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Abstract
Amajor cause of the paucity of new starting points for drug discovery is the lack of interac-

tion between academia and industry. Much of the global resource in biology is present in

universities, whereas the focus of medicinal chemistry is still largely within industry. Open

source drug discovery, with sharing of information, is clearly a first step towards overcoming

this gap. But the interface could especially be bridged through a scale-up of open sharing

of physical compounds, which would accelerate the finding of new starting points for drug

discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 com-

pounds representing families of structures identified in phenotypic screens of pharmaceuti-

cal and academic libraries against the Plasmodium falciparummalaria parasite. The set

has now been distributed to almost 200 research groups globally in the last two years, with

the only stipulation that information from the screens is deposited in the public domain. This

paper reports for the first time on 236 screens that have been carried out against the Malaria

Box and compares these results with 55 assays that were previously published, in a format

that allows a meta-analysis of the combined dataset. The combined biochemical and cellu-

lar assays presented here suggest mechanisms of action for 135 (34%) of the compounds

active in killing multiple life-cycle stages of the malaria parasite, including asexual blood,

liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds dem-

onstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 hel-

minths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the
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NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmaco-

kinetic and metabolic properties were collected on all the compounds, assisting in the selec-

tion of the most promising candidates for murine proof-of-concept experiments and

medicinal chemistry programs. The data for all of these assays are presented and analyzed

to show how outstanding leads for many indications can be selected. These results reveal

the immense potential for translating the dispersed expertise in biological assays involving

human pathogens into drug discovery starting points, by providing open access to new fam-

ilies of molecules, and emphasize how a small additional investment made to help acquire

and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of

different indications. Another lesson is that when multiple screens from different groups are

run on the same library, results can be integrated quickly to select the most valuable starting

points for subsequent medicinal chemistry efforts.

Author Summary

Malaria leads to the loss of over 440,000 lives annually; accelerating research to discover
new candidate drugs is a priority. Medicines for Malaria Venture (MMV) has distilled
over 25,000 compounds that kill malaria parasites in vitro into a group of 400 representa-
tive compounds, called the "Malaria Box". These Malaria Box sets were distributed free-of-
charge to research laboratories in 30 different countries that work on a wide variety of
pathogens. Fifty-five groups compiled>290 assay results for this paper describing the
many activities of the Malaria Box compounds. The collective results suggest a potential
mechanism of action for over 130 compounds against malaria and illuminate the most
promising compounds for further malaria drug development research. Excitingly some of
these compounds also showed outstanding activity against other disease agents including
fungi, bacteria, other single-cellular parasites, worms, and even human cancer cells. The
results have ignited over 30 drug development programs for a variety of diseases. This
open access effort was so successful that MMV has begun to distribute another set of com-
pounds with initial activity against a wider range of infectious agents that are of public
health concern, called the Pathogen Box, available now to scientific labs all over the world
(www.PathogenBox.org).

Introduction
Preclinical development for drugs in neglected diseases remains a slow process due to a lack of
access to compounds, and legal complications over intellectual property ownership. One way to
accelerate drug discovery is to provide open access to bioactive molecules with public disclosure
of the resulting biological data. The data from open access of bioactive molecules can help priori-
tize which compounds to investigate further through medicinal chemistry for the original indica-
tion and can also uncover other indications for compound development. It was in this spirit of
providing open access of malaria-bioactive compounds, and disseminating the results in the pub-
lic domain, that the Malaria Box project was initiated by the Medicines for Malaria Venture.

Origins of the ‘Malaria Box’ compound set
Since 2007, over 6 million compounds were screened against asexual-stage Plasmodium falcip-
arum, at two pharmaceutical companies (GlaxoSmithKline [1] and Novartis [2]), and two
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academic centers (St. Jude, Memphis [3], and Eskitis, Australia [4]), resulting in over 20,000
compounds active in the low- to sub-micromolar range. The structures of the 20,000 anti-
malaria hits were made available in ChEMBL (www.ebi.ac.uk/chembl), but discussions with
biology groups had underlined the importance of access to the compounds themselves for test-
ing. Cluster analysis and commercial availability reduced this to a set of 400 representative
compounds, the ‘Malaria Box’, which was distributed freely to researchers who provided a
rationale for screening [5]. This paper presents a summary and analysis of the collected results
of the Malaria Box screening from 55 groups who performed a wide variety of assays, the large
majority of which are presented in this paper. The collective results are greater than the sum of
the individual assays, because each compound can be queried for activity, pharmacokinetic,
and safety data to gauge its suitability as a starting point for subsequent medicinal chemistry
optimization efforts.

Results
The Heat Map (S1 Table) reports the data from over 290 assays run on the Malaria
Box compounds; a snapshot is shown in Fig 1. The results are color coded, where the com-
pounds with the highest activity are coded red and those with relative inactivity green. In the
center of the box in S1 Table, the numerical value for the compound is given. It can be seen
immediately that some compounds have activities in several biological assays across multiple
species and these tend to have activity against mammalian cells as well, whereas other com-
pounds have a rather limited spectrum of activity and are less toxic to mammalian cells.

