability
arises due to positive feedback loops [1–3].
In a bistable feedback, a feedback component can

have either low or high concentration in the steady
state. Which state is reached depends only on the
initial condition. If, initially, an external factor induces
a cell to express a sufficiently high concentration of a
component, the high expression will persist even
after the factor is removed. Such a purely determin-
istic view of steady-state bistability needs to be
modified in biological systems because transitions
occur between two states. Transition rates can span
a broad range; it is a rare event, for example, in the
lysis–lysogeny cycle of the lambda phage. On the
other hand, bacteria can switch to the competent
form at high frequency [4,5]. The prediction of these
uthors. Published by Elsevier Ltd. This is
nses/by-nc-nd/4.0/).

s: C. Hsu, et al., Contribution of Bistability
016), http://dx.doi.org/10.1016/j.jmb.2016.0
rates is crucial because they determine the propor-
tion of the two cell types in a cell population and the
efficiency of cellular reprogramming [6,7].
Typically, noise is considered a driving force of

such transitions in genetic systems [8]. The interac-
tion between a bistable system and noise is often
conceptualized by depicting the deterministic bis-
table system by a potential landscape; the two stable
states correspond to the two lowest points in the
potential wells, which are separated by a barrier
(Fig. 1a) [9]. When the system is exposed to noise,
small fluctuations may not be sufficient to switch the
cells to the other state, but larger fluctuations would
do this (Fig. 1a, lower left panel). On the other hand,
if the barrier is lower, even weak noise can switch the
cells (Fig. 1a, lower right panel).
Thus, bistability amplifies the effect of noise; a

sufficiently strong noise can induce most of the cells
to switch to the higher state even though the
deterministic description predicts the system to be
at the low state. Consequently, the deterministic and
stochastic descriptions of bistable systems are
completely different [10], which makes the prediction
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Fig. 1. Prediction of transition rates in bistable feedback loops. (a) A positive feedback loop displays bistability in a
certain range of TF-DNA affinities. The two stable states correspond to potential wells. At higher TF-DNA affinity, the lower
potential well becomes shallower (right panel) and the cells can more easily switch to the high state. The frequency of the
transition is also influenced by noise intensity: weak noise (orange) and strong noise (green). (b) Prediction of transition
rates and steady-state expression by feedback opening. The feedback loop is opened experimentally. The resulting open‐
loop function and the equivalence plane constitute a simple deterministic model. If they have a single intersection, the
parent feedback is monostable. In this case, the intersection, which we termed open-to-closed loop mapping, can be
directly compared to the measured steady-state expression in the feedback loop. If the parent feedback is classified as
bistable, the open‐loop function must be extended to a model by fitting the parameters to kinetic and noise measurements.
The resulting stochastic model predicts the transition rates. The predictions are verified by measuring the feedback loop.

2 Predictions by experimental feedback opening
of the rates difficult. A possible way to predict the
transitions is to measure individual reactions in vitro
or in vivo and to combine all the reaction parameters
into a model. However, many parameters in a circuit
are experimentally inaccessible; their reported
values can also scatter broadly, which hampers the
prediction [11,12].
Here, we opted for a different approach comprising

two stages. First, we employed a method termed
feedback opening [13]. We opened synthetic feed-
back loops in the yeast Saccharomyces cerevisiae.
Synthetic circuits have been playing an important
role to characterize the fundamental properties of
feedback behavior [14–18]. In the open loop,
bistability is eliminated, and noise-induced transi-
tions are bypassed. Therefore, we can obtain an
open-loop function (fOLM), which is the total response
of all the reaction steps in the loop, without the need
to resolve any of them individually. Since the fOLM
contains all the information on the deterministic
steady-state expression, it can be used to determine
if the parent closed (feedback) loop is bistable or
monostable (Fig. 1b, deterministic model). In the
second stage, we measured noise and the time
scale of reactions, and by reintroducing noise into
the model, we successfully predicted the transition
rates (Fig. 1b, stochastic model).
Please cite this article as: C. Hsu, et al., Contribution of Bistability
Opening, J. Mol. Biol. (2016), http://dx.doi.org/10.1016/j.jmb.2016.07
Results

Design of the input and output constructs for the
loop opening

To open a feedback loop, one of its components has
to be split into an input and an output [13]. The resulting
open loop is thus a reaction chain starting with the
independently controllable input that triggers the
biochemical reactions; the chain ends with the output,
which has no effect on the reaction chain (Fig. 2a).
We opened transcriptional feedback loops at the

RNA level in yeast (gray box, Fig. 2a), and thus, both
the input and output are RNA molecules. The
expressed input RNA is translated, which triggers
the subsequent reactions, such as the transcription
factor (TF) dimerization, the binding of the TF to the
promoter, and lastly, the synthesis of the output
RNA. The reactions between the input and output
RNA are illustrated as a black box in Fig. 2a.
The input RNA is identical to the original RNA in

the feedback loop. On the other hand, the output
RNA has to be designed by mutating the original
RNA. The mutation has to meet two requirements.
First, the protein translated from the output mRNA
must not interfere with the reactions in the loop
and Noise to Cell Fate Transitions Determined by Feedback
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Fig. 2. Opening of the monomeric–noncooperative feedback loop (P[tetO]1-sc-rtTA) classifies the parent loop as
monostable. (a) To open a feedback loop, a component is chosen to be broken into an input and output. (b) The green
segment in the output represents a heterologous sequence inserted for the feedback opening. (c) GFP fluorescence
distribution in an open-loop-like construct, which contains a GFP reporter gene downstream of a [tetO]1 promoter
controlled by sc-rtTA. Cells were exposed to a gradient of dox concentrations (0.07, 0.12, 0.20, 0.33, 0.55, 0.91, 1.52, and
2.53 μM). (d) Open-loop measurements. The input and output RNA is measured, as the activity of the GAL promoter was
varied by estradiol (see Materials and Methods) at three different fixed values of dox. (e) The measured equivalence (gray)
and open-loop (blue) functions fitted to data shown in (d). The traces of the function denoted by blue thick lines correspond
to the dox and estradiol concentrations used in the experiments (see also Fig. S3a). (f) Comparison of the open-to-closed
loop mapping (red lines) with the steady-state expression measured for the feedback loop. The predicted mean steady
state values from the stochastic simulation using the extended and fitted noise model are shown by orange circles.

3Predictions by experimental feedback opening
(Fig. S1a). Second, the output RNA must preserve
the original properties of the RNA, such as the decay
rate and dynamic range of expression. We found that
retaining only 45-bp long sequences at each end of a
gene was sufficient to preserve much of the original
expression range (Fig. S1b; Design of the output
construct in the Materials and Methods). Therefore,
we used this strategy to build the output construct
(Fig. 2b). Since we used the TF rtTA (reverse
tetracycline transactivator) in the feedback loops, we
built an output construct for rtTA and tested for
interference. The protein translated from such an
output RNA contains only short peptide sequences
from rtTA (15 aa at each end) and is unlikely to
interfere with the reactions in the loop, which we
confirmed experimentally (Fig. S1c–e).
Please cite this article as: C. Hsu, et al., Contribution of Bistability
Opening, J. Mol. Biol. (2016), http://dx.doi.org/10.1016/j.jmb.2016.0
By creating the input and the output constructs with
the aforementioned method, the feedback is opened.
The cells containing the open-loop input and output
constructs were named Input/Output cells (Fig. 2b).

Validation of the loop opening with a
monostable feedback loop

We opened three synthetic transcriptional feedback
loops, in which a monomeric or dimeric version of the
synthetic TF rtTA regulates its own expression. rtTA
binds to the DNAwhen it is complexedwith the ligand,
doxycycline (dox) [19]. These feedback loops con-
tained one (cooperative binding), two (homodimeriza-
tion and cooperative binding), or no reactions that can
support bistability [20]. First, we opened the
and Noise to Cell Fate Transitions Determined by Feedback
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4 Predictions by experimental feedback opening
monomeric–noncooperative loop, in which a mono-
meric TF binds to a single binding site in its own
promoter. The monomeric protein is a single-chain
fusion of the dimeric rtTA [20].
Upon opening this loop, the input and output RNAs

were quantified by qPCR (quantitative PCR; Mate-
rials and Methods; Figs. 2, S2, and S3a). Thus, RNA
values represent the averages of a cell population.
The expression of the input was varied by tuning the
PGAL promoter activity with the TF GEV (Gal4-estro-
gen receptor-Vp16, Fig. 2d). We applied different
concentrations of dox to adjust the TF-DNA binding
affinity. Subsequently, we fitted an open‐loop func-
tion, η =fOLM(ω, dox), to these data. η, ω, and fOLM
denote the output, the input, and the open‐loop
function fitted to the measured data, respectively.
Initially, we analyzed the logarithmic sensitivity (S)

of the fOLM with respect to the input (ω), S(ω) =
∂ ln(fOLM) / ∂ ln(ω). If S N 1, the feedback loop can
display bistability [21]. It is monostable if S ≤ 1. S(ω)
of the fitted fOLM(ω, dox) did not exceed one at any
value of ω and dox (Supplementary Information,
Fitted open-loop functions). Thus, the monomeric–
noncooperative feedback is classified asmonostable
upon the opening. This is in agreement with the
expectations since the feedback does not contain
any known reaction that can support bistability.
The intersection points of the fOLM and the

equivalence function (fEQ) define the steady-state
expression for the feedback loop [13,22]. The ideal
fEQ is an identity function, that is, it is the line at which
the output and input have equal values, η = ω
(Fig. 2d). The ideal equivalence assumes that the
output and input RNAs have identical properties
(expression range, synthesis, and decay rate). How-
ever, the heterologous sequence in the output RNA
may cause a departure from the ideal equivalence. To
Fig. 3. Intersection of equivalence plane and fOLM classifies
surfaces stand for the fitted fOLM and the measured equivalence
red curve is their intersection, the open-to-closed loop mappin
with b = 0.01 Vmax by fixing either dox orω. (a) Open-loopmeasu
1.6;Smax (ω=2.11,dox) =1.6. (b) Open-loopmeasurements of the
dox) = 1.1.

Please cite this article as: C. Hsu, et al., Contribution of Bistability
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assess this departure, we expressed the input and
output mRNAs under the control of identical promoter,
PGAL. The expression of the output RNA in this
construct is not controlled by the input; therefore, we
termed it ghost output (Fig. 2b). Although their decay
rates of themRNAswere similar (Fig. S2a and b), their
expression levels differed (Fig. S2c–e), possibly
because of the different RNA synthesis rates. There
was a linear relationship between their expression
levels with a non-unity slope (Fig. 2d). This slope
defines the scaling factor (s) for the measured
(nonideal) equivalence line, which runs in parallel to
the ideal equivalence line (Fig. 2d): fEQ(ω) = s ω.
The intersection of the measured fEQ and fOLM is a

function of one variable (dox), which we termed
open-to-closed loop mapping since it determines the
steady-state expression in the closed feedback loop
based on open-loop measurements (Fig. 2e and f,
red full line). Importantly, there was a good agree-
ment between the open-to-closed loop mapping and
the steady-state expression measured in the feed-
back loop. If we had relied on the ideal equivalence
plane, with a unity slope, the open-to-closed loop
mapping would have deviated markedly from the
values measured in the feedback loop (Fig. 2f, red
dashed line). This underscores the importance of the
equivalence assessment cells.
In summary, we validated the feedback opening in

two main steps. First, we analyzed the open-loop
constructs. The expression of a fluorescent reporter
in open-loop-like constructs displays a unimodal
distribution (Fig. 2c). The S of the fOLM is less than
one, which implies that the parent feedback loop is
monostable. Since there are no noise-induced
transitions between two stable states in a mono-
stable feedback loop, the deterministic and stochas-
tic descriptions of the steady-state expression levels
two parent feedback loops as bistable. The blue and gray
plane, respectively, fitted to experimental data (dots). The

g. The maximal values of the S are calculated for the fOLM
rements of the P[tetO]7 -sc-rtTA circuit; Smax (ω, dox = 1.37) =
P[tetO]7 - rtTA circuit;Smax(ω, dox = 0.91) =2.4;Smax(ω=1.93,
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5Predictions by experimental feedback opening
are expected to be similar. Consequently, the
steady-state expression measured in the feedback
loop can be directly compared to the value deter-
mined by feedback opening (Fig. 1b), provided that
some general conditions are met (see Discussion).
In the second step, we compared these two values.
We found that the open-to-closed loop mapping
matched up with the steady-state expression level
measured in the feedback loop (Fig. 2f). The
expression increased continuously and steeply
when the TF-DNA affinity (i.e., dox concentration)
passes a certain value, which is a typical behavior of
monostable positive feedback loops.

Identification of bistability by loop opening

Next, we opened the loops with cooperative
promoters, controlled by either the monomeric (Fig.
3a) or the dimeric TF (Fig. 3b). The sensitivity of
fOLM(ω, dox) with respect to the input (ω) was higher
than one for both open loops, which indicates that
the feedback loop is bistable. Indeed, there was a
range of dox concentration, at which the intersection
Fig. 4. Long transient phase upon the addition of dox to the c
(dashed line) and with (full line) the extension to fit the transien
t = 0 h. (a and b) Induction kinetics in open-loop-like construct
(see transient kinetics strain in Table S1). The expression of sc-
t = 0 h together with the addition of dox (green). Expressio
intermediate expression levels of sc-rtTA, we applied 0.8 (a) a
monomeric–noncooperative feedback loop (P[tetO]1-sc-rtTA). T
the sc-rtTA (c) or the GFP expression driven by sc-rtTA (d).

Please cite this article as: C. Hsu, et al., Contribution of Bistability
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of the fOLM with the equivalence plane resulted in
three, (two stable and one unstable) steady state.
Thus, both parent feedback loops are classified
bistable.
The maximal sensitivity of the fOLM, Smax(ω), has a

major impact on the bistable range of a parameter.
For the monomeric–cooperative circuit, Smax(ω) is
1.6. This value increased to 2.4 for the dimeric–
cooperative circuit (Fig. 3b), and the bistable range
of the dox concentration (i.e., TF-DNA affinity)
became broader, reflecting the joint effect of
dimerization and cooperativity (Fig. 3).

