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point (t1, t2) and stimulus type (conditioned stimulus: yes, 
no) revealed activation in the left hippocampus and the oc-
cipitotemporal cortex. The T+ group demonstrated in-
creased activation of the hippocampus at t2 (t2 > t1), which 
was positively correlated with treatment outcome, and a de-
creased connectivity between the left inferior frontal gyrus 
and the left hippocampus across time (t1 > t2).  Conclusion:  
After T+ exposure, contingency-encoding processes related 
to the posterior hippocampus are augmented and more de-
coupled from processes of the left inferior frontal gyrus, pre-
viously shown to be dysfunctionally activated in PD/AG. 
Linking single procedural variants to neural substrates offers 
the potential to inform about the optimization of targeted 
psychotherapeutic interventions.  © 2014 S. Karger AG, Basel 

 Introduction 

 Cognitive-behavioral therapy (CBT) has proven its ef-
ficacy for many mental disorders. More recently, neuro-
functional brain changes related to psychotherapy, par-
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 Abstract 

  Background:  Cognitive behavioral therapy (CBT) is an effec-
tive treatment for panic disorder with agoraphobia (PD/AG). 
It is unknown, how variants of CBT differentially modulate 
brain networks involved in PD/AG. This study was aimed to 
evaluate the effects of therapist-guided (T+) versus self-
guided (T–) exposure on the neural correlates of fear condi-
tioning in PD/AG.  Method:  In a randomized, controlled mul-
ticenter clinical trial in medication-free patients with PD/AG 
who were treated with 12 sessions of manualized CBT, func-
tional magnetic resonance imaging (fMRI) was used during 
fear conditioning before (t1) and after CBT (t2). Quality-con-
trolled fMRI data from 42 patients and 42 healthy subjects 
(HS) were obtained. Patients were randomized to two vari-
ants of CBT (T+, n = 22, and T–, n = 20).  Results:  The interac-
tion of diagnosis (PD/AG, HS), treatment group (T+, T–), time 
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ticularly CBT, have been investigated  [1–5] . However, the 
precise neural mechanisms of action by which specific 
psychotherapeutic intervention components lead to 
change are unknown. 

  Panic disorder (PD) is characterized by panic attacks, 
i.e. intermittent and sudden extreme anxiety, vegetative 
symptoms and concerns about the implications of these 
attacks  [6, 7] , and is frequently accompanied by agora-
phobia (AG: anticipatory anxiety or avoidance of situa-
tions in which escape or help may not be available  [6] ).

  The onset and maintenance of anxiety disorders, par-
ticularly PD, have been linked to aberrant learning (con-
ditioning) processes  [8–11] . Fear conditioning is a form 
of associative learning in which contingencies are estab-
lished by pairing aversive stimuli (unconditioned stimu-
lus, US) with previously neutral stimuli (conditioned 
stimulus, CS). Interoceptive conditioning, where the ac-
companying physiological symptoms during a panic at-
tack become CS  [12, 13] , is linked to interoceptive symp-
toms in PD whereas exteroceptive conditioning is associ-
ated with agoraphobic behavior  [8] . It has been assumed 
that a failure to inhibit the conditioned response could 
result in pathological overgeneralization of fear  [14] . Us-
ing exteroceptive conditioning tasks, enhanced simple 
conditioning  [9] , deficient safety signal processing  [15]  or 
increased resistance to extinction learning, demonstrat-
ing more persistent recall of the conditioned response 
 [16] , have been suggested to account for learning deficits 
in PD  [17] . However, whether specific forms of CBT are 
effective in normalizing dysfunctional learning processes 
is unknown.

  There are numerous efficacious variants of CBT for 
PD with and without AG  [18, 19] . Different theoretical 
frameworks have been used to explain the mechanisms of 
CBT in general and in PD/AG in particular (e.g. cognitive 
 [20, 21] , behavioral  [22, 23] ). Exposure-based interven-
tions for anxiety are usually superior to cognitive inter-
ventions  [19] , and exposure is considered the crucial ele-
ment of CBT for anxiety disorders  [24, 25] . For PD/AG, 
2 forms of exposure are of relevance, interoceptive expo-
sure (exposure to body reactions, e.g. in response to hy-
perventilation) and exposure in situ (exposure to feared 
external situations, e.g. bus or shopping mall). In the con-
text of exposure therapy, patients learn to broadly associ-
ate potential threatening cues with alternative or safety 
information  [26] . Therapists can directly guide this learn-
ing process during exposure, probably leading to an in-
creased awareness of contextual contingencies. This is es-
pecially important considering the evidence about dys-
functional safety signal processing in PD  [15]  or the 

general responding to safe conditions which is predictive 
to the development of PD  [27] . Thus, therapist-guided 
exposure, where patients learn to efficiently encode feared 
external events and extinguish the related (internal) fear 
responses, should help to improve the differentiation of 
potential threat and safety cues. In line with the assump-
tion that the therapist can support such relevant learning 
during exteroceptive exposure, we were able to show that 
therapist-guided exposure in vivo (T+) had somewhat su-
perior effects compared to exposure alone (T–), especial-
ly on measures of avoidance, after treatment and a 
6-month follow-up. Note, however, that both treatment 
arms were highly efficient in reducing symptoms across 
all outcome measures (d = –0.5 to –2.5)  [25] . Thus, the 
advantage of going with the patient out into the field dur-
ing exposure might be mediated by different encoding or 
learning strategies, possibly also leading to a better cogni-
tive awareness of contingencies for external and internal 
events. The investigation of the neural correlates of learn-
ing mechanisms such as exteroceptive fear conditioning 
in PD/AG can help to understand CBT-related changes 
on the brain level  [1, 28–30] . 

