Heterocyclic aromatic amines efficiently induce mitotic recombination in metabolically competent Saccharomyces cerevisiae strains

Paladino, Giuseppe and Weibel, Béatrice and Sengstag, Christian. (1999) Heterocyclic aromatic amines efficiently induce mitotic recombination in metabolically competent Saccharomyces cerevisiae strains. Carcinogenesis, 20 (11). pp. 2143-2152.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/46811/

Downloads: Statistics Overview


Heterocyclic aromatic amines (HAs) represent a class of potent bacterial mutagens and rodent carcinogens which gain their biological activity upon metabolic conversion by phase I and phase II enzymes. Subsequent to cytochrome P450 (CYP)-dependent hydroxylation, mainly catalyzed by CYP1A2, acetylation mediated by the activity of N-acetyltransferase, NAT2, produces the ultimate electrophilic product that may react with DNA. In addition to point mutations observed in HA-exposed cells as genotoxic endpoint in vitro, loss of heterozygosity (LOH) has often been identified in HA-related rodent tumors as another endpoint in vivo. LOH may reflect a chromosomal deletion, a chromosome loss or a previous mitotic recombination event and it represents a prominent mechanism for the inactivation of tumor suppressor alleles. In this study we have investigated whether LOH observed in several HA-induced rodent tumors is related to a recombinogenic activity of HA compounds, and to address this question we have studied the genotoxic activity of several HAs in metabolically competent Saccharomyces cerevisiae strains. For this purpose expression vectors have been constructed providing simultaneous expression of three human enzymes, CYP1A2, NADPH-cytochrome P450 oxidoreductase and NAT2 in different genotoxicity tester strains. Evidence for functional expression of all three enzymes has been obtained. One strain allowed us to monitor HA-induced gene conversion, another one HA-induced chromosomal translocation. A third strain allowed us to study HA-induced forward mutations in the endogenous URA3 gene. It was found that 2-amino-3-methylimidazo-[4,5-f]quinoline and 2-amino-3, 8-dimethylimidazo-[4,5-f]quinoxaline produced a strong recombinogenic response in either recombination tester strain. The recombinogenic activity was comparable with the mutagenic activity of the compounds. The other HAs, 2-amino-3, 4-dimethyl-imidazo-[4, 5-f]quinoline, 2-amino-6-methyldipyrido-[1,2-a:3',2'-d]imidazole, 2-aminodipyrido-[1,2-a:3', 2'-d]imidazole, 3-amino-1-methyl-5H pyrido-[4,3-b]indole and 2-amino-1-methyl-6-phenyl-imidazo-[4, 5-b]pyridine, produced weak or no increases in the genotoxic endpoints of interest. The described strains may provide a suitable tool to characterize the genotoxic potential of HAs in more detail.
Faculties and Departments:11 Rektorat und Verwaltung > Vizerektorat Forschung
UniBasel Contributors:Sengstag, Christian
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Oxford University Press
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
Last Modified:03 Nov 2021 16:32
Deposited On:03 Nov 2021 16:32

Repository Staff Only: item control page