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Abstract

The goal of this thesis is it to learn something about the kinematics and structure
of the Milky Way. By analysing a sample of young stars in the nearby Galactic disk
we can get to know more about the global large-scale structure of our host Galaxy.
If we see resonance phenomena in a velocity field, then we are able to back-reference
from this effect to a possible asymmetric features in the potential.
The reality of science is of course not as simple as that. There are many assumptions
to make and weighted for being able to work. But step by step information can be
filtered out of the entire ensemble.

In the first part of this work we relate the velocities of a sample of OB stars, to
the average velocity field of the nearby areas of the Galaxy. Our analysed region
covers a ±2.2 kpc square around the Sun. A star with an orbit passing near the Sun
would spend more than 12% of its time period1, in this analysed field.
Our sample of young OB stars has complete phase space information. For kine-
matic analysis and to investigate the characteristics of this sample, such as its
completeness-, spectral type dependence, and errors- tests are made. The com-
pleteness of our sample is particularly discussed in the view of possible kinematic
biases. Different spectral type limited sub-samples are analysed, and error bars are
estimated with Monte Carlo simulations.
Our aim is to understand the large-scale velocity field, thus we remove runaway
stars and members of prominent OB associations out of the Gould belt, and we
implement a random procedure to construct a spatially nearly homogeneous sample
of OB star tracers for the young star velocity field.

The individual velocity vectors of these stars are randomly distributed with respect
to the mean field in the solar neighbourhood, perhaps due to a variety of dynamical
processes occurring at or after the birth of these stars. Our goal is to recover the
mean velocity field by fitting a smooth velocity field to the in-plane velocities of all
our sample stars. For this task we use the non-parametric smoothing algorithm and
software of Wahba and Wendelberger (1980, hereafter WW-algorithm), originally
developed for analyzing meteorological data. We fit a two-dimensional surface to
the data points for each of the in-plane velocity components, as a function of posi-

1The average time a star needs to turn around the Galactic Center.



tion relative to the Sun, and thus derive a smoothed velocity field. For testing the
WW-algorithm and adjusting a smoothing parameter, and for understanding the
results of applying the algorithm to the OB star data, we analyse simulated data
sets. The general idea is to draw Monte Carlo realisations from a known velocity
field, so that the resulting artificial data sets closely resemble the OB star samples
under investigation.

We made a number of tests to ensure that our fitted velocity field is independent of
the (sub)sample used in the analysis, of the assumptions made for the Galactic pa-
rameters, and of the technical details of the fitting procedure. In particular we tested
if the fitted velocity field does not depend on: (1) the size of the region around the
Sun used for the fitting, (2) the rotation of the region and of the coordinate system
in which the fit is made, (3) whether we use the nearly complete sample of early-
type OB stars, or the full sample which has the advantage of the best space coverage
but with a bad sample completeness, (4) by changing subsamples through different
modulo functions, (5) by restricting the sample to lower heights (|z| < 100 kpc vs.
|z| < 200 kpc), (6) by using only the half of the sample with the better distance
estimates, (7) by changing the assumed rotation velocity of the LSR, and (8) by
changing the assumed galactocentric solar radius.

To make these differences between our fitted velocity field and a circular field more
intuitive, we convert the observed velocity field to the Galactic Center reference
frame, by subtracting the solar motion in the LSR and adding the LSR rotation for
an assumed position of the Sun at R0 = 8 kpc. We then determine streamlines by
integrating through the converted velocity field.

Deviations of the fitted field to a circular one are clearly visible. They are in the
sense that the streamlines derived from the OB star velocities are more elongated
than those expected from circular orbits, especially for radii R < R�. These elon-
gated flow-lines reach their minimum galactocentric radii at points that are located
approximately on the line that connects the Sun with the Galactic Center. At
R > R� the streamlines seem to be slightly turned forward.
This result is very robust appropriate to all the listed tests. And it inspired us to
think at periodic orbit families near resonances.

Using linear perturbation theory for near-circular orbits, one finds that closed or-
bits in a barred potential are elongated either parallel or perpendicular to the bar.
The orientation changes at each of the fundamental resonances. The situation at
the OLR shows two closed orbits (in a frame of reference co-rotating with the bar)
just inside and outside the Outer Lindblad Resonance (OLR). The innermost is
antialigned and the outermost is aligned with the bar. Because of their ellipticity
they can reach the other side of the OLR. Clearly, if all disk stars moved on closed
orbits, the stellar kinematics would deviate from that of a nonbarred galaxy only



at positions very close to ROLR, where the closed orbits are significantly noncircular.

By using 4 different potentials we simulate the corresponding orbit families in a
rotating frame with the corresponding pattern speed of the implemented bar. The
main differences between the models are the positioning of the OLR and the incor-
poration of an asymmetric potential represented by 4 equal spiral arms. Each model
includes a symmetric potential and an asymmetric bar potential, for two models we
included a halo component. In all the cases we worked with only one pattern speed.

As a first step, using the well established potential from Bissantz et al. (2003),
we found orbits having the characteristic of our non-circular velocity field, but not
at an expected solar region. By shifting the OLR we could provoke an intersection
between the wanted orbit families and the analysed OB star field. The ellipticity
of these orbits is strong, for a better result we have to shift the OLR even further
out, what we plan to do. Our modeling with the arm potential included, showed
that the inclination of the orbit families, as we see it in the observed field, can be
reproduced by these technique.



Chapter 1

General Aspects

1.1 Galaxies

Galaxies appear on the sky as huge clouds of light, thousands of parsecs across.
Each galaxy contains about 106 to 1012 stars. Bounded by gravity stars can not
wander freely through space. Galaxies contain gas and dust as well but almost all
the visible light is emitted by their stars, and stellar births and deaths profoundly
influence the structure of galaxies.
For detailed information about properties of stars see Binney and Merrifield (1998)
(Galactic Astronomy, Chap. 3) and Sparke and Gallagher (2000) (Galaxies in the
Universe, Chap. 1.1)

Hubble (1926) classified galaxies into a sequence of ellipticals, lenticulars and spirals.
There is a fourth class called the irregulars.
The terms “early type” and “late type” are often used to describe the position
of galaxies within the subsequence. The size of a central brightness condensation
(bulge), the smoothness of the visible light and arms- or bar- features are the crite-
ria Hubble used to obtain a classification for a galaxy morphology called the tuning
fork scheme, see Fig. 1.1. The additional category of irregulars, Fig. 1.2, allows one
to deal with galaxies that do not fit within this simple scheme. In the nearby uni-
verse, the vast majority of bright galaxies can be fairly reliably fit into this system.
Note that this diagram is not meant to indicate an evolutionary sequence and that
the formation and evolution of galaxies is still not fully understood.

Elliptical galaxies appear smooth and structureless. They vary in their shape
from round to fairly highly elongated. A galaxy of this type is designated En, where
the number n describes the apparent axial ratio b/a by the formula n = 10[1−(b/a)].
Thus a galaxy which appears round on the sky is designated E0, and one whose major
axis a is twice as long as its minor axis b is an E5 galaxy.
Elliptical galaxies contain very little dust or gas so new stars are no longer forming
and therefore elliptical galaxies are rather old.

In the middle of Hubble’s tuning-fork diagram, at the junction of the ellipticals

1



Chapter 1. General Aspects

Figure 1.1: Classification of galaxies after E.P. Hubble, by using representa-
tive galaxies from the galaxy catalogue of Frei et al. (1996). At the left
side there are the ellipticals which range from E0 to E7. Lenticular galax-
ies SO are placed before the tines of the fork start, the upper one consists of
the normal spirals (Sa) while in the lower one are the barred (SBa) galaxies.
(www.astro.livjm.ac.uk/.../pic/cosmo/htf col.jpg)

Figure 1.2: Starburst Irregular (Irr) Galaxy NGC 1313

2



1.1. Galaxies

and the spirals, comes a class of galaxies known as the lenticulars.
These galaxies are designated as (S0) or (SB0) according to whether or not they do
have a bar structure in the center. The S0 galaxies are characterized by a smoothed
central brightness condensation (the bulge or spheroidal component) similar to an
elliptical galaxy, surrounded by a large region of less steeply declining brightness.
This latter component, which is generally rather structureless, is believed to be
intrinsically flat. They resemble ellipticals in lacking extensive gas and dust, but
they share with spirals the thin and fast-rotating stellar disk.

In the Hubble sequence the lenticulars are followed by the spiral galaxies. A nor-
mal spiral comprises a central brightness condensation, the bulge, which resembles
an elliptical, located at the center of a thin disk containing more or less conspicu-
ous spirals of enhanced luminosity, the spiral arms. A barred spiral has, together
with the spiral arms, a bar, often containing dark lanes believed to be produced by
absorption of the stellar light by dust. The spiral arms of barred spirals generally
emanate from the ends of the bar. Within each class of spirals, barred or not, a
sequence of subtypes is identified by division according to a combination of 3 criteria:

1. The relative importance of the central luminous bulge and the outlying disk
in producing the overall light distribution of the galaxy.

2. The tightness with which the spiral arms are wound.

3. The degree to which the spiral arms are resolved into stars and individual
emission nebulae (HII-regions).

Early-type spirals, placed on the left side of the sequence, are those having conspic-
uous bulges and tightly wound, smooth arms. They are designated as Sa or SBa
according to whether they are barred or not. Late-type spirals are on the right side,
having smaller bulges and loosely wound, highly resolved arms. They are called Sc
or SBc galaxies.
The central bulge of a spiral galaxy contains old stars similar to those found in an
elliptical galaxy, but in its arms still a lot of gas and dust can be found and so new
stars are continuously formed. Glowing clouds of ionized hydrogen (HII regions)
and hot young stars make the spiral arms look bright and blue in photographs.
Bulges are comparable with elliptical galaxies in terms of stars moving on randomly
oriented orbits. In the disk, stellar orbits are nearly circular.
Asymmetrical galaxies are assigned as irregulars ( see Fig. 1.2), which split up into
two main groups: (1) Irr I galaxies; objects that lack symmetry or well defined spiral
arms and display bright knots that contain young and bluish stars of spectral types
O and B (see Sec. 1.3.2; Young Stars as tracers). (2) Irr II galaxies; asymmetrical
objects that have rather smooth images. They frequently display dust lanes.

3



Chapter 1. General Aspects

Figure 1.3: Schematic (edge-on) view of the major components of the MW’s overall
structure. (www.cfa.ustc.edu.cn/.../IMAGES/AACHDGM0.JPG)

1.2 Structure of the Milky Way

The velocity field of young stars in the solar neighbourhood is the main topic of my
thesis, so it is important to have a certain knowledge about our host galaxy, the
Milky Way (MW ).
The MW’s Hubble-type is SBbc, a large Spiral with a prominent bar (Sparke and
Gallagher (2000); Cole and Weinberg (2002)). By sitting inside, the overall struc-
ture is hidden. Gaining information about it is tedious and difficult and may easily
lead to misinterpretations. Actually MW is the only galaxy which can be studied
in detail in three dimensions.

Classically, the stellar component of the Galaxy can be divided into four popu-
lations, namely the halo, the bulge, the thick and the thin disk. Additional
structure further diverts this classification. Namely a bar shaped structure within
the bulge and spiral arms within the disk. Finally the concept of a Dark Halo (or
MOND) has to be introduced to explain the observed attributes of the structure.

4



1.2. Structure of the Milky Way

1.2.1 Stellar Halo

Shape
∼Spherical R ∼ 100 kpc Sirko et al. (2004)
somewhat flattened, less than the bulge Newberg and Yanny (2005)

Content
Total mass ∼ 2× 109 M� Carney et al. (1990)
Star Density ρ(r) ∝ r−3.5 for r . 25 kpc Kinman et al. (1994)
Luminosity LV = 4× 107 L� Binney and Merrifield (1998)
only ∼ 1% of the luminous mass of the Galaxy Christopher et al. (2005)
Metal-poor [Fe/H] ∼ −1.5 dex Ryan and Norris (1991)
and very old stars Christopher et al. (2005)
little gas and dust Wyse and Gilmore (2005)

Kinematics
High velocity dispersions (wrt LSR) Binney and Merrifield (1998)
(σR, σΦ, σz) = (135, 105, 90) km s−1

Slow rotation, (if at all) ∼ 20 km s−1 Sirko et al. (2004)

Peculiarities
Tidal stream Majewski et al. (2005)

The shape of the galactic stellar halo is almost spherical and extends to∼ 100 kpc
(Sirko et al., 2004). Compared to its huge size its mass is rather small, with
∼ 2 × 109 M� (Carney et al., 1990), seen in relation to the total galactic mass
of 1.5− 4.0× 1012 M� (Beers et al., 2004). Kinman et al. (1994) determine the halo
star density up to r . 25 kpc to be a ρ(r) ∝ r−3.5 relation.
There are two main building blocks of the halo: the “globular cluster1 ”- and the
“field star”-system. The field star halo is nearly 2 orders of magnitude more lumi-
nous then the globular system. Globular clusters, there are just a few hundred of
them in the MW, start to be seldom outside ∼ 25 kpc but field stars can rise up to
∼ 100 kpc (Binney and Merrifield, 1998).
Another important splitting is the distinction between objects close to the disk
and the ones at large height above the plane. Armandroff (1989b),(1989a) anal-
ysed globular clusters, by comparing a “halo” and a “disk” sample. He found
[σlos,halo = 116± 11 km s−1, vrot,halo = 43± 29 km s−1] and [σlos,disk = 59± 14 km s−1,
vrot,disk = 193± 29 km s−1]. This shows, that the “halo” candidates are much more
dominated by a random motion, while the “disk” subsystem rotates rapidly. Sirko
et al. (2004) showed that their halo rotation analysis of vrot,halo ∼ 20 km s−1 is
marginally consistent with zero at the 1σ level.
Armandroff’s metallicity studies reason a wide range in the two components: [Fe/H]halo

can go down to −2.6 dex and [Fe/H]disk stays around ∼ −0.5 dex. The mean metal-

1Globular clusters can contain up to several thousand of stars bound together by their mutual
gravitational attraction. As an example ωCentauri contains about a million stars and its core
radius is only 4 pc. Globular clusters are the oldest objects in the Galaxy.
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Chapter 1. General Aspects

licity of the stellar halo is [Fe/H] ∼ −1.5 dex (Carney et al., 1990), low compared to
that of the solar neighbourhood value [Fe/H] ∼ −0.2 dex (Nordström et al., 2004).

Substructures and Stellar Streams

The halo stellar density is sufficiently low that its stars must have formed in higher
density systems and have dispersed later. The field stellar halo could rather naturally
be formed from the debris of stellar clusters, with on-going mass-loss (Odenkirchen
et al., 2003, Pal 5). Ibata et al. (1994)’s work, of the Sagittarius dwarf galaxy which
is in the process of being tidally disrupted by the gravitational field of the MW,
assists the idea of hierarchical-clustering theories of structure formation (Silk and
Wyse, 1993). Analysis of merger interactions are done by Majewski et al. (2005),
for a better understanding of halo formation processes in general and the formation
of our Galaxy in particular. Newberg and Yanny (2005) could measure from such
streams a slight flattening of the halo.
Substructure in the disk has also been noted since the early days of galactic structure
research (Eggen, 1998) and has usually been interpreted as signature of the gradual
dissolution of loosely bound star clusters in the clumpy potential of the disk. Extra
galactic origins for subsamples, where ages and chemical composition of stars do
not match with their environment, could be an explanation (Navarro et al., 2004).
The role of tidal forces in the formation of the galactic components is not yet fully

Figure 1.4: The tidal forces of the Milky Way slowly pull apart the Canis Major
dwarf galaxy (shown here in red). The stars ripped off in this fashion, surround the
galaxy in a vast ring. Image: (Martin et al., 2004, Observatoire de Strasbourg).

understood, but there is a strong evidence that the Canis Major dwarf galaxy is
one of the building blocks of the Galaxy (Martin et al., 2004, see Fig. 1.4) like other
galactic mergers as well.
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1.2. Structure of the Milky Way

1.2.2 Bulge

Shape
“boxy” López-Corredoira et al. (2005)
axis ratio (1:[0.3-0.6]:[0.22-0.4])

Content
Dominated by old (& 10 Gyr) Wyse and Gilmore (2005)
and metal-rich ([Fe/H] ∼ −0.3 dex) stars
Recent star formation Genzel et al. (1994)
in the inner region (R < 500 pc)
indicated by massive stars

Kinematics
Velocity dispersion σlos ∼ 110± 10 km s−1 Binney and Merrifield (1998)
Significant rotational velocity Minniti et al. (1995)
(< vlos >= 66± 5 km s−1)

Peculiarities
Star formation in the inner Nucleus Wyse and Gilmore (2005)

The morphology of the MW’s bulge is “boxy” (López-Corredoira et al., 2005).
With near-infrared images Dwek et al. (1995) traced that its bar-shaped structure
points with its near end in the first galactic quadrant. Its photometrically defined
mass is around 1.3×1010 M� and the bulge has a luminosity measured in the direction
of Baade’s window2 of about 5.3× 109 L�.
The central ∼ 150 pc of the galactic bulge is a gas-rich region which is actively
forming stars; it harbors at least 108 M� of molecular gas (Sparke and Gallagher,
2000). At the heart of the Galaxy, a torus of hot dense molecular clouds, about
7 pc in radius, partially surrounds the innermost cluster, which lies almost on top of
the MW ’s central radio source, Sagittarius A∗ (SgrA∗). SgrA∗ lies within a stellar
nucleus, an extraordinary concentration of stars. In mass and size the nuclear star
cluster is similar to a massive globular cluster, but there is still an ongoing star
formation fed by gas that flows into it. This compact object at the center of the
nucleus is probably a super massive black hole (SMBH), with a mass . 4×106 M�
and a Schwarzschild radius of only ∼ 1− 2 AU (Shen et al., 2005).
Stellar population studies of the bulge help to understand its structure and its
formation scenario. Krabbe et al. (1995) and Blum et al. (1996) claim that there
have been multiple epochs of star formation in the central few parsecs of the Galaxy.
The most recent epoch was less than 10 Myr ago and others happened more than
about 400 Myr in the past. van Loon et al. (2003) also detected a young population
in the plane near the galactic center, but this discovery is affected by the fact that
the scale-height of the thin disk is comparable to that of the central bulge, so that

2The distribution of dust is highly non-uniform, in the direction of Baade’s window at (l, b) =
(1,−3.9)◦ the extinction varies in a range of 1.26 < Av < 2.79 (Stanek, 1996) and so it is possible
to see much further into the Galaxy along this line of sight.
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Chapter 1. General Aspects

membership in either component is ambiguous.
Finally we can say, that the outer region of the bulge is dominated by old, metal-rich
stars (Wyse and Gilmore, 2005), while in the inner nucleus there is a still ongoing
star formation at a rate of & 10 M� yr−1 (Wyse and Gilmore, 2005).

1.2.3 Disk

The disk is the most prominent feature in the MW. As its name implies, it is flat
and roughly circular, a plane full of stars, gas and dust. It can be divided into
two substructures, a “thin” and a “thick” disk. Both intersect the bulge and as
the names indicate the thin disk lies inside the thick disk. The outer part of the
disk seems to have a warp, it starts somewhere around the solar circle, and the Sun
happens to lie near one of its nodelines (Binney (1992); Smart and Lattanzi (1996)).
Bulge and disk are rotating in the same direction. The stars in the disk orbit the
GC at about ∼ 200 km s−1 on nearly circular paths.
The disk’s stellar mass is around 6×1010 M� and its luminosity is between 1.5−2.0×
1010 L� (Sparke and Gallagher, 2000). But most (95%) of the stars are members of
the thin disk, especially all young massive stars (Sparke and Gallagher, 2000). The
gas and dust, which are needed for new star formations lie in an even thinner layer
than the stars itself. In the solar region this layer’s height is around ∼ ±100 pc.
The thickness of the gas layer increases in proportion to the galactocentric radius.
Gas is also found near ongoing star formation sites as well as near the locations of
spiral arms and the bar.