Measurement of the time scale of reactions and
identification of the slow transient kinetics

To predict the transition rates for a bistable
system, we have to combine the fOLM, which is
defined in the steady state, with information on noise
and the time scale of reactions (Fig. 1b). To specify
the time scale of reactions, we determined the RNA
and protein decay rates and the transcription and
translation rates (Table S2). With these parameters,
ells. The curves represent the solution of the model without
t kinetics. Dox was added at the indicated concentration at
s, in which sc-rtTA activates the expression of P[tetO]2-GFP
rtTA was either pre-induced by estradiol (red) or induced at
n of GFP was measured with flow cytometry. To reach
nd 7.28 (b) nM estradiol. (c and d) Induction kinetics of the
o report the feedback activity, we measured the mRNA of
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6 Predictions by experimental feedback opening
we extended the fOLM into a kinetic model. We tested
whether this model predicts correctly the kinetics
of expression in open-loop-like constructs. For this
purpose, we analyzed the time course of expression
of green fluorescent protein (GFP) under the control
of the monomeric form of rtTA. Interestingly, the
induction of expression was slower than expected
from the time scales of protein and RNA turnover (Fig.
4a and b; see Modeling transient kinetics in the
Supplementary Information). By varying the order of
induction of the rtTA expression and dox addition, it
became clear that the slower-than-expected increase
of GFP expression persisted even if rtTA was
pre-expressed (Fig. 4a and b). This indicates that the
long transient phase arises due to the slow transport of
the externally added ligand, dox, into the cell or due to
its slow association with the protein inside the cell. The
model was extended and fitted to the slow transient
kinetics in the open-loop-like construct. Subsequently,
we tested the prediction of the new model on the
monostable feedback loop, which can be done
deterministically. The prediction was in good agree-
mentwith the observed timeseries upon theaddition of
dox (Fig. 4c and d).

Measurement of noise

We made a preliminary prediction of noise
intensity based on the time scale of the constitutive
processes (mRNA and protein turnover). A simple
model involving only synthesis and decay, also
known as birth–death process, results in a Poisson
distribution, characterized by a Fano factor (vari-
ance/mean) = 1 [23]. Interestingly, the housekeep-
ing gene PRE2, which was used as a control for the
single-molecule fluorescence in situ hybridization
(smFISH), had a Fano factor close to 1 (Fig. 5a and
b). On the other hand, the distribution of the rtTA
RNA had a much larger variance, with a Fano factor
of around 5, which cannot be explained by such a
simple noise model (Fig. 5a and b). This stronger
noise is not fully surprising because noise in gene
expression can be significantly augmented by
operator fluctuations and by other cellular processes
[24,25]. Therefore, the model was extended to include
operator fluctuations and noise in RNA degradation
(Fig. 5c). The parameters were fitted to the smFISH
measurements (Supplementary Information, Determi-
nation of parameter values for RNA distribution by
linear noise approximation), and the new extended
and fitted model was in good agreement with the
measured RNA distribution (Fig. 5a and b).

Comparison of deterministic and stochastic
descriptions of the fOLM

The open‐loop function is a deterministic concept
and can be considered to be a steady-state solution
of ordinary differential equations. To predict the
Please cite this article as: C. Hsu, et al., Contribution of Bistability
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transition rates, the deterministic model has to be
converted to a stochastic one (Fig. 1b). This
conversion is accurate, provided that the stochastic
model of the open‐loop function yields a mean value
that is identical or similar to the deterministic value.
The two values are identical, for example, for the
mRNA birth–death process (Fig. 5a and b, see PRE2).
However, this correspondence between the determin-
istic and stochastic models may be lost when the
system is strongly nonlinear and the noise is large
[26,27]. Such an effect was observed for a TF that
displays stochastic nucleocytoplasmic shuttling [28].
We examined the effect of noise on the dimeric–

cooperative open loop as it displays the response
with the largest S in this study, and therefore, it is
highly nonlinear. To explore how much noise shifts
the value of the output mRNA, we performed
stochastic simulation with the extended and fitted
noise model. It yielded mean output RNA similar to
the value of the deterministic function, fOLM (Fig. 5d).
This demonstrates that the effect of noise on this
nonlinear fOLM is negligible and the function can be
used for accurate predictions. Thus, the loop
opening bypasses the effect of noise. We also
confirmed that gene expression in the open loop
reaches a steady state after 24 h, independent of the
initial condition, that is, it does not display hysteresis
(Fig. S4). Furthermore, the distribution of gene
expression in the corresponding open-loop-like
constructs was unimodal (Fig. S3c).
Interestingly, there was also a good match between

the (deterministic) open-to-closed loop mapping and
the stochastic model of the monostable feedback
loop (Fig. 2f, orange circles), which reveals that even
the closed-loop response can have very similar sto-
chastic and deterministic descriptions, provided it is
monostable.

The predicted transition rates agree with the
measurements

Upon extending the fOLM using the reaction time
scales and fitted noise, we reclosed the loop to
predict the transition rates, both from the low to the
high state and also in the opposite direction (high to
low) for the two bistable circuits (Fig. 6). We also
calculated the transition rates with the model not
fitted to noise and transient kinetics for comparison.
The simple noise model, characterized by smaller
noise intensity, yielded slower transitions in the
bistable range than the fitted, extended noise model
(Fig. 6a–g). On the other hand, the transient kinetics
reduced the transition rates only outside but not
inside of the bistable range (Fig. 6b), exactly
opposite to the effect of noise.
To test the predictions experimentally, we pre-

pared pre-cultures with either low or high TF
expression states, which define the initial condition,
to measure how quickly they switch to the other
and Noise to Cell Fate Transitions Determined by Feedback
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Fig. 5. Extension of the model to fit the measured noise. (a and b) FISH images and distributions of rtTA and PRE2 RNA
molecules in cells containing the P[tetO]7-rtTA feedback loop either uninduced (a) or induced with 19.5 μM dox for 24 h in
cultures with the high initial condition (b). We calculated the mean (molecules/cell), coefficient of variation (CV), and the
Fano-factor (FF) for the measured distribution (subscript M) and the distribution simulated (n = 1000) with the simple
(subscript S) or the extended and fitted noise model (subscript E; see Mathematical modeling, simple and extended noise
model). (a) The un-induced cells. For rtTA: mean = 0.49; CVM = 2.31; FFM = 2.41 (green, n = 280); CVS = 1.46; CVE =
2.22. For PRE2: mean = 9.2; CVM = 0.32; FFM = 0.94; CVS = 0.33. (b) The induced cells. For rtTA: mean = 82.6; CVM =
0.24; FFM = 4.80 (green, n = 171); CVS = 0.11; CVE = 0.26. For PRE2: mean = 10.0; CVM = 0.31; FFM = 0.98; CVS =
0.32. The images were obtained by z-projection of decomposed image stack of smFISH with the following coloring: blue,
DAPI; green, rtTA; red, PRE2; scale bar: 5 μm. (c) To obtain a model that fits the experimental RNA distribution, the simple
model is extended by operator fluctuation (forward and backward arrows) and enzymatic RNA degradation (Pac-Man).
The thick dashed arrows indicate the step that is broken to open the feedback loop. (d) Comparison of the output RNA
calculated by deterministic and stochastic models. To convert fOLM(ω) into a model, reactions (r), were specified, which
introduce time-dependent variables and parameters (denoted: •). The steady-state solution of the deterministic model
recreates the original fOLM(ω). The mean RNA values were calculated by the simulation of the corresponding stochastic
model (see Mathematical modeling, Conversion of the fOLM(ω) to a reaction model). fOLM(ω) corresponds to the thick
curves at dox = 0.12 and 7 μM in Fig. 3b.

7Predictions by experimental feedback opening
state. In the bistable range, the observed transition
rates were in good agreement with the predictions
using the fitted noise (Fig. 6b and g). Outside of the
bistable range, the model with the fitted transient
kinetics predicted well the observations (Fig. 6b).
These results and the model predictions reveal that
noise is the main determinant of transitions inside the
bistable range, while transient kinetics is the main
determinant of the transitions outside of the bistable
range. It is important to reiterate that the transition rates
were predicted without choosing or fitting parameter
values to the observed transition rates.
Please cite this article as: C. Hsu, et al., Contribution of Bistability
Opening, J. Mol. Biol. (2016), http://dx.doi.org/10.1016/j.jmb.2016.0
For the dimeric–cooperative circuit, transitions from
the low to the high state were only observed close to
the bistability boundary at the higher dox concentra-
tion (Fig. 6g). Opposite transitions were observed
close to the lower bistability boundary. Thus, there is a
broad rangeof dox concentrationsatwhich essentially
no transitions are expected to occur between the two
states. This range is positioned in the middle of the
bistable range, determined by the open-to-closed loop
mapping. Indeed,wehavenot observed any transition
in this range of dox concentration even after 10 days
(Fig. 6h).
and Noise to Cell Fate Transitions Determined by Feedback
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Fig. 6. Predicted andmeasured transition rates for the bistable, the monomeric–cooperative (P[tetO]7-sc-rtTA), (a–e) and
the dimeric–cooperative (P[tetO]7-rtTA) (f–h) feedback loops. (a) Scheme of the feedback loop. (b) The orange arrows
indicate the dox concentrations for which the time evolution of the fluorescence histograms is shown (in c). The gray
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(c) Fluorescence histograms of cells with the low initial condition. (d) Measurement of hysteresis experiments. Cells
with low (gray dots) or high (orange dots) initial condition (I.C.) were grown for 72 h; 5 h measurements are shown only for
the low I. C. (blue). (e) Measurement of hysteresis expressed in terms of ON cell percentages. Data are shown for cultures
5 h, 24 h, and 72 h after setting the initial condition. Identical to those shown in (d) are the 5 h and 72 h. The 24 h data are in
Ref. [20]. (f) Scheme of the feedback loop. (g) Comparison of the measured and predicted transition rate for the dimeric–
cooperative feedback loop. (h) Long-term hysteresis experiment with cells exposed to 0.92 μM dox.

8 Predictions by experimental feedback opening
For the monomeric–cooperative circuit, transitions
were detected in both directions in the bistable range
(Fig. 6b). Thus, equilibrium is expected to ensue in
an experimentally realistic time scale. This can be
visualized by plotting the experimental data in terms
of hysteresis profiles, which is typically used to
assess bistability, directly in feedback loops. For
both initial conditions, we plotted the percentage of
ON cells, that is, the proportion of cells in the high
state (Fig. 6d and e). The range of dox concentra-
tions at which the ON cell percentage in each culture
remains close to the respective initial condition
defines the hysteresis range. These two distinct
expression states (OFF and ON cells) represent two
“synthetic” cell fates. Interestingly, the hysteresis
range changed with time for the monomeric–
cooperative feedback loop (Fig. 6e). At early time
points (5 h), the hysteresis range was broader than
the bistability range (Fig. 6e). At a later time point
Please cite this article as: C. Hsu, et al., Contribution of Bistability
Opening, J. Mol. Biol. (2016), http://dx.doi.org/10.1016/j.jmb.2016.07
(72 h), the hysteresis nearly collapsed. This also
implies that in noisy systems, hysteresis experi-
ments may fail to distinguish bistable feedback loops
from monostable ones after long periods of time.

Appearance of bimodality far away from the
bistable range

When noise induces transitions between two stable
states, both states become populated, resulting in a
bimodal distribution. That is why bimodality is consid-
ered as a hallmark of bistability in noisy systems.
However, it was surprising to observe that the
transitionsareaccompaniedwith abimodal distribution
of GFP expression well beyond the bistable range for
themonomeric–cooperative circuit (Fig. 6b and c). The
range of this bimodality was around three times
broader than the bistable range. We expected that
the transient kinetics may be responsible for the
and Noise to Cell Fate Transitions Determined by Feedback
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extension of the bimodality range because it prolongs
the phase during which the TF-DNA affinity is
approaching the final value upon the addition of dox
to the cells (Fig. 6b, cyan dashed line), and it is this
affinity that determines the bistability boundary. To
visualize this, we superimposed single-cell trajectories
of stochastic simulations onto a steady-state manifold
perturbed by the transient kinetics. This manifold
reflects the temporal changes in the bistability (Fig. 7,
green surface). Initially, only few cells cross the
unstable part of the manifold because it is far above
the low expression state. As time progresses, the
transient effect peters and the manifold recedes; the
majority of cells transit as soon as the lower fold in the
manifold crosses the dox concentration to which the
cells are exposed. This explains how transient kinetics
can slowdown the transition rates andwhy bimodality,
a sign of bistability, appears far away from the bistable
range.
Fig. 7. Visualization of the effect of transient kinetics on
the transitions. The parameter values for the monomeric–
cooperative feedback loop were used for the simulation.
The steady-state manifold (green surface) is perturbed by
the transient kinetics to represent the temporal evolution of
the TF-DNA affinity due to the slow effect of the externally
added dox. Individual trajectories of stochastic simulations
(with the model extended to fit noise and transient kinetics)
are shown in orange and red. The horizontal black curve
represents the evolution of the perturbed fold bifurcation
point. The vertical black curve indicates the manifold at the
time when the fold point passes the dox concentration that
was used for the stochastic simulation (dox = 1.8 μM).

Please cite this article as: C. Hsu, et al., Contribution of Bistability
Opening, J. Mol. Biol. (2016), http://dx.doi.org/10.1016/j.jmb.2016.0
Discussion

Relation between bistability, bimodality, and
hysteresis

Bimodality has been viewed as a sign of bistability,
and hysteresis as the proof of bistability [29]. Our
results reveal that neither hysteresis experiments
nor bimodality can delimit the bistable range in noisy
gene circuits. The hysteresis range shrinks with time
(Fig. 6e) due to the noise-induced transitions and
can even collapse in feedback loops that have a
narrow bistable range. While hysteresis range may
coincide with the bistable range at a particular time
point, the length of this period is likely to vary from
system to system. Bimodality, a potential sign of
bistability, appeared far away from the bistable range
due to the slow transient kinetics (Fig. 6b and c).
Indeed, an increasing number of models have been
identified, where bimodality appears without bistability
or even in the absence of feedback regulation [30–33].
Since feedback opening bypasses noise, the

open-to-closed loop mapping can determine wheth-
er a system is monostable or bistable and can delimit
the bistable range.