The data demonstrated in S1 Table are provided by 55 groups who have performed 291
assays to screen the Malaria Box. The vast majority of the data are presented for the first time
in this paper. In supplementary data S1 Table, note that columns with data presented for the
first time in this paper, representing 236 assays, are colored pink on the top row; published /in
press data columns, 55, are grey, with citations provided. Presenting the combined dataset pro-
vides insights into the hit rates in these various assays while allowing rapid access to the data
by the wider scientific community.

The Heat Map (S1 Table) presents the Malaria Box chemicals grouped by chemical related-
ness. Of the 400 compounds, over 100 are closely-related paired molecules so immediate struc-
ture-activity-relationships (SAR) can often be seen from hits with these pairs. The Heat Map
identified obvious correlations in chemistry and biology between compounds (both Mecha-
nism-of-Action and phenotypic activity). Some biological assays are relatively similar; for
example, there were a large number of different P. falciparum gametocyte assays (S1 Table, col-
umns AV-CB), which also cluster, although not perfectly. As such, the aggregate screening
data help overcome inter-laboratory bias and identify outstanding activities. For example, com-
pounds that were active in multiple gametocyte assays represent more solid positives than a
compound that was active in only one screening assay. However, the gametocyte assays were
often performed using different techniques and screening concentrations (see S1 Methods and
Results, for details) and one assay may be preferred over another to select compounds with
gametocyte activity. Thus having the aggregate data presented together with the individual pro-
tocols is more valuable than just having each individual data set to look at sequentially.

Malaria Box safety and pharmacokinetic data
Early safety data were obtained by testing all compounds against 73 human cell lines at 10 μM
or above, and developing zebrafish embryos were exposed at 5 μM, providing further clues on
potential safety issues. A frequent cardiotoxicity safety concern is QTc prolongation, and all
compounds were screened for hERG inhibition [6], which is a proxy for this risk (S1 Table
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Fig 1. Malaria Box Heatmap. Shown are selected data from the HeatMap (S1 Table) for the 400 Malaria Box compounds. Each column represents an
assay (grouped by category), compounds are represented in rows. The red-green gradient represents higher to lower activity. Favorable PK activities are
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column GI). The efficacy and safety of anti-malarial compounds could be altered in endemic
regions when administered to patients who are also treated for HIV (Human Immunodefi-
ciency Virus) or TB (tuberculosis), due to drug-drug interactions in the liver. To flag such
interactions, we employed two recent breakthrough models: a bioengineered microscale
human liver in a high-throughput assay format that accurately captures human drug-drug
interactions not detectable in animals or cell lines [7] and a custom-made, robotic high-
throughput Luminex bead-based method for profiling the expression of 83 human liver drug-
metabolizing enzymes [8]. Combining these tools, we profiled the Malaria Box compounds for
induction or inhibition of drug-metabolizing pathways (S1 Table, columns GL-HA) and
thereby ranked compounds for potential for drug interactions with existing HIV and TB regi-
mens, to enhance selection of compounds with the lowest safety risks. We also scored the
Malaria Box compounds for acute hepatoxicity by monitoring morphology and daily albumin
and urea secretion from hepatocytes (S1 Table, columns FQ-FS).

G protein-coupled receptors (GPCRs) represent the largest human drug target class [9];
they affect neurological and cardiovascular physiology and are included in routine safety phar-
macology panels [10]. Therefore, in vitro affinity determinations on 23 selected human off-tar-
get GPCRs were performed on a subset (10%) of MMV compounds (S1 Table, columns
HC-HZ). One of the most severe GPCR-related adverse effects is cardiac valvulopathy linked
to 5-HT2B activation [11, 12]. Therefore, some of the MMV compounds with significant bind-
ing affinity for the 5-HT2B receptor were also tested on the corresponding functional assay to
determine a potential agonistic effect. In addition, predictions of compound glutathione reac-
tivity and epoxidation potential were calculated for each of the Malaria Box compounds (S1
Table, columns IB-IC). These combined safety results alert us to compounds with issues that
hopefully can be resolved in subsequent medicinal chemistry programs.

Prior to in vivo pharmacology evaluation it is important to know that an effective plasma
concentration can be reached; this exposure was measured in rodents for all compounds, from
a single high oral dose (140 μmol/kg). Around one third of the compounds generated high
plasma Cmax (>1 μg/ml) and/or high overall exposure (S1 Table, columns GD-GE). This is a
higher than expected percentage of compounds with measureable oral bioavailability than if
compounds were randomly selected, and probably reflects the large number of drug-like leads
selected for the Malaria Box. The combination of in vitro potency and bioavailability provides
a rough dosing estimate, informing subsequent decision-making around selection of develop-
ment leads.

