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1 Introduction

This paper derives the closed form solution for multistep predictions of the conditional means

and covariances from multivariate GARCH models. These predictions are useful in mean-

variance portfolio analysis, when the rebalancing frequency is lower than the data frequency.

In the application the empirical value of this result is evaluated in the performance of quarterly

rebalanced portfolios based on correct three-step predictions. We compare their performance

with that of quarterly rebalanced portfolios incorrectly based on one-step predictions and

with the performance of monthly rebalanced portfolios. We use monthly Morgan Stanley

Capital International (MSCI) index data for six regions.

Multistep prediction in GARCH models has been considered previously in e.g. Baillie and

Bollerslev (1992). They derive the minimum mean squared error forecasts for the conditional

mean and the conditional variance of univariate GARCH processes. We extend their results

to the multivariate case and derive closed form representations for the conditional mean and

the conditional covariances h-steps ahead. In addition we derive the explicit formula for

the conditional covariance of the sum of the conditional means up to h-steps ahead. This

corresponds to the conditional variance of the cumulative returns over an h-period horizon,

when modelling asset returns.

In our empirical application portfolios are adjusted quarterly based on GARCH models

estimated with monthly data. This implies that the conditional variances of monthly returns

cumulated over three months have to be computed. The empirical part of our study is related

to Ledoit, Santa-Clara and Wolf (2003), who apply one-step predictions from multivariate

GARCH models for portfolio selection using - as we do - MSCI regional indices. However, our

study is based on multistep predictions and the results are based on a larger set of GARCH

models.

In particular, the value of the derived multistep predictions for portfolio management

is evaluated on monthly data for six regional MSCI indices during the evaluation period

January 1992 to December 2003. The minimum variance portfolios are tracked for 48 different

GARCH models, both for monthly and quarterly rebalancing. In the latter case the quarterly

rebalanced portfolios correctly based on multistep predictions and those incorrectly based on

one-step predictions are evaluated. We find that using correct multistep predictions generally

results in lower risk and higher returns. Furthermore, the correctly computed quarterly
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rebalanced portfolios exhibit higher returns than monthly rebalanced portfolios.

The paper is organized as follows: In section 2 the multistep prediction problem is dis-

cussed. Section 3 contains the empirical application in portfolio management. Section 4

briefly summarizes and provides conclusions.

2 Multistep Prediction in Multivariate GARCH Models

This section derives the closed form solution for the multistep minimum mean squared error

(MSE) prediction of the conditional means, conditional variances and conditional covariances

for multivariate GARCH models. Based on these results we also present the solution for

the conditional variance of the sum of the predictions over h-periods. The results of this

section can be used for the prediction of cumulative returns and their covariance matrices in

mean-variance portfolio analysis as explained in section 3.

Since the original contribution of Engle (1982) a large variety of ARCH and GARCH

models has been proposed for volatility modelling, see Bollerslev, Engle and Nelson (1994) or

Gourieroux (1997) for early discussions of some of the models developed or Bauwens, Laurent

and Rombouts (2006) and Li, Ling and McAleer (2002) for more recent surveys.

We consider a multivariate ARMA process with GARCH errors to model the dynamic

behavior of the (conditional) first and second moment of the returns. Let us denote with

rt ∈ R
n the vector of returns for n assets. The mean equation is of the form

rt = c + A1rt−1 + · · · + Aprt−p + εt + B1εt−1 + · · · + Bqεt−q, (1)

with Ai, Bj ∈ R
n×n. Here εt is an n-dimensional random variable such that

εt = ztΣ
1/2
t , (2)

where zt is i.i.d. with E(zt) = 0 and var(zt) = I. Throughout the paper I denotes the

n × n identity matrix. Σt ∈ R
n×n is a positive definite, time-dependent covariance matrix

measurable with respect to the information set at time t − 1.

If the investment horizon is larger than one period, predictions for the cumulative returns

are needed, which in turn require multistep predictions. The cumulative returns over an

h-period horizon, henceforth denoted as r[t+1:t+h], are straightforwardly calculated from the
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single period returns, rt+i, as follows1

r[t+1:t+h] = rt+1 + · · · + rt+h. (3)

Thus, the conditional variance matrix of the cumulative returns r[t+1:t+h] is

vart(r[t+1:t+h]) = vart(rt+1 + · · · + rt+h)

=

h∑

i=1

vart(rt+i) +

h∑

i,j=1,i6=j

covt(rt+i, rt+j), (4)

where throughout the paper the subscript t in Et, vart and covt indicates that the expected

value, variance respectively covariance is conditional upon the information set at time t.