Prediction of transition rates by feedback open-
ing

Traditional modeling requires parameters for all
reactions that comprise the feedback loop. However,
models retain unidentified components, mechanisms,
and parameters even after detailed measurements. In
particular, binding constants are often missing or are
inconsistent. For example, reported values for the
dissociation equilibrium constants of the tetR-tet
operator scatter over 3 orders of magnitude [11],
which is relevant for rtTA, being a fusion protein of tetR.
Furthermore, parameter values measured in vitromay
significantly deviate from their values in vivo [12,34].
Therefore, several parameters are left free and then
directly fitted to the transition rates, which makes true
prediction impossible.
To predict the transition rates, we employed an

inverse approach. By opening the feedback loop, we
obtained an open‐loop function, which lumps the
steady-state response of all reactions in the feed-
back loop but does not resolve the time scale of any
of them. To extend this function into a model, we
performed kinetic and noise measurements. This
extension has to be performed in a way that the
model recreates the original steady state open‐loop
function (Fig. 5d, diagram). Not all reactions in the
loop have to be identified. After measuring the core
constitutive processes, including mRNA and protein
turnover, we extended the model with a fewadditional
parameters to fit the noise in gene expression and the
transient kinetics (Fig. 1b). This was sufficient to
and Noise to Cell Fate Transitions Determined by Feedback
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10 Predictions by experimental feedback opening
successfully predict the transition rates. We expect
that, in general, it will be important to characterize the
slow reactions (e.g., protein decay rate), since fast
reactions (e.g., phosphorlyation and dephosphoryla-
tion) are expected to be in equilibrium relative to the
slow reactions.
The success of this approach may lie also in the

fact that the initial steps of modeling were performed
deterministically, which is typically more robust than
the direct stochastic modeling of the whole feedback
system [35,36].

Noise and bistability jointly determine transition
rates

Inside the bistable range, the sensitivity of the fOLM
and noise are the key determinants of the transition
rates. In the monomeric–cooperative loop, the
Smax(ω) is 1.6. This value was 2.4 for the dimeric–
cooperative loop, due to the dimerization. The
system with higher sensitivity can be visualized by
potential wells separated by higher barriers. This
explains why the dimeric–cooperative loop is more
stable than the monomeric–cooperative one: transi-
Fig. 8. The role of bistability, noise, and transient kinetics in
bistability, as determined by feedback opening, the depth of the
transition rate (left). If the parameters of the network are outsid
determined by the long transient phase, which can arise due
described transient cellular process (right).

Please cite this article as: C. Hsu, et al., Contribution of Bistability
Opening, J. Mol. Biol. (2016), http://dx.doi.org/10.1016/j.jmb.2016.07
tions were too slow to be detected even after 10 days
of incubation, that is, after more than 100 cell gen-
erations (Fig. 6h).
The open-to-closed loop mapping determines the

steady-state expression levels and the bistable
range of a parameter. Is this deterministic descrip-
tion relevant for bistable systems, knowing that it
cannot be directly verified in noisy feedback loops?
Our results indicate that the determination of the
bistability boundaries permits targeted system iden-
tification (Fig. 8). Noise was the key determinant of
the transitions inside the bistable range but not
outside of it (Fig. 8, left). In this monostable range,
we had to characterize transient kinetics to explain
the transitions. The slow transient kinetics can be
viewed as a temporal change in the potential barrier
(Fig. 8, right).

The role of transient kinetics in cell fate transitions

When a parameter is in the monostable range in
the vicinity of the bistable range, the slow transient
kinetics is likely to be the rate-limiting step in the
transitions. In such cases, the activity of the
the cell fate transitions. If a network displays steady-state
potential wells and noise are the main determinants of the

e but in the vicinity of the bistable range, the transitions are
to slow transport, metabolism, or other deterministically

and Noise to Cell Fate Transitions Determined by Feedback
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feedback loop is controlled by an extracellular factor
that evokes slow changes in transport, metabolism,
or signal transduction. The two distinct cell fates can
be maintained only transiently. However, such a
transient phenomenon may be of considerable
utility, since an increasing number of studies
revealed that alternative fates exist transiently in
many cells and organisms [5,37–40]. It is possible
that differentiation should be considered as series of
transient events, and the steady state is reached
only in the terminal stage [7]. Upon the completion of
differentiation, only a true bistable state can warrant
long-term stability. In this case, transitions will be
induced by noise and exemplified by noise in gene
expression. Such transitions can destabilize cell
fates, which can hamper cellular reprogramming [6],
but can also help adaptation by diversifying the
phenotypes of immune cells to combat pathogens.

Validity of prediction by feedback opening

In this study, we opened simple positive feedback
loops. Can we expect that the opening is a valid
approach for more complex networks? Two aspects
of the loop opening are particularly relevant to more
complex networks: (1) the theorem that deduces the
existence of bistability from open-loop properties
and (2) the stochasticity in the open loop.
With respect to the first aspect, a general theorem

states that if the open‐loop function is sigmoidal (i.e.,
the open‐loop function has an S higher than one)
and satisfies some general conditions, the parent
feedback loop is bistable, independent of the time
scale of the reactions [13]. Positive feedback loops
with cooperative binding and dimerization, which
were used in our work, satisfy the general conditions.
However, if a network contains also a negative
feedback loop, bistability is not guaranteed. In such
dual positive–negative feedback loops, the concen-
trations of the components may oscillate over time
rather than converge to one of the stable states. In
the experimental practice, however, such restrictions
may be less severe as the feedback system can be
directly measured whether it displays oscillations. If it
does not oscillate but displays signs of bistability,
bimodality, and hysteresis, it is likely that the open‐
loop function will correctly predict the existence of
bistability, even if a more complex network contains
a negative feedback loop.
The aforementioned theorem is defined in a

deterministic framework. We are not aware of the
theoretical studies that formulate the open-loop
approach in a stochastic framework, which is relevant
to noisy gene networks. Therefore, we performed the
following tests to show that the deterministic and
stochastic descriptions of the open loop are similar.
First, we showed that there is no hysteresis after 24 h
in the open loop. Second, the distribution of gene
expression is unimodal. Third, we compared the fOLM,
Please cite this article as: C. Hsu, et al., Contribution of Bistability
Opening, J. Mol. Biol. (2016), http://dx.doi.org/10.1016/j.jmb.2016.0
which is defined deterministically, to themean value of
the output calculated using the expandedmodel upon
the identification of the time scale of the main
reactions. The two values were similar, that is, there
is no marked stochastic deviant effect [27]. Further
studies will be needed to explore how the open‐loop
function is affected by noise in more complex
networks.
Feedback opening and the subsequent model

extension are expected to be useful to predict
transition rates and identify the main determinants
of cell fate transitions: bistability in the deterministic
sense, noise, and transient kinetics. This distinction
may also help in engineering cell fate transitions.
Materials and Methods

Design of synthetic circuits and yeast strains

Three major strain types were used in this study: the
feedback, Input/Output, and Equivalence Assessment
cells (Table S1). The feedback cells contained a feedback
circuit, a fluorescent reporter construct (P[tetO]2- yEGFP),
and a construct to adjust the high condition (PGAL- (sc-)rtTA),
which is identical to the open-loop input construct.
The Input/Output cells contained the open-loop output,

open-loop input constructs, and a constitutively expressed
GEV. TheEquivalenceAssessment cells contained the ghost
output (PGAL–(sc-)rtTAΔ(45/45):: yellow fluorescent protein),
the open-loop input construct, and a constitutively expressed
GEV. The expression of the open-loop input and
ghost-output constructs was controlled by GEV. GEV is
a transcription activator consisting of a Gal4p DNA-bind-
ing domain, an estradiol receptor, and a VP16 activation
domain. RNA expression was tuned over a broad range
by adding estradiol at a concentration between 0 and
200 nM [41].

Design of the output construct

The two requirements, lack of interference and preserva-
tion of expression properties, make opposing demands on
the optimal scale of the mutation to construct the output. For
example, if the output gene contains a minor (e.g., point)
mutation in the DNA-binding domain of the TF, the properties
of the encoding mRNAs are likely to be preserved, and the
loop is successfully broken because the TFwill not bind to the
DNA. However, a TF with a minor mutation may still
cross-dimerize with the wild-type TF translated from the
input RNA, interfering with the signaling in the open loop. A
large-scale mutation, whereby the entire coding region is
replaced by a heterologous sequence, eliminates the
interference, but the dynamic range of the expression may
be reduced. To find the maximal length of the replacement
with a minimal effect on mRNA expression, we built a series
of genetic replacement constructs by varying the length of the
sequence retained from the original gene (Fig. S1a and b).
and Noise to Cell Fate Transitions Determined by Feedback
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Construction of yeast strains

All yeast strains are derivatives of S. cerevisiae W303,
except for the strains to test the expression range of GAL2
gene as a function of the length of the replaced open reading
frame (ORF). All genetic constructs were integrated into
the chromosome with a single copy, with the exception of
the GEV construct, which has around five copies, and the
P[tetO]2-GFP construct, which has three copies.
The feedback, open-loop input, the open-loop output, and

ghost output constructs share a common core promoter and
transcriptional terminator ofCYC1. The input andghost output
were controlledby thePGAL,whereas the feedbackandoutput
constructs were controlled by P[tetO]1 or P[tetO]7 for noncoop-
erative and cooperative binding, respectively. Into each
feedback construct, an optimized stem-loop was inserted to
avoid growth alterations [20]. The same stem-loop was also
inserted in the corresponding open-loop input, open-loop
output, and ghost output constructs.
To construct the open-loop output and ghost output

constructs, we flanked the yellow fluorescent protein
sequence with 45-bp sequences from both ends of the rtTA
ORF. The flanking sequences of sc-rtTA and rtTA ORFs are
identical because sc-rtTA was constructed by inserting
humanized tetR sequence into the rtTA sequence [20].
To minimize the position effect, we integrated the genes

with promoters containing tet operators to the ura3 locus and
those with PGAL to the ade2 locus. Using diploid cells for the
optimized constructs made it possible to have two constructs
with the same promoter at the same locus, which is essential
for constructing the Equivalence Assessment strains. In
addition, the transformations followed the order of (1) GEV,
(2) open-loop input, and then (3) open-loop output, ghost
output, or feedback construct, in order to have identical
sequence and copy number of GEV and open-loop input
constructs between the different strains.
Growth conditions

Cultures were grown at 30 °C, and the OD600 was kept
below 1.0; were refreshed by diluting the cultures twice a
day. A sample was collected for measurement, and the cell
density was between 0.6 and 1.0. For the steady-state
RNA measurements, cultures were grown for 24 h. To set
the initial condition in the feedback loops, we added 0.5%
galactose to the medium to drive expression under the
control of the PGAL promoter through the endogenous
Gal4p, as previously described [20].
To determine RNA decay rate constants, shutoff assays

were performed. The cells were cultured overnight with
0.5% galactose and transferred to a refreshment medium
containing 0.04% galactose for further growth for 4 h. To
shut off transcription, the cells were pelleted and cultured
further in medium without galactose. As described, 5 ml
culture was collected with dry ice-cooled methanol [41].
Decay rates were obtained by linear regression.
Flow cytometry [20] and beta-galactosidase assay [14]

were performed as described previously.
Please cite this article as: C. Hsu, et al., Contribution of Bistability
Opening, J. Mol. Biol. (2016), http://dx.doi.org/10.1016/j.jmb.2016.07
RNA quantification

RNA was quantified with qPCR and smFISH as
previously described [20]. The overall efficiency for the
input primer pair, which was identical for both the rtTA/
sc-rtTA primer pairs, was 1.931; the efficiency for the
output primer pair (F: 5′-CGGGGGATCCATGCCTA-
GATTA-3′; R: 5′-ACTGACAGAAAATTTGTGCCCAT-3′)
was 1.934. The forward primer sequence is identical for
the input and the output.
Absolute quantification of cellular RNA molecules was

performed by smFISH. The results from smFISH were
utilized for assessing the noise in gene expression in the
feedback strains and for converting the RNA quantified in
qPCR to the absolute mRNA number in the cell. We
obtained the constant ratio α (Supplementary Information,
Scaling of output signal for fitted equivalence) by
quantifying the RNA at high expression state with the
dimeric–cooperative and monomeric–cooperative feed-
back strains with both qPCR and smFISH. In the indicated
experimental conditions, all cells were PRE2 positive with
10.51 ± 0.75 (mean ± sd) RNA molecule per cell. The
background level of rtTA RNA (false positive) count was
~0.03 spots per cell, in cells without the rtTA construct
(Table S1, Ych294). The spot intensity distribution was
unimodal, indicating that a single molecule was detected at
each spot (Fig. S5) [42].