The combined analysis of all of these safety and pharmacokinetic data allows selection of
the most promising compounds to advance to medicinal chemistry, and which parameters
should be monitored and improved during a medicinal chemistry program.

New insights into malaria
The activity of Malaria Box compounds against the asexual, erythrocytic stage of P. falciparum
was confirmed by five laboratories on seven different P. falciparum strains. There were some-
times 5-10-fold differences in the effective concentration that caused a 50% reduction in
growth (EC50) in each assay, and these may have been due to variations in the readouts for the
screening assays (LDH release, MitoTracker or Sybr Green dye incorporation, hypoxanthine
incorporation, DAPI imaging assay), variations in the protein concentration in the assay
medium (affecting the free compound concentration), the time the compound incubated time,

scored green. Pf: Plasmodium falciparum, Pb: Plasmodium berghei, PK: pharmacokinetics, sol.: solubility, hERG: human ether-a-go-go channel inhibition,
DDI: drug-drug interactions (predicted).

doi:10.1371/journal.ppat.1005763.g001
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or other differences. However, usually the results were consistent and strain-independent. We
have documented which sub-stage of the asexual lifecycle the compounds acted upon (S1
Table, columns AA-AE). This information is important in identifying compounds that may
overcome existing resistance against artemisinin and other antimalarials. For instance, com-
pounds that target early ring stage intra-erythrocytic parasites and have fast-killing dynamics
are sought after because, like artemisinins, they kill parasites rapidly and may reduce patient
mortality. Table 1 shows compounds that also target liver stages of the parasite’s life cycle.

Targeting disease-relevant malaria stages
P. berghei liver stage (LS) inhibition, using parasite-encoded luciferase activity as a readout of
infection in HepG2 cells, was independently determined by two groups at very different screen-
ing concentrations (Hanson: 5 μM,Winzeler: 50 μM). Forty-three compounds, roughly 10% of
the compound library, inhibited infection by at least 50% at 5 μM and 90% at 50 μM (referred
to as LS double actives). HepG2 cell toxicity, (50% or greater reduction in HepG2 abundance
based on direct or indirect readouts) was observed with 63% of Malaria Box compounds at
50 μM, while only 10% were toxic at the 5 μM concentration. After excluding those that
showed significant toxicity in HepG2 cells at both 5 and 50 μM, Malaria Box compounds were
stratified by potential mode-of-action annotation (S1 Table, column M). Five potential modes
of action stood out as enriched in LS double actives: (i) cysteine protease inhibitors (cruzain,
rhodesain): 1.8% of all Malaria Box compounds (7/400) and 4.7% (2/43) of LS double actives;
(ii) possible respiratory-dependent targets (Δ IC50 in low oxygen vs. normal oxygen): 0.8% (3/

Table 1. Malaria Box compounds with activity in biological assays (malaria, helminths,Wolbachia, and cancer cells) and lacking toxicity at thera-
peutic levels. Selectivity Index, SI, is toxicity level/activity level; p, probe-like; d, drug-like.

Antimalarial positives Antihelminthic positives Anti-
Wolbachia
positives

Anticancer positives

All drug-like (d)
P. falciparum early ring
stage compounds (EC50
<200 nM, SI >10) with
gametocyte activity

P. falciparum
asexual,
liver, &
gametocyte
activity

Brugia
malayi

Trichuris
trichuria

Ancylostoma
ceylanicum

Wolbachia MMV
Number

MGLI50 = Mean
Growth Log I50

Notes

MMV000248d MMV006913d MMV007907d MMV008294p MMV666607p MMV000642p MMV007384p -7.34 Colon,
differential,
potent

MMV006087d MMV007116d MMV019241p MMV666601p MMV008138d MMV019074d -4.91 Specific
lines
sensitive

MMV006455d MMV007199p MMV665831p MMV396664p MMV665803d -5.01

MMV006706d MMV007907d MMV666054p MMV665824p MMV665796d -5

MMV011567d MMV020700d MMV665841p MMV020275d -4.93

MMV011795d MMV665843d MMV665890d MMV000760d -6.02 Differential

MMV020505d MMV665977p MMV665897d MMV666020p -4.9

MMV020660d MMV666095p MMV665948d MMV665969p -6.29

MMV396749d MMV666075d MMV666597p -5.57 Differential

MMV396794d MMV666597p MMV006962p -5.61 Differential,
CNS

MMV665805d MMV666601p

MMV665878d MMV666607p

MMV665915d

doi:10.1371/journal.ppat.1005763.t001
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400) of all Malaria Box compounds and 4.7% (2/43); (iii) targeting yeast respiration: 3.5% of all
Malaria Box compounds (14/400) and 9.3% of LS double actives (4/43); (iv) suspected or
known PfDHODH (dihydroorotate dehydrogenase) inhibitors: 2.5% of all Malaria
Box compounds (10/400) and 9.3% of LS double active (4/43); and (v) suspected or known
cytochrome bc1 inhibitors: 4.3% of all Malaria Box compounds (17/200) and 16.3% of LS dou-
ble actives (7/43). Compounds with activity against PfATP4, now the most common intra-
erythrocytic asexual target seen in phenotypic screens, were not found amongst the LS double
actives.