From equation (4) the calculation of vart(r[t+1:t+h]) requires the MSE predictors of rt+i for

i = 1, . . . , h and the corresponding conditional variances and covariances. The general for-

mula for computing the required multistep predictions of the conditional variances of rt+i

from multivariate ARMA(p, q)-GARCH(k, l) models is presented below. This result is a gen-

eralization of the analogue multistep prediction for univariate GARCH models discussed in

Baillie and Bollerslev (1992).2 Two remarks on the discussion below are in order: First, the

limits for prediction horizon h → ∞ of the results for the minimum MSE predictors of the

mean and variance are finite only for stationary processes. Second, the derivations below do

not apply to ARCH-in-Mean type models. Detailed derivations are available in our earlier

working paper Hlouskova, Schmidheiny and Wagner (2004).

For the derivation of the minimum MSE predictors of rt+1, r[t+1:t+h] and their conditional

second moments it is convenient to express the ARMA mean equation (1) in companion form,

compare e.g. Baillie (1987, p. 108):
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(5)

1This follows directly from the definition of the one-period returns, calculated as the logarithmic difference
of asset prices.

2Alternatively, the temporal aggregation results of Drost and Nijman (1993), derived for a specific class of
univariate GARCH models, can be used to obtain multistep predictions.
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or more compactly as

Rt = K1c + ΦRt−1 + Kεt. (6)

The matrices Kj , j = 1, . . . , p + q denote (p + q)n × n matrices of 0n×n sub-matrices except

for the j-th sub-matrix which equals I. Furthermore, K = K1 + Kp+1, Rt ∈ R
(p+q)n and

Φ ∈ R
(p+q)n×(p+q)n.

Recursive substitution in (6), leading to

Rt =
i−1∑

j=0

ΦiK1c + ΦiRt−i +
i−1∑

j=0

ΦiKεt−j (7)

and straightforward algebra, compare Baillie (1980, p. 366) for the univariate case, show that

rt+h =
h−1∑

i=0

K ′
1Φ

iK1c +

p−1
∑

i=0

(K ′
1Φ

hKi+1)rt−i +

q−1
∑

i=0

(K ′
1Φ

hKi+p+1)εt−i +
h−1∑

i=0

(K ′
1Φ

iK)εt+h−i.

(8)

From the above representation (8) the required results can be deduced. The minimum MSE

h-step ahead predictor for rt+h is given by

Et(rt+h) =
h−1∑

i=0

K ′
1Φ

iK1c +

p−1
∑

i=0

(K ′
1Φ

hKi+1)rt−i +

q−1
∑

i=0

(K ′
1Φ

hKi+p+1)εt−i (9)

and consequently the forecast error et,h is given by

et,h =
h−1∑

j=0

(K ′
1Φ

jK)εt+h−j . (10)

Given the above expression for the forecast error the conditional variance of the minimum

MSE predictor is found to be

vart(rt+h) = Et(et,he′t,h) = K ′
1

h−1∑

j=0

ΦjK Σt+h−j,t(Φ
j)′K ′K1, (11)

with Σt+h−j,t = vart(rt+h−j). The above expression is similar to Yamamoto (1981, p. 487,

eq. 3.4), with the difference being that we consider time varying conditional variances Σt+h−j,t.

We are left to compute the conditional variance of the cumulative returns. This can be

done directly by computing, with similar operations as for the variances vart(rt+j), also the

covariances covt(rt+i, rt+j) and by summing all terms or by resorting to aggregation results for

ARMA processes as discussed in Lütkepohl (1984), again taking the time varying conditional
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variances into account. The conditional covariance matrix of the h-period cumulative returns

is given by

vart(r[t+1:t+h]) = vart(rt+1 + · · · + rt+h)

= K ′
1

h∑

i=1

[
i−1∑

k=0

ΦkK Σt+i−k,t(Φ
kK)′

]

K1

+K ′
1

h∑

i,j=1,i6=j





i−1∑

k=max{0,i−j}

ΦkK Σt+i−k,t(Φ
j−i+kK)′



K1.