Fitting of transition rates

To fit transition rates with the low initial condition,
samples were collected at 2.5, 5, 7.5, 24, 48, and 72 h.
With the high initial condition, samples were collected at
24, 48, and 72 h; earlier time points were omitted because
of the slow dilution of the GFP signal during cell division.
The ON and OFF cell population was separated by

a threshold value. The threshold was set equal to the
geometric mean of the maximally induced (at 19.5 μM dox)
fluorescence intensity and the uninduced fluorescence
intensity measured at 72 h.
At most dox concentrations, detectable transitions of

sufficient rates occur only in one direction. In these cases,
we obtained the best fits for the transition rates with data
expressing OFF cell proportion (r) and with inverse-square
(Y−2) weighting. The low-to-high state transition was fitted
with the low initial condition, r (t)=e−kupt, and the high-
to-low state transition was fitted with the high initial
condition, r (t)=1−e−kdownt .
When the bistable range is narrow, transitions occur in

both directions. Consequently, the percentage of OFF
cells stays between 4% and 96% at 72 h. In these cases,
we performed fitting with equations describing bidirectional
transitions without weighting.
For the low initial condition:

r tð Þ ¼ kdown þ kup e
− kupþkdownð Þt

kup þ kdown
and Noise to Cell Fate Transitions Determined by Feedback
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For the high initial condition:

r tð Þ ¼ kdown−kdown e
− kupþkdownð Þt

kup þ kdown

The values with the lower standard error were taken
from the fitting.
Due to the fluctuations in conditions, we did not consider the

data that were close to the detection limit of a change, less
than 4%difference between r(2.5 h) and r(72 h). This imposes
the upper and lower detection limit of transition rates. For the
low initial condition experiments, the limits are kup = 1.3 h−1,
when r(2.5 h) = 0.04; and kup = 5.6 10−4 h−1 , when
r(72 h) = 0.96. A similar detection limit can be established
for the reverse transition: kdown = 0.13 h−1, when r(24 h) =
0.96; and kdown = 5.6 10−4 h−1, when r(72 h) = 0.04.
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Fig. S1. Design strategies and interference assessment of the open-loop output construct. (a) Design strategies 
of the output RNA. If the mutation in the RNA is small (upper panel), the translated protein contains a small 
mutation, which may fail to prevent it from interfering with the wt protein. If the mutation is large (lower 
panel), the RNA synthesis and decay rates may change (dashed arrows). (b) The expression range of the target 
gene (GAL2) and the reference GAL1 genes was assessed in the presence of 0 and 0.5% galactose, represented 
by the lower and upper symbols for each gene. For the GAL2 gene constructs (0c to 180), segments of different 
lengths were replaced in the target gene by a heterologous sequence (GFP) so that flanking sequences of 
indicated lengths remained (strains indicated by “Assessment of flanking region” Table S1). The 0c refers to a 
full ORF replacement that is transferred to a different chromosomal locus. Error bars stand for standard 
deviation (n = 3). (c-e) Assessment of interference by the open-loop output construct. The open-loop output 
RNA must not interfere with the other reactions in the loop. Therefore, we tested if the output protein 
heterodimerizes with the input protein (rtTA) by assessing how the output changes the response of an rtTA 
target promoter (P[tetO]4-GAL1c). The promoter response was read out using lacZ as a reporter gene. The 
expression of the output was also under control of the P[tetO]4-GAL1c promoter. To test the strongest possible 
interference, the output was made without a stem-loop so that its translation was not attenuated (“Interference 
assessment” strains, Table S1) (c). LacZ expression was measured by a β-galactosidase assay in strain either 
with (+) or without (-) the presence of the open-loop output construct. A constant rtTA expression was induced 
with 5.2 nM estradiol. The ratio of β-galactosidase activity of cells containing to those lacking the open-loop 
output construct is 0.97±0.16 (mean ± sd, n=18 over the dox range measured in three independent experiments), 
which indicates the absence of interference of the output (d). The expression level of the open-loop output 
construct in (d) was monitored with flow cytometry in order to confirm the presence of the output protein, 
utilizing the heterologous YFP sequence in the output (e). 



(a) 

(c) 

Fig. S2. Assessment of the equivalence between  the input and output mRNAs. 
(a, b) Decay rates of the input and output mRNAs in Equivalence Assessment cells (see Ych214.2 (a) 
and Ych258 (b) in Table S1). Their expression was induced and maintained with 0.5% galactose. To 
stop RNA production, the cells were washed to remove galactose at time=0 (see Materials and 
Methods, Growth conditions). Decay rate constants (estimate ± its standard error) of input and output 
for SL5[AT]1-rtTA were 0.22±0.01 and 0.20±0.02 (min-1) respectively (a)  and 0.24±0.02 and 
0.21±0.02 (min-1) for SL5[AT]3-sc-rtTA (b). As an internal control, the GAL1 mRNA decay rates in 
these experiments were 0.18±0.01 (a) and 0.21±0.01 (min-1) (b). (c, d) The RNA equivalence 
assessment with the Equivalence Assessment cells (Table S1). The slopes of the fitted lines (s) were 
determined with linear regression (see values in Table S2). For sc-rtTA, the data are also presented in 
Fig. 2d. The dashed curves represent the fits of the linear function (b + s input) where b is the basal 
expression of the ghost output. The full lines represent the above linear function without the basal 
expression. The data were presented in logarithmic axes (c) and linear axes (d). (e) Comparison of 
basal expression in the strains for equivalence assessment (red, green) and in the strains for feedback 
loops (gray, black) (Feedback cells, Table S1). Cells were grown in media without inducers. To 
compare the (sc-)rtTA RNA (red) with the corresponding ghost-output RNA (green), the rtTA and sc-
rtTA RNAs were calibrated with corresponding scaling factor (s). Black and gray: (sc-)rtTA in the 
feedback strains with either P[tetO7] (t7) or P[tetO1] (t1) promoters. 
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(a) (b) 

Fig. S3. Determination of the Hill coefficient for the response of gene expression to doxycycline. 
(a) mRNA expression in the input / output cell, with P[tetO]1 promoter driven by a constant amount of sc-
rtTA  (RNA (ω) = 3.79, estradiol  = 0.57 nM) (see Ych257 in Table S1). The steady-state amount of 
output RNA was measured as the concentration of doxycycline was varied. Dashed line, the fitted fOLM (ω, 
dox) open-loop function. The Hill coefficient for fOLM (dox) was n2 = 1.24. (b) Determination of Hill 
coefficients for the doxycycline response, n2, with flow cytometry. For this purpose, cells similar to the I/O 
strains were constructed with the exception that the SL-output was replaced by GFP (strains indicated with 
“Hill coefficient for doxycycline response” in Table S1); in this way, there is no inhibition of translation 
and GFP fluorescence can be measured. A constant input expression was induced with 5.2 nM estradiol. 
Lines, nonlinear fitting with a simple Hill function with basal expression. The fitted Hill coefficients for 
rtTA/P[tetO]7, sc-rtTA/P[tetO]7, sc-rtTA/P[tetO]1 in response to dox are 1.50 ± 0.18 (n=6), 2.02 ± 0.12 (n=3) and 
1.38  ± 0.14 (n=6), (mean ± sd) respectively. These fitted values were taken to restrict the range of the Hill 
coefficients for dox response (n2) in the fitting of the corresponding open-loop function, fOLM (ω, dox) (see 
SI text, Fitting of open-loop functions, fOLM (ω, dox)). (c) GFP fluorescence distribution in strains used for 
the doxycycline response curves (as in (b)). The relative frequency is scaled so that the maximum 
frequency is set to 1. 

(c) sc-rtTA / P[tetO]7 rtTA / P[tetO]7 



Fig. S4. Feedback opening reached steady-state in 24 hours. 
The input-output response for the cooperative-dimeric circuit was measured at 2 or 24 h after 
uninduced (Low init.) cells were grown with 0.1 μM doxycycline. For high initial condition (High 
init.), the cells were induced with 0.5% galactose and 1.95 μM doxycycline before washed and 
transferred to 0.1 μM doxycycline. qPCR was performed with primer pairs for the input (5’-
GGGAAAGCTGGCAAGATTTTTTA-3’; 5’-GTGTACCTAAATGTACTTTTGCTCCAT-3’, 
efficiency 1.868) and output (5’-ATCTGCCCTTTCGAAAGATCCCAA-3’; 5’-
GCATCGGTAAACATCTGTTTGTATAGTTCAT-3’, efficiency 1.870). Solid line indicates fOLM(ω, 
dox= 1.95 μM); dashed line, 0.4 x fOLM(ω, dox= 1.95 μM) 

High init., 24 h 

Low init., 24 h 

Low init., 2 h 



(a) (b) 

Fig. S5. Distribution of raw fluorescence intensity of the detected spots in the smFISH experiment 
prior to background subtraction.  
Data were obtained from smFISH experiments for Fig. 5a, b with cells containing the cooperative-
dimeric feedback loop (see Yvj87.2 in Table S1). 0.98% (n=102) and 1.89% (n=6834) of the spots 
were detected with very high fluorescence intensity (>11) for the uninduced (a) and induced (b) cells, 
respectively. The distribution was unimodal in both cases, indicating each spot detected a single 
mRNA molecule because in the opposite case, multimodal distribution would have appeared. The 
spots with very high fluorescence intensity may reflect to clumps of mRNA molecules; yet given the 
low occurrence in the experiments, presence of clumps was negligible. 



Supplementary Tables 

Table S1. Yeast strains. 

Diploid 
Strain 

Haploid 
parents Integration locus (plasmid) Function 

 
A 

ade2:: ADE2_ ura3:: URA3_ his3::  HIS3_  
alpha 

Ych207.3 

Yvj40.3   P_MRP7  ǀ GEV 
(pPR1) 

I/O 
Yvj71.8 P_GAL1UAS-CYC1c ǀ 

SL_5[AT]1ǀ rtTA (pVJ46)   

P_[tetO]7- CYC1c ǀ 
SL_5[AT]1 ǀ 
rtTAΔ(45/45)::YFP (pCH067)   

 

Ych290.2 

Yvj40.3   P_MRP7 ǀ GEV 
(pPR1) 

I/O 
Ych285.2 P_GAL1UAS-CYC1c ǀ 

SL_5[AT]3 ǀ sc-rtTA (pCH102) 

P_[tetO]7- CYC1c ǀ 
SL_5[AT]3 ǀ 
rtTAΔ(45/45)::YFP (pCH104)  

 

Ych257 

Yvj40.3   P_MRP7 ǀ GEV 
(pPR1) 

I/O 
Ych252.8 

P_GAL1UAS-CYC1c ǀ 
SL_5[AT]3 ǀ sc-rtTA 
(pCH102) 

P_[tetO]1- CYC1c ǀ 
SL_5[AT]3 ǀ 
rtTAΔ(45/45)::YFP (pCH103) 

 

Ych214.2 
Ych211.2 

P_GAL1UAS-CYC1c ǀ 
SL_5[AT]1 ǀ 
rtTAΔ(45/45)::YFP (pVJ47)  

 P_MRP7  ǀ GEV 
(pPR1) Equivalence 

Assessment 
Yvj69.3 P_GAL1UAS-CYC1c ǀ 

SL_5[AT]1 ǀ rtTA  (pVJ46)   (pRS306)   

Ych258 

Ych248.5 
 P_GAL1UAS-CYC1c ǀ 
SL_5[AT]3 ǀ 
rtTAΔ(45/45)::YFP (pCH100)  

 P_MRP7  ǀ GEV 
(pPR1) 

Equivalence 
Assessment 

Ych251.1 
P_GAL1UAS-CYC1c ǀ 
SL_5[AT]3 ǀ sc-rtTA  
(pCH102)  

(pRS306)  

Yvj87.2* 
Yvj79.2  P_[tetO]7- CYC1c ǀ 

SL_5[AT]1 ǀ rtTA (pCH068)  
P_MRP7  ǀ GEV 
(pPR1) 

Feedback 
Yvj70.1 P_GAL1UAS-CYC1c ǀ 

SL_5[AT]1 ǀrtTA  (pVJ46)   
P_[tetO]2- CYC1c ǀ yEGFP 
(pABG10)   

Ych260.2
* 

Yvj80.1  P_[tetO]7- CYC1c ǀ 
SL_5[AT]3 ǀ sc-rtTA (pCH91)  

P_MRP7 ǀ GEV 
(pPR1) 

Feedback  
Ych250.2 P_GAL1UAS-CYC1c ǀ 

SL_5[AT]3 ǀ sc-rtTA(pCH102)   
P_[tetO]2- CYC1c ǀ yEGFP 
(pABG10)   

Yvj109.5* 

Yvj107.5  P_[tetO]1- CYC1c ǀ 
SL_5[AT]3 ǀ sc-rtTA (pCH083)  

P_MRP7  ǀ GEV 
(pPR1) 

Feedback 
Ych250.2 

P_GAL1UAS-CYC1c ǀ 
SL_5[AT]3 ǀ sc-rtTA  
(pCH102) 

P_[tetO]2- CYC1c ǀ yEGFP 
(pABG10)   
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Diploid 
Strain 

Haploid 
parents Integration locus (plasmid) Function 

 
A 

ade2:: ADE2_ ura3:: URA3_ his3::  HIS3_  
alpha 

Ych259.2 

Yvj40.3   P_MRP7  ǀ GEV 
(pPR1) 

Transient 
kinetics 

Ych250.2 
P_GAL1UAS-CYC1c ǀ 
SL_5[AT]3 ǀsc- rtTA  
(pCH102) 

P_[tetO]2- CYC1c ǀ yEGFP 
(pABG10)   

Ych288 
Ych283.1  P_[tetO]4-GAL1c ǀ LacZ  

(pAnt179) 
P_MRP7  ǀ GEV 
(pPR1) Interference 

assessment 
Ych171.2 P_GAL1UAS-CYC1c ǀ rtTA  

(pCH099)   

Ych289.1 
Ych283.1  P_[tetO]4-GAL1c ǀ LacZ  

(pAnt179) 
P_MRP7  ǀ GEV 
(pPR1) Interference 

assessment 
Ych284.1 P_GAL1UAS-CYC1c ǀ rtTA  

(pCH099) 
P_[tetO]1- CYC1c  ǀ 
rtTAΔ(45/45)::YFP (pCH098)  

Ych279.6 
Ych278.6  P_[tetO]7- CYC1c ǀ yEGFP 

(pAB G11) 
P_MRP7  ǀ GEV 
(pPR1) Hill coefficient 

for dox 
response Yvj67.4 P_GAL1UAS-CYC1c ǀ 

SL_5[AT]1 ǀ rtTA  (pVJ46)     

Ych269 
Yvj92.7  P_[tetO]1- CYC1c ǀ yEGFP 

(pCH001) 
P_MRP7  ǀ GEV 
(pPR1) Hill coefficient 

for dox 
response Ych241.7 P_GAL1UAS-CYC1c ǀ 

SL_5[AT]3 ǀ sc-rtTA (pCH102)   

Ych296.3 
Yvj93.3  P_[tetO]7- CYC1c ǀ yEGFP 

(pAB G11) 
P_MRP7  ǀ GEV 
(pPR1) Hill coefficient 

for dox 
response Ych241.7 P_GAL1UAS-CYC1c ǀ 

SL_5[AT]3 ǀ sc-rtTA (pCH102)   

Ych294* 
Yvj40.3   P_MRP7 ǀ GEV 

(pPR1) smFISH 
negative 
control Ych89.2 (pRS402)  P_[tetO]2- CYC1c ǀ yEGFP 

(pABG10)   
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Haploid 
Strain 

Mating 
Type 

Parent 
strain 

Genotype (plasmid) Function 

HHS75.2 MAT A 
SY991 FIG1:: P_GAL2 ǀ GFP ǀ T_CYC1_HIS3 (pSS29) 

Assessment of 
flanking 
region  

HHS72.4 MAT A 
SY991 GAL2:: P_GAL2 ǀ gal2Δ(0/0)::GFP  ǀ T_GAL2 ǀ HIS3 (pSS51) 

Assessment of 
flanking 
region 

HHS73.2 MAT A 
SY991 GAL2:: P_GAL2 ǀ gal2Δ(45/45)::GFP ǀ T_GAL2 ǀ HIS3 (pSS52) 

Assessment of 
flanking 
region 

HHS71.1 MAT A 
SY991 GAL2:: P_GAL2 ǀ gal2Δ(90/90)::GFP  ǀ T_GAL2 ǀ HIS3 (pSS50) 

Assessment of 
flanking 
region 

HHS74.2 MAT A 
SY991 GAL2:: P_GAL2 ǀ gal2Δ(180/180)::GFP  ǀ T_GAL2 ǀ HIS3 (pSS53) 

Assessment of 
flanking 
region 

 

* Constructed as in [20]. 
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Table S2. Parameters used in the modeling. 