  Brain imaging studies have related fear conditioning 
in healthy subjects to a neural network including the 
amygdalae, hippocampi, insulae, anterior cingulate and 
medial frontal cortices  [1, 29, 31–37] . This network has 
substantial overlap with fear circuitry structures that have 
been reported to show dysactivation across different anx-
iety disorders  [38, 39] . In accordance with behavioral 
studies on fear conditioning  [15] , altered neural process-
ing of safety cues in PD has been suggested. Patients 
showed, for example, less activation during instructed 
threat and increased activity during the safe condition in 
the subgenual cingulate, ventral striatum and extended 
amygdala, and in the midbrain periaqueductal gray  [40] . 
In line with these results, we found increased midbrain 
activation during safety signal processing in PD/AG pa-
tients  [17] . Brain lesion and functional magnetic reso-
nance imaging (fMRI) studies have suggested a double 
dissociation between the hippocampus and amygdala rel-
ative to cognitive and emotional expressions of fear learn-
ing, respectively  [41, 42] . These cognitive (e.g. contingen-
cy awareness or expectancies of aversive events) and emo-
tional (e.g. arousal, bottom-up reactivity) expressions of 
fear learning, which can be investigated using fear condi-
tioning paradigms  [43, 44] , might play distinct roles for 
behavioral adaptation during exposure therapy. Using an 
fMRI-based fear conditioning paradigm, we showed that 
differential conditioning is associated with enhanced ac-
tivation of the bilateral dorsal inferior frontal gyrus 
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whereas simple conditioning and safety signal processing 
are related to increased midbrain activation in PD/AG 
patients versus controls  [17] . The results suggest aberrant 
top-down and bottom-up processes during fear condi-
tioning in PD/AG  [17] . Whereas the left inferior frontal 
gyrus during differential conditioning seemed to be gen-
erally involved in the psychopathology and treatment of 
PD/AG  [1] , successful treatment was characterized by in-
creased right hippocampal activation when processing 
stimulus contingencies  [30] . However, despite this evi-
dence about treatment effects on fear conditioning, the 
effects of different single variants of CBT on neural cor-
relates have not yet been investigated. 

  To date, only global effects of CBT on brain activation 
have been investigated  [1–5, 45, 46] . Across anxiety and 
mood disorders, CBT-related changes in the hippocam-
pus, amygdala, insula and prefrontal regions have been 
observed  [45–47] . In a recent review, it has been suggest-
ed that pharmacotherapy particularly decreases overac-
tivity of limbic structures (bottom-up effect) while psy-
chotherapy tends to increase activity and recruitment of 
frontal areas (top-down effect  [46] ). However, most of the 
published studies were focused on experiments focusing 
either on resting state or on symptom provocation and 
not on learning mechanisms such as fear conditioning 
that were utilized here in both the therapy and the fMRI 
paradigm.   Particularly in PD, two resting positron emis-
sion tomography studies demonstrated change in glucose 
utilization in distributed regions of predominantly the 
medial and lateral frontal and temporal cortices in CBT 
groups of 6  [2]  and 11 patients  [3] . Besides our own  [1, 
30] , the only other fMRI study  [48]  used an emotional 
linguistic go/nogo design in 9 patients with PD following 
short-term psychodynamic inpatient treatment (4 weeks), 
after treatment symptoms had improved, and frontolim-
bic activation patterns had been normalized. Despite the 
small sample sizes and only partially overlapping results, 
these studies indicate that different forms of psychother-
apy can influence processes in the brain in patients with 
PD. However, direct comparisons of distinct treatment 
variants (as opposed to comparisons between complex 
treatment packages) have not yet been reported neither 
for PD nor any other disorder.

  Here we investigated the differential effects of T+ ver-
sus T– exteroceptive exposure in patients with PD/AG on 
the neural correlates of fear conditioning. We hypothe-
sized that T+ versus T– exposure during CBT modifies 
the encoding behavior of potentially aversive events 
(CS+/CS–) in the acquisition phase of a conditioning ex-
periment. Therefore we expected a differential involve-

ment of brain regions related to contextual encoding and 
cognitive awareness of contingencies during fear condi-
tioning, specifically the hippocampus  [41, 42, 49] , in pa-
tients using T+ versus T– exposure. 

  Methods 

 Design 
 The present study was part of the national research network 

PANIC-NET (Mechanisms of Action in CBT, MAC)  [25, 50, 51]  
encompassing a randomized controlled clinical trial of CBT for 
PD/AG. Eight German centers participated in the clinical trial 
(Aachen, Berlin-Adlershof, Berlin-Charité, Bremen, Dresden, 
Greifswald, Münster, Würzburg) treating 369 patients who met 
DSM-IV criteria for PD/AG. Four of these centers (Aachen, Ber-
lin-Charité, Dresden, Münster) participated in the fMRI study re-
ported here.