There is a great need for antimalarials that kill dormant, liver-stage P. vivax (hypnozoites),
but there is a lack of assays that measure this activity. Only nine compounds (Table 1) show
simultaneous activity against gametocytes, liver, and asexual stages, whilst lacking evidence of
toxicity in zebrafish and broad cytotoxicity to mammalian cells. These would be compounds to
prioritize for in vitro and in vivo screening against P. vivax hypnozoites and would benefit
from additional MoA studies.

Gametocytocidal drugs would block transmission from the human to the mosquito and
break the parasite’s life cycle. The data shown in Table 1 include series with activities on both
gametocyte and liver stages, and some of the data intriguingly challenges existing assumptions.
For instance, MMV007116 in this category is a mitochondrial (bc1) inhibitor (S1 Table, col-
umn M, line 168) and has activity in a number of gametocytocidal assays, but other bc1 inhibi-
tors are not generally gametocytocidal, suggesting another MoA for this compound. We also
see 4-aminoquinolines as inhibitors of some gametocyte assays, although the parent 4-amino-
quinoline compound chloroquine is known not to be gametocytocidal for P. falciparum. Again,
this may imply a different MoA for some 4-aminoquinoline compounds or perhaps multiple
modes of action for certain compounds. These findings re-emphasize the strength of looking at
assay data in a wider context in Open Source drug discovery.

Mechanism-of-action screening
Data from one-hundred-nineteen MoA assays for compounds from the Malaria Box are
included, identifying potential targets for 135 of them (S1 Table and S1 Methods and Results).
The MoA assay data are presented in ColumnM of S1 Table, and further information about
the screens and their results are given in S1 Methods and Results. These screens included bio-
chemical screens for enzyme inhibition, protein-protein interactions, behavior by altered yeast
or malaria organisms, and a variety of other screens. Some associations are strong and have
been followed up with additional experimentation (e.g. MMV008138 and its target Pf-IspD
[13–15]), but most target associations are still tentative. Indeed, some listed MoA activities
occur only at higher concentrations than activity in cell-based screens and therefore are
unlikely to explain that compound’s activity against a pathogen or tumor cell. In addition,
many MoAs have been inferred for malaria, but are less likely to apply to the diverse groups of
organisms screened with the Malaria Box compounds.

Surface plasmon resonance (SPR) was used to identify nine compounds which inhibit four
sets of protein-protein interactions (PPI), without overlap between sets (S1 Methods and
Results), suggesting that molecules were identified that specifically target these protein-protein
interfaces. Compounds inhibiting P. falciparum (autophagy-related proteins) Atg8-Atg3 PPI
were MMV007907, MMV001246 and MMV665909 (S1 Table, column M). They had a pro-
nounced effect on all stages of gametocyte development, which supports the idea of PfAt-
g8-Atg3 being involved in remodeling and vesicular trafficking in gametocyte development. Six
compounds inhibited in vitro translation in P. falciparum lysates by more than 60% at a con-
centration of 1 μM (S1 Table, column L; [16]). One of these protein translation-inhibiting
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compounds, MMV007907, is interesting in that it had activity against both liver and gameto-
cyte stages as well as a broad range of other pathogens, and has low toxicity to human cell lines.
Twenty-six compounds either inhibited the mitochondrial electron transport chain (bc1, 11
compounds) or DHODH (15 compounds). Since both the bc1 and DHODH pathways con-
verge on pyrimidine biosynthesis, it is interesting that almost all bc1 inhibitors had anti-liver
stage and anti-male gametocyte activity, while the anti-male gametocyte property was generally
lacking in most DHODH inhibitors [17–19].