 Description Value  Unit 

δp Protein decay rate constant ** 0.0095*** min-1 

μ Translation rate constant **  
0.54, SL5[AT]1 

4.83, SL5[AT]3 
min-1 

δm RNA decay rate constant 0.2291***  min-1 

s Scaling factor for the measured equivalence plane: 
Open-loop input / Ghost-output 

1.40, SL5[AT]1-rtTA 

2.29, SL5[AT]3-sc-rtTA 
- 

α RNA concentration re-scaling constant (smFISH / 
qPCR relative RNA)  

2.11, SL5[AT]1-rtTA 

2.31, SL5[AT]3-sc-rtTA 
- 

λOFF Promoter inactivation rate constant * 

13.3, rtTA→ P[tetO]7 

11.5, sc-rtTA → P[tetO]7 

  6.4, sc-rtTA → P[tetO]1 

min-1 

 Production rate for the RNA degradation enzyme * 0.20 min-1 

 

* Used in the model to fit RNA noise; see Supplementary Information for details. 

** Determined in [20]. 

*** Mean of decay rate of rtTA and sc-rtTA. 
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Open-to-closed loop mapping 
The open-to-closed loop mapping serves to identify the steady-state expression levels in the feedback loop based on 
the open-loop function without the need to identify the time scale of individual reactions.  

The intersection of the open-loop function fOL(ω) and equivalence plane defines steady-state 

levels in the feedback loops 
The open-loop function is fitted to data obtained by measuring steady-state expression levels of the input (ω) and 
output (η) mRNAs in the open-loop constructs at specific doxycycline (dox) concentrations: 

 , )  (OLf doxη ω=          (1) 

The steady-state expression level of the feedback loop is obtained by re-closing the loop, i.e. by equating the input 
(ω) and output (η), assuming an ideal equivalence between the input and output: 

   η ω=            (2) 

Combining (1) and (2) results in fOL(ω, dox) = ω. We replace ω with x to distinguish the steady-state expression in 
the feedback loop system (x) and termed the resulting function of one variable (dox) open-to-closed loop mapping: 

  . ( )OTCLx f dox=                                                                                                                              (3) 
x is the steady-state expression levels in a bistable system provided some conditions are met, as detailed by Angeli et 
al [1]. Most importantly, the system has to be monotone. Monotonicity is lost if the system contains for example a 
negative feedback loop. 

Scaling of output signal for fitted equivalence, fEQ(ω) 
In real systems, the input and output mRNAs may be scaled differently. The input RNA (ω) is identical to the 
original RNA inside the feedback loop. On the other hand, the output RNA is different and may have different 
synthesis rates. Using linear regression, we can obtain the scaling factor s (see Table S2) between the open-loop 
input and ghost output mRNA (see e.g. Fig. S2c, d): 

( )   EQf sη ω ω= =          (4) 

For ideal equivalence, s = 1. 

To reclose the loop, η = fOLM(ω, dox) = fEQ(ω, dox) =s ω.  

Alternatively, we convert first  fOLM  , fitted to experimental data, to an ideal open-loop function fOL: 

( ) ( ) / ,OL OLMf f sω ω=          (5) 

and then we proceed as described to obtain (3). 

See also in the following section “Basal expression in open and closed loops” for further discussion. 

Fitting of open-loop functions, fOLM(ω, dox) 
Nonlinear regression was used to fit the parameters in the open-loop functions fOLM(ω, dox). To construct the 
function, Hill functions were used for cooperative promoter response and a dimerization term, κ was used for 
dimerization:  

( )2
 

2 
4

mo d di

di a

k
k

d d
κ

d
+

=  , 

where δmo, δdi, ka and kd are the rate constants of monomer decay, dimer decay, association and dissociation in the 
rtTA dimerization process, respectively [2]. 

When no good fit was obtained in this way, which was the case for the monomeric-noncooperative feedback loop 
(P[tetO]1 sc-rtTA), then alternative functions were sought. 
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To fit the open-loop function, fOLM(ω, dox) at least two data series were used: (1) by varying the input at three 
different fixed dox concentration and (2) by varying dox at one or more fixed input values.  

To match the variations in doxycycline activities used for the open-loop and closed loop measurements, a 24 h 
hysteresis experiment with high initial condition was performed. To reduce the parameter search in the fitting of the 
output RNA versus dox and input RNA data, we restricted the range of Hill coefficient for doxycycline response, n2, 
with gene expression data obtained with flow cytometry (Fig. S3b). The range corresponded to mean±sd obtained 
from biological replicates. 

The variable ω represents the input (rtTA or sc-rtTA) RNA as measured with qPCR. The dox in the functions 
represents the doxycycline concentration (µg/ml); 1 µg/ml doxycycline = 1.95 µM. 

Basal expression in open and closed loops 
The output construct was designed in a way to reduce basal expression (Fig. S1b, Materials and Methods). The basal 
expression of the output decreases with increasing length of the flanking sequences (Fig. S1b). However, there is a 
limit to which the basal expression can be reduced. Indeed, our measurements show that the basal expression in the 
feedback loop is lower than in the output constructs. Therefore, we subtracted the basal expression in the ghost 
output b from the fitted to the equivalence line ( )EQff s bω ω= + to obtain  ( ) ( )EQ EQff f bω ω= −  (Fig. S2c, 
d, dashed and full lines).  
 
In order to assess the validity of this extrapolation, the basal expression in the feedback loops was adjusted to values 
comparable to or higher than the b in the open-loop; the prediction of the transition rates were equally good in the 
fitted and the extrapolated part (manuscript in preparation).  
 
When the open-loop function was re-closed to determine the steady-state  expression for the feedback loop, the basal 
expression was measured in the feedback constructs and we set the value b/Vmax to match the feedback expression 
dynamic range, the ratio of maximally induced (at 19.5 µM doxycycline) expression level to the uninduced 
expression level.  
 
 

Fitted open-loop functions, fOLM(ω, dox) 

Dimeric- cooperative system (rtTA → P[tetO]7)  

( ) ( )
( )

1

1

2

dim
max

1
dim

,
n

OLM
n

n

r
f dox V bk r

dox

ω
ω

ω
= +

+
      (6) 

where 

( )
2

dim
4

2
r κ ωκ κω ω − +

= +  

The following values were fitted: 

Vmax = 74.48; k1 = 0.036; κ = 719.7; n1 = 1.462; n2 = 1.32; b = 0.78. 

Vmax was fitted in the context of fOLM(dox) and the rest of the parameters were fitted in the context of the fOLM(ω) 
function. 

Monomeric - cooperative system (sc-rtTA → P[tetO]7) 

( )
1

1

2

max
1

,
n

OLM
n

n

f dox V bk
dox

ωω
ω

= +
+

       (7) 

where the following parameters were fitted in the context of the fOLM (ω, dox) function. 

Vmax = 54.64; k1 = 8.71; n1 = 1.942; n2 = 1.9; b = 0.78.  
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Monomeric - noncooperative system (sc-rtTA → P[tetO]1) 

( )
31

3
1

2

max
1 2

,
nn

OLM n
n

n

f dox V bk k
dox

ω ωω
ωω

= +
++

      (8) 

where the following parameters were fitted in the context of the fOLM(ω, dox) function. 

Vmax = 39.80; k1 = 3.15; k2 = 5.69; n1 = 0.451; n2 = 1.24; n3 = 0.795; b = 0.33. 

 

Extension of the open-loop function into a kinetic model 

Inclusion of mRNA and protein turnover (synthesis and decay): simple model 
For the prediction of time dependent behavior, the open-loop function has to be extended into a model, which 
incorporates information on the time-scale of the reactions. In other words, the reactions within the “black box” 
between the input and output have to be specified so that the nonlinearity of the overall fOL(ω, dox), open-loop 
function, remains valid. The reactions can be specified to an arbitrary degree of detail but in practice, some reactions 
always remain lumped. In this way, the open loop can be simulated stochastically to predict the mean expression (see 
e.g. Fig. 5d) or upon re-closing the loop, the transition rates can be predicted by stochastic simulation. 

We will first consider only the RNA production and degradation reactions, lumping all the other reaction steps (1D 
system) to illustrate the principles of the extension. Later, we include the protein reactions (2D system). 

Specifying the time-scale of the reaction in the 1-dimensional (1D) system (opening at the RNA level) 
The open-loop function at steady state is defined by the following mapping: 

:        OLf ω η→          (9) 

where the input ω and output η stand for the RNA molecules. Therefore, we consider first the time-scale of RNA 
reactions, which is specified by the decay constant, md . Adding back time dependency, relation (9) is re-written as a 
differential equation describing the open-loop system: 

( )( ) ,  m OL
d f dox
dt
η d ω η= −         (10) 

 

Thus, the production rate of the mRNA is given by δm fOL(ω). The nonlinear responses due to protein dimerization, 
binding of the activator to the promoter, etc. are lumped into the function, fOL(ω). 

The corresponding (re-)closed loop system is: 

 ( ) ,  m OL m
dRNA f RNA dox RNA

dt
d d= −       (11) 

 

Introduction of the variable for the protein (2D system) 
Next, we illustrate how to include the protein, P. If only linear reactions are specified, the originally fitted open-loop 
function, fOL(ω, dox) can be retained as a transfer function without the need to decompose it.  

Thus, the reactions for RNA and protein turnover are specified in the following way for the open-loop system: 

( )2  m m
d f P
dt
η d d η= −          (12) 
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 P
dP P
dt

µω d= −          (13) 

Both the input ω and the output η correspond to RNA. In contrast to the 1D system, the nonlinear transfer function 
f2(P) maps protein P into RNA. Therefore, we wanted to re-define f2(P) that maps RNA into RNA in order to use the 
originally defined mapping (9).   
The transfer functions in the two systems (1D and 2D) have to generate the same output. Therefore,   

( ) ( )2 ( )OLf P f Pω=          (14) 

where, 
 ( )  P PP dω
µ

=     (from steady-state solution of (13)).  

Interestingly, the direction of this mapping protein to ω (ie. RNA) is opposite to the direction of the flow of 
biological information (RNA to protein).  Thus, last reaction species preceding the input has to be converted into ω . 

In this way, the 2-variable closed system can be reconstituted with the original mapping (9) :  

( )( )  m OL m
dRNA f P RNA

dt
d ω d= − ,       (15) 

  P
dP RNA P
dt

µ d= −           

 

Re-scaling for the absolute RNA concentration 
Since the input and output RNAs were measured in relative units, their concentration units have to be rescaled to 
molecule number / cell (RNA) from relative mRNA values. Because mRNAs including the fOLM(ω) is determined by 
RT-qPCR, a proportionality constant (α) multiplies the RNAs measured by qPCR. RNA = α RNAqPCR (see Table 
S2).  

In the following equations, the open-loop function corresponds to the direct fits to the measurements using qPCR but 
all the variables (RNA and protein) and parameters have absolute molecule / cell dimension.  

 

( )( )   
 

m
OLM m

dRNA f P RNA
dt s

dα ω d= −        (16) 

  P
dP RNA P
dt

µ d= −          (17)  

, where  

( )   
 

P PP dω
α µ

=                                                                                                                                     (18) 

 

These equations were used for modelling of the feedback loop (simple deterministic model), e.g. for the induction 
kinetics of the monomeric – noncooperative loop. 

           

Extension of model to fit the measured noise 

Simple noise model 
The simple noise model corresponds to the process described by equations (16), (17) and (18). The Gillespie 
stochastic simulation algorithm (SSA) was used to simulate the above processes. 
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Extended noise model: telegraphic promoter model and enzymatic mRNA degradation 
To take the telegraphic promoter model into account, the above time scale specification for an open-loop function is 
applied to the promoter activation step (and not to the RNA production directly). In turn, the active promoter 
produces the RNA, leading to a production function that reaches a maximum speed. The saturation function for the 
telegraphic promoter is then equal to the fOLM(ω) function normalized by Vmax: 

( )
max

OLM ON

OFF ON

f
V

ω λ
λ λ

=
+

        (19) 

On the left hand side, both the numerator and denominator are measured quantities and the s drops out. 

Accordingly, the following steps and reaction rate constants were defined for promoter and RNA kinetics in the 
stochastic simulation algorithm (SSA): 

Reaction   Reaction rate 

I → A   
( )

( )max  
OLM

ON OFF
OLM

f
V f

ω
λ λ

ω
=

−
     (20) 

where 
  
 

P Pdω
α µ

=    

A → I   OFFλ  

A → A + RNA  max    
 

mV
s
dα  

RNA → 0  m
E
E

d   

λOFF and <E> are calculated with the help of linear noise approximation (LNA) (see in the later section, 
Determination of parameter values for RNA distribution by linear noise approximation),  λON  can be then obtained 
from the above equation (19). 