  Participants 
 In the context of the clinical multicenter study  [25, 50]  quality-

controlled fMRI data were collected from 42 unmedicated patients 
diagnosed with PD/AG before and after 2 variants of CBT (see be-
low) as well as 42 age-, gender- and handedness-matched  [52]  
healthy control subjects (HS) 8 weeks apart ( table 1 )  [1] . For inclu-
sion and exclusion criteria and additional information, please see 
the online supplementary material (for all online suppl. material, 
see www.karger.com/doi/10.1159/000359955) and Gloster et al. 
 [50] . 

  Randomization 
 The randomization list was generated at the clinical coordina-

tion center (Dresden) by personnel not associated with patient 
care using the randomization software RandList (http://randomi-
sation.eu/index.shtml). The fMRI study centers were blind to the 
assignment of subsequent cases and were informed by the clinical 
coordination center after the posttreatment measurement. 

  Treatment Conditions  
 The 42 patients of the fMRI sample were randomized to 2 man-

ual-based variants of CBT (for a patient flow chart, see online sup-
pl. fig. 1). Both treatment groups participated in a 12-session man-
ualized treatment protocol, implemented over 8 weeks and fol-
lowed by 2 booster sessions. The treatment protocols differed in 5 
of the 12 sessions, specifically in the format of implementation of 
in situ exposure sessions. Patients in the T+ exposure group (n = 
22) completed all 5 exposures with the therapist, whereas patients 
in the self-guided exposure group (T–; n = 20) were instructed to 
complete the exposure part of the 5 treatment sessions alone. Be-
tween sessions, all patients were additionally expected to perform 
2 exposure tasks between treatment sessions as a homework as-
signment (compare Gloster et al.  [25]  and Cammin-Nowak et al.  
[53] ).

  Except for the implementation of exposure in situ, the CBT 
variants were identical in content, structure and number of expo-
sure sessions. Patients and therapists were blinded to the fMRI 
hypotheses. Neither patients nor therapists were blinded to group 
assignment, since blinding of condition is difficult if not impossi-
ble in a psychological intervention of this sort  [25] . HS were 
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matched according to age, gender, handedness and study center to 
the corresponding patients and were also measured twice, but re-
ceived no CBT (HS T+: n = 22; HS T–: n = 20;  table 1 ). 

  Treatment Intervention  
 Sessions 1–3 consisted of psychoeducation and an individual-

ized behavioral analysis of the patient’s symptoms and coping be-
haviors. Sessions 4 and 5 provided the treatment rationale for ex-
posure and implemented interoceptive exposure exercises in the 
therapy room identically for both groups. Sessions 6–8 consisted 

of standardized in situ exposure exercises (i.e. bus, shopping mall 
and forest), which were implemented after the patient had agreed 
to enter the situation without engaging in safety behaviors and 
waiting for the anxiety to take its natural course. Exposures were 
thoroughly planned during full sessions (included mental rehears-
al, anticipation of problems and instructions not to use safety be-
haviors) and were either later accompanied by the therapist (T+) 
or performed in a self-guided manner (T–). In the T+ in situ expo-
sure, therapists provided feedback, modeled correct implementa-
tion, monitored anxiety levels and corrected any use of safety be-

 Table 1.  Demographic, neuropsychological and clinical characteristics

Patients with PD/AG HS  Group differences

   T+
(n = 22)

T–
(n = 20)

T+
(n = 22) 

T–
(n = 20) 

F/χ2 p

Demographic characteristics
Age, years 37.24±9.96 33.41±10.27 36.25±10.85 32.23±8.41 1.176 0.324
Females 14.00 (64%) 15.00 (75%) 14.00 (64%) 15.00 (75%) 1.266 0.737
Education 11/11 10/10 15/7 17/3 7.459 0.059
Center 8/10/4 5/8/6/1 6/10/6 5/8/6/1 3.775 0.926a

Neuropsychological characteristics
Digit span total 15.36±3.24 14.70±3.36 15.36±3.00 15.85±3.45 0.420 0.739

Digit span forward 8.00±2.12 7.60±1.85 8.59±1.84 8.45±1.88 1.131 0.342
Digit span backward 7.41±1.92 7.10±2.02 6.77±1.77 7.15±2.23 0.381 0.767

Trail Making Test A, s 25.72±8.42 25.47±8.55 27.68±9.34 22.80±6.33 1.224 0.306
Trail Making Test B, s 54.44±14.39 56.45±18.19 57.59±19.55 46.95±12.47 1.729 0.168

Clinical characteristics at baseline (t1)
Clinical Global Impression Scale 5.50±0.51 5.20±0.70 2.566 0.117
Hamilton Anxiety Scale 24.50±5.76 24.25±5.13 0.022 0.883
Panic and Agoraphobia Scale 26.49±8.64 25.40±8.94 0.161 0.690