(12)

For the actual implementation of the above results concerning the predictions of the

conditional variances and covariances a recursive formulation is convenient. Denote ΣR
t+i,t =

vart(Rt+i) and ΣR
t+i,t+j,t = covt(Rt+i, Rt+j). Consider the case i = j first, then (6) implies

ΣR
t+i,t = vart(ΦRt+i−1 + Kεt+i) = ΦΣR

t+i−1,tΦ
′ + KΣt+i,tK

′ (13)

as covt(Kεt+i, Rt+i−1) = 0. For i > j (7) implies that

ΣR
t+i,t+j,t = covt(Φ

i−jRt+j +
∑i−j−1

k=0 ΦkKεt+i−k, Rt+j) = Φi−jΣR
t+j,t (14)

as covt(Kεt+i−k, Rt+j) = 0 for k = 0, . . . , i−j−1. Similarly, for i < j it holds that ΣR
t+i,t+j,t =

ΣR
t+i,t(Φ

j−i)′. Combining the above derivations an alternative, recursive formulation for the

conditional variance of the h-period cumulative returns is given by

vart(r[t+1:t+h]) = K ′
1





h∑

i=1

ΣR
t+i,t +

h∑

i=2

i−1∑

j=1

Φi−jΣR
t+j,t



K1 +

+ K ′
1





h−1∑

i=1

h∑

j=i+1

ΣR
t+i,t(Φ

j−i)′



 K1, (15)

where the conditional variance matrices ΣR
t+i,t are calculated according to the recursion (13)

for i = 1, . . . , h.

3 An Empirical Application in Portfolio Management

In the previous section we have shown how multistep predictions are obtained for ARMA-

GARCH models. These become useful for portfolio management when the data frequency is

higher than the rebalancing frequency, a situation often faced by portfolio managers. In this
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section we assess the practical implications of this result for portfolio selection by comparing

the portfolio performance with higher rebalancing frequency (one-month) to lower rebalancing

frequency (three-month) using higher frequency (one-month) data. Consequently, the former

portfolio selection has to be based on one-step predictions and the latter on predictions

up to three steps ahead. The quantitative importance of correct three-step predictions is

evaluated by computing several performance measures of portfolios rebalanced at a three-

month frequency but incorrectly based on one-step predictions. This also allows to identify

the sets of models leading to the best portfolio performance, according to optimality criteria

such as lowest risk, highest return or highest Sharpe ratio. Note, however, that the interesting

exercise of finding an optimal rebalancing interval is beyond the scope of this paper.

3.1 Portfolio Optimization

The empirical application is performed within the framework of mean-variance (MV) portfolio

analysis (Markowitz, 1952 and 1956). MV analysis assumes that the investor’s decisions and

hence the optimal portfolio only depend on the expected return and the conditional variance

of the portfolio return, the latter measuring risk. Considering n risky assets and an investment

horizon of one period, the investor faces the following decision problem at time t:

Min
xt

σ2
pt+1 =

n∑

i,j=1

xitxjtcovt(rit+1, rjt+1)

s.t. Et(rpt+1) =
n∑

i=1

xitEt(rit+1) = r,

n∑

i=1

xit = 1, xit ≥ 0,

where rpt+1 and σ2
pt+1 denote the portfolio return and portfolio variance, respectively.3 Given

a fixed value of the expected return, Et(rpt+1) = r, the fractions, xit, of wealth invested in

an individual asset i, are chosen to minimize the risk of the portfolio return. In addition, we

assume nonnegative xit, i.e. short sales are prohibited.4 Et(rit+1) and covt(rit+1, rjt+1) are

3Mean-variance portfolio optimization is based on discrete returns, which implies that the portfolio return
is a weighted average of individual asset returns, as seen in the above equation. The predictions from the
multivariate GARCH models are, however, based on continuous (log) returns for the following reason: the
cumulative returns over multiple periods are linear in the individual period returns when using continuous
returns but non-linear (and thus not analytically tractable) for discrete returns. We pursue the following
pragmatic strategy: we predict continuous returns using the multivariate GARCH models. We then - as is
common in the literature, compare e.g. Ledoit, Santa-Clara and Wolf (2003) - use these predictions in the
mean-variance optimization to get the optimal portfolio weights. In order to provide a realistic assessment of
the portfolio performance, in the evaluation we calculate the discrete returns of the portfolios.