PfATP4 is a P. falciparum plasma membrane protein with genetic variants that confer resis-
tance to several new clinical and preclinical antimalarials [20–24]. PfATP4 has been proposed
to function as a Na+:H+ pump, effluxing Na+ from (and importing H+ into) the malaria para-
site [21]. Parasites exposed to 28 MMVMalaria Box compounds have shown ion-homeostasis
changes similar to those observed with likely PfATP4 inhibitors (indicated in column K, S1
Table) [25], and thus are inferred to be PfATP4 inhibitors. Analysis of the 281 assays’ results
with these compounds, reported here, allows detailed conclusions about the potential effects of
ATP4 inhibition in Plasmodium as well as other organisms. From the Malaria Box data sum-
marized here, it is evident that the 28 PfATP4-associated hits tended to be inactive against the
variety of non-Apicomplexan protozoa, helminths, insects, yeast and bacteria that were tested.
An exception was Trypanosoma cruzi, that was growth-inhibited by almost 40% of the PfATP4
inhibitors (11/28), compared to an overall hit rate of 20%. It should be noted that the non-Plas-
modium Apicomplexan parasites against which the majority of the compounds were tested–
Cryptosporidium parvum, Toxoplasma gondii, Theileria equi and three species of Babesia–were
not, in general, particularly susceptible to the PfATP4-associated hits. There is not, to our
knowledge, any evidence that the other Apicomplexan parasites against which the Malaria
Box was tested are exposed to a high-Na+ environment within their host cells, and this may
explain the lower sensitivity to inhibition of a Na+ efflux mechanism. In contrast, infection of
an erythrocyte by Plasmodium is followed by an increase in the Na+ concentration in the eryth-
rocyte cytosol as a result of the induction of broad-specificity (Na+-permeable) ‘New Perme-
ability Pathways’ in the host erythrocyte membrane [26–28]. This suggests that perturbation of
Na+ efflux through inhibition of PfATP4 is uniquely, highly detrimental to intra-erythrocytic
malaria parasites.

There is prior evidence that PfATP4-associated compounds are active against gametocyte
stages of P. falciparum [5, 22–24, 29–32]. Twenty-five of the 28 PfATP4-associated hits (89%)
caused some inhibition of male gamete formation at 1 μM (i.e. had positive % inhibition values;
S1 Table). It should be noted, however, that approximately half of the PfATP4-associated hits
have IC50 values for the killing of asexual parasites that are similar to or higher than the 1 μM
concentration used in the gamete formation assay. Only 65% of the PfATP4 non-hits tested
had positive values for inhibition of male gamete formation at 1 μM. An increase in extracellu-
lar pH is known to trigger the exflagellation of male P. falciparum gametes, raising the possibil-
ity that an increase in intracellular pH in male gametocytes or gametes, resulting from PfATP4
inhibition, triggers premature exflagellation, leading to parasite death. Thus, it is possible that
an increase in intracellular pH in male gametocytes or gametes resulting from PfATP4 inhibi-
tion triggers premature exflagellation leading to their death.

Malaria box compounds were also screened against asexual stages using metabolomic and
chemogenomic profiling (Fig 2). Using metabolomic profiling to examine the metabolic
responses to the 80 compounds in plate A, six of seven compounds believed to target PfATP4
[25] showed a distinct metabolic response characterized by an accumulation of dNTPs, and a
decrease in hemoglobin-derived peptides (Fig 2A, S2 Table). Twenty-one compounds clustered
with atovaquone, an inhibitor of the bc1 complex of the electron transport chain, exhibiting an
atovaquone-like signature characterized by the dysregulation of pyrimidine synthesis. Of these
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21 atovaquone-like compounds, 17 were also identified by other groups as targeting the elec-
tron transport chain or pyrimidine synthesis. For chemogenomic profiling, a collection of 35 P.
falciparum single insertion piggyBac [33] mutants were profiled with 53 MMV compounds and
three artemisinin (ART) compounds [Artesunate (AS), Artelinic acid (AL) and Artemether
(AM)] for changes in IC50 relative to the wild-type parent NF54 (Fig 2B, S3 Table, S4 Table).
Five Malaria Box compounds (MMV006087, MMV006427, MMV020492, MMV665876 and
MMV396797) were identified as having similar drug-drug chemogenomic profiles to the ART-
sensitivity cluster (Fig 2B). These compounds may be rapid killers, like artemisinin, and should
be explored further for confirmation, and whether they can overcome artemisinin-resistance
for ring-stage killing.

Screening on yeast to suggest MoAs
Four groups carried out screens on S. cerevisiae strains engineered to help elucidate the MoA of
test compounds. One screen established that 35 Malaria Box compounds were active on a mul-
tiple ABC-transporter deficient strain (also known as the ‘monster strain’) S. cerevisiae [34].
Since yeasts are generally resistant to compound inhibition due to transporters, this monster
strain can now be analyzed for MoA of inhibition by these 35 compounds. A second study
measured selective growth inhibition of S. cerevisiae using different carbon sources. Growth
was measured in three different growth media: rich or minimal media using dextrose as a car-
bon source, or minimal media using ethanol and glycerol as carbon sources. Compounds
affecting growth in a media-specific manner may represent inhibitors of key metabolic path-
ways. A third group used a yeast strain expressing the Pf phosphoethanolamine methyltrans-
ferase (PfPMT) to screen for phosphocholine (PC) synthesis inhibitors. This screen relies on
the incapability of this yeast strain to synthesize PC in the absence of exogenous choline, and
thus depends on the malaria PfPMT for survival. Screening the Malaria Box compounds, and a
variety of controls including wild-type PMT and choline supplemented media, led to the iden-
tification of MMV007384, MMV007041 MMV396736, MMV396723, MMV000304,
MMV000570, MMV000704, MMV666071, MMV000445, MMV667491, and MMV666080 as
possible PfPMT inhibitors. Finally, a fourth group screened S. cerevisiae grown either on etha-
nol-containing media requiring respiration or glucose-fermentative media not requiring respi-
ration, and identified 12 compounds that gave superior inhibition on ethanol media suggesting