Number of panic attacks 1.74±0.85 1.58±0.81 0.385 0.538
Mobility Inventory (7-day vers.) acc. 1.90±0.97 1.83±0.89 0.061 0.807
Mobility Inventory (7-day vers.) alone 2.40±1.12 2.37±0.99 0.008 0.931
Anxiety Sensitivity Index 33.6±8.75 31.90±10.17 8.91±8.17 7.89±5.86 5.311 <0.001*
Beck Depression Inventory II 18.18±1.39 16.25±8.04 1.45±2.04 1.26±1.85 38.189 <0.001*

Clinical characteristics after treatment (t2)
Clinical Global Impression Scale 3.64±1.14 3.45±0.94 0.330 0.569
Hamilton Anxiety Scale 13.50±7.60 11.10±5.99 1.275 0.266
Panic and Agoraphobia Scale 15.46±10.14 12.30±6.29 1.444 0.237

Number of panic attacks 1.08±1.02 0.72±0.83 1.547 0.221
Mobility Inventory (7-day vers.) acc. 1.23±0.42 1.43±0.62 1.442 0.237
Mobility Inventory (7-day vers.) alone 1.63±0.77 1.69±0.78     0.053 0.820
Anxiety Sensitivity Index 14.73±7.62 16.30±9.71 7.41±6.83 8.35±4.74 6.515 0.001*
Beck Depression Inventory II 9.68±9.08 8.35±5.97 0.24±0.66 1.29±2.34 12.635 <0.001*
 Means and standard deviations, except for gender where num-

bers in parentheses refer to percentages. HS T+ and HS T– refer to 
the two control groups matched to the T+ and T– patient groups 
according to age and gender. χ2, F and p values refer to group com-
parisons of the respective variables. For the Beck Depression In-
ventory II and Anxiety Sensitivity Index, significant group differ-
ences are based on differences between PD/AG and HS. Asterisks 
indicate that scores did not differ between patient groups (for all 
p > 0.6) or HS groups (for all p > 0.3). Both patient groups demon-

strated significant symptom reductions in all clinical measure-
ments (for all p < 0.01) and no significant differences in symptom 
reduction (interaction of time × treatment group; for all p > 0.18). 
The patients who participated in the fMRI experiment did not dif-
fer in any of the sociodemographic or clinical variables from the 
clinical sample  [1, 25] . Education: 12–13 years (left)/below 11 
years (right); center: number of measurements in center 1/2/3/4 
per group. a Exclusion of center 4 led to comparable statistics (χ2 = 
1.508/p = 0.959).
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haviors. Session 9 reviewed progress to date and addressed antici-
patory anxiety. Sessions 10 and 11 again consisted of in situ 
exposures but now targeted the patients’ two most significant 
feared situations. Session 12 repeated crucial elements of the man-
ual and instructed patients to continue exposing themselves to 
feared situations. For more detailed information of the clinical and 
treatment aspects of the study, please see Gloster et al.  [25, 50] .

  Functional Magnetic Resonance Imaging 
 The Conditioning Paradigm 
 Parallel versions of a previously validated differential condi-

tioning paradigm were applied during fMRI data acquisition (de-
tails in Kircher et al.  [1]  and Reinhardt et al.  [36] ) before and after 
CBT. The time course of the fMRI paradigm consisted of 3 phases: 
familiarization, acquisition and extinction  [36] , each subdivided 
into an early and a late phase  [1] . Different neutral stimuli (yellow/
blue spheres and violet/green squares) were used in parallel ver-
sions to account for repeated exposure to the experiment in the 
pre-post design (t1, t2). Each sphere/square was visually presented 
for 2,000 ms with a variable intertrial interval of 4,785–7,250 s. An 
unpleasant white noise was used as the US and presented for 100 
ms. The volume of the US was individually adapted (between 70 
and 110 dB) to be unpleasant for the participant (those scoring <5 
in an aversiveness rating on a scale from 1 to 10 before fMRI were 
excluded from analysis). During the acquisition phase, 1 sphere/
square was paired pseudorandomly with the US (thus becoming 
CS+), while the other sphere was not (thus becoming CS–). We 
used a partial reinforcement strategy in which 50% of the CS+ were 
paired with the US and 50% were not. Only trials without the US 
were analyzed during acquisition to avoid overlap with neuronal 
activation directly related to the presentation of the US. The pre-
sentation of the US occurred 1,900 ms after the onset of the CS+; 
in consequence, both stimuli were coterminated. Based on previ-
ous results with the entire sample that demonstrated effects par-
ticularly in the early acquisition  [1] , we focused the fMRI analysis 
(see below) specifically on the early acquisition phase and com-
pared the difference between CS+ and CS– across t1 and t2 to ex-
amine the therapy-related changes of the conditioning processes 
 [1] . In this phase of the experiment exposure to potentially threat-
ening events (CS+/CS–) and initial fear learning takes place. 
Therefore, the early acquisition phase is potentially most sensitive 
to the expected treatment-related changes. 

  fMRI Data Acquisition and Preprocessing 
 fMRI brain images were acquired using 3-tesla Philips Achieva 

scanners (Philips Medical Systems, Best, the Netherlands) in Mün-
ster and Aachen, a 3-tesla Siemens Trio scanner (Siemens AG, Er-
langen, Germany) in Dresden, and a 3-tesla General Electric 
Healthcare scanner (General Electric Healthcare, Milwaukee, 
Wisc., USA) in Berlin. A total of 505 transaxial functional images 
(echo planar imaging, 64 × 64, 30 slices interleaved, field of view = 
230, voxel size = 3.6 × 3.6 × 3.8 mm, echo time = 30 ms, repetition 
time = 2 s) that covered the whole brain and were positioned par-
allel to the intercommissural line were recorded.