4Jagannathan and Ma (2003) show that imposing short-sale constraints can improve portfolio performance
due to avoiding extreme positions resulting from imprecise covariance estimation.
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approximated by predictions (e.g. from GARCH models) of asset returns and their covari-

ances over the period from t to t + 1, given the information available at time t. The above

optimization problem leads, by varying r̄, to the well-known efficient frontier. Omitting the

constraint Et(rpt+1) = r leads to the minimum variance portfolio, which is independent of

expected returns. The empirical analysis below considers minimum variance portfolios only.

Full details of the implemented models and the empirical analysis are contained in the working

paper Hlouskova, Schmidheiny and Wagner (2004).

3.2 Return and Risk Predictions from GARCH Models

The required predictions for both the returns and the conditional covariances of the returns

are derived in our study from multivariate GARCH models. The nesting formulation of the

mean equations considered in the empirical application is given by the ARMA(1,1) equation

rt = c + Art−1 + εt + Bεt−1. (16)

Preliminary model selection shows that no higher lags are required for our application. Even

in the equations with only one lag many of the coefficients are insignificant. Therefore, we

also investigate more parsimonious specifications, where the autoregressive coefficient matrix

A, the moving average coefficient matrix B or both are restricted to be diagonal or zero. Note

that significant coefficients in A or B in the mean equation are a violation of strong market

efficiency. The portfolios based on ARMA models instead of only AR or MA models perform

very well, with a majority of the eight ARMA based portfolios being in the top half of the

portfolios for all considered performance measures. Two distributions for εt are considered:

Normally distributed innovations and t-distributed innovations, where in the latter case the

degree of freedom of the innovation distribution is estimated itself. The latter possibility

is included in order to allow for stronger leptokurtic behavior. Allowing for t-distributions

is beneficial and leads to on average quite good performance, especially when considering

monthly rebalancing. This is consistent with the stylized fact that leptokurtic behavior is

more important at higher data frequencies. See the upper block of Table 1 for a description of

the six implemented mean equations. We consider eight different specifications of orders (1,1)

for the variance equation, see the lower block of Table 1. The implemented models include

the BEKK model of Engle and Kroner (1995) and the vector-diagonal model. The other

six multivariate GARCH models are based on univariate GARCH models for appropriately
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Table 1: Specifications of implemented GARCH models

Specification of mean equation: rt = c + Art−1 + εt + Bεt−1

model A B εt

AR(1) diag n diagonal 0 N(0,Σt)
MA(1) diag n 0 diagonal N(0,Σt)
AR(1) full n unrestr. 0 N(0,Σt)
AR(1) diag t diagonal 0 t-distr.
MA(1) diag t 0 diagonal t-distr.
ARMA(1,1) full t unrestr. unrestr. t-distr.

Specification of variance equation
model description

BEKK(1,1)
Vector Diag(1,1) vector diagonal model
Diag GARCH(1,1) pure diagonal GARCH model
Diag EGARCH(1,1) pure diagonal exponential GARCH model
Diag PGARCH(1,1) pure diagonal power GARCH model
CCC GARCH(1,1) constant conditional correlation GARCH model
CCC EGARCH(1,1) constant conditional correlation exponential GARCH model
CCC PGARCH(1,1) constant conditional correlation power GARCH model

transformed series (in order to reduce the number of parameters). We have implemented two

approaches along this line, the constant conditional correlation (CCC) model of Bollerslev

(1990) and the pure diagonal models. For both of these model types we have implemented

three underlying univariate GARCH models: the unrestricted GARCH model of Bollerslev

(1986), the exponential GARCH (EGARCH) model of Nelson (1991) and the power GARCH

(PGARCH) model of Ding, Engle and Granger (1993). We implement all combinations of

the six mean equations and eight variance equations, i.e. a total of 48 GARCH models.

As a benchmark portfolio we consider the naive portfolio, where both the return and

covariance predictions are given by the sample mean and the sample covariance, respectively,

over the estimation period. Thus, we need to clarify how we derive multistep predictions for

the naive portfolio strategy. Since in the quarterly rebalancing the investor is interested in

the prediction of the three-month returns and their covariances, we base our naive predictions

for the three-month return on the sample mean and covariance matrix of the monthly return

series aggregated to three-month returns.5

5This seems to be more natural than to simply use the empirical mean and covariance matrix of the returns
series at the monthly frequency. The latter are used as incorrect forecasts for the quarterly rebalancing of the
naive portfolio.
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3.3 Portfolio Evaluation

We track internationally diversified portfolios denominated in Swiss francs over the period

1992 to 2003. The portfolio wealth is invested in six world regions. The MSCI indices for

the United States, Switzerland, Great Britain, Japan, Europe (excluding Great Britain) and

Pacific (excluding Japan) are the investment instruments.6 We use monthly return data from

February 1972 to December 2003 for the six indices.

