edoc

Noninvasive PET Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering

Haralampieva, Deana and Betzel, Thomas and Dinulovic, Ivana and Salemi, Souzan and Stoelting, Meline and Krämer, Stefanie D. and Schibli, Roger and Sulser, Tullio and Handschin, Christoph and Eberli, Daniel and Ametamey, Simon M.. (2016) Noninvasive PET Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering. Journal of Nuclear Medicine, 57 (9). pp. 1467-1473.

[img]
Preview
PDF - Accepted Version
1914Kb

Official URL: http://edoc.unibas.ch/44074/

Downloads: Statistics Overview

Abstract

Transplantation of human muscle precursor cells (hMPCs) is envisioned for the treatment of various muscle diseases. However, a feasible noninvasive tool to monitor cell survival, migration, and integration into the host tissue is still missing.
METHODS: In this study, we designed an adenoviral delivery system to genetically modify hMPCs to express a signaling-deficient form of human dopamine D2 receptor (hD2R). The gene expression levels of the receptor were evaluated by reverse transcriptase polymerase chain reaction, and infection efficiency was evaluated by fluorescent microscopy. The viability, proliferation, and differentiation capacity of the transduced cells, as well as their myogenic phenotype, were determined by flow cytometry analysis and fluorescent microscopy. (18)F-fallypride and (18)F-fluoromisonidazole, two well-established PET radioligands, were assessed for their potential to image engineered hMPCs in a mouse model and their uptakes were evaluated at different time points after cell inoculation in vivo. Biodistribution studies, autoradiography, and PET experiments were performed to determine the extent of signal specificity. To address feasibility for tracking hMPCs in an in vivo model, the safety of the adenoviral gene delivery was evaluated. Finally, the harvested tissues were histologically examined to determine whether survival of the transplanted cells was sustained at different time points.
RESULTS: Adenoviral gene delivery was shown to be safe, with no detrimental effects on the primary human cells. The viability, proliferation, and differentiation capacity of the transduced cells were confirmed, and flow cytometry analysis and fluorescent microscopy showed that their myogenic phenotype was sustained. (18)F-fallypride and (18)F-fluoromisonidazole were successfully synthesized. Specific binding of (18)F-fallypride to hD2R hMPCs was demonstrated in vitro and in vivo. Furthermore, the (18)F-fluoromisonidazole signal was high at the early stages. Finally, sustained survival of the transplanted cells at different time points was confirmed histologically, with formation of muscle tissue at the site of injection.
CONCLUSION: Our proposed use of a signaling-deficient hD2R as a potent reporter for in vivo hMPC PET tracking by (18)F-fallypride is a significant step toward potential noninvasive tracking of hD2R hMPCs and bioengineered muscle tissues in the clinic.
Faculties and Departments:03 Faculty of Medicine > Departement Biomedizin > Associated Research Groups > Pharmakologie (Handschin)
05 Faculty of Science > Departement Biozentrum > Growth & Development > Growth & Development (Handschin)
UniBasel Contributors:Handschin, Christoph
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Society of Nuclear Medicine
ISSN:0161-5505
e-ISSN:2159-662X
Note:Publication type according to Uni Basel Research Database: Journal article
Language:English
Identification Number:
Last Modified:06 Sep 2016 09:05
Deposited On:06 Sep 2016 09:05

Repository Staff Only: item control page