  MR images were analyzed using Statistical Parametric Map-
ping (SPM5; www.fil.ion.ucl.ac.uk) implemented in MATLAB 7.1 
(Mathworks Inc., Sherborn, Mass., USA). The first 5 volumes of 
every functional run were discarded to minimize t1 saturation ef-
fects. For data preprocessing, standard slice-timing (middle slice), 
realignment and normalized (2 × 2 × 2 mm 3 ) functions of SPM5 

were applied. To account for differences in intrinsic smoothness 
between scanners, an iterative smoothness equalization  [54]  pro-
cedure was performed for all data sets (12-mm full width at half 
maximum gaussian isotropic kernel). Thus, data from all centers 
have been iteratively smoothed until a smoothness of 12-mm full 
width at half maximum was reached, independently of scanner-
specific intrinsic smoothness of the data. Finally, the data quality 
 [55, 56]  of the acquired data was carefully checked to avoid system-
atic differences between the patient and control groups  [1] . 

  Single-Subject fMRI Analyses 
 At the single-subject level, the realignment parameters of each 

participant were included as regressors into the model to account 
for the movement artifacts of the participants. The BOLD response 
for each event type (CS+ paired , CS+ unpaired , CS–, US) and each phase 
was modeled by the canonical hemodynamic response function 
employed by SPM5 within the framework of the general linear 
model to analyze brain activation differences related to the onset 
of the different stimuli. Each phase was separated into an early and 
a late part  [1]  to account for temporal aspects and habituation  [57] , 
resulting in 16 regressors [familiarization: early CS+, late CS+, ear-
ly CS–, late CS–, US; acquisition: early CS–, late CS–, CS presented 
with the US (CS+ paired ), US, early CS+ without US (CS+ unpaired ), 
late CS+ unpaired ; extinction: early CS–, late CS–, early CS+, late CS+; 
behavioral assessment]. A high-pass filter (128-second cutoff pe-
riod) was applied to remove low-frequency fluctuations in the 
BOLD signal. Parameter estimates (β–) and t statistic images were 
calculated for each participant. 

  Group Analyses 
 Group analyses were performed by entering contrast images 

for CS+ unpaired  and CS– of the acquisition phase into flexible facto-
rial analyses as implemented in SPM5, in which subjects are treat-
ed as random variables. fMRI centers were introduced as covari-
ates in order to account for scanner differences. Further covariates 
of no interest included were age and kind of experimental set (cir-
cles vs. squares) to account for variance related to the use of paral-
lel versions of the experiment. In line with our previous analysis, 
we focused specifically on the early acquisition phase of the ex-
periment  [1] .

  Connectivity Analyses 
 Connectivity analyses were used to test whether previously re-

ported general differences between PD/AG and HS in inferior 
frontal gyrus activation  [1]  are related to brain regions demon-
strating differences between treatment groups (T+/T–). For the 
connectivity analyses, eigenvariates adjusted for the effect of 
movement parameters were extracted from the inferior frontal gy-
rus cluster previously reported by Kircher et al.  [1]  on a single-
subject level across the whole experiment (500 scans). The indi-
vidual eigenvectors were used as regressors in new single-subject 
analyses that additionally included the 6 movement regressors. We 
obtained individual activation maps reflecting the correlation of 
each voxel time course with the time course of the left inferior fron-
tal gyrus as outcomes for each time point and group. These im-
ages were used in the group analyses focusing on the main effects 
and interactions of treatment group (T+, T–) and time (t1, t2). An 
inclusive masking procedure has been used to restrict results to 
regions demonstrating differential effects of T+ and T– in the ear-
ly acquisition phases.
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  A Monte Carlo simulation of the brain volume was conducted 
for the current study to establish an appropriate voxel contiguity 
threshold  [58] . Assuming an individual voxel type I error of p < 
0.005, a cluster extent of 142 contiguous resampled voxels was in-
dicated as sufficient to correct for multiple voxel comparisons at 
p < 0.05. Thus, voxels with a significance level of p < 0.005 uncor-
rected belonging to clusters with at least 142 voxels were reported 
for all analyses. The same threshold has been used in previous anal-
yses of the data  [1, 17, 30, 59] .

  Anatomical regions were defined by the anatomy toolbox of 
SPM  [60] . For the creation of bar graphs ( fig. 1 ,  2 ) and the illustra-
tion and calculation of the correlation analyses ( fig. 1 ), we extract-
ed the eigenvariates from a region of interest (ROI) including all 
subregions of the hippocampus  [61] .