Thin Disk

Shape
Scale height: ∼ 300 pc Fuhrmann (2004)
Scale length: ∼ 3 kpc Fuhrmann (2004)

Content
Mass ∼ 5× 1010 M� Sparke and Gallagher (2000)
95% of all disk stars Sparke and Gallagher (2000)
All young massive stars
Both young and old stars; gas and dust
→ Site of ongoing star formations
Metallicity [Fe/H] ∼ −0.2 dex Wyse and Gilmore (2005)

Kinematics
Velocity dispersions Binney and Merrifield (1998)
(σR, σΦ, σz) = (34, 21, 18) km s−1

Gas and stars move on near circular orbits

Peculiarities
Hosts spiral arms and a bar

8



1.2. Structure of the Milky Way

Thick Disk

Shape
Scale height: 600− 1500 pc Fuhrmann (2004)
Scale length: ∼ 4 kpc Fuhrmann (2004)

Content
Mass ∼ 1010 M� Wyse and Gilmore (2005)
10− 20% of the thin disk mass
Old stars (∼ 10− 12 Gyr) Nordström et al. (2004)
Metallicity [Fe/H] ∼ −0.6 dex Wyse and Gilmore (2005)
Poorer in heavy elements than Sparke and Gallagher (2000)
the thin disk stars

Kinematics
Velocity dispersions Binney and Merrifield (1998)
(σR, σΦ, σz) = (61, 58, 39) km s−1

Gas and stars move on near circular orbits

Peculiarities
Hosts the thin disk
Warped structure Sparke and Gallagher (2000)

It is not yet clear how the “thin” and the “thick” disks got formed. One picture
predicts a heating-mechanism which blows a thin disk up to a thick disk. But
“normal” disk heating mechanisms like transient gravitational perturbations in the
disk produce vertical velocity dispersion values in the range of σW ∼ 20 km s−1. But
the kinematics of the thick disk are intermediate between the halo and the thin disk
with a azimuthal streaming velocity vrot . 170 km s−1 (Wyse and Gilmore, 2005)
and a fairly high velocity dispersion of σW ∼ 40 km s−1, σtotal ∼ 80 km s−1 which is
twice the predicted value.
The old age of ∼ 10−12 Gyr (Nordström et al., 2004) for the thick disk indicates that
star formation has not happened in the recent past. Not so in the thin disk where
star formation is still ongoing. Additionally the pattern of elemental abundances
differs between the thick and thin disks (Fuhrmann, 2004). This implies distinct
star formation and enrichment histories for the thick and thin disk.
Fuhrmann (2004) reasons that the origin of the thick disk cannot be a merger,
because if it is as massive as it comes out from his work then there is nothing “to
merge with” at this look-back time. Merging scenarios (Abadi et al., 2003) can
explain many observations but not the full mechanism. Fuhrmann implies that the
Galaxy formed 13 or 14 Gyr ago with the implementation of a massive, rotationally-
supported population of thick disk stars. The very high star formation rate in that
phase gave rise to a rapid metal enrichment and an expulsion of gas in supernovae-
driven galactic winds, but was followed by a star formation gap for no less than
3 − 5 Gyr at the Sun’s galactocentric distance. In a second phase, then, the thin
disk came on stage.

9



Chapter 1. General Aspects

1.2.4 Bar

Bars in general are a very common feature, found in over half of all spiral galaxies
(Whyte et al., 2002). Since some years, it has been established that the MW is
barred as well (Gerhard, 2002). Its bar is a triaxial structure, hosted in the middle
of the disk, with a probable age of less than 3 Gyr (Cole and Weinberg, 2002). A
3.4 kpc long cigar, inclined wrt the “Sun-GC” line by ∼ 20◦ can be given as a first
guesstimate.
The large non circular motion of HI and CO observations, NIR light distributions,
source count asymmetries, gas kinematics, and large microlensing optical depth
studies are used for a better understanding of this substructure. Parameters like the
orientation, the shape and the pattern speed define the bar.
A summary of publications, methods, main results, and bar characteristics are com-
posed in Tab. 1.1.

Evidences for an Asymmetric Feature (Bar?)

The best clues to the existence of a bar in an edge-on system come from the kine-
matics of its gaseous components, where the non-axisymmetric bar potential induces
non-circular orbits in the gas.

Figure 1.5: Plot showing the distribution of atomic hydrogen in the plane of the
Milky Way as a function of galactic longitude and line-of-sight velocity, as indicated
by its 21 cm emission. The 3 kpc arm is shown by the dashed line, along with
its important measurable parameters; the part of the feature that is too faint to
trace reliably is indicated by question marks. (Adapted from Binney and Merrifield
(1998))

Fig. 1.5, the so called l-v diagram of the MW, shows the line-of-sight velocity
versus galactic longitude in the plane of the Galaxy. It reveals a clear signature
of a non-axisymmetric distribution. There is a significant asymmetry between the

10



1.2. Structure of the Milky Way

data ϕbar length RGC axis ratio scale length RD publication
◦ kpc kpc

starcounts 12± 6 10 : 5.4 : 3.3 3.0 López-Corredoira 2000
20− 30 Nikolaev 1997
20− 30 10 : 4 : 3 Stanek 1997

2.5 Ortiz 1993
44± 10 4.4; R� = 8.5 Benjamin 2005

integrated light 15− 35
combined 20− 25 3.1− 3.5 10 : 3− 4 : 3 2.1 Bissantz 2002

25% error
3.1− 3.5 10 : 6 : 4 2.5 Binney 1997a

star formation region 3.1− 3.5 10 : 3− 4 : 3 3.5 Hammersley 2000
microlensing 15 Zhao 1996

good accepted value 20 3.1− 3.5 10 : 4 : 3

method RCR Ωp 3kpc arm special
kpc km s−1 kpc−1 properties

hydrodynamical 3− 4.5 inside RCR Englmaier 1999
simulation 3− 4.5 “ Fux 1999

5.0 42 ϕbar = 34deg Weiner 1999
3.4± 0.3 60± 5 Ωsp ∼ 20 Bissantz 2003

orbital resonances 4.4± 0.4 51± 4 quadrupole Dehnen 2000
moment

strong enough?
direct method 59± 15 OH/IR Debattista 2002

arm-bar ?

good accepted value 4± 0.5

Table 1.1: Summary of the main bar and disk parameters represented in a table,
see Gerhard (2002) The Galactic Bar. Ωp pattern speed (bar); Ωsp pattern speed
(spiral arms); RCR corotation radius; RD disk scale-length; RGC bar length; ϕbar

angle in the galactic plane between the bar’s major axis at l > 0 and the Sun-center
line. (Because of space-saving in this Table the publications are exceptionally given
by the first author’s name only and the date of the publication.)
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Chapter 1. General Aspects

gas properties at positive and negative longitudes, which is inconsistent with an
axisymmetric disk. Further evidence for non-circular motions come from the non-
zero line-of-sight velocities of some of the HI gas at zero longitude: if the gas were
following circular orbits, then all of its motion should be transverse to the line of sight
at this point. The strongest feature that illustrates these properties is classically
known as the 3 kpc arm (see Fig. 1.8) because of its approximate radial location
in the Galaxy. This feature, highlighted in Fig. 1.5, is asymmetric about the center
of the Galaxy, lying between galactic longitudes of l− ∼ −20◦ and l+ ∼ +35◦.
Tracing it through the center of the Galaxy reveals that it crosses zero longitude at
a velocity of v0

los = −53 km s−1; presumably this loop in the l-v diagram recrosses
l = 0 at positive velocity, but this part of the feature is too faint to be traced reliably.
It was this observation that led to the idea that the feature might be an expanding
arm of material thrown out from the center of the Galaxy in our direction.

1.2.5 Spiral Arms

Vallée (2005) published his third, updated statistical study about MW spiral arms.
A summarizing Table with the main publications and characteristics out of the anal-
ysed working period (1980 to early 2005) is printed in the Appendix, see Tab. A.1.
Tab. 1.2 lists the trends in MW-modelling and their enhancement in the last few
years analysed by Vallée’s study.
The early pioneer of studies on the formation of the spiral arms was Bertil Lind-

Publication year 1987 1998 2002 2004 Trend

% of publications which used ...
“4 arm” 65 84 83 85 ↗
Study
“log arm” 93 81 82 92 88
Study

Mean value used in published papers
“Pitch Angle” -12.7 -12.0 -11.0 -12.6 -12.1
Study deg
“Inter arm distance” 3.7 3.45 3.6 2.75 3.4
Perseus and Sagittarius
Study kpc

Table 1.2: Summary analysis of 4 MW trends: Most MW-models include (“4 arms”)
and logarithmic formed spirals (“log arm”). The (“Pitch Angle”) represents the
arm’s winding degree, the distance between arms (“Inter arm distance”) is of main
interest as well.

blad. He realized that the idea of stars arranged permanently in a spiral shape was
untenable due to the winding dilemma. Since the rotation speed of the galactic disk
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1.2. Structure of the Milky Way

Figure 1.6: Observed spiral structure of the MW following Taylor and Cordes (1993).
The arrow points the direction of the solar system’s motion relative to the spiral
arms.

varies with distance from the center of the galaxy, a radial arm (like a spoke) would
quickly become curved as the galaxy rotates. The arm would, after a few galactic
rotations, become increasingly curved and wind around the galaxy ever tighter.
The first acceptable theory was devised by Lin and Shu (1964), the Density Wave
Theory (DWT). They suggested that the spiral arms were manifestations of spi-
ral density waves. A “stellar traffic jam” where stars are packed more densely. The
DWT of spiral structure is based on the premise that mutual gravitational attraction
of stars and gas clouds at different radii can offset the kinematic spiral’s tendency to
wind up, and will cause a pattern to grow which rotates rigidly with a single pattern
speed.
Alternative hypotheses that have been proposed involve waves of star formation
moving about the galaxy; the bright stars produced by the star formation die out
quickly, leaving darker regions behind the waves, and hence making the waves visi-
ble.
Figure 1.6 shows a diagram of the observed MW spiral structure (Taylor and Cordes,
1993). The arm’s names, the position of the Sun and the rotation direction of the
Sun’s orbit are shown. The gray shadow in the plot represents the obscured region,
where observations from our solar position are difficult or even impossible due to its
hidden position behind the dense galactic core.
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Chapter 1. General Aspects

1.2.6 Dark Halo or MOND?

The existence of a dark halo is inferred from its gravitational pull on the visible
matter. Its composition is unknown, since this matter does not consist of luminous
stars.
For almost twenty years models of the Galaxy have included such mass, responsible
for supporting a substantial fraction of the local rotation velocity and a flat rota-
tion curve at large distances. There is a tremendous amount of evidence for such
assumptions, based on the assumption that the Newtonian theory can safely be ex-
trapolated from the solar system (where it is well tested) to the scales of galaxies.
There exists another theory which explains the discrepancy between visible matter,
high velocities and Newtonian theory. In 1983, Milgrom hypothesized a specific
change in the equations governing particle motions at very low accelerations. He
called this the modified Newtonian dynamics, or MOND, therefore e.g.:.
(http : //www.astro.umd.edu/ ssm/mond/astronow.html) MOND reduces to the
usual Newtonian form in the regime of high acceleration, but at accelerations lower
than 1 part in 1011 of what we feel here on earth, things change in a way that might
account for the mass discrepancy. Fits to the observed rotation curves of galaxies
have now been performed for over 100 galaxies, with comparable results. While there
is certainly the occasional puzzle, there are no known cases where MOND clearly
fails. However, in many other systems the picture is less clear. Any modification
of dynamical laws must explain the mass discrepancy everywhere. The model has
to explain not only rotation curves, but also the velocity dispersions of spheroidal
galaxies, the gas temperatures of clusters of galaxies, and the peculiar motions of
galaxies in the large scale structure of the universe.

1.3 Solar Neighbourhood

In the outer part of our Galaxy, where our Sun is located at, most of the visible
stars lie in a flattened, nearly axisymmetric disk.
Stars and gas travel around the galactic center (GC) under the force of gravity.
Stars are much denser than the interstellar gas through which they move. Neither
gas pressure nor the forces from embedded magnetic fields can deflect them from
their paths. If one knows how the mass is distributed, one find the the resulting
gravitational force and the time dependent positions and velocities of stars and
galaxies can be calculated. This can be inverted by taking the stellar motions
to deduce the distribution of mass. Newton’s equation of motion Eq. 1.3 and the
Poisson equation Eq. 1.1 describe these correlations.

∇2Φ = 4πGρ. (1.1)

In disk galaxies many stars, at a certain distance from the GC, move on nearly
circular orbits. Effects produced by arms and bars strongly depend on their masses
and location wrt the stellar orbit. Axisymmetric approximation is valid only when
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1.3. Solar Neighbourhood

the gravitational strengths of the bar and the spiral arms are weak in comparison
to the influence all other axisymmetric mass distributions. Orbits of stars in the
solar neighbourhood act as good candidates for such an approximation done by the
epicycle theory.

1.3.1 The Classical Approach: Epicycle Theory

Orbits in Axisymmetric Potentials

Stars in a galaxy do not collide like molecules3 in a box. If the density of stars is
uniform, then a star will be attracted in all directions by the same gravitational
force, resulting in a vanishing net force. Consequently the force on any star in an
“almost” uniform system will not vary rapidly and each star in the galaxy may be
supposed to accelerate smoothly by the force field that is generated by the galaxy
as a whole. Additionally galaxies typically have ∼ 1011 stars and are a few hundred
crossing times (typical time for a star to cross the galaxy) old, for such systems stel-
lar encounters are entirely unimportant. So in the case of a galaxy like the MW, the
gravitational dynamics are those of a collisionless system in which the constituent
stars move under the influence of the mean potential generated by all the other
stars within the galaxy. The orbits of stars depend almost entirely on the smooth
part of the gravitational field, averaged over a region containing many stars. Often,
the mean field potential has some symmetries which simplify the orbit calculations.
Here we look at the orbits of stars in an axisymmetric galaxy. Non-axisymmetric
structures like the bar, the spiral arms or local features will be neglected. Still we
are able to investigate the general aspects of an underlying smoothed out velocity
field we are looking for. The orbits in such a model are nearly but not quite circular
and lie in the same plane.
In the galactocentric cylindrical polar coordinates (R, φ, z) the midplane or the disk
is at z = 0 and the center at R = 0. Because of the axisymmetric assumption the
gravitational smoothed potential Φ(R, φ, z) is independent of φ, thus ∂Φ/∂φ = 0.
The study of orbits in such an axisymmetric galaxy can be reduced to a two-
dimensional problem by exploiting the conservation of angular momentum of any
star

d

dt
(R2φ̇) = 0. (1.2)

The general equation of motion of a star is, in a conservative force field, given by

M
d2~r

dt2
= −∇Φ(R, z). (1.3)

were ~r = RêR + φêφ + zêz represents the position of the object, t the time and
∇Φ = ∂Φ

∂R
êR + ∂Φ

∂z
êz the force. êR, êφ and êz are the unit vectors, while from now on

3No low pressure gas.
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the mass M will be set to unity.
The acceleration transformed to cylindrical coordinates looks like

R̈−Rφ̇2 = −∂Φ

∂R
, (1.4)

z̈ = −∂Φ

∂z
. (1.5)

These equations describe the coupled oscillations of the star in the R− and z−
directions. The potential can be expressed in terms of an effective potential and
the rotational energy of the system; Lz is the angular momentum.

Φeff ≡ Φ(R, z) +
L2

z

2R2
(1.6)

and so the equations (1.4) and (1.5) can be transformed into

R̈ = −∂Φeff

∂R
, (1.7)

z̈ = −∂Φeff

∂z
(1.8)

to describe the evolution of R and z.
Thus the three-dimensional motion of a star in an axisymmetric potential Φ(R, z)
can be reduced to the motion of the star in a plane. This (non-uniformly) rotating
plane with cylindric coordinates (R, z) is often called the meridional plane.

Stable orbitals arise only when the net force vanishes, hence looking at extrema
of the potential, we find

0 =
∂Φeff

∂R
=
∂Φ

∂R
− L2

z

R3
(1.9)

0 =
∂Φeff

∂z
. (1.10)

If Φeff is symmetric about z = 0 then Eq. 1.10 is satisfied anywhere in the equational
plane z = 0, and Eq. 1.9 at a certain radius Rg, where(∂Φ

∂R

)
(Rg ,0)

=
L2

z

R3
g

≡ Rgφ̇
2 (1.11)

is given. This represents the condition for a circular orbit with angular velocity
Ω = φ̇.

In the disk, many stars are on nearly circular orbits, so it is useful to derive ap-
proximate solutions to equations which are describing them. x is the stars deviation
from its guiding center Rg (see Fig. 1.7).

x ≡ (R−Rg)êR (1.12)
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Thus (x, z) = (0, 0) represents the coordinates of a minimum in the meridional plane
Φeff . At these positions circles with radius Rg occur. When we expand Φeff in a
Taylor series about this point Rg, we obtain

Φeff =
1

2

(∂2Φeff

∂R2

)
(Rg ,0)

x2 +
1

2

(∂2Φeff

∂z2

)
(Rg ,0)

z2 + “higher order terms′′. (1.13)

The terms proportional to x, z vanish because Φeff is symmetric about z = 0. Then
the equations of motion (1.7) and (1.8) are reduced to the epicycle approximation.

ẍ = −κ2x, (1.14)

z̈ = −ν2z (1.15)

with

κ2 ≡
(∂2Φeff

∂R2

)
(Rg ,0)

, (1.16)

ν2 ≡
(∂2Φeff

∂z2

)
(Rg ,0)

. (1.17)

According to these equations, x and z evolve like the displacements of two harmonic
oscillators with the frequencies κ and ν. They are called the epicycle and the ver-
tical frequencies, respectively.

The relation between the frequency of the epicycle κ and the one of the underlying
circular orbit Ω can be seen from the effective potential as mentioned in Eq. 1.6,
then

κ2 =
(∂2Φ

∂R2

)
(Rg ,0)

+
3L2

z

R4
g

, (1.18)

ν2 =
(∂2Φ

∂z2

)
(Rg ,0)

. (1.19)

Ω can be written as

Ω2(R) =
1

R

(∂Φ

∂R

)
(R,0)

=
L2

z

R4
(1.20)

and so the relation between κ and Ω is

κ2 =
(
R
dΩ2

dR
+ 4Ω2

)
Rg

. (1.21)

The Point mass (κ = Ω) and the Solid body (κ = 2Ω) model are representing the
extrema of possibilities, thus the limiting cases for κ-values are given by

Ω ≤ κ ≤ 2Ω. (1.22)

Some special characteristics of models are listed in Tab. 1.3.
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 GC

       κ

Ω

y

Figure 1.7: Geometry and description of a Monte Carlo (MC) model background
and the definition of the coordinate system. The movement of a star is well approx-
imated by the superposition of a retrograde motion at angular frequency κ around
a small ellipse with axis Ax and Ay, and a prograde motion of the ellipse’s center,
called Guiding Center at angular frequency Ω around a circle with radius Rg. Indi-
vidual epicycles are elongated in the azimuthal direction, but the velocity ellipsoid
is elongated in the radial direction.
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κ = Ω v ∝
√

1
R

Ω ∝ R
−3
2

Ax

Ay
= 1

2
Point mass

Keplerian Potential

κ =
√

2Ω v ∝ cte. Ω ∝ 1
R

Ax

Ay
= 1√

2
Halo-Model

Isothermal

κ = 2Ω v = R Ω ∝ const. Ax

Ay
= 1 Solid body

Harmonic oscillator

Table 1.3: Special cases

General Solutions for the Equations of Motion

The equations of motion (Eq. 1.14 and 1.15) lead to two integrals, namely the ener-
gies

ER ≡ 1

2
(ẋ2 + κ2x2) (1.23)

Ez ≡ 1

2
(ż2 + ν2z2) (1.24)

of such a star. While the total energy is

Etot = ER + Ez + Φeff (Rg, z). (1.25)

General solutions for the equations of motion are given by

x(t) = Ax cos (κt+ ψ) (1.26)

z(t) = Az cos (νt+ ς), (1.27)

where Ax, Az and ψ, ς are given by the boundary condition of the specific problem.