 
 

Extension of model to fit transient kinetics 
Two types of GFP induction experiments were performed in Fig. 4a, b: with and without pre-induced rtTA. In both 
cases, the induction kinetics was slower than expected from the decay rates. The speed of induction of a gene without 
feedback depends only on the decay rates and not on the first order production (synthesis) rates, such as transcription 
and translation rates (see next section “The speed of induction is affected only by the decay and not by the synthesis 
rates”).  
Therefore, any additional reactions accounting for the delay must occur between doxycycline uptake and association 
of doxycycline with the protein rtTA. In order to introduce such a function for the transient kinetics, a time-
dependent term was included that affects the production rate in a nonlinear manner (e.g. transcription rate controlled 
by the promoter) because varying the production rate constant does not affect the speed of induction (see section 
“Incorporation of transient kinetics”).      
 
The speed of induction is affected only by the decay and not by the synthesis (transcription and translation) 
rates  
The induction of GFP (see also Fig. 4a,b, pre-induced condition) is described by the following system of differential 
equations: 
 

m m
dRNA V RNA

dt
d= −  
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  p
dP RNA P
dt

µ d= −  

 
The subscripts m and p represent mRNA and protein, respectively. To describe the condition for induction, the initial 
values for both the mRNA and protein are set to 0, and the system yields the following solution: 
 

( ) 1 1 mt
m

m

RNA t V e d

d
− = −   

( ) ( ) ( ) ( )μ 1 e 1 e pm tt
m p m

m p p m

P t V ddd d
d d d d

−−
 

  = − − −  − 
 

It can be seen that the system’s time scale is determined by the decay rates δm and δp and the transcription and 
translation rates shift the concentration only linearly. 

Incorporation of the transient kineticsEquation Section (Next) 
To describe the transient kinetics, a perturbation function (i(t)) was constructed which describes the lower 
intracellular concentration / association of doxycycline upon induction, before reaching the steady-state. Thus, the 
TF-DNA affinity term was modified: 

( )( )
2

1 1 in

n

k i t
dox

+          (21) 

The perturbation decreases with time at a rate of iδ 0.006=  min-1. 

i
di i
dt

d= −           (22) 

The following values were fitted to RNA data obtained from the monomeric-noncooperative feedback loop (P[tetO]1-
sc-rtTA) induction (Fig. 4c): ni = 0.75 and the initial concentration i(0) = i0 = 18.2. 

To check the transient kinetics with the fluorescence reporter (Fig. 4a,b,d), we approximated the response function of 
P[tetO]2-GFP with that of monomeric-noncooperative system (sc-rtTA → P[tetO]1): Vmax/b = 100; b = 0.5 ; μ = 18.6. 
The fluorescence intensity of the GFP protein was fitted for each measurement.  

Additional methods for modeling 

Stochastic simulations 
Stochastic simulations were performed with the Gillespie SSA [3]. The actual simulations for the detection of 
transition between the two states were preceded by a pre-run. The pre-runs serve to obtain the probability distribution 
for a given initial condition. In order to reproduce the experimental conditions the following doxycycline 
concentrations were applied in the pre-run: 0 and 19.5 μM for the low and high initial conditions, respectively. 
Afterward, the actual doxycycline concentrations were applied and the simulation proceeded until the concentration 
of the activator reached the threshold value. The threshold value is the geometric mean of the concentrations of the 
activator at the low and the high states of the bistable system calculated at the geometric mean of the two 
doxycycline concentrations at which the fold bifurcations occur.     

Specifically for the low initial condition, only the basal expression was allowed to proceed in the pre-run for twice of 
the protein half-life so that the initial values for the RNA, protein corresponded to the deterministic steady-state 
values of the actual basal expression. For the extended and fitted model, the inactive promoter state I = 1 and the 
steady-state value of the RNA degrading enzyme were taken for the pre-run. The perturbation function for the 
transient kinetics was applied only in the low initial condition. 
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Calculation of logarithmic sensitivities 
Formula used to calculate logarithmic sensitivities: 
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Equations for the potentials 
The potentials in Figure 1a and 8 were obtained by integrating F(x) with the respect to x. 

2

2 2( )   max x
d

dx xF x V x b
dt x K

d= = − +
+

 

Where Vmax = 1000, b = 10 and δx = 1. In Figure 1a, Kd = 471 and 354 in the left and right panel, respectively. In 
Figure 8, Kd = 429 for the left panel and the upper curve in the right panel and 408 for lower curve in the right panel. 

Determination of parameter values for RNA distribution by linear noise approximation 

(LNA)  
LNA was used to obtain analytical expressions for the CV (coefficient of variation = standard deviation / mean) of 
the RNA distribution, based on the extended and fitted noise model. All parameters in this model were determined 
experimentally by direct fitting, except for λOFF and <E>. In order to obtain their values, two sets of equations for 
CV were obtained for the measurements of the feedback constructs at maximally induced (at 19.5 µM doxycycline) 
and the uninduced expression levels. Measuring these two CV values permits the calculation of the above two 
unknown parameters.Equation Section (Next) 

The following notation was used for LNA [4]: 

.x F S V= =             (23) 

( ). . TB S diag V S=            (24) 

( ). . TCov J Cov J Cov B= + +


              (25)   

F: vector field, S: stoichiometry matrix, V: reaction rates vector 

B: diffusion matrix, Cov: covariance matrix, J: Jacobian of F 
The above reactions system includes 5 variables: 
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  (26) 

 
 

To set the same burst size, the same λOFF value was taken for the basal and activator dependent promoter kinetics. 
λON,b and λON are the activation rates of promoters related to basal and feedback respectively which were expressed 
from 

,

, max

ON b

ON b OFF

b
V

λ
λ λ

=
+

           (27) 

max

( )ON OLM

ON OFF

f
V

λ ω
λ λ

=
+

        (28) 

where 
  
 

P Pdω
α µ

=   

fOLM(ω) is the fitted function with parameters specified in Table S2. Vmax and b were measured in the feedback 
constructs. For 0 dox, Equation (27) applies; and for 19.5 μM dox, Equations (27) and (28) apply. In this way, λON,b 
and λON become constant multiples of λOFF. Putting Equation (25) at the steady-state, variance of RNA will be 
obtained as a function of λOFF and <E>. Then by solving Cov(RNA)/RNA2 = CV2

experiment at 0 and 19.5 μM dox,  λOFF 
and <E> are obtained. 
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Noisy bistable systems, where the expression fluctuates between two distinct states of activity, 

are ubiquitous in cell biology and plays an important role in bacterial surviving and cell-fate 

determination. We investigated here the bistable region of positive feedback loops where a 

transcription factor activates its own transcription. The existence and the extension of this 

bistable region depend on the presence of molecular ultrasensitive reactions. The noise of the 

system was low and therefore the transition rates between the two states were dropping abruptly 

in the vicinity of the bistable boundaries. By mapping this dropping, we were able to compare the 

bistable region of feedback loops with different ultrasensitive reactions and identified the 

parameters which varied the extension of the bistable region. We showed that the basal 

expression is a major parameter as it shrinks the bistable range and up to a certain value made 

even the bistable range totally disappear. 
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Introduction 
Positive feedback loops are recurring patterns in genetic regulatory network as their ability to 

generate bistability - the maintenance of two stable expression states under identical conditions - 

is broadly used in many biological processes like cell-fate determination, microbial adaptation by 

bet-hedging strategy or cancer onset [22-25]. The simple presence of a feedback loop is however 

not sufficient to generate bistability, it needs that at least one reaction within the loop has a non-

linear switch-like response, termed ultrasensitive response [6-8]. A reaction response is 

ultrasensitive when its logarithm sensitive is higher than 1 [11]. In absence of it, the feedback 

loop is strictly monostable and therefore the expression converges to a single steady-state level. 

Reaction steps like titration by inhibitor molecules, multisite phosphorylation and dimerization 

can have an ultrasensitive response [9, 31, 32]. 

These ultrasensitive reactions do not control only the absence or presence of bistability but also 

the broadness of the bistable range. Indeed when the feedback loop has more than one or when 

the ultrasensitive reaction has a steeper response, the range of the bistability is extended [33]. The 

boundaries of the bistable range can be mapped easily in absence of noise due to hysteresis 

behavior of bistable system. By increasing the value of a parameter representing some property of 

a system, the expression of the feedback components will suddenly jump to the high expression 

state at a particular parameter value. When this parameter value is then decreased, the jump back 

to the low expression state occurs at a much lower parameter value. The parameter values where 

the expression jumps define the bistable range [34]. However, most of the reactions occurring 

within the cells are noisy due to small number of reactant, which can lead to significant statistical 

fluctuations in molecule number and reaction rate [35]. Higher this noise is, more frequent and 

larger is the part of bistable range where transitions between the two expression states occur. 

In this work, we show that when the system has low noise, transitions in the bistable range occur 

essentially in the vicinity of its boundaries and therefore the transition rates can be used to 

approximate the bistable region. We illustrated this point in positive feedback loops where a 

synthetic transcription factor (TF) activates its own expression in S. cereviseae. Then by 

comparing the bistable regions of loops having alternative configuration of ultrasensitive 

reactions, we illustrated how extension of the bistable region can be modulated. 
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Figure 1. Design and models of a transcriptional positive feedback loop with basal expression 

adjusted. (A) Feedback loop design. The genetic circuit was composed of two main constructs. A 

positive feedback construct, where TF activates its own expression and a basal adjustment construct 

which able external control of TF concentration. (B) The positive feedback was bistable for a range 

of TF-DNA affinities (doxycycline concentration) and for interval of feedback expression range. The 

bistable range of doxycycline is between by the dashed vertical lines. The number of steady-state 

expression levels of TF varied as function of TF-DNA affinities from a single stable one (full line) in 

the monostable range to three, one unstable (dashed line) and two stable (full lines) in the bistable 

range. Three different feedback expression ranges (b/Vmax) were evaluated by varying the basal 

expression. Stochastic simulations were used to predict the transition rates from high to low 

expression state (triangle pointing down) and from the low to the high state (triangle pointing up). 

(C) Stability diagram displays the bistable region (delimited by the black dashed lines) as a function 

of the TF-DNA affinity and feedback expression range for the same feedback loop as in (B). The 

feedback expression ranges evaluated in (B) were indicated by vertical lines of the same color. The 

mathematical model is provided in the materials and methods, mathematical modelling. 
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Results 
Design of feedback loops 

Our analysis focuses on a synthetic positive feedback loop that consists of a TF, which binds its 

own promoter in yeast (Figure 1A). The TF, reverse tet-transcriptional activator (rtTA) from tet-

ON system binds tet operator when it forms a homodimer and is bound by doxycycline ligand 

[36, 37]. To this extend, doxycycline concentration is used to adjust the affinity of the TF to the 

tet operator. The feedback expression states vary as a function of doxycycline. At low 

concentration only the low expression state exists, at middle concentration corresponding to the 

bistable range both states are possible and finally at high concentration only the high state exists. 

As mentioned in the introduction, positive feedback loop displays bistability, only in the presence 

of ultrasensitive reactions, therefore two reactions were tuned: the homodimerization of the TF 

and its cooperative binding to the promoter. The homodimerization was modulated by comparing 

the native rtTA with a monomeric version of it, where two DNA binding domains were fused in 

such way that it does not need to dimerize prior to bind tet operator [38]. The cooperative binding 

of the promoter was varied by having either one or seven tet operators, which results in absence 

or presence of cooperative binding, respectively [39]. 

The dynamic range of the feedback expression, which represents the expression ratio of high to 

low state, later called feedback expression range determines also the bistable range. Indeed, when 

the low state expression is increased by a higher basal expression, it reduces the feedback 

expression range as well as the steepness of ultrasensitive response and by consequence the 

bistable range [11]. In our synthetic genetic circuit, the feedback expression range was modulated 

with the basal adjustment construct which increased gradually the basal concentration of TF in 

presence of estradiol (see Materials and Methods, Design of synthetic circuits and yeast strains). 

The transition rates in the vicinity of the bistable boundaries 

In a system where noise is absent, the transitions from a state to another occur at the bistable 

boundaries. When the system has low noise, transitions can also occur within the bistable range, 

however their frequencies decrease strongly when going toward the center of the bistable range 

[33]. In order to illustrate this phenomenon better, we built a simple feedback loop model 

including the dynamic of mRNA and protein and where all the reactions are mass actions except 

the production of mRNA which is a Hill function with a basal term (see Materials and Methods, 

Mathematical modeling). The Hill coefficient was set to 2, which means that at least one 
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ultrasensitive reaction was present within the loop. Indeed higher the sensitivity or the number of 

ultrasensitive reactions, higher the Hill coefficient is and in opposite in absence of ultrasensitive 

reaction, the Hill coefficient is 1. 

The bistable region of the system was restricted to specific range of doxycycline concentration 

and up to a certain feedback expression range (Figure 1B,C). The increase of the basal expression 

was reducing the bistable range in doxycycline concentration dimension. The transition rates 

were obtained by simulating transitions between the two states with Gillespie stochastic 

simulation algorithm [21]. The simulations were preceded by a pre-run to set the cells at either 

the low or high expression state corresponding to the low and high initial condition. For the 

transitions from the high and low expression states named ON → OFF transitions, the rates 

dropped almost vertically in the vicinity of the bistable boundaries for the both feedback 

expression ranges evaluated. For the OFF → ON transitions, the rates dropped less abruptly when 

going into the bistable range, however a slight bending of the rate variation was observed as the 

rates increase less steeply outside the bistable range. Interestingly, the OFF → ON and ON → 

OFF transition rates at the bistable boundaries were always around 0.02 h-1, which corresponds to 

an average transition of two days. 

In order to characterize better the bistable region we used stability diagrams which show the 

types of stability, monostable or bistable, as we move around the parameter space (Figure 1C) 

[40]. This diagram illustrated even better that the transitions rates vary steeply in the vicinity of 

the bistable boundaries. By performing a linear regression of the transition rates at 0.02 h-1, the 

position of the bistable boundaries can be estimated. 