   Contrast of Interest.  To test for differential effects of T+ and T– 
on the conditioned response during the early acquisition phase, we 
performed an analysis of the 4-way interaction (F contrast) of di-
agnostic group (PD/AG, HS), treatment group (T+, T–), time 
point (t1, t2) and stimulus (CS+, CS–). This analysis tests for spe-
cific activation change (t1 vs. t2) for therapist-guided exposure (T+ 
vs. T–) in the patient group (PD/AG vs. HS) with regard to the 
conditioned response (CS+ vs. CS–). To ensure that results are 
based on activation change in patients and not on activation 
change in the HS groups, we exclusively masked the 4-way interac-
tion by a 3-way interaction analysis testing for activation changes 
in the HS groups [t1 ([HS T+ (CS+ > CS–) vs. HS T– (CS+ > CS–)]) 
vs. t2 ([HS T+ (CS+ > CS–) vs. HS T– (CS+ > CS–)])] on a very 
liberal threshold (p > 0.5). Thus, brain regions showing differenc-

  Fig. 1.  Interaction of diagnosis (PD/AG, HS), treatment (T+/T–), 
time point (t1/t2) and stimulus condition (CS+/CS–).  a  Brain ac-
tivation for the interaction of diagnosis (PD/AG, HS), treatment 
(T+/T–), time point (t1/t2) and stimulus (CS+ unpaired /CS–) in the 
early acquisition phase  [1]  illustrated on sagittal and coronal slic-
es of the MNI template.  b  Bar graphs show ROI activation for the 
hippocampus  [61]  as defined by the anatomy toolbox of SPM  [60] ; 
left hippocampus, HC, peak coordinates MNI x, y, z = –36, –36, 
–4; probability of cornu ammonis: 50% (10–80%), volume: 312 
mm 3 , 75% of the cluster in cornu ammonis, 13.5% in fascia den-
tata; F = 12.15 at maxima.  c ,  d  Correlation of activation change 

with clinical improvement separate for patients of the T+ (red) 
and T– (blue) exposure group (colors visible in the online version 
only). For correlation analyses, activation has been extracted 
from the hippocampal ROI defined above. The y-axis represents 
the activation change over time (t2 > t1) of the conditioned re-
sponse (CS+ > CS–). The x-axis represents symptom improve-
ment over time (t1 > t2). The correlations in the T+ group indicate 
a positive relationship of a higher conditioned response in the 
hippocampus and clinical improvement measured using the 
Panic and Agoraphobia Scale (PAS;  c ) and the Hamilton Anxiety 
Scale (HAMA;  d ). 
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es between the control groups (HS T+ and HS T–) on a very lib-
eral threshold were excluded from the analysis. Consequently, all 
remaining results are based on differences between patient groups 
and not on random differences between the control groups.

  Results 

 Clinical Outcome 
 Results of the clinical trial in the large patient sample 

(n = 301), which demonstrated the efficiency of the CBT 
treatment and a small but superior effect of T+ in contrast 
to T–, are reported elsewhere in detail  [25] . In the smaller 
subgroup of patients participating in our fMRI study (n = 
42), we also obtained a significant reduction of symptoms 
after therapy for both treatment groups ( table 1 ) which 
supports the efficiency of the CBT treatment in this study. 
In the fMRI sample (n = 42) there was no significant dif-
ference in symptom severity between treatment groups 
(T+, T–) neither at t1 nor at t2 ( table 1 ). Consequently 

groups did not differ in responder rates or symptom re-
duction as indicated by absence of significant interaction 
effects (for all measures p > 0.18).

  For valence and arousal ratings of the CS+ and CS– ac-
quired in the conditioning paradigm, see online supple-
mentary information and online supplementary figure 2.

  fMRI Results 
 We found a significant interaction of clinical group 

(PD/AG, HS), treatment condition (T+, T–), time point 
(t1, t2) and stimulus type (CS+, CS–) in a left hemispher-
ic cluster including occipital, temporal and hippocampal 
structures (peak coordinates MNI x, y, z: –32, –52, 6; F = 
14.84, p < 0.005 uncorr., 443 voxels, p < 0.05 corr.;  fig. 1 a). 
Activation change within the hippocampus of this cluster 
[peak coordinates MNI x, y, z: –36, –36, –4; F = 12.15 at 
maxima; probability of cornu ammonis: 50% (10–80%); 
volume: 312 mm 3 , 75% of the cluster in cornu ammonis, 
13.5% in fascia dentata] correlated positively with clinical 
improvement as measured by the Panic and Agoraphobia 