Next, since Ωg = Lz

R2
g

is the angular velocity of the circular orbit with conserved

angular momentum Lz, and Lz is conserved, we obtain

φ̇ =
Lz

R2
=
Lz

R2
g

(
1 +

x

Rg

)−2

(1.28)

' Ωg

(
1− 2x

Rg

)
. (1.29)

Substituting x from Eq. 1.26 and integrating, we obtain

φ = Ωgt+ φ0 −
2ΩgAx

κRg

sin (κt+ ψ). (1.30)
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The nature of the motion described by these equations can be clarified by taking
Cartesian coordinates (x, y, z) in a rotating frame with origin at the guiding center
R = Rg,Φ = Ωgt+ Φ0. The x and z coordinates have already been defined, and the
y coordinate is perpendicular to both. To a first order it will be

y(t) ∼ −2Ωg

κ
Ax sin (κt+ ψ) (1.31)

= −Ay sin (κt+ ψ) (1.32)

Eq. 1.26 and Eq. 1.31 are the complete solution for the orbit in the epicycle approx-
imation. The motion in the z-direction is independent of the motion in x and y. In
the (x, y) plane a star moves on an ellipse called the epicycle around the guiding
center. The lengths of the semi-axes of the epicycle are in the ratio

Ax

Ay

=
κ

2Ωg

. (1.33)

1.3.2 The Local Disk

Properties and Position of the Sun

On account of its rotation, chemistry, and age (∼ 4.5 Gyr) we know that the Sun is
very typical among its G-type neighbours (Fuhrmann, 2004) (see Sec. 1.3.2; Young
Stars as tracers).
Its mass M�, as determined from the orbit of Earth and other planets, is ∼
2 × 1030 kg. To set it in a context with other stars: their range covers 0.075 M�
to 120 M�. The Sun’s luminosity L� is 3.86× 1026W = 4.83 mag. Stars differ enor-
mously in this value: the brightest are over a million times more luminous than the
Sun, while stars as faint as 10−4 L� have been already observed as well. The Sun’s
radius ( R�) is around 6.96 × 105 km; estimated range of stellar radii varies from
0.1× R� to 1000× R�.
The Sun does not lie exactly in the galactic midplane, but is located 10 − 20 pc
above it, and its path around the galactic center is not precisely circular. The Lo-
cal Standard of Rest (LSR) is defined as the average motion of stars near the
Sun. Relative to this average the Sun is moving with velocities referred as solar pe-
culiar velocities: u� points to the GC, v� in the direction of the galactic rotation
and w� up toward the NGP (north galactic pole). (Dehnen, 1998, derived out of
Hipparcos data)

u� = 10.0± 0.4 km s−1 (1.34)

v� = 5.2± 0.6 km s−1 (1.35)

w� = 7.2± 0.4 km s−1. (1.36)

Often it is assumed, that the LSR follows a circular orbit around the GC, at a solar
radius R� ∼ 8 kpc and a velocity of V� ∼ 220 km s−1. Thus the Sun takes roughly
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230 Myr to complete one revolution around the GC.
The Sun lies within a giant star-and-gas complex that is known as the Gould’s
Belt (see Sec. 1.3.2; Substructures near the Sun) with a radius of ∼ 500 pc and a
lifetime τ ∼ 6× 107 yr (Bobylev, 2004). In turn, the Gould’s Belt is part of an older
(τ ∼ 5 × 108 yr) and more massive (∼ 2 × 107 M�) structure about 1000 pc in size
that is known as the Local (Orion) Arm. Fig. 1.8 illustrates the embedding of
the local disk into the large-scale spiral structure of the MW. By the star symbol
the position of the Sun between the Perseus and the Sagittarius-Carina arm is
plotted. The Orion spur is sketched by a long dashed line. Russeil’s best 4-arm-

Figure 1.8: A four-arm model from Russeil (2003), Fig. 5. The symbol size is
proportional to the excitation parameter of the star-forming complexes Russeil used
for her work. The Sun’s position is given by the large star symbol. 1: Sagittarius-
Carina arm, 2: Scutum-Crux arm, 1’: Norma-Cygnus arm and 2’: Perseus arm. The
local arm feature is sketched as a long dashed line, the bar orientation and length
(dashed-dot-dot line) is taken from Englmaier and Gerhard (1999), the expected
deviation from a logarithmic spiral arm observed for the Sagittarius-Carina arm
(short dashed line) and finally a feature certainly linked to the 3-kpc arm (solid
line).
3

model fits define a “mean arm-width” of 1.32 kpc and a “mean arm-to-arm” distance
of 2.12 kpc.
In the solar neighbourhood there is about 1 star in every 10 pc3, and the diameter of
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a Sun-like object is only about ∼ 10−7 pc, so most of the interstellar space is empty
of stars, but is filled up with gas and dust.

Solar Environment, an Approximation

The Oort’s constants A and B are defined by the relations

A ≡ 1

2

(vc

R
− dvc

dR

)
R0

= −1

2

(
R
dΩ

dR

)
R0

(1.37)

B ≡ −1

2

(vc

R
+
dvc

dR

)
R0

= −
(1

2
R
dΩ

dR
+ Ω

)
R0

, (1.38)

where vc(R) = ΩR is the circular velocity at radius R in the disk of our Galaxy,
and R0 is the distance between the Sun and the galactic center. A represents the
local shear or deviation from rigid rotation and B the local vorticity of angular
momentum gradient in the disk. (In the case of vc = const, A+ B = −dvc

dR
= 0 and

A−B = v0

R0
.)

So the circular frequency at R0 can be written as Ω0 = (A−B). With Eq. 1.21 and
1.38 the value κ0, for the solar neighbourhood is given by

κ2
0 = −4B(A−B) = −4BΩ0. (1.39)

For A = 14.8 ± 0.8 km s−1 kpc−1 and B = −12.4 ± 0.6 km s−1 kpc−1 (Feast and
Whitelock, 1997); then κ0 ' 36± 10 km s−1 kpc−1 and

κ0

Ω0

' 2

√
−B
A−B

= 1.3± 0.2. (1.40)

Consequently the Sun makes about 1.3 oscillations in the radial direction in the time
it takes to complete an orbit around the galactic center. Hence the orbit does not
close on itself in an inertial frame, but forms a rosette figure.
In the solar neighbourhood the ratio Ax

Ay
(Eq. 1.33) takes a value of ' 0.7 (Binney

and Tremaine, 1994). A star out of this region travels around the epicycle in a
retrograde direction, with a period of 2π/κ (time for one cycle ∼ 170 Myr), the
guiding center rotates on a prograde orbit with 2π/Ω.
Consider the motion of a star that moves on an epicycle orbit, as viewed from the
guiding center of its orbit. At different times in the orbit the observer’s proper
motion (see App. D.4 in the Appendix) measurements yield the maximum values
κAx and κAy of the velocities ẋ = ∂

∂t
(Ax cos (κt+ ψ)) and ẏ = ∂

∂t
(−Ay sin (κt+ ψ)).

Information about the stellar epicycles can be gained by averaging the results from
many stars whose orbits differ only in their epicycle phase ψ.
The Sun’s position on the epicycle can be defined as well when we know its velocity
with respect to that of the LSR. The peculiar velocities (Eq. 1.35,1.36,1.36) of
the Sun display that it moves faster than the LSR velocity and this means that it is
located at the inner side of an epicycle. It is on the way to reach its orbit pericenter.
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1.3. Solar Neighbourhood

Young Stars as Tracers

All information we have about stars more distant than the Sun has been deduced
by observing their electro-magnetic radiation, mainly in the ultraviolet, visible, and
infrared parts of the spectrum. The hottest stars are the bluest, and their spectra
show absorption lines of highly ionized atoms; cool stars emit most of their light at
red or infrared wavelengths and have absorption lines of neutral atoms or molecules.
The sequence O B A F G K M distinguishes between different types of stars. It is
a classification by its temperatures and compositions extracted from spectral lines.
Adding luminosity and radii this sequence can be extended. Within this diagram
most of the stars lie on a “S” shaped band called the Main Sequence (see App. C.2).
It describes somehow the generalised time evolution of a star as starting from hot
big cloud of H and He toward a colder, smaller and less luminous star consisting of
various heavier molecules.

The stellar mass almost entirely determines the stellar structure and ultimate
fate, the chemical composition plays a minor role. Stellar masses cover a huge
range. Values between 0.8 M� and 120 M� are known (Sparke and Gallagher, 2000,
Table1.1). The time in which such stars have a stable life on the Main Sequence
(MS) (Sparke and Gallagher, 2000, p. 10) ranges from 25 Gyr for the low mass stars
down to 2.6 Myr for the high mass stars.
O and B stars in the solar neighbourhood have been traditionally used as probes
of galactic structure and kinematics. Their intrinsic brightness allows their obser-
vations to great distances from the Sun, and due to their youth (massive stars have
a τM.S. ∼ 106 yr), their motions can be expected to hold important clues to the
processes that formed them. O and B stars are not randomly distributed on the sky
but instead are concentrated in loose groups, the OB Associations (OBA). Motion
and location are similar for stars belonging to the same association. Their velocity
dispersion is only a few kilometers per second and so OBA membership studies can
be done by velocity analysis. de Zeeuw et al. (1999) present a comprehensive census
of the stellar content of the OBAs within 1 kpc from the Sun based on Hipparcos
data.

Substructures near the Sun

The local medium, within a few hundred parsecs, is dominated by a substructure
called the Gould’s Belt (GB).
It was Sir John Herschel (1847) to first note that the brightest naked-eye stars were
not regularly distributed on both sides of the MW’s great circle, but showed a sec-
ondary concentration towards a major circle tilted about 20◦ to the MW. Systematic
work on this local feature was carried out by Benjamin Gould (1879), after whom
this feature is named. This local system is traced by young stars and OBAs, HI,
molecular clouds and dust (Poppel, 1997).
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Chapter 1. General Aspects

Torra et al. (2000) examined the local velocity field by using a large sample of
nearby O and B stars from the Hipparcos catalogue and found that approximately
60% of the stars younger than 60 Myr belong to the GB. Perrot and Grenier (2003)

Figure 1.9: 3D view of the Belt rim and its velocity field (wrt the OBAs that are
marked as spheres with a radius equal to their size (de Zeeuw et al., 1999). The
diamond and the star note the Belt’s center and the Sun, respectively. (Perrot and
Grenier, 2003, Fig. 6)

modeled in 3D the dynamical evolution of the GB and compared it to the spatial
and velocity distributions of all HI and H2 clouds found within a few hundred par-
secs from the Sun and to the Hipparcos distances of the nearby OBAs.
The best fit to the data yields values for the current Belt’s semi-axes of 373± 5 pc
and 233±5 pc, and an inclination of 17.2◦±0.5◦. These characteristics are consistent
with earlier results, but a different orientation of the Belt has been found because
of the presence of new molecular clouds and the revised distance information: the
Belt’s center currently lies 104± 4 pc away from the Sun, towards the galactic lon-
gitude l = 180.4◦ ± 2.0◦ , and the ascending node longitude is ΩG = 296.1◦ ± 2.0◦.
Torra et al. (2000) reasoned in their work, that the GB extends up to 600 pc from
the Sun with an inclination with respect to the galactic plane of iG = 16− 22◦ and
the ascending node placed at ΩG = 275− 295◦.
Age analysis of the Belt is rather uncertain. The dynamical time scale worked out
by Perrot and Grenier (2003) is 20 to 30 Myr and the stellar age determination done
by Torra et al. (2000) yields 30 to 60 Myrs ; a factor of 2 difference.
The motion of young nearby stars deviates considerably from the general field of
galactic rotation (Torra et al., 2000). Analyses correspond to an overall expansion
of the local system of the earliest stars. Years ago Campbell (1913) recognized this
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1.3. Solar Neighbourhood

as the main kinematic characteristic of the GB. In Fig. 1.9 the velocity field (wrt
LSR) outlines the Belt’s expansion. The simulated GB rim from Perrot and Grenier
coincides with most of the nearby OBAs, but the mean velocities of the associations
do not seem to be related to the Belt’s expansion.
Lindblad et al. (1997) mention that the GB moves away from the GC at ∼ 5 km s−1

and it expands at a rate of about ∼ 12 km s−1 kpc−1. In 2004, Bobylev analysed
the space velocities of nearby, young GB stars by assuming the existence of a single
kinematic center; (lGB = 128◦, RGB = 150 pc). The velocities they found for a sam-
ple with stars younger than 60 Myr was −6 km s−1 for the rotation (whose direction
coincides with the galactic rotation) and 4 km s−1 for the expansion.
Torra et al. worked out that stars belonging to Soc− Cen or Ori OB1 complexes,
the two most dominant associations of the GB, are not primarily responsible for
the ring peculiarities. A sample with or without these stars made no significant
difference in their Belt analysis.
Several models have been presented in order to explain the origin of the GB: it
has been interpreted as a local effect of the spiral arm (Lindblad et al., 1997), as
energetic events on the galactic disk (Elmegreen, 1982), as expanding stellar groups
(Blaauw, 1952), as the interpretation of the local gas kinematics in terms of an
expanding ring (Moreno et al., 1999), and also as a supercloud which was initially
moving almost ballistically in the galactic field until an encounter with a major spi-
ral arm started a braking process (Olano, 2001). Another scenario is from Comeron
(1993), the impact of a high velocity cloud on the galactic disk.

Kinematics in the Solar Neighbourhood

Dehnen (1998) worked out the velocity distribution in u and v directions, by in-
tering these components from Hipparcos data for 3527 main-sequence stars with
B−V > 0.6 and 2491 mainly late-type non-main-sequence stars, high-velocity stars
excluded, in the solar neighbourhood.
Fig. 1.10 shows the distribution of a bi-modality which has become known as the
u-anomaly (see also Raboud et al., 1998) especially for the late-type stars. (u, v)
denote the stars velocity components with respect to the LSR. The anomaly consists
of an additional peak around (u, v) = (−40,−20) km s−1. The respective stars are
lagging behind the mean rotation and have an outward radial motion with respect
to the LSR.
Recently Alcobé and Cubarsi (2005) published a full space motion analysis of a HIP-
PARCOS catalogue stellar sample. 13′678 stars are included which are maximally
300 pc remote from the Sun. They discriminate differentiated statistical behaviours
that are associated with stellar populations in the solar neighbourhood (see Fig. B.1
in the Appendix).
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Figure 1.10: Distribution in u and v velocity space from HIPPARCOS data. The
circled dot indicates the solar velocity. Samples of early-type stars contribute al-
most exclusively to the low-velocity region (solid ellipse), which contains the most
prominent moving groups. The region of intermediate velocities (dashed ellipse) is
mainly represented by late-type stars, of which ∼ 15% fall into this region. Gray
scales are linear in the velocity distribution and the contours contain, from inside
out, 2, 6, 12, 21, 33, 50, 68, 80, 90, 95, 99, and 99.9% of all stars. The 1σ uncertainty
in the contour lines is about 3 km s−1. (see Dehnen (2000); Fig.9)
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1.3.3 Orbital Resonance Effects

The solar neighbourhood shows irregularities which can perhaps be explained by
resonant phenomena produced by the main substructures of our Galaxy. Both the
spiral arms and/or the bar could be responsible for such effects.

Lindblad Resonances

Lindblad Resonances4 are defined by the intersection of a pattern speed Ωp and
combinations of the natural frequencies Ω and κ. Fig. 1.11 shows the Resonance
Diagram of a MW model (mod1-BA). The used potential is the same as the Stan-
dard model 20 from Bissantz et al. (2003) but with a halo modification, see Chap. 5.
These kind of models for the orbit analysis are used within this thesis. Red lines rep-

Figure 1.11: Resonance diagram for mod1 BA. Angular frequencies are shown in
red. The black line corresponds to the bar’s pattern speed. Intersections define the
Lindblad Resonances as described in the text.

resent the angular frequencies. Ω(R)± 1
2
κ(R) are the higher and lower ones, Ω(R) is

plotted in the middle. The pattern speed of the bar is shown by the straight black line
crossing the frequencies. The innermost intersections define the Inner Lindblad
Resonance (ILR) and the outermost the Outer Lindblad Resonance (OLR).
The middle intersection, where Ω(R) = Ωp is called the Co-Rotation (CR), here
the underlying stellar velocity field is equal to that of the bar.

4They are called Lindblad resonances, after the swedish astronomer Bertil Lindblad (1895 −
1965).
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The resonance condition is usually written as

Ωp = Ω(R)− n

m
κ(R). (1.41)

Since this condition makes reference to circular velocities and epicycle frequencies,
the entire concept is always related to the linear regime, where the epicycle approx-
imation or some analogue is valid. In this sense, every resonance corresponds to a
certain radius where Eq. 1.41 is fulfilled for some (n,m) values.
When viewed in the frame co-rotating the bar (see Chap. 5), the resonance condition
means that the corresponding epicycle orbit is closed. A particle will have completed
m cycles of its radial oscillation while having circled n times around the center.
Since in the outer regions of the Galaxy Ω(R) will always be a decreasing function
of R, orbits further out than CR will appear retrograde in the co-rotating frame.
Most resonances come in pairs, with one prograde member inside the CR radius,
and one retrograde outside. These pairs correspond to positive and negative sign of
a certain n. An overview of the most important resonances is shown in Tab. 1.4.

n m
CR 0 Co-Rotation
OLR -1 2 Outer Lindblad Resonance
ILR +1 2 Inner Lindblad Resonance
(IILR,OILR) depending on (Ωp,Ω, κ, n,m)

more than 1 ILR-intersection can occur

Table 1.4: Special cases

A bar potential has a multipole order of 2 given by its symmetry, and therefore
these resonances are supposedly the most significant.

Bar Effects

There is strong observational evidence and dynamical ground, that bars in galaxies
are confined to regions within the radius RCR of the co-rotation resonance. So this
radius can be seen as an upper limit for the bar-length. Nonetheless a bar influences
the outer parts of its host galaxy, most obviously by resonant phenomena.
Using linear perturbation theory for near-circular orbits (Binney and Tremaine,
1994), one finds that closed orbits in a barred potential are elongated either parallel
or perpendicular to the bar. The orientation changes at each of the fundamental
resonances: inside the ILR orbits are anti-aligned (so-called x2 orbits), between the
ILR and the CR they are aligned (x1 orbits), while between the CR and the OLR
the orbits are again anti-aligned (x1(2)), until they align again beyond the OLR
(x1(1)).

The situation at the OLR is sketched in Fig. 1.12, which shows two closed orbits
(solid curves) just inside and outside the OLR as they appear in a frame of reference
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Figure 1.12: Closed orbits (solid curves) just inside and outside the OLR of a rotating
central bar (hatched ellipse). The dashed circles depict the positions of the ILR,
CR, and OLR for circular orbit’s. Note the change of the orbits orientation at the
OLR, resulting in the crossing of closed orbits at four azimuths. The dot at the
lower left presents a possible position of the Sun. (Dehnen, 2000, Fig.1).

co-rotating with the bar. In this frame, the orbits near the OLR rotate counter-
clockwise for a clockwise-rotating bar, like the situation is in our MW. Thus, at bar
angles ϕ (In Fig. 1.12; Φ ≡ ϕ.); between 0 − 45◦, the closed orbits inside the OLR
move slightly outward, while those outside the OLR move inward. Clearly, if all
disk stars moved on closed orbits, the stellar kinematics would deviate from that of
a nonbarred galaxy only at positions very close to the OLR, where the closed orbits
are significantly non-circular. In particular, at azimuths where the closed orbits
from either side of the OLR cross, one would expect two stellar streams, one moving
inward and the other outward.
Fux (2001) and Dehnen (2000) found that if the Sun is just outside the OLR such
influence could explain the u-anomaly (see Fig. 1.10).
Dehnen showed the evidence that for positions up to 2 kpc outside the OLR radius
and at bar angles of ∼ 10−70◦, such features took the form of a bimodality between
the dominant mode of low-velocity stars centered on the LSR and a secondary mode
of stars predominantly moving outward and rotating more slowly than the LSR.
The bimodality present in the locally observed Fig. 1.10 is indeed very similar to
those emerging from the simulations presented in Dehnen (2000).

By using direct orbit integrations, Mühlbauer and Dehnen (2003) studied the kine-
matic response of the outer stellar disk to the presence of a central bar, similar to
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Figure 1.13: Geometry of the rotation of the galaxy and definition of coordinate
system. Note that positive values of radial velocity u are taken to point inwards and
that azimuth angle ϕ is measured from the bar major axis in the mathematically
positive sense, opposing to the direction of bar rotation in the MW (modulo 180◦).
Also shown is a velocity dispersion ellipsoid with its principal components σ1 and
σ2 and a (positive) vertex deviation `v (Mühlbauer and Dehnen, 2003, Fig.1).

the situation in the MW. They found that the bar’s OLR causes significant pertur-
bations of the velocity moments. With increasing velocity dispersion, the radius of
these perturbations is shifted outwards, beyond the nominal position of the OLR,
but also the disk becomes less responsive. Following Dehnen (2000) in assuming
that the OLR occurs just inside the solar circle and that the Sun lags the bar major
axis by ∼ 20◦ (e.g. Bissantz and Gerhard, 2002), they found

1. no significant radial motion of the LSR,

2. a vertex deviation of `v ∼ 10◦ and

3. a lower ratio σ2
2/σ

2
1 of the principal components of the velocity-dispersion

tensor compared to an unperturbed disk. (For the coordinate system see
Fig. 1.13.)