The evaluation with quarterly (respectively monthly) rebalancing proceeds in the following

steps:

(1) The monthly return data from February 1972 up to the date of the investment decision

are used to predict the covariances of the six regional indices. 49 different predictions

are computed: From 48 GARCH models and the naive predictions.

(2) The corresponding minimum variance portfolios are calculated.

(3) The three- and one-month returns are calculated.

(4) The investment decision is repeated every three (one) months from January 1, 1992 to

October 1 (December 1), 2003 and the portfolios are rebalanced accordingly.

3.4 Results

Table 2 summarizes the evaluation results for the 48 portfolios based on GARCH models,

labelled GARCH portfolios.7 We report the average risk and return as well as the Sharpe

ratio8 of the 48 GARCH portfolios. For comparison, we also report the results obtained from

the naive portfolio, based on sample means and covariances. We report risk and Sharpe ratio

for annualized quarterly returns.

Let us start by discussing the performance of monthly rebalanced GARCH portfolios.

Note first that all GARCH portfolios exhibit lower risk than the naive portfolio, which force-

fully demonstrates the substantial value of GARCH modelling. Both, the average across the

GARCH portfolios as well as the majority of GARCH portfolios also show higher return (36

6Note that we do not include a risk free asset in order to focus on the effect of GARCH predicted correlation
structures on portfolio performance.

7Detailed tables with risk, return and risk adjusted performance measures such as Sharpe ratio, Jensen’s
alpha, Treynor’s measure as well as shortfall are available from the authors upon request.

8The Sharpe ratio is defined as excess return (i.e. return minus riskfree rate) divided by the standard
deviation of the excess return. The three-month (respectively one-month) deposit rate is used as riskfree rate.
Before December 1996 the deposit rate is approximated by the LIBOR minus five basis points.
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Table 2: Main Results of Performance Comparison

Risk Return Sharpe
Average across GARCH portfolios
- monthly rebalancing 39.00 7.99 0.133
- quarterly rebalancing with 3-step prediction 39.72 8.35 0.135
- quarterly rebalancing with 1-step prediction 39.99 7.89 0.123
Best of GARCH portfolios
- monthly rebalancing 37.39 9.08 0.167
- quarterly rebalancing with 3-step (correct) prediction 38.47 9.33 0.159
- quarterly rebalancing with 1-step (incorrect) prediction 38.64 9.09 0.156
Naive prediction
- monthly rebalancing 41.03 7.77 0.120
- quarterly rebalancing with 3-step (correct) prediction 41.38 8.05 0.122
- quarterly rebalancing with 1-step (incorrect) prediction 41.13 7.82 0.117
Number of GARCH models 48 48 48
Comparison of GARCH models
- quarterly rebal.: correct better than incorrect GARCH prediction 33 48 48
- quarterly (correct prediction) better than monthly rebalancing 1 47 27
Comparison of GARCH models with naive prediction
- monthly rebal.: GARCH better than 1-step naive prediction 48 36 39
- quarterly rebal.: correct GARCH better than naive prediction 48 40 43
- quarterly rebal.: incorrect GARCH better than naive prediction 48 32 32
Summary of main results. All results apply to quarterly returns. Return denotes the mean annu-
alized return of the portfolio. Risk denotes the standard deviation of annualized quarterly returns.
Sharpe ratio is given by excess quarterly return (i.e. return minus riskfree rate) divided by its
standard deviation. correct means that 3-step predictions for the conditional covariances are used.
incorrect means that 1-step predictions for the conditional means and covariances are used. better
(best) means lower risk, higher return and higher Sharpe ratio, respectively.

out of 48) and Sharpe ratio (39 out of 48) than the naive portfolio. The average return

(7.99%) across all 48 GARCH portfolios is 22 basis points higher than the return of the naive

portfolio. Similar outperformance is also found for daily data by Fleming, Kirby and Ostdiek

(2001).

Let us now turn to quarterly portfolio rebalancing based on correct multistep predictions.