  Fig. 2.  Connectivity of the left inferior frontal gyrus (IFG) to re-
gions showing treatment-related effects: interaction of treatment 
(T+/T–) and time point (t1/t2) in PD/AG. HC = Hippocampus. 
Connectivity was analyzed across the whole time course of the con-
ditioning paradigm. The activation cluster of the left inferior fron-
tal gyrus  [1]  (online suppl. fig. 3) served as the seed region. An 
inclusive masking procedure has been used to restrict results to 
regions demonstrating differential effects of T+ and T– in the ear-
ly acquisition phases (fig. 1a). We found a significant interaction 
effect for ‘treatment’ (T+/T–) and ‘time point’ (t1/t2) in patients, 
indicating a reduction in functional connectivity (t1 > t2) between 
the left occipitotemporal activation cluster and the left inferior 

frontal gyrus in patients of the T+ group and an increase in the T– 
group [t2(T– > T+) > t1(T– > T+)]. The bar graph illustrates the 
contrast estimates for the connectivity with the left inferior frontal 
gyrus. The hippocampal aspect of the cluster (left bar graph) was 
defined using the anatomy toolbox of SPM  [60]  and a ROI includ-
ing all subregions of the hippocampus  [61] ; left hippocampus, 
peak coordinates MNI x, y, z: –34, –40, –2, probability of cornu 
ammonis: 70% (30–90%); volume = 120 mm 3 ; 87.5% of the cluster 
in cornu ammonis; F = 10.12 at maxima. Connectivity and contrast 
estimates for these brain regions had also been calculated for HS 
to illustrate the stability in the HS group. 
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Scale (PAS) total score and Hamilton Anxiety Scale 
(HAMA) total score in the T+ group (HAMA: r = 0.370, 
p < 0.05; PAS: r = 0.412, p < 0.05), but not in the T– group 
(HAMA: r = 0.007, p > 0.20; PAS: r = 0.267, p > 0.13; all 
one-tailed;  fig. 1 c, d). 

  Further there was a significant interaction of clinical 
group (PD/AG > HS), time (t1 > t2) and stimulus (CS+ > 
CS–; see online suppl. fig. 3) in the left inferior frontal gy-
rus (as previously reported  [1] ) but no significant differ-
ences between treatment conditions (T+, T–) within this 
region (p > 0.20; see online suppl. fig. 3). 

  Connectivity Analyses 
 A functional connectivity analysis between the left in-

ferior frontal gyrus cluster  [1]  as seed region (see online 
suppl. fig. 3 and Kircher et al.  [1] ; MNI x, y, z: –50, 10, 14; 
volume = 1,776 mm 3 ), the bilateral hippocampal and left 
occipitotemporal clusters (differential effects of treat-
ment T+ vs. T– in patients;  fig. 1 a) was performed. In pa-
tients we obtained a significant interaction of time point 
and treatment condition (T+, T–) for the connectivity of 
the left inferior frontal gyrus and the left hemispheric 
cluster including occipital, temporal and hippocampal 
structures ( fig. 2 ). Contrast estimates for the hippocam-
pal subcluster (identified using ROI analyses  [61] ) indi-
cated a reduction of connectivity between inferior frontal 
gyrus and the left hippocampus in T+ patients and an 
increase of connectivity in the T– group ( fig. 2 ). In con-
trast to the patient groups, HS showed no significant 
change in connectivity with respect to time point (t1, t2) 
and group (HS T+, HS T–) as illustrated by bar graphs in 
 figure 2 .

  Discussion 

 Psychotherapy integrates many diverse elements. 
Here, we demonstrate the effect of a single therapeutic 
component, i.e. T+ versus T– exposure in situ within a 
highly structured and controlled CBT intervention  [25] , 
on the neural correlates of fear conditioning in patients 
with PD/AG. As a main result, T+ versus T– in situ expo-
sure led to differential changes of activation in the left 
hippocampus during fear conditioning. Patients with T+ 
exposure demonstrated increased involvement of the 
hippocampus after CBT and a decoupling of this struc-
ture from the left inferior frontal gyrus which had been 
shown to be overactivated in PD/AG in contrast to HS 
before treatment  [1, 17] . The results suggest that experi-
ences during T+ exposure treatment in situ can influence 

hippocampus-related learning processes and decouple it 
from top-down effects of the left inferior frontal gyrus.

  In line with our findings, the hippocampus has been 
found to be relevant also for other anxiety disorders  [62, 
63] , conditioning paradigms  [35, 49, 64–69]  and seems to 
be sensitive to exposure  [70] , CBT treatment  [30, 71, 72] , 
therapy response  [30]  or recovery in general  [73] . Fur-
thermore, the hippocampus has been discussed with re-
gard to the potential contribution to acquisition of irreg-
ularities in PD  [15]  and the optimization of exposure 
therapy and related learning processes  [26] .