All of these are consistent with the observations of the solar neighbourhood
kinematics. Thus it seems that at least the lowest-order deviations of the local-
disk kinematics from simple expectations based on axisymmetric equilibrium can be
attributed entirely to the influence of the galactic bar. Generally they found that
these deviations are largest near the OLR, the apparent radius of which, however,
may be shifted outwards by 10 − 20% due to the non-circularity of the orbits in a
warm stellar disk.

Radial motions ū of standards of rest can be seen to occur quite frequently (see
Fig. 1.14), and can reach magnitudes of the order of about 0.02v0, corresponding
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Figure 1.14: Bar-induced deviations of the mean velocity from the unperturbed
state up to m = 2 for σ0 = 0.2v0. The bar is aligned with the horizontal axis and is
supposed to rotate clockwise. The solar circle is dashed, dotted circles are CR and
OLR. x and y axis are normalized to R�, the solar circle (Mühlbauer and Dehnen,
2003, Fig.8).

to about 5 km s−1 for the MW. Because of the sin 2ϕ dependence, these would be
maximal at ϕ = 45◦, which is quite near the proposed position of the Sun (ϕ0 ≈ 30◦;
see Tab. 1.1). In its radial dependence however, ū swings through zero shortly outside
of the OLR, and it may well be that the Sun just meets that point. So they cannot
give a definite prediction for the bar-induced radial motion of the Sun’s LSR, not
even for its sign, except that it should be very small (at most a few km s−1). This is
consistent with a measurement5 of ū= 1.5 ± 2.2 km s−1 for the mean radial motion
of a sample of halo subdwarfs with respect to the LSR (Gould (2003)& its erratum
2004).

Spiral Arm Effects

Quillen and Minchev (2005) explain the u-anomaly with the effect of spiral arms.
Clumps in the solar neighbourhood’s stellar velocity distribution could be caused
by spiral density waves. In the solar neighbourhood, stellar velocities corresponding
to orbits that are nearly closed in the frame rotating with a spiral pattern represent
likely regions for stellar concentrations. Via particle integration Quillen and Minchev

5Gould (2003)/Gould (2004) calculated the stellar halo parameters out of 4588 subdwarfs. He
claims, that the bulk halo motion relative to the LSR are not far from the movement of the
Sun relative to the LSR. So all his velocity-ellipsoid parameters are within their errors consis-
tent with zero, or more precisely mentioned: V1 = 1.5 ± 2.2 km s−1 and V3 = 0.3 ± 2.4 km s−1;
(radial/outward,vertical/upward)
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showed that orbits can intersect the solar neighbourhood when they are excited by
Lindblad resonances with a spiral pattern. They found that a two-armed spiral
density wave with pattern speed placing the Sun near the 4 : 1 ILR can cause two
families of nearly closed orbits in the solar neighbourhood. One family corresponds
to square-shaped orbits aligned so that their peaks lie on top of, and support, the two
dominant stellar arms. The second family corresponds to orbits 45◦ out of phase with
the other family. Such a spiral density pattern could account for two major clumps
in the solar neighbourhood’s velocity distribution. The Pleiades/Hyades moving
group corresponds to the first family of orbits, and the Coma Berenices moving
group corresponds to the second family. Quillen and Minchev’s model requires a
spiral pattern speed of approximately 0.66± 0.03 times the angular rotation rate of
the Sun, which is 18.1± 0.8 km s−1 kpc−1.
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The OB Star Sample

The goal of this section is to identify a sample of OB stars with complete phase
space information, for kinematic analysis in later sections, and to investigate the
characteristics of this sample such as completeness, errors, etc.
A detailed description of catalogues and coordinate transformations used is given in
App. D.

2.1 Basic Sample

We begin with the 10’533 O and B stars in the Hipparcos catalogue (Perryman
et al., 1997) which are listed with detailed spectral type (hereafter sample B10).
The spectral classification information given in the Hipparcos catalogue (spectral
type plus luminosity class) is taken from various Hipparcos-external sources (see
Perryman et al., 1997), notably the Michigan Spectral Survey in the southern sky
(Houk and Smith-Moore, 1988) and the SIMBAD data base.

We use trigonometric distances for these stars from the Hipparcos catalogue, and
photometric distances from Drimmel (2000). The trigonometric parallaxes are given
in the catalogue for all stars, even if the value given is not significant or negative
(i.e., the true parallax is smaller than its error), but they will be used only when
sufficiently accurate; see below.

The photometric distances for the stars with complete spectral classification are
taken from Drimmel (2000); they are calculated using the absolute magnitudes and
colors for the different stellar types from Schmidt-Kaler (1982). For the stars without
luminosity classification (hereafter, nonLC stars), photometric distances are based
on reddenings and estimated absorptions (Smart et al., 1997); these distances are
much less accurate. In addition, the nonLC stars are predominantly in the North,
because of the use of the more complete Michigan Spectral Survey in the South.
Thus including these stars would result in distance errors that are systematically
larger in the North. For these reasons we exclude the 3291 nonLC OB stars from
our sample.

For some stars, errors in B-V and the cosmic scatter in (B-V)0 can result in
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formally negative values of the measured B-V, and thus in negative values for the
absorption AV used in the photometric parallax determination. We also exclude the
241 stars with such non-physical data, leaving 7001 OB stars in the sample (LB10
hereafter).

Radial velocities for these stars are taken from the General catalogue of mean
radial velocities III/213 of 36′145 stars (Barbier-Brossat and Figon, 2000, hereafter
BB00), using HIP = HIC as a matching criterion. The resulting sample (basic sam-
ple RB10) is composed of 3380 OB stars with complete phase-space information:
Positions (Galactic coordinates l,b; heliocentric distances), space motions (radial ve-
locities; proper motions). Further data about these stars (spectral types; luminosity
classes; magnitudes) are also retained. Figure 2.1 shows the positions and velocities
of the stars from this sample that fall in an 8 kpc× 8 kpc square around the Sun.

2.2 Errors for Observed and Inferred Quantities

2.2.1 Position (α, δ)

The Hipparcos errors for the observed positions (α, δ) are negligible for this work.

2.2.2 Distances

We use the trigonometric distances from Hipparcos as long as the error given is
at most 20%. If the parallax error exceeds 20% or the value given is negative or
zero, we use the photometric distances. The maximum distance of OB stars with
parallax errors ≤ 20% is around 440 pc. Thus in our basic sample, 1017 stars have
distances given by parallax measurements and 2353 have distances determined from
spectroscopic parallaxes.

The errors of photometric distance determinations are difficult to determine.
Some papers use global errors of 20− 40% (Russeil, 2003). We use the photometric
distances from Drimmel (2000) along with their estimated errors for the absolute
magnitude,

σM = 0.5 +max[0, (m− 6.5)/6]−M/12. (2.1)

Here the term depending on apparent magnitude m can be interpreted as a result
of the higher occurrence of classification errors at fainter magnitudes, and the term
depending on absolute magnitude M can be seen as an increasing cosmic error
and/or uncertainty for the more luminous stars. Errors for the stars with D ≤ 4 kpc
in the basic sample computed from Eq. 2.1 are shown in the top panel of Figure 2.2,
along with a curve showing the mean dependence on distance.

The logarithmic dependence of the distance modulus m−M = 5 lg(D)− 5+AV

on distance leads to an asymmetric distribution of distance errors; for ∆M = ±σM

we have ∆ lg(D) = ∓σM/5 or

∆D± = D ×
(
10∓σM/5 − 1

)
. (2.2)
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Figure 2.1: Heliocentric positions and velocities projected onto the Galactic plane
for the OB stars in the Basic Sample RB10 (3305 of 3380 stars fall within the plot).
The plot shows an 8 kpc×8 kpc square around the Sun, which is located at the origin
of the coordinate system in the figure. The Galactic Center (GC) is located in the
direction of the positive X-axis, at (8 kpc, 0). The direction of Galactic rotation
(GR) is downwards in this plot, along positive Y . The small *–symbols indicate the
projected positions of the stars, the lines indicate the directions and amplitudes of
their velocities relative to the Sun. The length of the bar in the lower left corner
corresponds to a velocity of 220 km s−1. Due to differential Galactic rotation, the
OB stars as a whole appear to “fly” from the lower right corner around the Sun to
the upper right corner.
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Distance errors determined from this equation for the stars in the basic sample RB10
are shown in the second panel of Figure 2.2. Both the points for the individual stars
and the curves for the mean dependence on distance clearly show the asymmetry
between the near and far sides implied by Eq. 2.2. Differentiating the distance
modulus gives

∂(m−M)

∂D
=

5

ln 10

1

D
, (2.3)

so for small σM and σD one has in linear approximation

σD =
ln(10)

5
σMD. (2.4)

The approximation ∆D = σD is also shown in Figure 2.2; it is intermediate between
the curves from Eq. 2.2. All three curves show an approximately linear increase with
distance.

2.2.3 Proper Motions and Velocities

Proper motions and their errors are taken directly from the the Hipparcos catalogue.
Heliocentric radial velocities come from the catalogue of Barbier-Brossat and Figon
(2000), which also lists errors for most of these radial velocities. Some radial velocity
errors are given only in terms of letter codes, which translate into estimated values in
multiples of 5 km s−1. 217 stars in our sample have no radial velocity errors given in
the catalogue. For these stars we use a constant error σRV = 8 km s−1, corresponding
to the mean error computed for the stars with catalogue errors, which is independent
of distance. The stars without error listed in the catalogue have no bias with respect
to their directions or distances.

Torra et al. (2000) used another sample of O and B stars from the Hipparcos
catalogue, with distances up to heliocentric 1.5 kpc and a cut in the radial velocity
error of 10 km s−1. Then the resulting mean radial velocity error in their sample is
3 km s−1 (see their Fig. 9). We have not made such a cut, because for stars beyond
∼ 800 pc, the proper motion errors dominate.

From radial velocities, proper motions, and distances we calculate velocities U ,
V , W relative to the Sun’s velocity, where positive U is inwards along the direction
Sun–Galactic Center, positive V is along the direction of Galactic rotation, and
positive W is upwards from the Galactic plane. The bottom two panels of Figure 2.2
show the errors in (U, V ) obtained by standard error propagation of the catalogue
errors for the proper motions and radial velocities and the estimates (2.4) for the
distance errors. Mean error curves computed as before are also shown. These mean
errors rise from about 5 km s−1 within a few hundred pc of the Sun to 18 km s−1 and
14 km s−1 in U and V at 2 kpc distance, respectively.
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Figure 2.2: Errors in the absolute magnitudes, distances, and inferred U, V velocities
of the 3276 stars in the basic sample with D ≤ 4 kpc, versus their heliocentric
distances (dots). The top panel shows the absolute magnitude errors estimated
from Eq. 2.1; the thick blue line shows a mean value, determined in each distance
bin as the arithmetic mean of the ±25% stars around the median error for all stars in
the bin. The second panel shows individual derived distance errors corresponding to
1σM magnitude errors towards the near and far sides [lower and upper distributions
of points and red lines, cf. Eq. 2.2], as well as the symmetric linear estimate from
Eq. 2.4 (middle blue curve). Curves for the mean errors are computed similarly
as for the magnitude errors. The bottom two panels show the derived errors in
the two in-plane velocities U, V , obtained by standard error propagation of the
catalogue errors for proper motions and radial velocities, and the estimates (2.4) for
the distance errors. The mean error curves computed as before are also shown.
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2.3 Completeness

In this Subsection we discuss the completeness of our sample, particularly in view
of possible kinematic biases. The simplest and surest way to ensure an unbiased
sample is to examine only the complete magnitude range of the catalogue, so this is
discussed first.

2.3.1 Magnitude Limited Samples

According to Mignard (1997); Perryman et al. (1997), the completeness of the Hip-
parcos catalogue depends on latitude and spectral type and varies from mV = 7.3
near the galactic plane to mV = 9.0 in the polar regions. Comparing with the Tycho
catalogue, which is 99.9% complete to mV = 10.0 (Egret and Fabricius, 1997), 59
(857) Tycho stars with mV brighter than 7.0 (7.5) were found missing in the Hip-
parcos catalogue (Drimmel, 2000; Smart et al., 1999), suggesting that the Hipparcos
catalogue is 99.5% (97%) complete to these magnitude limits. These authors used
the classical approach of examining the log of the number of sample stars in suc-
cessive apparent magnitude bins, to investigate the completeness of the Hipparcos
OB star sample with full spectral classification, π < 2mas, and |b| < 30 deg. From
comparing with a straight line fitted to the (essentially complete) magnitude range
5.0...7.0, they estimated that this sample is approximately 98% (96%) complete to
mV = 7.6 (8.0). Here we follow a similar approach for the samples used in the
remainder of this work.

Figure 2.3 shows histograms of the log of the number of stars in bins of apparent
magnitude, for the B10 sample, a subsample of OB stars of type B3 and earlier
(B3, ages less than approximately 60 Myr), and the subsample of OB stars of type
B6 and later (B6+, main sequence lifetimes greater than approximately 150 Myr).
The first two histograms do not include stars nearer than 600 pc, in order to avoid
effects of local OB associations in the Gould belt. Most stars in the B6+ sample
are closer than this distance, so for this sample this is not practical. For each of
these samples, we fit a straight line to the magnitude range indicated on the plot and
interpret the fall of the logarithmic counts at faint magnitudes as the onset of sample
incompleteness. From these plots we estimate magnitude limits (where the number
of stars in the bin is half that implied by the fit) between mV,lim = 8.0 to 8.2. Down
to mV,lim, these samples are about 80% complete. Completeness values estimated
from the figures down to other apparent magnitude cutoffs are given in Table 2.1.

It should be noted that there is some uncertainty to these values. Varying the
fitted magnitude range by ±0.5 mag and the bin sizes by ±0.1mag can change the
completenesses so determined by up to 7%. Also, including the stars nearer than
600 pc makes the slope of the fitted line shallower, thus increases the completeness
at fixed magnitude and pushes the completeness magnitude to fainter values. The
values given in Table 2.1 for the B10 and B3 samples are therefore lower limits.
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Figure 2.3: The log of the number density per apparent magnitude bin, 0.2[mag],
for three samples of OB stars. The top panel is for all stars in the B10 sample with
distances D > 600 pc. The second panel is for all stars of type B3 and earlier, again
with D > 600 pc (sample B3). The bottom panel is for an older star sample (B6+)
with types B6 and later; here there are no distance restrictions because almost all of
these stars are near the Sun. For all three samples, the deviation of the logarithmic
counts from the straight line, fitted to the magnitude range mV = 5 to 7 mag for B10
and B3, and mV = 4 to 7 mag for B6+, gives an estimate of where incompleteness
starts. The B10 sample is comparable with the sample studied in Smart et al.
(1999). The red lines illustrate the respective magnitude limits (where the number
of stars in the bin is half that implied by the fit). Estimated completenesses for
several values of apparent magnitude are given in Table 2.1.

39



Chapter 2. The OB Star Sample

mV 7.0 7.4 7.8 8.0 8.2 8.4

B10 0.61 4553 103.3 102.7 92.9 86.8 78.9 68.8
B3 0.52 1542 98.6 94.7 84.3 75.8 67.7 59.2
B6+ 0.47 7015 99.0 92.5 84.1 79.5 74.3 67.5

slope N(sample)

Table 2.1: Cumulative completeness of the three samples, down to various magni-
tude limits, estimated by comparing the number of stars in the respective histograms
shown in Fig.2.3 with the corresponding fitted slope. Columns give: (1) the sample;
for B10 and B3 stars closer than D ≤ 600 pc are excluded to avoid irregularities
produced by local feature effects. In the older sample B6+ this is not feasible be-
cause almost all these stars are located near the sun; (2) the fitted slope; for a
uniform distribution of stars the log of the cumulative counts should increase lin-
early with a slope of 0.6, see Smart et al. (1999); (3) the number of stars in the
sample histograms in Fig.2.3; (4-9) cumulative completeness down to magnitude
mV . The bin-wise completeness is 50% at the limiting magnitude, mV = 8.0[mag]
for sample B3 and 8.2[mag] for samples B10 and B6+; cumulative completenesses
for the limiting magnitudes are given in bold face.

2.3.2 Subsamples with Radial Velocities

Figures 2.4–2.5 show the fraction of stars in the B3, B6+, and B10 samples with
complete luminosity class information and with radial velocity from BB00, as well
as the radial velocity completeness, both differential in bins of apparent magnitude
and cumulative from the bright end down to a given magnitude. As radial velocity
completeness we take the fraction of LC stars with measured radial velocity, as-
suming that the luminosity classification is uncorrelated with the availability of a
radial velocity measurement. One sees that the B3 sample is the most complete,
with 90% of the stars down to mV,lim = 8.0 having radial velocities, whereas the
older B6+ sample is only ∼ 45% complete down to its mV,lim = 8.2, and the B10
sample ∼ 60% complete down to mV,lim = 8.2. Figure 2.6 shows that the B3 sample
does not have a large kinematic bias, as some earlier samples had (Binney et al.,
1997b): around 90% of the stars with the smallest proper motions in this sample
have a radial velocity measurement.

To summarize this section: the B3 sample can be considered complete down to
a limiting magnitude of mV = 8.0, and down to this limiting magnitude, it is 90%
complete in radial velocities, both overall and differentially even for the lowest proper
motion stars. We will thus use this sample restricted to mV ≤ 8.0 (hereafter, RB3-
8.0) to obtain a kinematically unbiassed sample. A second sample will be obtained
from the B10 sample without magnitude limit. The results based on this sample
will be compared with those from the B3 sample to check for possible effects of
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kinematic bias. First, however, some further cuts are needed, as described in the
next Subsection.

Figure 2.4: Radial velocity completeness of the B3 sample, per bin (upper panel)
and cumulative (lower panel). The blue squares and thick dark blue lines show
the fraction of B3 sample stars with full luminosity classification (sample LB3)
that have also radial velocities (sample RB3). The bin-wise and cumulative ratios
RB3/LB3 and ΣRB3/ΣLB3 quantify the purely kinematic aspect of the subsam-
ple (in)completeness. The green triangles and green lines show the fraction of all
stars of type B3 and earlier in the Hipparcos catalogue that have complete spectral
classification, LB3/B3 and ΣLB3/ΣB3, and the light-blue stars and thin lines show
the fraction of all stars of type B3 and earlier in the Hipparcos catalogue that have
complete spectral classification and radial velocities, RB3/B3 and ΣRB3/ΣB3. The
vertical red line shows the completeness magnitude from Fig. 2.3.
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Figure 2.5: Same as Fig. 2.4 but for the B6+ sample in the upper panel and B10
sample in the lower.
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Figure 2.6: Upper panel: number of stars versus measured proper motion for the
B3 sample, in 2[mas/yr] bins. Upper, black histogram: stars with full luminosity
classification (LB3), down to the limiting magnitude mV,lim = 8.0. Lower, red
histogram: all of these stars with radial velocity measurement (RB3-8.0). The
numbers in brackets are the corresponding sample sizes. Lower panel: ratio of both
histograms. Notice the absence of large kinematic bias.
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2.4 Final Sample Selection

In this Subsection we define the subsamples used for the kinematic study of this
paper. Our aim is to understand the large-scale velocity field of OB stars in the
Galactic disk near the Sun, as an approximation to the velocity field of the gas from
which they formed. Thus here we remove runaway stars and members of prominent
OB associations in the Gould belt. The kinematics of the former reflects star-star
interactions, whereas the velocities of the latter may be due to local dynamical
features. Then we implement a random procedure to construct a spatially nearly
homogeneous sample of OB star tracers for the young star velocity field near the
Sun.

2.4.1 Position Cuts and Velocity

OB stars may acquire large random velocities either by being ejected from binaries
or by interactions with other stars in their natal star clusters. Typically, stars
with random velocities greater than 20 − 40 km s−1 relative to the local standard
of rest (LSR) are deemed to be runaway stars. There are some that even reach
random velocities of ∼ 200 km s−1 (e.g., Dray et al., 2005). As the directions of
these velocities will also be random, many OB stars with large distances from the
Galactic plane are likely to be runaway stars and to have a broad distribution of
velocities.