Validation of the estimation of the bistable boundaries by transition rates 

In order to determine if the transition rates are also dropping significantly at the bistable 

boundaries for an in-vivo system, we measured the transition rates for systems where the bistable 

boundaries are known. Two feedback circuits which have their bistable boundaries determined by 

the open-loop approach were used to this end [33]. In brief, the open-loop approach consists to 

break a component in the loop into an input and output. This creates a reaction chain starting by 

the input passing through all the components of the broken loop and ending at the output. The 

open-loop function indicates the output as function of the input. The first feedback has two 

ultrasensitive reactions: cooperative binding and dimerization of the TF (P[tetO]7-rtTA) whereas  
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Figure 2. Measured transition rates in feedback circuits between the two expression states. The 

transition rates from OFF to ON (left panels) and from ON to OFF expression states (right panels) 

for the dimeric - cooperative (Upper panels) and monomeric – cooperative (lower panels) feedback 

loops are plotted as function of doxycycline concentration. The feedback expression range was 

adjusted by the estradiol concentration which controls the basal expression (see materials and 

methods, design of synthetic circuits and yeast strains). At each feedback expression range, the OFF 

→ ON and ON → OFF transition rates are fitted as function of doxycycline concentration by a 

linear regression and by a power regression, respectively. The threshold used in figure 3 (horizontal 

black line) is set at 0.02 h-1. 

the second one has only cooperative binding (P[tetO]7-sc-rtTA). The transitions rates were 

measured at several feedback expression range for a range of doxycycline concentrations (See 

materials and methods, Estimation of the bistable region by measuring transition rate variation) 

(Figure 2). For a given feedback expression range, the OFF → ON transition rate variation as 

function of doxycycline concentration was approximated by a linear function and the ON → OFF 

transition rates, where the variation was much steeper, were fitted by a power regression. This 

permitted to interpolate the doxycycline concentration at which the transition rate value was 0.02 

for a given feedback expression range. Interestingly, the parameter values at which the transition 

rates were expected to be 0.02 h-1 were all near the bistable boundaries (Figure 3A). The bistable 

boundaries were therefore approximated by linear regression of those parameter values (see 

materials and methods, Estimation of the bistable region by measuring transition rate variation). 
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As expected the bistable region for the dimeric feedback loop was larger than the monomeric 

loop in the feedback expression range and in the doxycycline concentration dimensions. 

Variation of the bistable region in feedback loop with various ultrasensitive reactions 

To approximate the bistable boundaries of four other feedback loops, we used the 0.02 h-1 

transition rate threshold. Their transitions rates were also following linear and power function for 

OFF → ON and ON → OFF transitions, respectively (Figure S1). A feedback loop circuit having 

only dimerization as ultrasensitive reaction where having as expected, a smaller bistable range 

than the feedback loop which have in addition cooperative binding (Figure 3B) [41]. 

The bistable region of a dual positive-negative feedback loop was evaluated. This negative 

feedback loop was created by introducing in the feedback loop with two ultrasensitive reactions 

tet operators downstream of the TATA box which is known to inhibit transcription [42]. The 

bistable region was as expected smaller than the original feedback loop without negative 

interaction. Interestingly, the bistable range of the dual positive-negative feedback loop is smaller 

in the feedback expression range than the feedback loops with only a single ultrasensitive 

reaction but it is broader of them in the doxycycline concentration dimension. This illustrated that 

the parameters which influence the bistable range in the two dimensions are not the same. 

Two other feedback loops with tTA TF were also investigated. rtTA was derived from tTA and 

their main functional difference lies when they form a complex with the doxycycline; tTA 

unbinds tet operator whereas rtTA binds it [43]. The estimated bistable regions indicates that tTA 

behaves similarly than rtTA in the extent that it binds cooperatively to the promoter as the 

cooperative loop had a larger region and that there is also another ultrasensitive reaction as the 

non-cooperative loop had still a decent bistable region. These observations were confirmed by the 

open-loop approach as the logarithm sensitivity of the open-loop function of both feedback loops 

were higher than 1 and in addition the function for the cooperative loop was steeper than the non-

cooperative one (Figure S2). 
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Figure 3. Prediction of the bistable region with transition rates. Transition rates at 0.02 h-1 

(triangles) were used to estimate the boundaries of the bistable region (full lines) by linear 

regression of their logarithm values. The OFF → ON (triangles pointing up) and ON → OFF 

(triangles pointing down) transition rates were interpolated from the measurements in figure 2 and 

S1 at each feedback expression range (contour color refers to the estradiol concentration used). The 

left-most series of data in each plot represent experiments with the lowest basal expression, 

(estradiol = 0 nM). (A) The bistable boundaries mapped by the open-loop approach [33] (dashed 

lines) and estimated with transition rates (full lines) for the dimeric – cooperative (pink) and 

monomeric – cooperative (cyan) (sc-)rtTA feedback loops. (B) The estimated bistable regions of the 

dimeric – non-cooperative (gray lines) and the dual positive-negative (blue lines) feedback loops. 

The bistable region of the dimeric – cooperative feedback loop from (A) is showed as a help for 

comparison. (C) The estimated bistable regions of feedback loops with tTA TF with (purple lines) 

and without (green lines) cooperative promoter. (D) Hill coefficients of the open-loop functions of 

the feedback loops fitted from the open-loop approach (blue) or calculated from transition rates via 

the cusp points in (A, B, C) (green). 
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The Hill coefficient of the open-loop function determines solely the extension of the 

bistablility in the feedback expression range dimension 

As mentioned earlier the basal expression can reduce the steepness of ultrasensitive response and 

therefore reduce also bistable range. This can be visualized in the stability diagrams of any of the 

feedback loops investigated. When the feedback expression range is decreased the range of 

doxycycline concentration at which bistability occurs receded also and up to a critical basal at the 

tip of the bistable region where bistability is not anymore possible whatever is the doxycycline 

concentration. This tipping point is named cusp point in bifurcation theory [40]. The 

mathematical relations between the basal expression and the bistable range can be explained by 

deriving the maximum logarithm sensitivity of the open-loop function for a feedback loop where 

this function can be assumed to be a Hill function with a basal term ( max( )
n

n n
d

xf x V b
x K
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+
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Where n stands for the Hill coefficient, b and Vmax for the basal and maximal production rate, 

respectively and Kd for the TF-DNA dissociation constant. Here Kd and therefore doxycycline 

concentration as included into this constant does not influence the maximum sensitivity of open-

loop function. In opposite, the basal/Vmax ratio and the Hill coefficient does influence. This 

equation also shows that when the basal expression is increased the maximum sensitivity is 

decreased. As mentioned earlier, when the maximum logarithm sensitivity is equal to 1 the 

system is not anymore bistable and this corresponds to cusp point [11]: 
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This indicates that the extension of the bistable region in the feedback expression range 

dimension is only determined by the Hill coefficient of the open-loop function. It is important to 

note that here the Hill coefficient accounts for all ultrasensitive reactions and not only for 

cooperative binding as the open-loop function was approximated by a simple Hill function with a 

basal term. On the right of the cusp point, the system is strictly monostable. This was confirmed 

by the unimodal distribution of cell fluorescence which reported the concentration of the TF in 
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P[tetO]1-tTA feedback loop when exposed to high basal (Figure S3). Inversely, the Hill coefficient 

of the open-loop can be estimated by knowing the cusp point and using the above equation 

(Figure 3D). For the dual positive-negative feedback loop, this can also be done and the equations 

were provided in the materials and methods, Mathematical modeling. 

 

 

Figure 4. The extension of the bistable region depends on the TF and doxycycline Hill coefficient of 

the open-loop function of the feedback loop. (A,B) Predicted (contour diagram) and observed 

(circles) transition rates (indicated by a color scale) for monomeric (A) and dimeric (B) loops. The 

open-loop approach is used to map the bistable boundaries (same as data in figure 3A). The 

predicted transition rates were obtained by stochastic simulations (Materials and methods, 

Mathematical modeling). Differences between predicted and observed transition rates can be seen 

by the distance in the color-scale. The inset in the bottom left corner in (A) stands for the transitions 

from the ON → OFF expression state. (C-D) Prediction of the extension of the bistable region of 

P[tetO]7-rtTA loop (as in A) by modulating the TF (C) and doxycycline (D) Hill coefficient. 

Dimerization of rtTA TF in this loop explained the presence of the bistable region when the TF Hill 

coefficient was 1. 
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The Hill coefficient of doxycycline shrinks the bistable region 

The doxycycline concentration range at which bistability occurs is however more complex as it 

depends on several parameters. To understand it, we analyzed for same feedback loops as in 

figure 2 and 3A as their parameter values were known. The model used to represent the system 

was more complex than the simple one used in figure 1B as it was extended to fit transient 

kinetics and noise from in-vivo measurements in order to predict accurately the transition rates 

observed [33]. The goodness of the model and the parameter values can be evaluated by 

comparing the transition rates predicted by stochastic modelling and the ones measured (Figure 

4A, B). The higher the Hill coefficient of the TF was, the larger the bistable range in the both 

dimensions, feedback expression range and doxycycline was (Figure 4C). This shrinking can 

however not explain the very narrow range of doxycycline concentration where bistability occurs 

for the monomeric feedback loop. The Hill coefficient of doxycycline explained this reduction as 

a higher coefficient reduced the width of the bistable range (Figure 4D). The doxycycline Hill 

coefficient fitted from the open-loop function was 1.9 and 1.32 for the monomeric and dimeric 

loop, respectively[33]. The bistable range in the feedback expression range dimension did not 

vary with the doxycycline Hill coefficient; this is due to the fact that it depends solely on the TF 

Hill coefficient as explained earlier. 

Discussion 
Determination of the presence and extension of bistability can be done by different experiments. 

Hysteresis experiments where the distribution of an initially fully uninduced and induced 

population is compared after a certain time can indicate the presence of a bistable range [28]. 

When the bistable region is narrow, however the detection of the bistability can be missed [33]. 

The other disadvantage of the hysteresis experiment is that the bistable range cannot be delimited 

as the hysteresis shrinks over time. The open-loop approach in opposite can delimit precisely the 

bistable range, however as new strains need to be created it is more time consuming. The 

prediction of the bistable region by the transition rates as presented here is an intermediate 

alternative as it can estimate the bistable region without the need to create new strains. 

We demonstrated here that tTA bound cooperatively the promoter and that its dimerization alone 

can support bistability which is in contradiction with previous findings [30] (Figures 3C and 

2SA). There was a difference between the construction of the feedback loops as we introduced a 

stem-loop upstream of tTA sequence in order to reduce translation rate about 100 fold and avoid 
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growth defect which they also reported [41]. Without this inhibition, it was impossible to observe 

normal hysteresis in rtTA feedback loops. Furthermore, the open-loop approach was performed 

differently and by two different methods. In their figure 1B, the inducer is used as a proxy for the 

input variable for determining the open-loop function and as it was demonstrated later on, the 

inducer and the input have different open-loop functions [29, 33]. In their figure S1, the open-

loop function was correct as the input was varied. Unfortunately, only the upper part of the input 

range was measured when the open-loop function starts to saturate as the minimal galactose 

amount used to drive PGAL1 was 0.01% which corresponds already to half of the maximum 

activity [4, 44]. 

A bistable gene expression may be in certain conditions not ideal. Therefore the network should 

be able to switch between a monostable and bistable regimes. It can do it simply by increasing its 

basal expression over the cusp point and ensures to be in a strict monostable regime. We showed 

here that the modulation of the bistable region can be done by different components of the 

system. The number of TF binding sites in the promoter as well as dimerization of the TF 

enhances the bistable range in the feedback expression range making it more robust to increase of 

the basal expression, whereas negative feedback can reduce it. The bistable range can also be 

modified at the strength of the TF-DNA binding by various mechanisms including the binding 

affinity of the ligand and how cooperative the binding of the ligand is. The combination of those 

different mechanisms may have been used through life to optimize gene network response.  

Materials and Methods 
Design of synthetic circuits and yeast strains 

The feedback circuit were built with four different constructs inserted into the chromosome of S. 

cerevisiae W303, as previously described [41]. There were a construct containing the feedback 

loop, a fluorescent reporter construct (P[tetO]2-yEGFP), a construct expressing constitutively GEV 

TF [45] and finally a PGAL-rtTA/sc-rtTA/tTA expression cassette. The feedback loop construct 

was composed of the sequence of a TF either rtTA, sc-rtTA or tTA and a promoter driven by 

these TF as it contained either 1 or 7 tet operators. In order to avoid growth alterations an 

optimized stem-loop was inserted [41]. The florescent reporter construct indicated the expression 

level of the TF by flow cytometry measurements [41]. The PGAL-rtTA/sc-rtTA/tTA expression 

cassette had two functions, it generated the high initial condition needed to measure the ON → 

OFF transition rates and it permitted to modulate the feedback expression range by increasing the 



 
Modulation of the bistable region of positive feedback loops 

 

 83 

basal expression. Indeed GEV TF binding affinity to PGAL promoter can be modulated in a graded 

manner by the estradiol concentration [46]. The feedback expression range was measured as the 

ratio of the TF RNA between the low and the high expression state. The RNA was quantified by 

qPCR as previous described [41]. RNA of (sc-)rtTA was sampled after the appropriate initial 

condition and 24h-incubation without and with 19.5 μM of doxycycline for the low and high 

expression state, respectively. For tTA feedback loops, it is the opposite i.e. for the low state 0.1 

μM of doxycycline is used and 0 μM for the high state. The expression value at the high state of 

P[tetO]7-rtTA feedback loop at 0nM estradiol is used for the high state of the dual positive-negative 

feedback loop. The strains for the open-loop approach in figure S2 were built as previously 

described [33]. The yeast strains are described in Table S1. 

Estimation of the bistable region by measuring transition rate variation 

The transition rates are fitted from the measurement of the proportion of cell at the low 

expression state overtime from a population initially where all cells were at the high expression 

state for the high initial condition or at the low expression state for the low initial condition [33]. 

Only minor modifications were done in the growth condition for the feedback loops containing 

tTA TF. At high initial condition, the cells were induced with 0.03% galactose overnight, while 

0.2 μM doxycycline kept the cells inactivate at the low initial condition. The initial condition 

cultures were then inoculated without washing in wells containing a range of doxycycline and 

estradiol. Only the cells for the 7.5 h measurement for the low initial condition were washed 

twice by centrifugation, discarding the supernatant and resuspended in medium without 

doxycycline prior to be inoculated. 