  Clinically, both patient groups demonstrated a signifi-
cant symptom reduction which did not differ between 
treatment conditions (T+/T–) in our MRI subsample. In 
the larger patient groups of the clinical trial reported pre-
viously  [25] , it has been shown that the T+ group (n = 
163) had a slightly but significantly better clinical out-
come than T– (n = 138), especially in measures of avoid-
ance (e.g. Mobility Inventory). This finding suggests 
treatment-related differences in individual outcome and 
exposure learning. Assuming that exposure learning is 
most efficient when contingencies between context and 
the individual experiences are consciously learned (de-
claratively learned in terms of Bechara et al.  [41] ), we hy-
pothesized that the therapist during exposure  [25]  will 
mediate patient encoding or learning strategies reflected 
in group differences in hippocampal activation. In line 
with this assumption we revealed significant differences 
in CBT-group-related changes in neural processing with-
in the left posterior hippocampus and the occipitotempo-
ral cortex. Extensive evidence from animal studies dem-
onstrated a role of the hippocampal formation in fear 
conditioning  [74]  and specifically contextual fear learn-
ing  [75–77] . In humans, fMRI and positron emission to-
mography studies reported hippocampal activations dur-
ing the acquisition of fear  [34, 66, 68, 78] . Furthermore a 
double dissociation between the hippocampus and amyg-
dala activation relative to declarative and emotional ex-
pressions of fear learning has been suggested  [41, 42] . 
Thus, activation of the posterior hippocampus in our 
study is in line with this evidence and may suggest differ-
ential fear learning in the sense of declarative encoding of 
contingencies in the T+ in contrast to the T– group after 
CBT. Furthermore, we found a correlation between in-
crease in hippocampal activation and symptom improve-
ment in the T+ group. The explicit/aware encoding of 
contingency-related hippocampal activation might be the 
reason for the slight superior clinical effect of T+ versus 
T– in avoidance behaviors  [25] . Our fMRI sample was not 
sufficiently powered to detect these clinical differences 
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but here we could demonstrate the physiological process 
underlying this one specific treatment intervention.

  What might be the possible differences between T+ 
and T– exposures during CBT which have influenced the 
neural processes during fear acquisition? In general, ex-
posure is not easy for patients to perform, especially on 
their own. For example, avoidance behavior can interfere 
with necessary learning processes  [79] . Similarly, it has 
been shown that avoidance, anxiety sensitivity and psy-
chological flexibility are most critical during the exposure 
in situ phase for subsequent change in panic symptoms 
 [80] . We suppose that the advantage of having a therapist 
present during in situ exposure is that the therapist en-
sures that the patient (a) encounters and appropriately 
manages the anxiety and distress during the exposure, (b) 
does not use safety behaviors and (c) increases the pa-
tient’s overall engagement with exposure  [25] . Thus, 
therapists’ active guidance (T+) provides greater scaffold-
ing to adequately expose  [25, 26]  subjects to potentially 
aversive situations (e.g. CS+), than simply preparing the 
patient for the between-session exposure exercises (T–). 
Consequently patients who received T+ treatment prob-
ably learned more thoroughly not to avoid potentially 
aversive events (adequate exposure), leading to a better 
contextual encoding and contingency processing. This is 
reflected in an increase (t2 > t1) in the conditioning re-
sponse (CS+ > CS–) in the posterior hippocampus – 
which is positively correlated with symptom improve-
ment. The therapist by himself might represent an impor-
tant contextual factor during in vivo exposure that 
activates hippocampal functioning in a form of contex-
tual conditioning. Alternatively the therapist during ex-
posure might lead to an experience of an ‘enriched envi-
ronment’ (due to his presence alone, but also by enforcing 
broad encoding behavior) for the patient. Thus, hippo-
campal plasticity in our study could also be a result of 
such an effect, parallel to hippocampal plasticity induced 
by enriched environments shown in animals  [81–85] . 

  A functional connectivity analysis revealed an in-
creased connection of the inferior frontal gyrus (where 
we found no differences in activation change between T+ 
and T–; see online suppl. fig. 3) with regions of the ‘fear 
network’ in PD/AG  [1] , potentially indicating aversive 
top-down effects. By using the same seed region and anal-
yses  [1] , we showed that T+ versus T– exposure led to 
different changes of left inferior frontal gyrus to left pos-
terior hippocampus connectivity, indicating a stronger 
decoupling of inferior frontal gyrus-hippocampus activa-
tion in the T+ in contrast to the T– group. Thus, after 
treatment with T+ exposure in situ, neural encoding pro-

cesses of the posterior hippocampus are probably less in-
fluenced (than after T– treatment) by potentially negative 
top-down effects of the left inferior frontal gyrus. 

  A limitation of this study refers to the sample size in 
the fMRI subgroups. However, the numbers are more 
than adequate for an fMRI study  [86] , and correlations of 
fMRI data with clinical improvement support the clinical 
relevance and internal validity of the finding. Further re-
search along this line is necessary to support our findings, 
to further specify the role of the therapist and other ther-
apy components (e.g. interoceptive exposure) and finally 
to translate the findings to clinical practice in new opti-
mized treatment programs. To reach this goal it will be 
important to consider the patient’s treatment history, too, 
since previous treatment attempts and experiences are 
relevant for the selection of the most efficient treatment 
for a specific patient  [87] . 

  With this study, we demonstrated the association of 
T+ exposure with the neural correlates of fear condition-
ing in patients with PD/AG. Despite comparable clinical 
outcomes, the differential effects of the treatment on the 
neural correlates of fear conditioning suggest different 
mechanisms related to symptom improvements in the T+ 
and T– groups. Contextual memory and declarative con-
tingency encoding processes related to the posterior hip-
pocampus seem to be increased and more decoupled 
from processes of the left inferior frontal gyrus after T+ 
exposure in situ in contrast to T– exposure in situ. On the 
basis of these new findings, we are convinced that further 
research along this line has potential to support the devel-
opment and further optimization of targeted treatments.
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