Figures 2.7 and 2.8 shows that this is indeed the case: this figure presents the U
velocity distributions of OB stars in different bins of height |z| above the Galactic
plane. Stars close to the plane (|z| ≤ 100 pc) have a nearly Gaussian U -velocity
distribution, while stars far from the plane (|z| > 400 pc) have an essentially uniform
distribution. At intermediate heights the velocity distribution is a superposition
of these two distributions; in the range 100 pc ≤ |z| ≤ 200 pc the Gaussian still
dominates, while for 200 pc ≤ |z| ≤ 400 pc the uniform distribution contributes a
comparable number of stars. Plots of V - and W -distributions look very similar,
so in order to exclude runaway stars from the sample, we will henceforth use only
stars with |z| ≤ 200 pc. Furthermore, we also exclude stars with large heliocentric
velocities at small |z|. While these heliocentric velocities increase with distance also
due to differential rotation, the stars with the largest velocities are again likely to be
runaway stars. Having inspected the distribution, we choose a practical approach:
after fitting a straight line to the distribution of absolute velocities to obtain the
mean Vabs(D), we exclude all stars that have Vabs outside the range Vabs(D) ± y,
where y = [(15/2)D/(kpc) + 30] km s−1, (see Fig. 2.9).

2.4.2 Gould Belt and OB Associations

Many of the young stars near the Sun as well as nearby HI and H2 gas appear to
be organized in a disk- or ring-like structure called the Gould belt (see Sec. 1.3.2
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Figure 2.7: Distribution of U velocities for the 3380 stars of the RB10 sample,
divided in 4 bins of different height above/below the Galactic plane, |z|[pc]. The
number of stars in each slice is indicated in the plot. Light blue lines are drawn
at ±50[km/s] to help compare the different distributions, and the red curves show
Gaussian fits.

“Substructures near the Sun” for a review). The distribution and dynamics of the
gas can be described by an expanding cylindrical shell model sheared by Galactic
differential rotation, with center ∼100 pc outwards from the Sun, a height of some
60 pc, semi-major axes 350 pc × 230 pc, inclined by ∼ 17 deg with respect to the
Galactic plane. Many of the local OB associations are located on the Belt rim, and
the inclination inferred from the OB stars is very similar to that inferred from the
gas. The origin of this structure is still not well-understood, but it is a nearby region
of intense star formation over the last 30 − 40 Myr whose dynamics has perturbed
also the kinematics of the nearby young stars formed from it. For our purposes, we
wish to reduce the influence of the Gould Belt stars on the larger-scale velocity field
near the Sun, as much as possible. We have therefore removed 164 stars from our
RB10 sample that can be identified as members of the OB associations identified
by de Zeeuw et al. (1999), see Figure 2.10, and correspondingly, 43 stars from the
RB3-8.0 sample.
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Figure 2.8: Upper: Same as Fig. 2.7 but for the distribution of V velocities. Lower:
Distribution of W velocities.
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Figure 2.9: The velocity amplitude of 3059 RB10 stars out of the ±2 kpc square
region are plotted against their Sun distance D. In the panel are only the can-
didates with velocities slower ±200 km s−1 plotted, some can reach values higher
±400 km s−1. The thick middle line is a linear χ2-fit over all data. (Noticeable by
the slight shift upward.) The two border lines show the Runaway star limits given
by y = [(15/2)D/(kpc) + 30] km s−1

2.4.3 Distance Distribution

Most of the later-type OB stars are relatively close to the Sun. Thus in the region
of interest, ∼ 2 kpc around the Sun, the distance distribution for the RB10 sam-
ple stars is very non-uniform. For an analysis of the velocity field, on the other
hand, it is advantageous to work with a sample of tracers with an approximately
uniform spatial distribution. Also, the fitting algorithm employed here can handle
only samples of . 800 stars. We have therefore employed the following random
procedure to trim the RB10 sample to a manageable, more uniformly distributed,
final sample (hereafter: FB10). We choose a number of rings with radii ri centered
on the Sun, and sort all stars into the annuli between these rings. In each annulus,
only those stars are kept for which the modulo function mod(n, zi) = 0. Here we use
the Hipparcos-numbers as the modulo function input n to ensure the randomness
of the procedure. The Hipparcos (HIP) numbers reflect the right ascension of the
stars, so this choice also ensures that in a given ring, stars are selected in an approx-
imately uniform way. We vary the free parameters ri, zi in this procedure until the
distribution of stars becomes as uniform as possible. Fig. 2.10 shows the positions
and velocities of the stars chosen in this way to remain in the FB10 sample, and
Figure 2.11 shows that indeed their distance distribution becomes that of a uniform
distribution out to ru ∼ 1 kpc, falling off only at greater distances. Samples with
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Figure 2.10: Positions and velocities projected onto a ±2.2[kpc] square region of
the Galactic plane around the Sun, for the stars in the homogenized FB10 sample.
This sample contains 728 stars of the 3204 stars in this square in the RB10 sample.
The reduction from the RB10 sample to the FB10 sample was done in four steps,
(1) taking out 93 runaway stars, (2) taking out 203 stars with |z| > 200 kpc, (3)
taking out 164 stars in OB associations, and (4) using the modulo function approach
described in the text to homogenize the distribution in an unbiased way. Red squares
indicate where the OB-Associations were located before we excluded them. Some
stars belong to more than one of the subgroups taken out in (1)-(3). For reference,
the red line shown in the lower left corner corresponds to a velocity of 22 [km/s]. The
plotted square is the area within which we fit the velocity with the WW-algorithm.
The blue square is the area within which we plot below streamlines through the
velocity field; this is slightly smaller to reduce boundary problems. Nonetheless,
there remain areas near the border of the blue square where there are no stars. In
these regions the WW-algorithm will extrapolate the velocity field, so it cannot be
trusted as well there as in areas where there are stars.

larger ru would be possible only at the price of keeping smaller numbers of stars.
For the RB3-8.0 sample no such modulo reduction is used. After removing runaway
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Figure 2.11: Upper: Distance distribution of the stars in the ±2.2[kpc] square region
from the homogenized FB10 sample, in bins of distance from the Sun. The red line
shows a slope of 2 ∗ π applicable for a homogeneous distribution. For this sample
size this can be achieved out to D ∼ 1 kpc. Beyond D ∼ 1.5 kpc the number of
observed stars decreases too rapidly for this to be possible. Lower: Same as the
upper plot, but for the FB3-8.0 sample.

stars, stars at |z| > 200 pc, and members of OB associations the trimmed RB3-8.0
sample (hereafter, FB3 sample) is already down to . 700 stars. For this sample,
ru ∼ 600 pc, (see the lower panel in Fig. 2.11).
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The FB3 sample of early OB stars (magnitude limited, highly complete, but limited
in number and not ideal in spatial coverage) and the FB10 sample of all OB stars
(not magnitude limited, strongly incomplete, but larger and with somewhat better
spatial coverage) are our best tracers for the Galactic disk velocity field; they will
be analyzed in Chap. 4.
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Fitting the Velocity Field

The goal of this work is to relate the velocities of the OB stars in our sample to
the average velocity field in the Galaxy near the Sun. Specifically, we assume that
the velocities of the Galactic OB stars can be thought of as superpositions of a
mean velocity field, that descends from the velocity field of the gas from which these
stars were born, with individual velocities whose directions relative to the mean
field are randomly distributed. These individual velocities will be due to a variety
of dynamical processes occuring at or after the birth of these stars. Our goal is
to recover the mean velocity field by fitting a smooth velocity field to the in-plane
velocities of all our sample stars.

3.1 Smoothing Algorithm

For this task we use the non-parametric smoothing algorithm and software of Wahba
and Wendelberger (1980, hereafter WW-algorithm)), originally developed for ana-
lyzing meteorological data. We fit a two-dimensional surface to the data points for
each of the in-plane velocity components U, V , as a function of position X, Y rela-
tive to the Sun, and thus derive a smoothed velocity field {U, V }(X, Y ). Now let

Φ( ~X) denote either of {U, V }(X, Y ). The WW-algorithm uses thin plate splines to

represent a smooth solution Φ( ~X) that minimizes the quantity:

1

N

N∑
i=1
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∂Y 2

]2
)
dXdY. (3.1)

where Φi, i = 1...N are observations of Φ( ~X) + ∆Φ( ~X) at the positions ~Xi, with

Φ( ~X) representing the mean value and ∆Φ( ~X) the random component of the velocity
components U, V .
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In fitting smooth fields to the velocities U(X, Y ) and V (X, Y ), individual stars
are weighted (cf. Eq. 3.1) by their σ1 velocity errors, which include errors of the
proper motions and radial velocities and uncertainties in the distances; see Sec-
tion. 2.2. The positions of the stars, on the other hand, are kept fixed as determined
from their nominal distances. The uncertainties in the fitted solutions that arise
from the distance errors are evaluated independently by Monte Carlo simulations.

The degree of smoothness is controlled by the parameter λ; in the following,
we use Λ = log(Nλ). When Λ takes a small value, the derivatives of Φ( ~X) must
be large before they influence the fit, so the deviations between the fit and the
data will be minimized, and the algorithm will try to fit a very noisy model Φ( ~X)
nearly going through all data points. The converse happens when Λ takes a large
value, when the fit will try to mainly minimize the derivatives, so Φ( ~X) will be
nearly a plane. Intermediate between these two extremes there is a range of Λ
for which the algorithm finds a reasonably smooth solution that is also a good
representation of the true underlying field. The WW-algorithm includes a cross-
validation procedure to determine a suitable value of Λ, but for the sparse data
typical in astronomical problems this is usually not very accurate, and the suitable
range of Λ must generally be found by Monte Carlo simulations, taking into account
the spacing and observational errors of the various data points.

3.2 Monte Carlo Models

For testing the WW-algorithm and adjusting the smoothing parameter Λ, and for
understanding the results of applying the algorithm to the OB star data, we will
analyse simulated data sets. The general idea is to draw Monte Carlo realizations
from a known velocity field and random velocity distribution, so that the resulting
artificial data sets closely resemble the OB star samples under investigation. In
the first set of simulations, we determine the confidence with which we can recover
the original velocity field from these artificial data, as a function of the smoothing
parameter Λ. This allows us to determine the optimal value of Λ.

As our standard values for the galactocentric distance and circular velocity of
the LSR at the position of the Sun we take

R0 = 8.0 kpc, (3.2)

Vc,0 = 220 km s−1, (3.3)

but we will explore other values as well. As a realistic velocity field for the solar
neighbourhood, we take the often-used ansatz for the circular velocity curve

Vc(R) = Vc,0 ∗
( R
R0

)α

. (3.4)

Measurements of the velocity dispersions of nearby stars imply a gently falling ro-
tation curve; we use the ratio σφ/σR = 0.65 appropriate for both the bluest and
reddest stars (Binney and Merrifield, 1998, Table 10.2, §10.3), so that α = −0.155.
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A Monte Carlo simulation referring to a sample S with NS stars is set up as
follows. We first pick the positions of NS stars, either at the exact positions of the
sample stars (MCS simulation), or randomly from a homogeneous distribution in
the square around the Sun covered by the sample (MCH simulation). Then for each
Monte Carlo star at position (X, Y ) from the Sun we assign velocities as follows:

1. We compute its position (R, φ) with respect to the Galactic Center, and de-
termine the circular velocity according to Eq. 3.4.

2. We define local epicycle axes (x, y), with x radially outwards from the Galactic
Center and y along the direction of Galactic rotation; note that these become
x = −X and y = Y when the guiding center is at the position of the Sun. From
the corresponding radial and tangential velocity dispersions at the position of
the star, σx and σy, we draw epicycle velocities vx and vy randomly from
Gaussian distributions with dispersion σx for vx and σy for vy.

3. From vx and vy we determine the star’s epicycle phase β ≡ κt+ ψ, according
to

vx

vy

=
κ(Rg)

2Ω(Rg)
tan β, (3.5)

where κ, Ω are the epicyclic and circular frequencies, and for the moment we
take the star’s guiding center radius as Rg = R.
According to the Epicycle Theory introduced in Sec. 1.3.1.

4. From β and the epicycle equations

x = Ax cos (κt+ ψ) (3.6)

y = −Ay sin (κt+ ψ) (3.7)

vx = −Axκ sin (κt+ ψ) (3.8)

vy = −Ayκ cos (κt+ ψ) (3.9)

we determine the epicycle displacements (x, y) by which the star is shifted
from its guiding center position.

5. Now we shift the star’s guiding center by (−x,−y) and compute the new
circular velocity, κ, and Ω. For the same velocities (vx, vy) we get a slightly
modified β and (x, y), which take the star to a smaller (∆x,∆y) from it’s
assigned position (X, Y ). This iteration is repeated 4 times, when the star
is within maximally 4 pc of its assigned position (X, Y ), and is given the
circular velocity at its improved guiding center plus random epicycle velocities
corresponding to the velocity dispersions at (X, Y ) and a random phase.

6. From these velocities, we finally determine the velocities (U, V ) relative to the
Sun by transforming into the LSR system and by adding the peculiar velocities
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of the Sun in the LSR derived from Hipparcos data (Dehnen, 1998),

uo = 10.0 km s−1, (3.10)

vo = 5.2 km s−1, (3.11)

wo = 7.2 km s−1. (3.12)

Figure 3.1 shows positions and velocities for such an MCS simulation with 742
MC stars. The positions are those of the observed stars in an earlier version of the
FB10 sample. The velocities are assigned using the rotation field (3.4) and epicycle
dispersions

σx = 14.35+0.49
−0.4 km s−1 (3.13)

σy/σx = 0.65+0.07
−0.06 (3.14)

appropriate for solar neighbourhood OB stars (see Binney and Merrifield, 1998;
Dehnen, 1998, p.632, Table 10.2). (Here we have ignored the vertex deviation lv =
30.2+4.7

−5.3deg of these stars.) The velocity field fitted to the stellar velocities by the
WW-algorithm is also shown; it clearly gives a good representation of the mean
stellar velocities.

3.2.1 Including Observational Errors

The most important errors in the phase-space coordinates of the Galactic OB stars
come from uncertainties in their distances (Sect. 2.2 and Fig. 2.2), but also the
proper motion errors can be significant. Below we therefore use MC simulations
to assess the effects of these errors, which can be included in the scheme described
above as follows. Again, we first assign the (now, apparent) position of a MC star,
(X ′, Y ′). Then we draw a Gaussian distributed random value for the error in the
distance modulus, using the distance-dependent dispersion from Fig. 2.2. We then
convert to an (asymmetric) distance error ∆D, and compute the “true” distance D
and position (X, Y ) of the MC star. Using the approximate “true” guiding center
Rg, circular velocity, κ, etc., at Rg, we place the star on a random-phase position
on its epicycle, and iterate until its position is close to (X, Y ). Then we compute
heliocentric velocities (U, V ) appropriate for this star at (X, Y ), and convert them to
radial velocity and proper motions. Now the MC star is moved back to the apparent,
“wrong”, distance D′ and position (X ′, Y ′), while keeping its radial velocity and
proper motions unchanged. Finally, we add Gaussian random observational errors
to the radial velocity and proper motions, using the standard deviations of the
observed star at the same apparent position (MCS simulation) or the observed star
nearest in apparent distance (MCH simulation). Repeating this procedure for many
stars generates a MC sample which closely mimicks the observed samples including
the effects of errors.
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Figure 3.1: Simulation of a sample of 742 stars with a circular orbit velocity field.
The positions of the stars are as in the corresponding observed sample, while the
velocities are chosen randomly according to the rotation velocity field of Eq. 3.4 and
epicycle velocity dispersions as in (Eq. 3.13,3.14); see Sect. 3.2 (black crosses and
lines). The red dots and lines show the velocity field fitted to the simulated stars.
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Figure 3.2: RMS deviations of fitted Monte Carlo models from underlying circu-
lar rotation field, for a sample of 742 stars. Upper curve and sequence of points:
RMS deviation of fitted mean velocity U . Lower curve and sequence of points: of
fitted mean velocity V . Each point in this diagram corresponds to one of the 11
random MC models, fitted with a Λ value in the range [-5.0,2.0]. The solid lines
follow the mean over the points, as a function of Λ. Λ = −2 is near the minimum
deviation for both velocity components.

3.2.2 Determining Λ

To determine the smoothing parameter Λ in the WW-algorithm, we use 11 MC
models as in Fig. 3.1, all for the same sample of 742 stars. For each model, we fit the
two velocity components U(X, Y ), V (X, Y ) independently with the WW-algorithm,
for Λ values in the range [-5.0,2.0] in steps of 0.25. The RMS deviations of the
resulting mean velocity fields from the underlying circular rotation field are plotted
in Figure 3.2, as a function of Λ. One sees that the best fits are obtained for Λ ' −2,
when the RMS deviations in U and V are 3 km s−1 and 2 km s−1, respectively. The
exact value of Λ is not critical for the fit; e.g., for Λ in the range [-3.0,-1.0] the
RMS deviations are less than 4 km s−1, much smaller than the deviations in the
observed samples. Thus we will use Λ ' −2 throughout.
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Results

4.1 The Non-Circular Velocity Field Around the

Sun

The upper panel in Fig. 4.1 shows the velocity field fitted with Λ = −2 in a ±2.2 kpc
square, using the stars in the FB10 sample. A comparison shows that the velocities
of the individual stars (black stars and lines) and the vectors representing the fitted
velocity field (short red lines) delineate the same basic flow around the Sun as for
the circular velocity field shown in Fig. 3.1, but also that there are some noticeable
differences. In particular, the streamlines are more curved around the solar position
in the two left quadrants of Fig. 4.1 (upper panel) than in the corresponding part of
Fig. 3.1.

To make these differences more intuitive, we convert the velocity field of Fig. 4.1
(upper panel) to the Galactic Center reference frame, by subtracting the solar mo-
tion in the LSR [eqs. (3.10-3.12)] and adding the LSR rotation for an assumed
position of the Sun at R0 = 8 kpc. We then determine streamlines by integrating
through the converted velocity field. These streamlines are shown in Fig. 4.1 (lower
panel) along with circular flow lines through the same starting points on the upper
boundary of a ±2 kpc square embedded in the fit area. The differences between both
sets of streamlines are clearly visible. They are in the sense that the streamlines
derived from the OB star velocities are more elongated than those expected from
circular orbits, especially for radii R < R�. These elongated flowlines reach their
minimum galactocentric radii at points that are located approximately on the line
that connects the Sun with the Galactic Center.

For a more quantitative analysis of the deviations from a circular velocity field, we
draw circles of Galactocentric radii 6.5 kpc, 7.25 kpc, 8.0 kpc, 8.75 kpc, 9.5 kpc through
the (±2 kpc)2 region around the Sun. Along each circle we parametrize position by
the angle ΨGC as seen from the Galactic Center, with the Sun at ΨGC = 0 and
positive ΨGC along the direction of rotation. Then we decompose the velocity field
into radial vrad and tangential vphi velocity components as seen from the Galactic
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Figure 4.1: Upper: Velocities of the 728 stars from the FB10 sample that fall into a
±2.2 kpc square region around the Sun. The fitted velocity field is shown by the red
lines. The directions of Galactic Rotation (GR) and towards the Galactic Center
(GC) are indicated on the plot; a velocity of 22[km/s] is shown by the bar in the
lower left corner. Lower: Streamlines integrated through the fitted velocity field
in in the left panel, starting at the starred points along the upper side of the blue
square of size ±2.0 kpc by ±2.0 kpc. The direction of motion along these streamlines
is from top to bottom. For reference, the blue lines show circular flow lines with the
same starting points.
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Center, and determine vrad, vphi as a function of ΨGC along each of the five circles.
The resulting curves are shown in Figure 4.2. For reference, a circular velocity field
with vphi = Vc,0 would appear as a horizontal line in both panels of Fig. 4.2 (with
vrad = 0 and vphi = Vc,0, respectively).