The bistable boundaries were approximated in the doxycycline and feedback expression range 

space with the transition rates when their value was 0.02 h-1. Transition rates were measured at 

different feedback expression range and for several doxycycline concentrations. In order to 

determine the doxycycline concentration at which the rate was 0.02 h-1 for a given feedback 

expression range, regression of the rate values as function of doxycycline is performed (see 

Figure 2 and S1). For the OFF → ON and ON → OFF transition rates, linear regression with 

inverse-square (Y-2) weighting and power regression were used, respectively. For the tTA 

feedback loops, transition rates measured at a doxycycline concentration below 0.0028 μM were 

not considered for the regression as their values were similar to the ones in absence of 
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doxycycline. As there were only a single ON → OFF transition rate for P[tetO]7-rtTA at 6.4 nM 

and P[tetO]7-sc-rtTA and the slope of the regression of P[tetO]7-rtTA at 0nM was used. 

The two bistable boundaries are then estimated by linear regression of the rates at 0.02 h-1 by 

taking the logarithm values of their doxycycline concentration and feedback expression range 

(see Figure 3). The boundary at lower doxycycline concentration was approximated by ON → 

OFF transition rates and the boundary at higher concentration was determined by OFF → ON 

transition rates for rtTA feedback loops. This was the opposite for tTA loops. 

Mathematical modeling 

The predicted transcription rates in figure 4 A, B were obtained by stochastic simulations by 

using equation and parameter values as previous described [33]. This was also the case for the 

model and parameter values used to map the bistable region by the open-loop approach in figures 

3A, and 4C,D. For the figure 1b, two differential equations describe the feedback loop inspired 

from P[tetO]7-sc-rtTA loop: 

max  

 

n

mn
nd

n

P

dM V b
Kdt P
dox

dP M
dt

P M

P

d

m d

= + −
+

= −

 

Where M, P and dox stand for mRNA, protein and doxycycline, respectively. Vmax and b define 

the maximal and minimal transcription rate, respectively. n is the Hill coefficient, which indicate 

how cooperative is the binding of the TF to DNA. Kd is the dissociation constant which define the 

binding affinity of the TF to DNA. δm and δp are the degradation rate of the mRNA and protein 

respectively. μ is the translation rate. The following parameter values were used: Vmax = 12.6; b = 

0.0504 (green), 0.2817 (blue) or 1.575 (purple); n = 2; Kd = 2833; δm = 0.2291; δp= 0.0095; μ = 

4.836. 

The open-loop function of the dual positive and negative feedback loop is described as follow: 

max( )
nn

d
n n n n

d d

Kxf x V b
x K x K

= +
+ +

 

The maximum sensitive of the open-loop function and the cusp point are the following: 
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Figure S1. Measured transition rates between the two expression states in feedback circuits. The transition rates 
from OFF to ON (left panels) and from ON to OFF expression states (right panels) for 4 different feedback 
loops are plotted as function of doxycycline concentration. The feedback expression range was adjusted by the 
estradiol concentration which controls the basal expression (see materials and methods, design of synthetic 
circuits and yeast strains). At each feedback expression range, the OFF → ON and ON → OFF transition rates 
are fitted as function of doxycycline concentration by a linear regression and by a power regression, 
respectively. The threshold used in figure 3 (black horizontal line) is set at 0.02 h-1. 



Figure S2. Open-loop measurements for tTA feedback loops. The input and output RNA is measured as the 
activity of the GAL promoter was varied by estradiol at 0.012 and 0.003 µM doxycycline for P[tetO]1 and P[tetO]7, 
respectively. The data for the open-loop function were fitted to Hill function with basal term (see main text) and 
the measured equivalence to linear function, s input + b, where b is the basal expression of the ghost output. The 
fitted values for open-loop function of P[tetO]1 are: Vmax=541.30, b=14.19, Kd=66.57, n=2.00 and of P[tetO]7 are: 
Vmax=548.57, b=14.54, Kd=82.67, n=2.75. The fitted values for measured equivalence of P[tetO]1 are: s=1.94, 
b=9.73 and of P[tetO]7 are: s=1.29, b=8.59. The thick dashed lines for the measured equivalence are the linear 
function without b. 
 

P[tetO]1 // tTA 

P[tetO]7 // tTA 

Open-loop function 
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Figure S3. Hysteresis plots illustrating shrinking of the bistable range as function of the basal for P[tetO]1-tTA 
feedback loop. Cell population set initially to the low or high state of activity during the low or high initial 
condition, respectively. Measurements are performed  after initial condition and 24h-incubation in the indicated 
doxycycline concentration. The rtTA activity in the feedback loops in the cells was reported with GFP. The 
distribution of the fluorescence signal is shown. This figure is related to figure 3C as it shows part of its results. 
The two initial conditions have different distributions for a large range of doxycycline concentration when basal 
is low at 0nM and 0.8 nM estradiol. This indicates that the doxycycline bistable range is large there which is 
also what we get in figure 3C for the first and third series of triangles from the left. At 3.2 nM estradiol, the 
difference of distribution is only significant at 0.0421 µM doxycycline indicating a very narrow bistable range. 
This is also what we observed in figure 3C. Finally, at 6.4 nM when the dynamic range is higher than the cusp 
point, 0.221 versus 0.057, we don’t observe anymore hysteresis and the distributions are unimodal indicating 
that the system is in the monostable range. 
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Supplementary Tables 
Table S1. Yeast strains. 

Diploid 
Strain 

Haploid 
parents Integration locus (plasmid) Function 

 
A 

ade2:: ADE2_ ura3:: URA3_ his3::  HIS3_  
alpha 

Yvj87.2* 
Yvj79.2  P_[tetO]7- CYC1c ǀ 

SL_5[AT]1 ǀ rtTA (pCH068)  
P_MRP7  ǀ GEV 
(pPR1) 

Feedback 
Yvj70.1 P_GAL1UAS-CYC1c ǀ 

SL_5[AT]1 ǀrtTA  (pVJ46)   
P_[tetO]2- CYC1c ǀ yEGFP 
(pABG10)   

Yvj99* 
Yvj89.1  P_[tetO]1- CYC1c ǀ 

SL_5[AT]2 ǀ rtTA (pVJ42)  
P_MRP7  ǀ GEV 
(pPR1) 

Feedback 
Yvj91.6 P_GAL1UAS-CYC1c ǀ 

SL_5[AT]2 ǀrtTA  (pCH094) 
P_[tetO]2-CYC1c ǀ yEGFP 
(pABG10)   

Yvj151.3* 
Yvj150.3 P_[tetO]7-TATA-[tetO]2 

CYC1c ǀ rtTA (pMG01)  P_MRP7  ǀ GEV 
(pPR1) 

Feedback 
Ych178.2 P_GAL1UAS-CYC1c ǀ rtTA  

(pCH099) 
P_[tetO]1- CYC1c ǀ yEGFP 
(pCH001)  

Ych260.2
* 

Yvj80.1  P_[tetO]7- CYC1c ǀ 
SL_5[AT]3 ǀ sc-rtTA (pCH91)  

P_MRP7 ǀ GEV 
(pPR1) 

Feedback  
Ych250.2 P_GAL1UAS-CYC1c ǀ 

SL_5[AT]3 ǀ sc-rtTA(pCH102)   
P_[tetO]2- CYC1c ǀ yEGFP 
(pABG10)   

Yvj139.1 
Yvj134. 1  P_[tetO]1- CYC1c ǀ SL5[AT]1- 

ǀ tTA (pCH077) 
P_MRP7  ǀ GEV 
(pPR1) 

Feedback 
Ych150.7 P_GAL1UAS-CYC1c ǀ 

SL_5[AT]1 ǀtTA (pCH085) 
P_[tetO]2- CYC1c ǀ yEGFP 
(pABG10)  

Yvj138.4
8 

Yvj133.4  P_[tetO]7- CYC1c ǀ 
SL_6[AT]0 ǀ tTA (pCH061) 

P_MRP7  ǀ GEV 
(pPR1) 

Feedback 
Yvj135.8 P_GAL1UAS-CYC1c ǀ 

SL_6[AT]0 ǀtTA  (pCH062) 
P_[tetO]2- CYC1c ǀ yEGFP 
(pABG10)  

Yvj143 

Yvj40.3   P_MRP7  ǀ GEV 
(pPR1) 

I/O 
Ych151.5 P_GAL1UAS-CYC1c ǀ 

SL_5[AT]1 ǀtTA (pCH085) 

P_[tetO]1- CYC1c ǀ 
SL_5[AT]1 ǀ 
tTAΔ(45/45)::YFP (pCH066)   

 

Yvj142 

Yvj40.3   P_MRP7  ǀ GEV 
(pPR1) 

I/O 
Ych107.1 P_GAL1UAS-CYC1c ǀ 

SL_6[AT]0 ǀtTA  (pCH062) 

P_[tetO]7- CYC1c ǀ 
SL_6[AT]0 ǀ 
rtTAΔ(45/45)::YFP (pCH058)   

 

 

* Constructed as in [33]. 
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V. Discussion 
In this work, we achieved to map precisely the expression steady states and therefore the bistable 

range of transcriptional positive feedback loops and in addition to predict the transition rates 

between the two expression states. All the technics and frameworks developed in this work may 

be apply in the future to characterize better transcriptional positive feedback loops involving in 

many essential biological processes such as cell differentiation, microbial adaptation and cancer 

onset [22-25]. 

In detail, we showed that dimerization is an ultrasensitive reaction which can support bistability. 

Even though it was expected it had not been demonstrated in-vivo [41]. This finding has a 

significant impact as most of the proteins forms homomeric complex [47, 48]. 

We improved the open-loop approach for transcriptional feedback loop by opening at the mRNA 

level as so far the loop-opening was performed by fusing the TF with fluorescent protein [29, 30, 

33]. The distortion of the open-loop function by using the fusion protein is expected to be larger 

as the production and decay rates of the input fusion protein, output reporter protein and the 

output mRNA, which are all part of the open-loop reaction chain, are different from the rates of 

the original transcription factor. In addition, the binding affinity as well as the ability to initiate 

the transcription of the input fusion protein may have been altered too [49]. By opening at the 

mRNA, the input mRNA and its protein are the original ones and the output protein is not in the 

open-loop reaction chain. The only distortion remaining is from the output mRNA and this one 

can be minimized by adding flanking sequences identical to the original mRNA in the loop.  

We showed that the transition rates can be used in a system where the noise is low to determine if 

the system is bistable and if it is, to estimate the bistable region (see chapter 4). The advantage to 

use the transition rates in comparison to the open-loop approach resides in the fact that no new 

strains need to be created. 

We showed in-vivo that an increase of the basal production reducing the feedback expression 

range can switch positive feedback loop from a bistable to a strictly monostable regime. In 

addition, we illustrated that the extension of the bistable region depend on the sensitivity of the 

open-loop function to the transcription factor concentration and its ligand concentration. The 
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ligand was doxycycline which modulates the binding of transcription factor to its DNA binding 

site. 

We developed a framework to predict the transition rates in bistable systems [33]. Indeed, by 

building a stochastic model, where the parameter values were determined by the open-loop 

approach and the measurements of the noise and transient kinetics of the system, we were able to 

predict the transition rates observed. This framework allows also determining which processes 

influence the transition rates between the noise and the slow transient kinetics. 

Finally we developed a series of stem-loop to modulate the translation rate over a broad 100-fold 

range. This is likely to be useful in synthetic biology as overexpressed regulators slow down cell 

growth and can also induce bistability if included in a positive feedback loop [50]. 

Outlook 
To measure the open-loop function we quantified the mRNA by qPCR and therefore obtained the 

mean without any information on the distribution of the mRNA. If the system has a large noise 

and its nonlinearity is strong, the measured open-loop function can be less steep as it is in reality 

[51]. In our system, the deviation was minimal as we tested it by stochastic simulations (see 

Figure 5D in [33]) and the noise was low in the feedback loop. It will be interesting to extend the 

open-loop approach to deal in the case the noise is large. This could be done by measuring with 

smFISH the distribution of the mRNA in the open-loop function and then by performing signal 

processing to get the original open-loop function. 

A second possible extension will be to improve the design of the output in the open-loop. Indeed, 

even though the decay rates were similar, the basal production as well as the synthesis rate were 

different from the ones of the original transcription factor. Therefore extrapolation was needed at 

low input value as the basal of the output was higher than the basal of the input and the open-to-

closed loop mapping needed to be scaled by the measured equivalence as its slope was not 1. 

Increasing slightly the flanking region may improve the matching, however control for 

interference need to be performed. We can think also that the difference of length between the 

input and output, which was shorter may play a role, however for the two tTA feedback loops the 

length of the outputs and inputs were the same but the slope was 1.94 and 1.29. Funnily, it seems 

that there was an inverse trend between the strength of the stem-loop inhibition and the slope: 

SL6[AT]0-tTA: 1.29, SL5[AT]1-tTA: 1.94, SL5[AT]1-rtTA: 1.40, SL5[AT]2-rtTA: 1.88(data not shown), 
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SL5[AT]3-sc-rtTA: 2.29. The output sequence for tTA, rtTA and sc-rtTA were identical, only the 

stem-loop changed. This trend can be difficulty explained because the stem-loop was identical 

between the input and the output. 

A third possible improvement would be to use or develop a mechanism controlling the translation 

that can be tuned by a ligand [52-54]. Indeed, the stem-loops developed in this project cover a 

broad range of inhibition and they are reliable as the ratio of inhibition between different stem-

loop were similar for GFP and rtTA, however the intensity of a stem-loop cannot be modified. 

This means that different stem-loops need to be cloned and tested. In opposite, the engineered 

RNA controllers which inhibition activity can be controlled by a ligand need only one cloning 

and the inhibition can be modulated afterward. The disadvantage of the use of the ligand 

controlled inhibition is that the ligand concentration may vary between two experiments and 

during the experiment if the ligand is air sensitive for instance. This is not the case for the stem-

loops developed in this work. 

Finally, it will be interesting to apply the framework developed here to predict transitions in a 

real system like the cell-fate determination as the complexity is higher and open-loop approach as 

well as transition rate prediction may help to better characterize the regulatory network behind it 

[55-57]. 
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