Again, all GARCH portfolios show lower risk and a majority show higher return (40 of 48) and

higher Sharpe ratio (43 of 48) than the naive portfolio. The average return across all GARCH

portfolios (8.35%) is 30 basis points above the naive portfolio’s return. The return of the

GARCH portfolio with the highest return and Sharpe ratio based on quarterly rebalancing and

multistep predictions is even 128 basis points higher than the naive portfolio’s return. That

portfolio is based on an unrestricted AR(1) mean equation with normally distributed errors

and the BEKK(1,1) GARCH specification. For illustration the asset allocations corresponding

to the best and the naive portfolio are displayed in Figure 1. The figure displays a typical
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Figure 1: Asset allocations of the best performing GARCH portfolio, AR(1)-full n-
BEKK(1,1), and of the naive quarterly rebalanced portfolio.

feature of GARCH based portfolios, namely the larger amount of asset reallocations compared

to the naive portfolio.

Thus, the value of GARCH based portfolio selection appears to be substantial at both

frequencies. One might expect that the risks of quarterly rebalanced portfolios are higher

and their returns lower than for monthly rebalanced portfolios. This, since with monthly

rebalancing new information is incorporated faster. Surprisingly, the expected relationship is

only observed for risk: all but one quarterly rebalanced portfolio result in higher risk than

the corresponding monthly rebalanced portfolio. However, 47 out of 48 quarterly rebalanced

portfolios exhibit higher returns than the corresponding monthly rebalanced portfolio. On

average, the risk of quarterly rebalanced portfolios is 72 basis points higher and the return 36

basis points higher than that of monthly rebalanced portfolios. Consequently an ambiguous

picture emerges when taking the Sharpe ratio as performance measure: the Sharpe ratio

of quarterly and monthly rebalanced portfolios are on average as well as for the individual

models almost identical.9

Let us finally turn to the assessment of the value of correct multistep predictions by com-

paring the portfolio performance obtained from quarterly rebalancing based on the incorrect

one-step predictions on the one hand and on the correct three-step predictions on the other

hand. For the majority (33 of 48) of GARCH portfolios using the correct predictions results

9Note that the higher return achieved with lower frequency rebalanced portfolios implies that the results
are robust with respect to the consideration of transaction costs.
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in lower portfolio risk. The correct predictions reduce the risk by on average 17 basis points.

Note also that for all 48 GARCH portfolios the return is higher with the correct multistep

method, with the mean difference being 46 basis points. Thus, the correct computation of the

predictions is indeed resulting in superior portfolio performance across a large set of GARCH

portfolios.

4 Summary and Conclusions

In this paper we have derived the closed form solution for multistep predictions of the condi-

tional means and covariances for multivariate GARCH models and have illustrated their value

for portfolio management. Multistep predictions of the conditional means and covariances

are needed for mean-variance portfolio analysis when the rebalancing frequency is lower than

the data frequency. In order to deal with this problem we have also derived the explicit for-

mula for the conditional covariance matrix of the corresponding cumulative higher frequency

returns. The closed form solution for the general ARMA(p, q)-GARCH(k, l) case is provided

in section 2 along with a convenient recursive representation.

The practical relevance of the theoretical results is assessed empirically with an applica-

tion to six regional MSCI indices using a large variety of GARCH models. Based on monthly

data, the portfolio performance of monthly and quarterly rebalanced portfolios is investigated

and compared to the naive portfolio, which is based on the sample mean and covariance. The

quarterly rebalancing decision is either correctly based on three-step predictions or incor-

rectly on one-step predictions. The evaluation period is January 1992 to December 2003.

The following main results are obtained: First, portfolios based on GARCH models – labelled

GARCH portfolios – have on average higher return, lower risk and higher Sharpe ratio than

the naive portfolio. Second, almost all quarterly rebalanced GARCH portfolios based on

correct multistep predictions exhibit higher returns and higher risk than the monthly rebal-

anced GARCH portfolios even in the absence of transaction costs. This is surprising because

monthly adjusted portfolios incorporate new information faster and should therefore outper-

form quarterly adjusted portfolios. Third, portfolios based on correct predictions show on

average lower risk than the corresponding portfolios based on incorrect predictions. Further-

more, all GARCH portfolios based on correct predictions result in higher returns and Sharpe

ratios than those based on incorrect predictions.
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