Figure 4.2: Left: Radial velocity component vrad for the velocity fields fitted to the
FB10 (full line) and FB3 (dashed) samples, along circles in the Galactic plane. Radii
for the circles are given at the top of the figure, assuming R0 = 8 kpc. Position
on the circles is parametrized by the angle ΨGC as seen from the GC; see also
Fig. 4.1. Positive values of vrad point away from the GC. The green hatched area
shows the range of values obtained from MC simulations, with simulation stars on
the exact positions and with the underlying velocity field of the observed FB10
sample stars, and with randomly chosen epicycle phases and observational errors,
including distance modulus errors. In each bin, the range from the central 14/20
such simulations (70%, ' 1σ uncertainty) is shown. The blue hatched area gives
the 1σ range of values obtained from MC simulations based on the positions of
the FB10 sample but with a circular velocity field. Right: Same, but tangential
velocity component vphi. The rotation curve of the assumed circular velocity field
has exponent −0.155; the negative slope can be easily seen in the vphi-plot.

We must next assess how significant these deviations from circular streamlines
are. This is not trivial because of the complicated way in which errors in the
measured velocities, and especially in the distances of the sample stars, influence
the solutions for the fitted velocity field. We have thus performed MC simulations of
star samples generated with the technique described in Section 3.2.1, which closely
mimic the effect of epicycle motions and errors on the observed samples. As model
velocity field we have used both a circular velocity field and the elongated velocity
field that results from the FB10 sample (Fig. 4.1, lower panel). Both velocity fields
we sample either by a distribution of tracer stars at the exact positions of the FB10
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sample stars (MCS simulation) or by a homogeneous random distribution of an equal
number of stars (MCH simulation). An illustration of a MCH simulation with an
underlying circular velocity field and the characteristics of FB10-stars is given in
Fig. 4.3.

Figure 4.3: MCH-simulation. The characteristics of the observed FB10 sample stars
is conserved. The spatial distribution is homogeneous in the ±2.2 kpc square around
the Sun. Errors are chosen randomly according to the stars as described above.
Black stars and lines mimic the velocities and star positions out of the simulation
and the red dots and lines show the velocity field fitted to the simulated stars.

For each combination, we perform 20 simulations of sample generation and veloc-
ity field fit, and determine the mean bias and scatter of the fitted solutions. Fig. 4.4
represent the residuals velocities between the velocity fields obtained from the fit
to the simulated stars and the model velocity fields used to generate the simulation
data sets. 4 MC-sets are analysed for the two samples FB10 and FB3. In the follow
FBX counts for FB10 or FB3, depending the chosen sample. The results of these
MC simulations are recapitulated in Fig. 4.4.
From top to the bottom:

1. Vc MCS: an underlying circular model velocity field and stars at exacte po-
sitions of the chosen sample.

2. Vc MCH: a circular velocity field and a homogenous random distribution of
tracer stars

3. fO MCH: a fitted “elliptical” model velocity field as obtained form the real
fitted star sample FBX (Fig. 4.1 (lower panel) illustrate the streamlines of the
fitted FB10 stars.) and a homogeneous random distribution of tracer stars.
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4.1. The Non-Circular Velocity Field Around the Sun

4. fO MCS: an elliptical model velocity field and MC stars at the exact positions
of the FBX sample stars.

Figure 4.4: In all panels the red line shows the arithmetic mean over 20 simulations,
and the gray vertical lines show the total range of values obtained in these simula-
tions. The largest systematic errors ∼ 10 km s−1 occur in the top panels, mostly due
to lack or sample stars near some boundaries of the ±2.2 kpc square in which the
fits are performed. The typical spread is ∼ 5 km s−1. In all panels the fitted basic
sample and its component is given in red.

Figure 4.2 shows 1σ error ranges determined from MCS simulations assuming the
velocity field obtained from the FB10 sample stars (green hatched regions around
the FB10 curves), and also the circular orbit velocity field from Eq. 3.4 (blue hatched
regions around vrad = 0 and vphi = V0(R), respectively). In both cases the 1σ error
range is defined as the range covered by the central 14/20 simulation values of vrad

resp vphi in each bin of ΨGC along the five circles. Error regions based on MCH
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simulations are very similar to the ones shown in Figure 4.2. We can now state the
main results of our analysis as follows:

1. The mean velocity field fitted to the velocities of OB stars in the local Galactic
disk is inconsistent with circular flow lines; the small systematic effect (0 −
10 km s−1) and spread (∼ 5 km s−1) obtained from the MC simulations are too
small to explain the inferred non-circular velocities.

2. Inside the solar radius the streamlines are elongated, reaching their minimum
galactocentric radii with vrad ' 0 and vphi maximal approximately on the line
connecting the Sun with the Galactic Center (at ΨGC ' 0).

3. Within the errors, the larger, later type but incomplete FB10 sample and
the nearly complete, early-type OB star sample FB3 give the same result. In
Section 4.2 below we show that the small differences that are seen in the figure
can be traced to the better spatial coverage of the FB10 sample. From now
on we will thus mainly use FB10.

4. The modestly falling Galactic rotation curve used for the MC simulations
[Eq. 3.4 with α = −0.155] is not consistent with the fitted OB star velocity
field; see the blue hatched region in the right panel of Fig. 4.2. The maximum
vphi velocity on rings decreases by ∼ 3 km s−1 from 6.5 kpc to 9.5 kpc galacto-
centric radius. Moreover, because the elongation of the streamlines decreases
outwards from 6.5 kpc to & 8 kpc, the circularly averaged azimuthal velocity
may even increase with radius in the region probed by the OB stars.

In the following Chap. 4.2, we will show that these results are independent of
the fitting geometry, the assumed values of R0 and Vc,0, the vertical extent of the
sample, etc.

4.2 Model Robustness Tests and Systematic Ef-

fects

We have made a number of tests to ensure that the main result shown by the non-
circular velocity field in the local Galactic disk, is independent of the (sub)sample
used in the analysis, of the assumptions made for the Galactic parameters, and of
the technical details of the fitting procedure.

We found that the result is very robust; in particular, it does not depend on

1. the size of the region around the Sun used for the fitting

2. rotation of the region and of the coordinate system in which the fit is made
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3. whether we use the nearly complete sample of early-type OB stars, FB3, or
the full sample FB10

4. changing subsamples through different modulo functions

5. restricting the sample to lower heights (|z| < 100 kpc vs. |z| < 200 kpc)

6. using only the half of the sample with the better distance estimates

7. the assumed rotation velocity of the LSR

8. the assumed galactocentric solar radius

in the sense that differences to the original sample velocity field in the radial
and tangential velocities along circles are consistent within the Monte Carlo errors.
In fact, the non-circular nature of the velocity field is slightly accentuated when
we use the FB3 sample, or the half sample with the better distances; however, in
a way that can be understood in terms of increased systematic errors arising from
the less complete spatial coverage. Likewise, in the immediate solar neighbourhood
(. 150 pc) it is also accentuated if we use only stars with trigonometric distances.

One surprising result is that the line of zero vrad and maximal vphi in the fitted
velocity field nearly coincides with the line connecting the Galactic Center and the
Sun. As Figure 4.5 shows, this is not a result of working within the local (X, Y )
coordinate system in which the X-axis coincides with the Sun-Galactic Center line.
The deviations to the standard FB10 velocity field are small when the fitting co-
ordinate system is rotated with respect to the Sun-Galactic Center line by various
angles. The exceptional case (for rotation angle 50 deg) is instructive. The corre-
sponding vrad and vphi curves are included in the lower two panels of the figure and
the rotated coordinate system superposed on the sample is illustrated in the upper
left panel of Fig. 4.5. One sees in how substantial fractions of the positive (left) parts
of the circles at R = 8.0 kpc and R = 8.75 kpc happen to fall in regions without
observed OB stars. The velocity field in these regions must be extrapolated from
the surrounding regions that do have data points. The extrapolation is done by the
WW-algorithm in such a way as to minimize curvature, which in this case leads to
large (∼ 10 km s−1) deviations from the standard FB10 velocity field.

In general, samples with poorer spatial coverage lead to larger extrapolation
errors, which appear as systematic effects in diagrams such as Fig. 4.5. Similar
systematic effects are also seen in the MC results in the R = 6.5 kpc frame of the left
panel of Fig. 4.2, whereas they are absent in MCH simulations using homogeneous-
random samples of stars. See Fig. 4.4 an illustration of the MC error simulations
results. We believe that these systematic effects explain the slight accentuation of
the non-circular velocity field seen in the FB3 sample velocity field as compared to
FB10.
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Likewise in the half sample with the better distances (see Fig. 4.6, upper line
and middle left panel), the better quality of the distance information appears to be
outweighted by the poorer spatial coverage, again leading to a slightly accentuated
non-circular velocity field near the boundaries of the fitted region.

Figure 4.6 (lower two panels and the middle right one) illustrates that the fitted
velocity field is insensitive to the assumed values for the Galactic constants R0 and
Vc,0. Decreasing only R0 for fixed Vc,0 leads to a slightly accentuated non-circular
velocity field, as expected from the changed geometry, but the effect is within the
MC errors. On Fig. 4.6 (middle right panel) the spatial dislocation of the circular
line is drawn. It shows, that the displacement is only small by varying R� from
7.2, 8.0 to 8.7 kpc. However, when the angular frequency of the LSR is kept constant
while decreasing R0, the changes in vrad are negligible and the relative changes in
vphi are very small (even though the overall amplitude changes, of course).
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Figure 4.5: Upper left: Geometry of the reference circles in the 50 deg-rotated fit
region. The rotated directions to the Galactic Center (GC) and along Galactic
rotation (GR) are indicated on the plot. The red lines are the new integrated
positions, limited by the turned±2.2 kpc star sample (light blue) and the “normally”
±2.2 kpc square of stars (dark blue). Upper right: Different square sizes for which we
fitted the samples; ± 2.0, 3.0 kpc and ±2.2 kpc (FB10(1)) samples are represented in
in the lower panels. Lower: Influence of enlarging or rotating the fit region around
the Sun. Curves show the vrad (left, lower) and vphi dependence on ΨGC for the
FB10(1) sample fitted in squares of varying size around the Sun and in squares
rotated with respect to the standard fit area by different angles. Solid line: FB10(1)
sample fitted in standard fit area. FB10(1) is similar to the standard FB10, except
that a different modulo selection has been used to trim the number of sample stars.
Blue- and red-dashed lines: fit area changed to ±2.0 kpc and ±3.0 kpc on a side.
Dotted lines: fit area rotated with respect to (X, Y ) coordinate system by 50 deg,
and 200 deg. See text.
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Figure 4.6: Upper: Good to bad Distance test. Middle left: Distance to relative
distance error, the colors represent a bin wise splitting of the sample, into a half
with smaller (red) distance errors than the bin median and the others (green). The
results are represented in the upper panels. Middle right: The different R0 values
make almost no difference in the analyses placement (see text). Lower: Influence
of the assumed R0 and Vc,0 on the radial velocity component (left) and tangential
component (right) of the velocity field.
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Chapter 5

Periodic Orbits and Gas
Streamlines in a Dynamical Model
of the MW

5.1 Orbits in a Rotating Potential

5.1.1 Jacobi Energy EJ

We consider a potential rotating at a constant angular velocity ΩP
1. In such a case,

energy E and angular momentum L are not conserved. But there is a conserved
quantity which expresses the fact that the potential is time-independent in the
rotating frame with the known angular velocity. It is the so called Jacobi integral:

EJ = E − ΩP · L. (5.1)

The main “modernisation” of this energy is the integration of the Coriolis force, and
that we talk in terms of an effective potential, which is represented by the true
potential plus a term for the centrifugal force.

Φeff = Φ− 1

2
(~ΩP × ~r)2 = Φ− 1

2
(Ω2

PR
2). (5.2)

The Jacobi energy can be written as

EJ =
1

2
|~̇r|2 + Φeff , (5.3)

where ~̇r is the velocity in the rotating frame.
Figure 5.1 shows an effective potential with a typical volcano-shape. Of main

interest are the extrema, called Lagrangian points in analogy to similar points

1If the potential describes a MW model with an underlying symmetric mass distribution and a
bar feature, then ΩP represent the pattern speed of the non-axisymmetric feature.
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Figure 5.1: Contour plot of an effective bar potential Φeff in a co-rotating frame,
resulting in the typical volcano-shape. The Lagrange points are indicated: minima
L3; maxima L4, L5 and saddle points L1, L2.

in the theory of the restricted three-body problem. If a particle is located at these
positions it would describe a circular orbit co-rotating with the bar. The saddle
points L1 and L2, however, are generically unstable, i. e. , small radial deviations
from these equilibrium positions will become amplified. The minimum L3 at the
center is always stable, and stability conditions of the maximum points L4 and L5
depend on the details of the mass distribution. However, in a lot of cases they are
indeed stable, especially if the influence of the bar is not too strong.

5.1.2 How to Discover Periodic Orbits?

The shape of the galaxy is determined by allowed orbit families (for a classification
see Sec. 5.1.3) and vice versa, therefore orbit analysis is the tool to reveal the nature
of the the structure of the galaxy. The exact shape of a stellar orbit depends on a
variety of things, including the shape of the galactic potential and the energy and
angular momentum of the orbit itself. In general galactic potentials, stellar orbits
are not closed, but slowly fill all energetically allowable space as they move through
the galaxy.
We compute orbits in a coordinate frame co-rotating with the bar. In this frame,
each stellar orbit conserves the Jacobi Energy along its path. Henceforth we will
refer to EJ as Energy.
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Figure 5.2: Real space path of a loop orbit particle and its corresponding Surface
of Section. The number on top of the right panels indicates the number of plotted
time steps. Represented is a x1(1) loop out of mod1 B. (This kind of model will be
described in Sec. 5.4, Models with different OLR.)

A strong tool to define such orbits are Surface of Sections (SoS) which are
also called Poincaré sections. The idea behind is the following:
To envision the phase space motion of orbits in different potentials there is a 6-
dim phase space coordinate system (x, y, z, vx, vy, vz). By introducing the following
simplifications the problem gets tractable:

1. Concentration on a motion in a plane,
→ 4-dim space: (x, y, vx, vy)

2. Since EJ is conserved
→ Specification of a given orbit-energy,
→ 3 independent variables e. g. (x, y, vy;EJ)

3. Reduced plot
→ star-observation only when it crosses the y axis.
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→ (y, vy)

All this analysis could be done for any choice of corresponding phase space coordi-
nates, but in this chapter we restrict us to use the (y, vy)-plane.

Fig.5.2 shows an example of an orbit in a rotating frame. Shown in the upper
two panels are the SoS (left) and real space location (right) for the first 8′099 inte-
gration time steps. The star passed the y-axis four times while conserving its energy
along its path. In the SoS we see symbols in black, these are the “y-axis-crossing”
informations and the point where the orbit started is given in red. The data memo-
rised by the SoS are the velocity information from the chosen axis vy and the exact
y position where the orbit crossed the axis. The lower panels represent the situation
after 100′000 steps. Now the SoS build up a clear ring structure. In the middle of
it we find the start conditions for the “wanted” resonant orbit, the theory predicts
that there is, in such a peculiar case, an orbit which close itself after one revolution
around the GC in the rotating frame. It is called a parent orbit. The advantage of
this technique is, that it is much easier to hit start options of an oscillating orbit
than it would be for its parent. By iteration, start conditions can be improved step
by step.

Figure 5.3: Characteristic diagram of mod1 B showing the different regimes of orbits.
(This model will be described in more detail in Sec. 5.4, Models with different OLR.)

A characteristic diagram is a strong tool to represent periodic orbit families.
The diagram is built up by the orbit-energies and the specific axis-crossing distance.
These two informations fix a periodic orbit in a define potential and its position in
the diagram represents also its family membership.
Fig. 5.3 shows the characteristic diagram of mod1 B. The zero-velocity curve (ZV C)
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which no orbit can cross are plotted in colors, red is the x-long-bar-axis and green
the y-short-bar-axis. These border lines correspond to the case when EJ = Φeff .
The corresponding Lagrange points L1, L4 respectively, are indicated as well, just
one as a representer of its axisymmetric partner. There is a slight shift between the
two points, so that the co-rotation “region” is not a perfect circle but a ring with
a certain width, which is potential-dependent. By drawing vertical lines passing
through Lagrange points we define different orbit regimes:

1. Orbits can never be placed inside the region of the solid red (ZV C) line.
They can, however, at suitable “shooting”-angles cross inside the region be-
tween green and red.

2. Stars with EJ greater than Φeff (L4) (green) are free to explore the entire
space and are said to belong to the hot regime.

3. Stars with EJ < Φeff (L1) (red) and R > R(L1) can never penetrate the inner
part of the galaxy, and are confined to the outside region. It is called the cold
regime.

4. The bar regime is limited by the radius corresponding to (L1) for stars with
EJ < Φeff .

5.1.3 Orbit Family Classification

Some orbit families are well known and listed in reviews from Athanassoula (1984),
Contopoulos and Grosbol (1989), and Sellwood and Wilkinson (1993). The nomen-
clature used here is taken from Contopoulos and Grosbol and later used by Mühlbauer
and Dehnen.
Each orbit family member follows a characteristic behavior. The alignment of or-
bital elongation with the bar is a main attribute for families. It changes on every
fundamental resonance (see section 1.3.3), a behavior akin to the phase reversal of
a driven harmonic oscillator as it wanders over a resonance. As a consequence, bars
cannot extend beyond the CR region, because the highest populated orbits outside
CR are anti-aligned with the bar.
Inside corotation:
The x1 orbits are elongated parallel to the bar and are generally thought to support
it in self-consistent systems (Contopoulos, 1980). The x2 (and x3) orbits are elon-
gated perpendicular to the bar and only occur inside the ILRs.
Outside corotation:
At resonances with odd m values (see Tab. 1.4) the main x1 family branch off in two
orbit families. One is symmetric and one antisymmetric with respect to the bar’s
minor axis. The resonance with m = 1 the so called (1 : 1), creates such a pair of
orbit families, which are symmetric reflections of each other. The family which is
symmetric with respect to the bar’s minor axis is made up of stable orbits. At large
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radii, the families develop inner loops, which may penetrate right into the central
bar.
m = 2 shows a typical change, from orbits inside the OLR x1(2), which antialign
with the bar to orbits outside the OLR x1(1), aligning with the bar. The first sub-
family x1(2) extends to unstable orbits at larger radii, called x∗1(2).
Around the Lagrange points:
There are families L which are trapped around the (stable) points L4 and L5 on the
minor axis of the bar.

In Sec. 5.5 orbits out of different models will be presented. These main families
are illustrated in plots. It is interesting to recognise transformations caused by
changing the potential or/and the pattern speed of the bar-feature.

5.2 Dynamical Milky Way Models

My thesis is based on a series of models for the MW structure. In the past Englmaier
and Gerhard (1999), Bissantz and Gerhard (2002) and Bissantz et al. (2003) evolved
and improved these type of models.

The investigation started when the near-IR light distribution in the bulge was
mapped with the COBE/DIRBE satellite experiment. An asymmetry between the
two sides of the bulge data was found, i.e. the vertical extend of the bulge at positive
longitudes was larger than at negative longitudes, which can easily be explained by
a tri-axial or bar-like distribution of the bulge (Weiland et al. (1994), Dwek et al.
(1995)). For more information see Sec. 1.2.2. Hence, the MW bulge is referred to as
”the bar” or ”tri-axial bulge” in the literature. Existence of a bar in the MW was
first proposed by de Vaucouleurs, and invoked to explain the observed non-circular
gas dynamics by Binney et al. (1991).

Unlike distant galaxies, the inner part of the Milky Way is close enough to exhibit
perspective effects, i.e. extended objects in the front appear larger than objects in
the back. After the necessary corrections for dust absorption (Spergel et al., 1996),
the perspective effects combined with symmetry assumptions allow to invert the
observed projected light distribution into the underlying 3-dimensional light distri-
bution. In practice, the inversion of noisy data requires the additional assumption
of smoothness of the intrinsic light distribution. Binney and Gerhard (1996) de-
veloped a modified Richardson-Lucy inversion algorithm with 8-fold symmetry and
applied it to the COBE/DIRBE data. They find, that the bar is inclined by about
20◦ with respect to the Sun with the bar pointing towards us at positive longitudes.
A mathematically more complicated approach was taken by Bissantz and Gerhard
(2002), allowing for small deviations from symmetry. Inversion of the galactic bulge
was shown to be unique by Zhao (2000), if additional independent data is taken into
account. Without additional data, there is a degeneracy between bar inclination
and axis ratio. In the model of Bissantz and Gerhard (2002) the observed red clump
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star distribution along a few lines of sight towards the bulge has been used to break
this degeneracy. Red clump stars can be used like standard candles to estimate
distances to gain information about the missing third dimension. The result of this
study was the 3-dimensional light distribution within the inner galaxy (out to 5 kpc
in galactocentric radius).