Fig 2. Metabolomic and chemogenomic profiling. (A) Metabolic profiling: Heat map showing metabolic
fingerprints of 80 Malaria Box compounds and atovaquone control. Parasite extracts were analyzed by
LC-MS, and changes in metabolite pools were calculated for drug-treated parasites as compared to untreated
controls. Hierarchical clustering was performed on 2log-fold changes in metabolites (data in S2 Table), scaled
from -3 to +3. Six of seven compounds (indicated in red) reported to target PfATP4 [25] showed a distinct
metabolic response characterized by the accumulation of dNTPs and a decrease in hemoglobin-derived
peptides. A large cluster of compounds (indicated in blue) clustered with the atovaquone control (indicated in
orange), and exhibit an atovaquone-like signature characterized by dysregulation of pyrimidine biosynthesis,
and showed a distinct metabolic response characterized by the accumulation of dNTPs and a decrease in
hemoglobin-derived peptides. (B) Chemogenomic profiling: A collection of 35 P. falciparum single insertion
piggyBacmutants were profiled with 53 MMV compounds and 3 artemisinin (ART) compounds [Artesunate
(AS), Artelinic acid (AL) and Artemether (AM)] for changes in IC50 relative to the wild-type parent NF54 (data in
S3 Table, genes queried in S4 Table). Clone PB58 carried a piggyBac insertion in the promoter region of the
K13 gene and has an increased sensitivity to ART compounds as do PB54 and PB55 [33]. Drug-drug
relationships based on similarities in IC50 deviations of compounds generated with piggyBacmutants created
chemogenomic profiles used to define drug-drug relationships. The significance of similarity in MoA between
Malaria Box compounds and ART was evaluated by Pearson’s correlation calculations from pairwise
comparisons. The X axis shows the chemogenomic profile correlation between a Malaria Box compound and
AS, the Y axis with AM; the color gradient indicates the average correlation with all ART derivatives tested.
Five Malaria Box compounds (MMV006087, MMV006427, MMV020492, MMV665876, MMV396797) were
identified as having similar drug-drug chemogenomic profiles to the ART sensitivity cluster.

doi:10.1371/journal.ppat.1005763.g002
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that these compounds inhibit a respiratory target. Seven of these were not associated with any
other targets; the others were potential inhibitors of DHODH (3, 49), bc1, and IspD.

Activity against protozoa other than Plasmodium
The Malaria Box was screened against 16 additional protozoa, all of which are of medical or
veterinary significance. Compounds with activity against three or more protozoa were usually
toxic for the zebrafish or non-cancer mammalian cell lines, underlining the need to limit the
concentrations used in assays, to avoid meaningless positives. Table 2 lists compounds with
activity against protozoa that were nontoxic to zebrafish and most mammalian cells. In the
Cryptosporidium parvum assay there were numerous active compounds, but none were
completely devoid of toxicity for zebrafish and mammalian cell lines. MMV665917 had a
>20-fold Selectivity Index (SI) for C. parvum over mammalian cells. Trypanosoma cruzi actives
were non-overlapping between groups, and are listed separately, but T. brucei actives over-
lapped extensively with other screens and are presented together. There were seven non-toxic
hits that were active against extracellular amastigotes of Leishmania infantum, but no non-
toxic compounds were active on intracellular macrophage growth of L. infantum. There were
five non-toxic Malaria Box compounds active against T. gondii (MMV666095, MMV007363,
MMV007791, MMV007881 and MMV006704). Many of the compounds that were active on
Neospora caninum raised no toxicity flags on the accompanying host cell fibroblast screen, but
many were toxic at 10 μM or below for mammalian cells and zebrafish. The remaining non-
toxic N. caninum actives that bear further investigation include: MMV019670, MMV000911
and MMV006309. Most compounds active against Entamoeba histolytica, Naegleria fowleri, or
exflagellation of Chromera velia were toxic. An exception was MMV665979, an outstanding hit
forNaegleria fowleri, with limited toxicity elsewhere in the dataset. With respect to screening
Babesia and Theileria, ten novel anti-Babesia and anti-Theileria hits with nanomolar IC50s
were identified: MMV666093, MMV396794, MMV006706, MMV665941, MMV085203,
MMV396693, MMV006787, MMV073843, MMV007092 and MMV665875. The most interest-
ing hits were MMV396693, MMV073843, MMV666093, MMV665875 and MMV006706 with
mean SIs greater than 230 and IC50s ranging from 43 to 750 nM for both bovine Babesia and
equine Babesia and Theileria parasites. Additionally, 64, 45 and 49Malaria Box compounds
exhibited IC50s lower than those of diminazene aceturate (the most widely used antibabesial
drug) against the in vitro growth of B. bovis, B. bigemina and T. equi, respectively.

