edoc

The metabolomic profile of gamma-irradiated human hepatoma and muscle cells reveals metabolic changes consistent with the Warburg effect

Wang, Min and Keogh, Adrian and Treves, Susan and Idle, Jeffrey R. and Beyoğlu, Diren. (2016) The metabolomic profile of gamma-irradiated human hepatoma and muscle cells reveals metabolic changes consistent with the Warburg effect. PeerJ, 4. e1624.

[img]
Preview
PDF - Published Version
Available under License CC BY (Attribution).

3064Kb

Official URL: http://edoc.unibas.ch/44309/

Downloads: Statistics Overview

Abstract

The two human cell lines HepG2 from hepatoma and HMCL-7304 from striated muscle were γ-irradiated with doses between 0 and 4 Gy. Abundant γH2AX foci were observed at 4 Gy after 4 h of culture post-irradiation. Sham-irradiated cells showed no γH2AX foci and therefore no signs of radiation-induced double-strand DNA breaks. Flow cytometry indicated that 41.5% of HepG2 cells were in G2/M and this rose statistically significantly with increasing radiation dose reaching a plateau at ∼47%. Cell lysates from both cell lines were subjected to metabolomic analysis using Gas Chromatography-Mass Spectrometry (GCMS). A total of 46 metabolites could be identified by GCMS in HepG2 cell lysates and 29 in HMCL-7304 lysates, most of which occurred in HepG2 cells. Principal Components Analysis (PCA) showed a clear separation of sham, 1, 2 and 4 Gy doses. Orthogonal Projection to Latent Structures-Discriminant Analysis (OPLS-DA) revealed elevations in intracellular lactate, alanine, glucose, glucose 6-phosphate, fructose and 5-oxoproline, which were found by univariate statistics to be highly statistically significantly elevated at both 2 and 4 Gy compared with sham irradiated cells. These findings suggested upregulation of cytosolic aerobic glycolysis (the Warburg effect), with potential shunting of glucose through aldose reductase in the polyol pathway, and consumption of reduced Glutathione (GSH) due to γ-irradiation. In HMCL-7304 myotubes, a putative Warburg effect was also observed only at 2 Gy, albeit a lesser magnitude than in HepG2 cells. It is anticipated that these novel metabolic perturbations following γ-irradiation of cultured cells will lead to a fuller understanding of the mechanisms of tissue damage following ionizing radiation exposure.
Faculties and Departments:03 Faculty of Medicine > Departement Biomedizin > Department of Biomedicine, University Hospital Basel
03 Faculty of Medicine > Departement Biomedizin > Department of Biomedicine, University Hospital Basel > Perioperative Patient Safety (Girard/Treves)
UniBasel Contributors:Treves, Susan
Item Type:Article, refereed
Article Subtype:Research Article
e-ISSN:2167-8359
Note:Publication type according to Uni Basel Research Database: Journal article
Language:English
Identification Number:
edoc DOI:
Last Modified:18 Oct 2016 12:53
Deposited On:18 Oct 2016 12:53

Repository Staff Only: item control page