For a complete mass model of the MW, additional steps are necessary. Bissantz
et al. (2003) extended the model beyond the data cube obtained in Bissantz and
Gerhard (2002) with a double exponential disk. Assuming a constant mass-to-light
ratio and an analytical description of the dark matter component. In addition,
a logarithmic spiral arm model for the spiral arms, which has been fitted to the
observed spiral arm pattern by Amaral and Lepine (1997), has been included in the
model of Bissantz et al. (2003), optionally rotating with a different pattern speed
than the bar. The complete mass model has still many free parameters:

• mass-to-light ratio,

• pattern speeds of bar and spiral,

• inclination of bar and spiral pattern with respect to the Sun, and

• dark matter halo parameters.

In order to estimate values for all these parameters gas dynamical models have
been used to compare with the observed gas kinematics in the MW. Bissantz et al.
used a multipole expansion method developed by Peter Englmaier for calculating
the gravitational potential of the rigidly rotating bar and spiral potential. All non-
axisymmetric density variations beyond some cutoff radius Rcut = 3.5 kpc (Bissantz
and Gerhard, 2002) have been attributed to the spiral pattern, while density varia-
tions inside this radius are considered part of the bulge/bar. This allows separation
of bar and spiral pattern as well as experiments with modified relative strength of
spiral and bar perturbation. The numerical scheme used for calculating the hydro-
dynamics was ”Smooth Particle Hydrodynamics” (SPH) in 2 dimensions based on
a code originally developed by Steinmetz (1996).

The modeling depends to some extend on the assumed solar galactocentric radius
R� and LSR velocity V�, but we do not treat them as free parameters. Instead we
assumed the values R� = 8 kpc and V� = 220 km s−1, which are in good agreement
with resent studies of Reid (1993) and Eisenhauer et al. (2003) for R� and Hipparcos
data as analyzed by Feast and Whitelock (1997).

The mass-to-light ratio has to be found iteratively by fitting the gas dynamic
model to the observed gas dynamics of the MW for each set of parameters. However,
in practice only small variations on the percent level are found between models.

Approximative values for the pattern speed and inclination of the bar have been
obtained in Binney and Gerhard (1996) and Englmaier and Gerhard (1996). Bissantz
et al. (2003) studied the dependency on the spiral pattern speed and inclination
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angle. They found evidence, that the spiral pattern does indeed rotate independent
of the bar by looking at the transition region where the gas flow is influenced by
both patterns.

The importance of the dark matter halo has been established to be rather low
inside the solar radius. Only at around 9 kpc galactocentric distance, the dark
matter halo starts to dominate the rotation curve (in preparation: Englmaier &
Gerhard 2006).

5.3 Periodic Orbits and Streamline Plots

The models I use are based on gas dynamics in the MW. My fitted streamline plots
are made up with an OB stars sample. These stars are young objects, so we make
a first assumption, that recently born stars still behave similar to the gas they got
born in. They did not had time to degenerate kinematicaly from the material. In
a next assumption we suppose, that the gas takes the way of the least resistance, it
tries to avoid shocks. So we predict that it moves mainly on simple looking orbits,
orbits with no loops and a smoothed shape.

In Sec. 5.4 I worked out four different models and analysed their periodic or-
bits. The output are orbit plots which I will introduce in the next paragraph. The
streamline plot of the OB stars (see Sec. 4.1) will be recapitulated short afterward.

5.3.1 Orbit plots

With the technique described in the preceding sections, my code (orbit nox.F ) helps
to define closed orbits in a rotating potential. The basic code, which iterates data
in surface of section (SOS) as long as it can find a resonant parent (see Fig. 5.2),
is basically written by Peter Englmaier who used it for the x1 and x2 orbit search.
(For the nomenclature see Sec. 5.1.3 Orbit Family Classification.). I modified and
developed the code further and adapted it to orbit-search outside the bar and mainly
in the co-rotation regions. The used potentials, modified and evaluated by Peter
Englmaier) (see Sec. 5.2), are implemented into the code routine.

A descriptive output of the program are the orbit plots. Figure 5.4 illustrates a
x1(2) orbit out of the mod0 B model. Detailed informations about the chosen orbit
and its model are given in Sec. 5.4.
In the plot the bar lies on the x-axis. In green the CR and the OLR are sketched.

Thiner blue lines are guidelines to the eye helping to define the ellipticity of orbits
plotted in black or seldom in red. The guidelines start at 5 kpc and continue in 1 kpc
steps up to 9 kpc. The blue square inclined by a 20◦ angle and at a GC distance of
8 kpc represents the observed field we discussed before. The solar region positioning
is just an assumption based on well known values out of the literature.
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Figure 5.4: An x1(2) orbit out of the mod0 B model

The bar turns anti-clockwise and so a prograde rotating orbit is even faster than
the bar and turns into the same direction. A retrograde is slightly slower than the
bar and so it points into the clockwise direction. It is important to recognise that
such an orbit, in an inertial frame, rotates counterclockwise like the bar as well.
The x1(2) and almost all my defined orbits near the OLR behave like this. In the
characteristic diagrams their direction of rotation in the rotating frame is mentiond,
a retrograde orbit is signed with a cross, a prograde with a square.

5.3.2 Streamlines of the OB Star Sample

Unfortunately the OB data analysis frame and the periodic orbit output do not have
the same orientation. The non-circular OB velocity field around the Sun we fitted in
Sec. 5.5 has to be adapted by mirroring along the x axis. I even rotated the sample
by 20◦ to represent a 1to1 image out of the orbit plots.
The big star symbols indicate the start position of a star. So the velocity vectors
are pointing all into the counter-clockwise direction.

As a reminder: The differences between both sets, the streamlines (red) and the
underlying velocity field (blue) are clearly visible. They are in the sense that the
streamlines derived from the OB star velocities are more elongated than those ex-
pected from circular orbits, especially for radii R < R�. These elongated flowlines
reach their minimum galactocentric radii at points that are located approximately
on the line that connects the Sun with the Galactic Center. At R > R� the stream-
lines seem to be slightly turned forward.
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Figure 5.5: The non-circular velocity field of FB10 stars transformed with an axis
mirroring (y ≡ −y) and a rotation of 20◦. The new orientation and inclination shows
the field in the same way as the orbit plot. Stars are “flying” from the bottom to
the top in the same direction as the bar rotates.
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5.4 Models with different OLR

We started our analysis with an improved model out of Bissantz et al. (2003). In
Chap. 5.2 the characteristics of such a model are explained. mod0 does not incorpo-
rate a halo, but has a bar (about four times stronger as in Mühlbauer and Dehnen
(2003)) and four equal spiral arms. There are two options to adapt the potential
into our code. As Rcut = 3.5 kpc splits the asymmetric potential, it is possible to
work with the full potential including bar and arms, or to neglect the arm potential
outside this radius.

• mod0 B represents a model with a bar and small spiral arm extensions which
are inside Rcut. (They are at the upper left side of the bar-end2 and at the
lower right side.)

• mod0 BA incorporates both bar and arms.

In a next step we shifted the OLR from 5.6 kpc to 7.2 kpc. This value is moti-
vated by the work of Dehnen (2000), in his modeling he predicts ROLR = 0.9 R�
as an upper value. The basic characteristics of the model are the same as before,
but by adding a halo component and by a slight shift of Ωp from 61.4 Gyr−1 to
53.74 Gyr−1 the resonances are replaced further out. In Fig. 1.11 we can see the
resonance diagram of mod1 BA. With the same splitting of the potential we create

• mod1 B

• mod1 BA

The main parameters of the models are shown in Tab. 5.1. In either case we let run

mod0 mod1
RCR 3.4 kpc 3.9 kpc
ROLR 5.6 kpc 7.2 kpc
Ωbar 61.4 Gyr−1 53.74 Gyr−1

Table 5.1: Parameters of orbital models

the code with a single pattern speed for both asymmetric components Ωbar = Ωsp.

5.5 Results

The orbit plots are grouped page by page, by its model belonging.
mod0 B fills the first two plot reserved pages, mod0 BA the next one and mod1 B
(left) and mod1 BA (right) are sharing the last. Each page is build up in the same

2The orientation is the same as in Fig. 5.4.
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way. In the upper line the model corresponding characteristic diagram is shown,
where Orbits found by checking the y-axis are plotted in blue and red is the color
for the x-axis candidates (see Sec. 5.1.2). Squares indicate if an orbit turns retrograde
in the rotating frame, and crosses signalise a prograde movement. In Fig. 5.6 (upper
left panel) mod0 B has its main orbit family names indicated. So it is possible to
bring orbit plots (labeled in the upper right corners of the panels) and families into
relation. See Sec. 5.1.3 for details about the nomenclature.
Then the following panels show representatives of the corresponding orbit families.

The orbits of our main interest are x1(2) (upper right) and x1(1) (middle left).
Around resonances two stable periodic orbit families with different elliptical ori-
entation can exist in the same area, see Fig. 1.12. Our streamline analysis gives
justified presumptions that this is the case in the nearby solar neighbourhood.

Our analysis is based on the following assumptions, namely:

• Gas moves on closed periodic orbits.

• OB stars behave similar to the gas they got born in.

Additionally we know by Bissantz et al. (2003), that dynamical models predict that
two different pattern speeds for the arm- and the bar-feature (Ωbar ∼ 60 Gyr−1 and
Ωsp ∼ 20 Gyr−1) reproduce the l− v diagram nicely (see Fig. 1.5 for an explanation
of this kind of diagrams and Bissantz et al. (2003) for the explicit data and similar
results.). Here we use only one pattern speed for both asymmetric features (see
Tab. 5.1). Another problem occurs, if in our region of interest a crossing of stream-
lines is expected (see e. g. Fig. 1.12). In the crossing point the information of two
different streams would be smeared out, and with our method of fitting, we would
just find one averaged stream out of the two. Dehnen’s sample is strongly restricted
to the solar neighbourhood. See Sec. 1.3.2 Kinematics in the Solar Neighbourhood.
There the observed star density is highest and it is possible to make a local u-v
diagram statistic. Not so in the outer parts of our FB10 sample. A comparison
of our nearby solar region data ( R� < 300 pc) with his results showed the same
substructures, as expected as we are using similar data sources. An advantage of
our star sample is that the data positioning reaches areas placed further out. Our
space coverage is much more comprehensive than Dehnen’s. With our method we
see & 12% of one cycle. (The main restriction for such an orbit analysis is given
by the sample completeness of available observed data.) We made many tests (see
Chap. 4) to verify our results. The FB10 streamlines out of the ±2.2 kpc field give
the impression to distinguish between two orbit families (see Sec. 5.3.2).

Our interest is mainly focused on the following questions:
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• Do periodic orbit families (out of the gas) in general reproduce the wanted
characteristics?

• Under which conditions can we have such orbits in the nearby solar region?

In Fig. 5.6 we see the orbit produced by mod0 B. The upper right and the middle
panel show the families x1(2) and x1(1). There we see that the characteristic of our
OB streamlines in the inner region (R < R�), corresponds to the main character-
istic of the x1(2) orbit (elongated part parallel to the bar’s minor axis). But there
are still many not confirming aspects. One are the dents3 along the x-axis and a
second one is the wrong inclination4 corresponding to the observed field.
Another family seams interesting (Also mentioned in Dehnen (2000) as possible rep-
resentatives.); the 1:1 orbits. They could help to explain the forward shift of OB
streamlines with R > R�. See Fig. 5.7 upper left panel, the downward shifted orbit.
But our main interest belongs to the x1(1) and x1(2) families. When we look closer
to the innermost orbits (Fig. 5.6, the two lower panels) out of these two groups,
we can see a slight deviation from the bar symmetry along the x-axis. These slight
turns can be explained by the small arm extensions included in the Rcut region. And
also the dents of the x1(2) orbit can be explained by the influence of mass in the
nearby region.
Going a step further in modeling and including the arms, we see in mod0 BA that
these mass effects are even stronger and also the declination of the innermost x1(1)
orbit is more extended. It turns upward corresponding the arm potential in this
region. In Figure 5.7 these aspects are highlighted in red. It is to recognise, that in
mod0 BA new families, which reflect symmetries of higher order than the mod0 B
orbits are found (Fig. 5.7, lower right panel).
With mod1 B and mod1 BA we want to implement this knowledge. First we shift
the OLR outward to bring the main families closer to the solar region. mod1 has its
OLR at 7.2 kpc and so the x1(1) and x1(2) families reaches the FB10 region. We see
dents do not exist anymore in the x1(2) family (compare Fig. 5.6 upper right panel
and Fig. 5.9 lower left), the mass disturbances have less influence. The x1(2) orbits
are elongated perpendicular to the bar’s major axis and look smoothed. The x1(1)
are parallel orientated to the bar as expected. An effect much more important can
be seen in the middle panels of Fig. 5.9. Here we represent the x1(1) orbits for mod1
once with arms (right, mod1 BA) and once without (left, mod1 B). It is obvious,
that the presence of arms turn the x1(1) orbits into the direction of the Sun. The
bar symmetry can be broken. This could in a first step explain the orientation of our
OB streamlines, where the elongated flowlines reach their minimum galactocentric
radii at points that are located approximately on the line that connects the Sun and
the galactic center.

3Gas prefers smoothed orbits.
4Our fitted streamlines are orientated along the Sun-GC line.
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I think this result is a small step into the right direction. From Mühlbauer and
Dehnen (2003) we know, that the effects produced by a bar alone are two small
(±5 km s−1 at maximum). We found in the OB sample much higher velocity values
(up to ±30 km s−1). And additionally the bar alone predicts orbits, which are bar
symmetric, but we found “rotated” ones. So it is obvious that the bar alone can not
explain the features found. By including the arms we could get a small step closer
to explain the observed data.
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5.5. Results

Figure 5.6: Upper left: characteristic diagram of mod0 B Upper right: x1(2) family
members Middle: x1(1) family members Lower left: nearest x1(1) to the bar Lower
right: nearest x1(2) to the bar
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Figure 5.7: Upper left: x2(1) family members Upper right: 1:1 up and down Middle
left: Lagrange Middle right: 1:1 Lower left: orbits inside the CR
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5.5. Results

Figure 5.8: Upper left: characteristic diagram of mod0 BA Upper right: x1(2) family
members Middle left: x1(1) family members Middle right: x2(1) family members
Lower left: orbits inside the CR Lower right: loop orbits
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Figure 5.9: Upper left: characteristic diagram of mod1 B Upper right: characteristic
diagram of mod1 BA Middle left: x1(1) of mod1 B Middle right: x1(1) of mod1 BA
Lower left: x1(2) of mod1 B Lower right: X1(2) of mod1 BA
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Chapter 6

Conclusions & Outlook

6.1 Conclusions

By analysing a sample of young stars in the nearby galactic disk we could learn
something about effects enhanced by the global large-scale structure of our host
Galaxy. Our main interest was the bar as an asymmetric feature.

Hydrodynamic modeling of the inner Galaxy suggests that the radius of the outer
Lindblad resonance (OLR) of the Galactic bar lies in the vicinity of the Sun,
(Dehnen, 2000). The question, how this resonance affects the nearby Galactic disk is
of main interest: Is it possible to identify the resonance in the velocity distribution
of observed stars in the solar neighbourhood? With detailed simulations Dehnen
found out, that the influence of the bar is restricted to orbits that are nearly in res-
onance with it. This influence is strongest for the outer Lindblad resonance (OLR).

Dehnen’s sample is strongly restricted to the solar neighbourhood. See Sec. 1.3.2
Kinematics in the Solar Neighbourhood. There the observed star density is highest
and it is possible to make a local u-v diagram statistic.
We worked out a sample of young OB stars, which masks a ±2.2 kpc square around
the Sun. The stars do have complete phase space information. The size of our anal-
ysed area is as big that a star with an orbit passing nearby the Sun would spend
more than 12% of its cycle on our field. So the space coverage of our FB10 sample
is much more comprehensive than Dehnen’s.
The main restriction for such an orbit analysis is given by the sample completeness.
We made many tests (see Chap. 4) to verify our results and trust them. The non-
circularity of the FB10 streamlines, within the error estimations, is well established.
The OB streamlines are more elongated than those expected from circular orbits,
especially for radii R < R�. These elongated flow-lines reach their minimum galac-
tocentric radii at points that are located approximately on the line that connects
the Sun with the Galactic Center. At R > R� the streamlines seem to be slightly
turned forward.
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Our streamline result inspired us to research orbit families in asymmetric potentials
with a higher ranking interest in regions, where more than one orbit family could
be expected.

Motivated by Dehnen (2000) and Mühlbauer and Dehnen (2003) we tested the
influence of bar resonance effects in a MW model. Known theories predict that
there is a x1(1) and a x1(2) family crossing the OLR from each side resulting in
an area hosting two different orbit families. Tests with the potential of the well
established MW model from Bissantz et al. (2003) show, that the characteristic of
our non-circular velocity field could be reproduced by the x1(2) family and the less
prominent feature for R > R� streamlines by a family called 1:1. But the “de-
sired” gas streamlines of the model were not positioned close enough to the Sun’s
observed field. Shifting the OLR by adding a halo component to the potential and
with a slight reduction from the pattern speed, provoked an intersection between
the wanted orbit families and the analysed OB star field. The ellipticity of the x1(2)
orbits is prominent, for a better agreement with the observations we have to shift
the OLR even further out, what we plan to do. But still the orientation of the orbits
points along the major axis of the bar. To break this symmetry we added an arm
potential and let it rotate with the same pattern speed as the bar. Our modeling
showed that an inclination of the orbit families x1(1), as we see it in the observed
field, can be reproduced by this technique.

We learnt that the bar alone can not explain the strong non-circular streamlines.
Even before, Mühlbauer and Dehnen (2003) found that the radial motions of stan-
dards of rest can be seen to occur quite frequently, but can only reach magni-
tudes in the order of about 0.02× the tangential component, corresponding to about
±5 km s−1 for the Milky Way.
We used a four time stronger bar potential than they did, but also we had radial ve-
locities not exceeding ±10 km s−1. The OB stars demand huger values. For R < R�
we found vrad up to ±30 km s−1. Additionally, a bar alone can not break the bar
oriented symmetry to change the inclination of the periodic orbits. We could do
that only with the help of a spiral arm potential. Interesting is, that the spiral
arm potential used in the mod1 BA reproduces exactly the wanted orbit rotation of
around 20◦. Bissantz et al. (2003) used well established arm positions, by changing
the potential from mod0 to mod1 we added only an additional halo component, but
left the arm potential unchanged. So we expect, that another family in the same
region would experience a comparable rotation.

6.2 Outlook

Dehnen (1998) and Famaey et al. (2005) found that structure in the velocity distri-
bution depends on the type of star or stellar population investigated. We worked out
a young OB star sample, but this could be done with different stellar types as well.
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I already collected a Cepheids sample and an Open Cluster set. These candidates
can not be called young, so the argument of “still behave like the gas” would not
work anymore, but we could compare the different aspects of their velocity fields
which would be interesting too.

In the Milky Way, as well as in many barred galaxies, the bar is not the only
deviation from a smooth axisymmetric background. Most prominently, spiral arm
structure and an elliptic (or oval) disk and/or halo add further non-axisymmetric
perturbations. Simulations show that arm and bar features do not have the same
pattern speeds (Bissantz et al., 2003).
In a next analysis we want to include these aspects as well. The presence of more
than one perturbation can influence the stellar dynamics (Quillen and Minchev,
2005). For example, if the solar neighbourhood is affected by more than the bar,
i. e. , also by spirals, then stars at velocities between moving groups might be on
chaotic orbits (Quillen, 2003), a factor that could cause a relatively large increase
in their velocity dispersion with time.
(Quillen and Minchev, 2005) analysed resonance effects produced by arms. Their
pattern speed is ∼ 18 Gyr−1. They expect that the closed orbits considered in their
paper weakly oscillate or are weakly perturbed at the frequency of a Galactic bar.
Only stars velocities associated with the Hercules stream that are influenced by the
bar’s OLRbar should be strongly affected. Stars at lower velocities should be distant
and so unaffected by the OLRbar.
Further modeling with our method can perhaps help to find additional information
about similar effects.
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Appendices

A List of Spiral Arm Models

Figure A.1: Publication list of Spiral Arm studies analysed by Vallée (2005) (Table 2)
he regarded publications between mid-2003 up to early 2005.