In vitro screening of Open Access Malaria Box compounds against Babesia bovis, B. bige-
mina, Theileria equi and B. caballi has led to the discovery of 10 novel potent anti-babesial hits
exhibiting submicromolar potency against both bovine Babesia and equine Babesia and Thei-
leria. In vitro follow up of the many of the hits identified in this study for B. bovis, B. bigemina,
B. caballi, and T. equi parasites, revealed IC50s lower than that obtained with the previously
described drug-leads luteolin, pyronaridine, nimbolide, gedunin and enoxacin [35]. The ten
potent hits for bovine Babesia and equine Babesia and Theileria identified in this study exhib-
ited IC50s lower than that obtained with the apicoplast-targeting antibacterials (ciprofloxacin,
thiostrepton, and rifampin), miltefosine, fusidic acid or allicin [36–39].

Activity on helminths, mycobacteria, and bacteria
Many Malaria Box compounds were active on helminths at 10 μM, but most of these were also
toxic for mammalian cells or zebrafish. The remaining non-toxic compounds had activity
against Brugia malayi (lymphatic filariasis) and Ancylostoma ceylanicum (hookworm; Table 1).
But no non-toxic compounds were found with consistent activity against Schistosoma mansoni,
Strongyloides stercoralis, Trichuris muris,Haemonchus contortus, or Onchocerca linenalis.
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There remains the possibility that some of the toxic hits against these species can be addressed
by medicinal chemistry.

With respect to activity against mycobacteria and bacteria, although every screen delivered
actives, the majority were again discarded because of a toxicity signal against zebrafish and/or
mammalian cells. The exceptions were non-toxic Malaria Box compounds that were active
againstWolbachia (Table 1).Wolbachia bacteria are targeted as anti-filarials in order to
deprive nematodes causing river blindness and elephantiasis from essential nutrients provided
by this bacterium [40].

Activity on cancer cells
The US National Cancer Institute has screened 59 human tumor cell lines (‘NCI60’) against
the Malaria Box compounds at 10 μM (S1 Table and S1 Methods and Results). Among the 133
compounds further evaluated for dose-responses, and the ten of these then tested in confirma-
tory assays (S1 Text), MMV007384 was selected for potency and focused activity against colon
cancer cells, and has been advanced to an in vivo proof-of-concept experiment.

Discussion
Academic drug discovery is highly fragmented. Many biology groups, especially those in dis-
ease-endemic countries, excel in developing highly disease-relevant pathogen models suitable
for low- to medium-high throughput screening, but suffer from lack of access to innovative
compounds. If they do have access to compounds, then they may fail to share the results, or
lack drug development skills. The Malaria Box Project demonstrates how an open source
approach allows effective data sharing: this publication serves as much to share the data among
the 180+ co-authors as with the wider scientific community. By publishing in concert this
ensures early publication and also sharing of ideas and expertise in drug discovery. New
insights and series have been obtained for malaria (nine pan-stage active molecules which had
not been previously prioritized). Moreover, screening against pathogens for additional
neglected diseases has been catalyzed and hits found. The sharing of data from safety screens
flags compounds that probably work through a general toxicity mechanism, and those com-
pounds can be down-prioritized at an early stage. This is key to prioritizing compounds for
medicinal chemistry, since the paucity of good starting points against some parasites has
encouraged groups to screen at what may be inappropriately high drug concentrations.
Another advantage of having a standardized, publically available library and dataset is that this
allows benchmarking assay sensitivity, setting compound concentrations for expanded screens
and deciding on acceptable hit criteria [41].

We saw some discrepancies in the values obtained for the same compounds in similar assays
that were carried out by multiple groups, such as activity against asexual or gametocyte forms
of P. falciparum, Trypanosoma spp., and mammalian cells. In this sense, compounds that were
positive in more than one assay would clearly be more likely to represent a true positive than
compounds that were positive in only one screen. Some of these apparent discrepancies were
probably due to variations in the techniques used for the screens. For instance, many methods
used to measure gametocytocidal activity measure a specific metabolic activity. Because the
metabolism will be affected by many factors that will lead to differences in output, including
media composition (albumax versus serum), how old the media used was, purity of the game-
tocytes (how much asexual contamination and cell debris is present). In addition, the tested
compounds varied widely in their propensity to bind to protein in the assay medium, and large
differences in the protein content in two assays could lead to differences in unbound com-
pound. Only the free compound would likely be available for activity in biological assays. Some
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assays had extensive follow up, and if a compound was tested and activity confirmed with a
dose-response, it is more likely to be a true positive than a compound flagged as positive from a
single screening run. This complex dataset highlights the need to consider integrating more
standardized criteria, such as similar (free) compound concentrations, assay media, or com-
pound exposure duration, into future screening initiatives of this nature. This could potentially
reduce inter-assay differences, and facilitate more direct data comparison across the different
platforms. However it is clear in the case of gametocyte screens, that different assays that inter-
rogate different biological processes do not necessarily achieve the same result for a given com-
pound, even when the assay conditions have been standardized [42]. And trying to standardize
assays may be counterproductive with the goal of convincing multiple groups to run their
assays on a given set of compounds.