88



B Velocity Ellipsoids Analysis

Figure B.1: Projection of velocity ellipsoids, (V1 points towards the GC, V2 into
the galactic rotation direction) radial heliocentric velocities for discrete populations
obtained from local HIPPARCOS subsamples. Old disk stars were not obtained
as a discrete stellar component, but as a broad wing of the young-disk population
A2. All together with early-type stars, A1, they make up the thin disk component
S2. The subcomponent A3 contains some old thin disk stars and a larger number
of thick disk stars, that becomes the thick disk when wider local samples are con-
sidered. Notice that the populations A1, A2, A3 and A4, as well as the increasing
thick disk populations T , obtained from sampling parameters |~V | >= 145 km s−1,
can be clearly fitted by a straight line. This fact is suggesting that all the local
populations, except the early-type stars A1, are moving in the same direction with
respect to the thick disk component. They are dominated by a common differential
galactic movement, mainly, but not only, in rotation. Some moving groups are also
displayed so that they may be associated with any of the obtained major popula-
tions. The displayed moving groups are Hyades (Hy), Wolf 630 (W ), ε Indi (I), ζ
Herculis (He), 61 Cygni (Cy), σ Puppis (P ), η Cephei (Ce). Other moving groups
composed of young disk stars, like Pleiades and Sirius (not displayed) belong to the
subcomponents A1 and A2, within the thin disk component S2. In particular, the
subcomponent A1 may clearly be identified with the expanding local Gould’s Belt
structure (Alcobé and Cubarsi, 2005, Fig. 7).



C Spectral Characterisation

Two important laws were discovered during the 19th century relating to light and
temperature. Wien’s law (Wilhelm Wien 1893) stating that the wavelength (or
color) of maximum intensity of a radiating solid is inversely proportional to its
temperature

λmax =
2.898 · 106 nm K

T
(7.1)

And the Stefan-Boltzmann law (1884) describing the relation between the total en-
ergy E radiated per unit surface area of a black body in unit time and its temperature
T

E = σT 4 (7.2)

where σ = 5.67 · 10−8 J s−1 m−2 K−4 is the Stefan-Boltzmann constant. The lumi-
nosity L for a star with radius R is then given by L = 4πR2σT 4. Knowing L and
T , R can be easily calculated.

A first classification of stars was done 1866 by father Pietro Angelo Secchi which
observed by eye prism spectra of about 4000 stars and divided those into four broad
classes with common absorption features.

1. White - absorption lines mostly hydrogen

2. Yellow (sun-like) - strong calcium lines, weaker hydrogen

3. Red - many bunched bands, few hydrogen lines

4. Deep red - again, numerous bunched lines

In the late 1870’s E.C. Pickering at Harvard observed about 220000 stars by prism
photography and further refined Secchi’s categories with the help of hired women
acting as ”computers” to analyse the spectra.

1. White - A,B,C,D

2. Yellow - E,F,G,H,I,J,K,L

3. Red - M

4. Deep red - N

The problem was that there was a class of stars which did not fit into the picture,
showing very weak signs of lines but being blue-violet in color, therefore very hot.
These stars were assigned the classification ”O”.

In 1901 Annie Jump Cannon, a supervisor of these hired women, noticed that
the stellar temperature was the principle distinguishing feature among the different
spectra. Most classes were thrown out as redundant, and within a few years one



Figure C.1: Classification of the star types by its spectral lines and temperatures
after Cannon. See text for the history how it evolved.

was left with the 7 primary classes we recognize today, namely O B A F G K M.
Fig. C.1 shows representative spectral lines of each class.

More information can be gained by studying the relationship between the spec-
tral class (color, temperature) and the luminosity (absolute magnitude), from which
many properties (radius, mass, distance) about the star may be derived, knowing its
brightness (apparent magnitude). Color and brightness are easy accessible observ-
ables, to get the luminosity one has to put in at least one of the three not so easy



to access values of radius, mass or distance. Nevertheless in 1913 this very useful
relation was published by the american astronomer Henry Norris Russell. Since this
had been suggested earlier by the German astronomer Hertzsprung, the diagram is
known today as the Hertzsprung-Russell (HRD) (see Fig. C.2). Basically, the HRD
shows that for the great majority of stars, the hotter the star is the more luminous
it is. These stars fall along an s-shaped curve known as the main sequence. There
are some stars, however, which are cool but luminous while others are hot with
low luminosity. The Stefan-Boltzmann law above implies that the cool, bright stars
must have very large diameters (hence the name, red giants), while the hot dim
stars must have very small diameters and are therefore called white dwarfs.

Figure C.2: Hertzsprung-Russel diagram (http :
//physics.uoregon.edu/ jimbrau/BrauImNew/Chap17/FG17 10.jpg)



D Data & Catalogue

Figure D.1: An artist’s conception of the Hipparcos satellite. c©ESA.

D.1 Hipparcos Satellite Mission

The Hipparcos satellite returned high quality scientific data from November 1989 to
March 1993. The scientific goal of ESA’s Hipparcos space astrometry project was
to provide positions, proper motions, and direct distance estimates for more than
100′000 stars in the solar neighbourhood, in order to determine their physical prop-
erties, and to place theoretical studies of stellar structure and evolution, and studies
of galactic structure and kinematics, on a more secure observational footing.
The available observing time could be used in an optimum manner, because of the
continuous ecliptic-based scanning of the satellite. As a result of this high efficiency
these datasets are of reasonably homogeneous sky density and uniform astrometric
accuracy. The Hipparcos satellite had two viewing directions, separated by a large
and suitable angle. This resulted in a rigid connection between quasi-instantaneous
one-dimensional observations in different parts of the sky. So the determination
of trigonometric parallaxes is absolute, with a high accuracy. Median astrometric
standard errors (in position, parallax, and annual proper motion) are in the range
0.7 − 0.9 mas for stars brighter than 9 mag (For more detailed information see
Perryman et al., 1997).

Two catalogues have been the primary products of this mission: the TYCHO
and the HIPPARCOS catalogue.



The Hipparcos catalogue, was completed in August 1996, and published in June
1997 (ESA 1997). Table D.1 represents a summary of its main astrometric and
photometric properties.

Measurement period 1989.85− 1993.21
Catalogue epoch J1991.25
Reference system ICRS
coincident with ICRS ±0.6 mas
deviation from inertial1 ±0.25 mas

Number of entries 118′218
with associated astrometry 117′955
with associated photometry 118′204

Mean sky density ∼ 3 stars deg−2

Limiting magnitude V ∼ 12.4
Magnitude completeness2 V = 7.3− 9.0

Median σα at J1991.253 0.77 mas
Median σδ at J1991.253 0.64 mas
Median σπ

3 0.97 mas
Median σσα cos δ

3 0.88 mas yr−1

Median σδ
3 0.74 mas yr−1

10% better than4 0.47− 0.66 mas
Smallest errors4 0.27− 0.38 mas
Distance < 10%(σπ/π < 0.1) 20′853
Distance < 20%(σπ/π < 0.2) 49′399
External errors/standard errors5 ∼ 1.0− 1.2
Systematic errors in astrometry5 < 0.1 mas

Table D.1: ICRS is the International Celestial Reference System (see also App. D.3.
1 about all 3 axes; 2 depending on galactic latitude and spectral type. 3 for
Hp ≤ 9 mag; 4 on each of the five astrometric parameters; 5 estimated from
various investigations (Perryman et al., 1997, Table 1&2)

The Tycho catalogue can be considered as an extension of the Hipparcos cat-
alogue that is more complete at magnitudes 8 − 11 but less accurate in data, see
Fig. D.2.
The goal of the Tycho experiment on board the ESA Hipparcos space astrometry
satellite was to provide astrometric and two-color photometric measurements of the
brightest stars on the sky. The measurements were obtained with the Hipparcos
star mapper, a system of aperiodic slits in the focal plane of the Hipparcos telescope
designed primarily for determining the satellite attitude by observation of stars with
known positions.
The astrometric accuracy varies strongly with magnitude, but the median uncertain-
ties of Tycho positions and proper motions are a factor of 30 worse than those in the



Hipparcos catalogue. The large proper motion uncertainties make Tycho unsuitable
for precise astrometric work.

A comparison of the completeness of these two catalogues is shown in Fig. D.2.

Figure D.2: Overlap and completeness of the 118′218 entries of the main Hip-
parcos catalogue and the Tycho catalogue. The former is largely complete to
around V = 7.3 − 9.0 mag, depending on galactic latitude and spectral type.
Other stars, with a roughly constant density over the celestial sphere, are in-
cluded down to the observability limit of around V = 12.5 mag. The Ty-
cho catalogue is largely complete to around V = 10.5 mag, and contains
objects down to the limit of the Tycho observations, at around V = 11 −
11.5 mag. Consequently, most Hipparcos entries are contained in the Tycho cat-
alogue, except for some 2300 entries below the Tycho detection threshold (http :
//www.rssd.esa.int/Hipparcos/CATALOGUE V OL1/sect1 01.pdf , Fig. 1.1.1.)

D.2 Catalogue Général de Vitesses Radiales Moyennes pour
les Étoiles Galactiques
Cat. III/213

The Hipparcos catalogue does not include a complete list of radial velocity data. A
complementation is Cat. III/213, a catalogue of mean radial velocities for Galactic
stars (Barbier-Brossat and Figon, 1999). It supplements the catalogue WEB (Duflot



et al., 1995, Cat. III/190) with observations published through December 1990.
The catalogue contains new mean velocities for 20′574 stars, altogether there are
36′145 stars presented. Only observations obtained with adequate spectral resolution
and standardised to the IAU or Cat. III/21 (Wilson, 1953) velocity systems have
been used.
For star indentification in this work HIC (out of Cat.III/213) ≡ HIP (out of the
Hipparcos catalogue) is used as a matching criterion.
(http : //www.rssd.esa.int/Hipparcos/CATALOGUEVOL1/sect201.pdf , p.106)

D.3 The International Celestial Reference System (ICRS)

Using data of different sources it is important to validate the reference systems
of each. Hipparcos and radial velocity data are represented in the International
Celestial Reference System (ICRS). It is a fundamental celestial reference sys-
tem adopted by the International Astronomical Union (IAU) for high-precision
positional astronomy. The ICRS, with its origin at the solar system barycen-
ter and space fixed (i.e. kinematically non-rotating) axis directions is meant to
represent the most appropriate coordinate system for expressing reference data
on the positions and motions of celestial objects. (For more detail see: http :
//aa.usno.navy.mil/faq/docs/ICRS doc.html.)
Each measurment depends on where, consequently also at which particular time, the
observation has been done. Different reference systems have to be transformed into
each other, this is problematic for high precision work. The accuracy with which
the motions of the objects are known is an essential factor in such computations. A
reference frame must be implemented at the time of actual observations, a specific
epoch has to be given. The adopted catalogue epoch is J1991.25, close to the mean
central epoch of the observations for each star.
A modern astrometric catalogue contains data on a large number of objects, so
the coordinate system is vastly overdetermined. The quality of the reference frame
defined by a catalogue depends on the extent to which the coordinates of all possi-
ble pairs of objects serve to define the identical equator and right ascension origin,
within the expected random errors. The ICRS is realised at optical wavelengths by
stars in the Hipparcos catalogue of 118′218 stars, some as faint as visual 12 mag
(Esa, 1997). Only stars with uncomplicated and well-determined proper motions
(e.g., no known binaries) are used for the ICRS realisation.

D.4 Standard Model

The “standard model” of stellar motion has the physical underlying that stars move
through space with a constant velocity vector. Many stars together can represent a
common velocity field, each star is the representer of its position. After smoothing
the field, integrated streamlines can be defined. They can be seen as integral parts
of star orbits.



The five astrometric parameters given in the Hipparcos catalogue describe the in-
stantaneous motion of the star relative to the solar system barycentre, in a plane
perpendicular to the line of sight. The sixth parameter needed to completely specify
the space motion is the radial velocity.
At some reference epoch, T0, the stellar motion is then described by the following
astrometric parameters:

α± σα
◦ RA

δ ± σδ
◦ DE

π ± σπ arcsec parallax

ρ± σρ km s−1 radial velocity
µα ± σµα arcsec yr−1 proper motion
µδ ± σµδ

arcsec yr−1

k = 4.74047 equal the AU
expressed in km s−1 yr

(α, δ) are called right ascension and declination, two angles which describe the po-
sition of a line of sight in the 3-dim space. The distance to the observed object is
given by π the trigonometric parallax, from which the coordinate distance is 1

sin π
= d

or, with sufficient approximation 1
π
∼= 1 pc if π is expressed in arcsec. The rate of

change of the barycentric coordinate direction expressed as proper motion compo-
nents are µα∗ = µα cos δ and µδ, in angular measure per unit time ( arcsec yr−1). The
cos δ factor, signified by the asterisk in µα∗, relates the rate of change of position in
right ascension to great-circle measure. The proper motion is the projection of each
star’s space motion onto the celestial sphere, expressed as an angular rate in right
ascension and declination per unit time. The velocity component along the line of
sight is given by the radial velocity mainly measured in km s−1. k transforms the
“ AU”-units into “ km s−1 yr”-units.

D.5 Coordinate Systems

Coordinate systems are used to specify positions and motions of objects in space.
We need 6 linearly independent informations to define a stars attributes. Many
different frames are used, depending on their advantages and disadvantages for the
task. Transformations from one system into another have to be done.

Equatorial System

One of the most fundamental reference system for observations made is the equa-
torial system. The Earth rotates eastward on its axis once a day, and, as a con-
sequence, the sky appears to rotate westward about the Earth. The rotation axis
extensions define the north and south celestial poles (NCP, SCP). The origin of the
frame is given by the vernal equinox (VE). By intersecting the celestial equator and
the ecliptic (plane defined by the rotation Earth ↔ Sun) one got two intersection



Figure D.3: Equatorial coordinate system

points separated by 180 ◦. At approximately March 21 the Sun passes V E moving
from south to north. The angle between the two planes is ∼ 23.5 ◦.
This reference frame consists of two coordinates as shown in Fig. D.3. The right as-
cension α of an object is its angular distance measured eastward along the equator.
The declination δ is its angular distance north or south of the celestial equator.
With the distance as a third information the object’s position can be described.

Galactic Coordinates

The galactic coordinates define another reference system. It is useful to set up
a galactic system of coordinates that has a direct physical connection with the
structure of our Galaxy. The galactic equator is chosen to be the great circle that
most closely approximates the plane of the MW. This plane is declined at an angle
of ∼ 62.87 ◦ to the celestial equator. The north galactic pole (NGP) is located
at (αNGP , δNGP ). It is defined by the line, running trough the Sun and standing
perpendicular to the galactic equator, see Fig. D.4.
The galactic longitude l is oriented wrt the galactic center, where a compact radio
source (Sgr A∗) now believed to mark its position. b the galactic latitude is the angle
from the galactic equator to the star along the great circle (star↔NGP↔SGP).

Coordinate Transformation

The change from (α, δ) to (l, b) can be realised with the transformation matrix T
derived below. A combination of 3 rotations around the angles αNGP , δNGP as seen



Figure D.4: Galactic coordinate system (l, b). S/NGP south/north galactic poles;
S/NCP south/north celestial poles; GC galactic center; RA right ascension; Υ
vernal equinox.

before and lNCP , which represents the longitude of the NCP , is needed to perform
this task. Table D.2 shows the values determined from the HC.

αNGP 192.85948 ◦

δNGP 27.12825 ◦

lNCP 122.93192 ◦

Table D.2: See Transformation of Astrometric Data (Hipparcos catalogue).

T1 =

 cos(αNGP ) sin(αNGP ) 0.0
sin(αNGP ) − cos(αNGP ) 0.0

0.0 0.0 1.0



T2 =

 − sin(δNGP ) 0.0 cos(δNGP )
0.0 −1.0 0.0

cos(δNGP ) 0.0 sin(δNGP )



T3 =

 cos(lNCP ) sin(lNCP ) 0.0
sin(lNCP ) − cos(lNCP ) 0.0

0.0 0.0 1.0





T = T3 ∗T2 ∗T1

 cos(b) cos(l)
cos(b) sin(l)

sin(b)

 = T

 cos(δ) cos(α)
cos(δ) sin(α)

sin(δ)

 (7.3)

The work with models benefits a coordinate systems that supports the structure
of our MW. We have chosen a set of right-handed cartesian axes (x, y, z). The xy-
plane corresponds to the galactic disk and z points toward the NGP . x is oriented
versus the GC and y in the direction of the Sun’s rotational movement around the
GC. (U, V,W )representing the velocities according to the same axes and orientations.
To transform the catalogue data into a set of its corresponding (X, Y, Z), (U, V,W )
coordinates we work with the physical values and their uncertainties out of the
described catalogue (see Sec. D.4).
Two additional rotations described by the matrix A(α, δ) are needed to match the
velocity coordinates.

A = A1 ∗A2

A1 =

 cos(α) sin(α) 0.0
sin(α) − cos(α) 0.0

0.0 0.0 −1.0



A2 =

 cos(δ) 0.0 − sin(δ)
0.0 −1.0 0.0

− sin(δ) 0.0 − cos(δ)


Instead of using the trigonometric parallax π in arcsec, we can just switch to

the heliocentric star distance d given in pc. The identification is done by d = 1/π
and σ2

d = σ2
π/π

4.
The velocity components are then given by U

V
W

 = B

 ρ
kµαd
kµδd


where B = T ∗A, and k corresponds to the unit transformer.

The measurement of the velocity components had been taken independently, so we
can use the gaussian error propagation to define the velocity errors. By assum-
ing that T and A are both independent of the errors in (U, V,W ) and that only
ρ, µα, µδ, d do participate we found



 σ2
U

σ2
V

σ2
W

 = C

 σρ2

k 2[µ2
ασ

2
d + d2σ2

µα
]

k 2[µ2
δσ

2
d + d2σ2

µδ
]

+

+2µαµδk
2σ2

d

 b12 ∗ b13
b22 ∗ b23
b32 ∗ b33


where C is given by cij = b2ij ∀ i,j.

The transformation of the positional coordinates (α, δ, d) into (X, Y, Z) via
(l, b) is expressed as X

Y
Z

 = d

 cos(b) cos(l)
cos(b) sin(l)

sin(b)

 = d ∗T

 cos(δ) cos(α)
cos(δ) sin(α)

sin(δ)

 .

As [cos(δ) cos(α), cos(δ) sin(α), sin(δ)] corresponds to the first column of the ma-
trix A with (A∗1 = (a11, a21, a31), positional errors are derived like the velocity
errors  σ2

X

σ2
Y

σ2
Z

 = C

 σ2
d

d2 cos2(δ)σ2
α

d2σ2
δ

 .
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Eisenhauer, F., Schödel, R., Genzel, R., Ott, T., Tecza, M., Abuter, R., Eckart, A.,
and Alexander, T.: 2003, Ap J L 597, L121

Elmegreen, B. G.: 1982, Ap J 253, 655

Englmaier, P. and Gerhard, O.: 1996, in ASP Conf. Ser. 112: The History of the
Milky Way and Its Satellite System, pp 191–+

Englmaier, P. and Gerhard, O.: 1999, MNRAS 304, 512

Esa, .: 1997, VizieR Online Data Catalog 1239, 0

Famaey, B., Jorissen, A., Luri, X., Mayor, M., Udry, S., Dejonghe, H., and Turon,
C.: 2005, A & A 430, 165

Feast, M. and Whitelock, P.: 1997, MNRAS 291, 683

Frei, Z., Guhathakurta, P., Gunn, J. E., and Tyson, J. A.: 1996, A J 111, 174

Fuhrmann, K.: 2004, Astronomische Nachrichten 325, 3

Fux, R.: 1999, A & A 345, 787

Fux, R.: 2001, A & A 373, 511

Genzel, R., Hollenbach, D., and Townes, C. H.: 1994, Reports of Progress in Physics
57, 417

Gerhard, O.: 2002, in ASP Conf. Ser. 273: The Dynamics, Structure and History
of Galaxies: A Workshop in Honour of Professor Ken Freeman, pp 73–+

Gould, A.: 2003, Ap J 583, 765

Gould, A.: 2004, Ap J 607, 653

Gould, B. A.: 1879, Resultados del Observatorio Nacional Argentino en Cordoba 1

Hammersley, P. L., Garzón, F., Mahoney, T. J., López-Corredoira, M., and Torres,
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