The MoAs associated with compounds (S1 Table, Column M) vary from very strong associ-
ations such as chemical-genetic evidence, to relatively weak associations, such as activity in a
single biochemical screen at relatively high compound concentration. Thus most of the associa-
tions should not be taken as definitive MoA of the compounds for their biological activities. All
associations were presented because not only could they be hypothesis-building for the discov-
ery of a compound’s disease-relevant MoA, but also because the Malaria Box compounds now
represent a rich source of bioactive compound tools.

With its outcomes continually evolving, the Malaria Box has already made an impact by
stimulating medicinal chemistry for many diseases. We are aware of such new medicinal chem-
istry programs against pathogens such as Plasmodium [43–45], Babesia, Toxoplasma [46], Try-
panosoma [47–49], Cryptosporidium [31], Schistosoma [50], filaria, Echinococcus, helminths,
bacteria, cancer and other diseases [30]. Ensuring that data becomes freely available is a chal-
lenge, and this paper represents the first such summary of over 290 screens against the com-
pound collection, highlighting new activities and new MoAs. For the future, three goals are
important. First, to track these compound series to ascertain whether any of these hits do
become leads of drug development candidates. Second, data must be rapidly published, even
with follow-up incomplete. Finally and most importantly, this model can be taken further. A
second collection of 400 compounds, the Pathogen Box, (www.PathogenBox.org) based on
compounds known to be active in phenotypic screens against an expanded set of pathogens
responsible for neglected and tropical diseases has now become available from the Medicines
for Malaria Venture. It is hoped this can be the start of equally fruitful collaborative networks.

Methods
See S1 Methods and Results for further details.

The Malaria Box is a set of 400 compounds that were previously shown to be active against
asexual stages of P. falciparum in vitro. The process for Malaria Box compound selection was
published previously [5], with 200 drug-like compounds as starting points for oral drug discov-
ery and development and 200 diverse probe-like compounds for use as bioactive tools research.
The selection was made to represent the broadest cross-section of structural diversity and, in
the case of the drug-like compounds, properties commensurate with excellent oral absorption
and the minimum presence of known toxicophores. One limiting factor was that compounds
had to be commercially available; this limited the chemical space displayed in the original set of
20,000 malaria bioactives.

The Malaria box was shipped to 193 different research groups in 29 different countries as
frozen 96-well plates with the compounds dissolved at 10 mM in 20 μl DMSO (dimethylsulph-
oxide). Two years after shipping the first Malaria Box, the 193 groups were re-contacted and
asked if they wanted to participate in a group publication disseminating and comparing the
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results from the Malaria Box screens. Forty-seven of these groups did not reply to our multiple
requests. Fifty-nine groups had not yet initiated screening, but 26 of these had only received
the Malaria Box in the preceding three months. Thirty-one groups had publications in prepara-
tion and 39 papers have already been published [5, 14, 16, 25, 30–32, 42–46, 48–75]. Fifty-five
groups agreed to contribute data and participate in this paper and provided data from 291
assays.

The compounds were then screened in biochemical and biological screens as documented
in detail in S1 Methods and Results. More detailed methods are provided for screens presented
in this paper than for those whose results have already published. In addition, S1 Methods and
Results provides data for both positive and negative controls obtained for each assay. In most
assays, a single-concentration screen was run first and bioactives were identified. Some work
was stopped after the primary screen, but most groups went on to perform confirmatory assays,
and many provided hit concentrations that achieve 50% activity (S1 Table). The assays
included a variety of cell-based pathogen screens covering multiple taxonomic groups, includ-
ing Plasmodium (multiple life-stages), other protozoa, bacteria, mycobacteria, HIV, and also
multicellular-organism screens such as helminths and a mosquito (See Fig 1 and S1 Table).

Supporting Information
S1 Methods and Results. Supplementary Methods and Results.
(DOCX)

S1 Table. Malaria Box HeatMap. (Reference numbers refer to S1 Methods and Results refer-
ences; Pink Headers signify data presented first in this paper data; Grey headers are published,
submitted, or in press). Red shading means active and green means inactive and values are pro-
vided in each square. Favorable PK activities are scored green.
(XLSX)

S2 Table. Metabolomic data. The file is ordered as shown in Fig 2A and shows log2 fold
changes compared to an untreated control. Positive and negative values indicate increase and
decrease, respectively, as compared to the control.
(XLSX)

S3 Table. Chemigenomic data.
(XLSX)

S4 Table. Genes queried in Chemogenomic approach.
(XLSX)

S1 Text. Supplementary Dose-Response data on selected cancer cell lines.
(PDF)
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