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Abstract 
_____________________________________________________________________ 

 

Cyclic di-GMP (c-di-GMP) is an omnipresent bacterial second messenger 

molecule which has been recognized as a central regulator of lifestyle 

transitions. Generally, high levels of c-di-GMP promote a biofilm associated, 

surface attached lifestyle, while low levels of c-di-GMP favor a single cell, 

motile lifestyle. A wide range of c-di-GMP effector proteins are known which 

control various cellular functions. It has long been assumed that c-di-GMP is 

involved in the regulation of cell cycle progression. In this work the role of c-

di-GMP on the G1-S transition is described in the aquatic bacterium Caulobacter 

crescentus. C. crescentus is an ideal model organism since G1-S transition is 

developmentally linked to the swarmer to stalked cell transition and therefore 

easily observable. Moreover, c-di-GMP influences several processes at the 

swarmer to stalked cell transition. Thus, disturbing the c-di-GMP-dependent 

processes causes specific phenotypes.  

In the first part of this work, the effect of c-di-GMP on core components of 

the C. crescentus cell cycle control machinery is assessed. It is described that the 

essential histidine kinase CckA (Cell cycle kinase A) is regulated by c-di-GMP. 

Binding of CckA to c-di-GMP activates the phosphatase activity of CckA and 

leads to dephosphorylation of the transcription factor CtrA (Central 

transcriptional activator A) which ultimately initiates chromosome replication. 

Furthermore it is shown that c-di-GMP is required in the predivisional cell to 

establish a CckA-dependent CtrA phosphorylation gradient. 

The second part describes the mechanism by which c-di-GMP activates CckA 

phosphatase activity. It was possible to isolate several mutations in CckA which 

specifically target certain activities of CckA and thereby give an insight into the 

intramolecular signaling mechanisms. Additionally, a recently solved crystal 

structure of CckA in complex with c-di-GMP will increase our understanding 

of the activation of phosphatse activity.  

The third part of this work deals with the regulation of several histidine kinases 

by a single domain response regulator. The single domain response Regulator 

MrrA (Multifunctional response regulator A) is shown to be a central part of 

the C. crescentus stress response pathway. MrrA is phorphorylated by two 

cognate histidine kinases and additionally acts as a repressor of one of the 

kinases. The downstream target of MrrA is the histidine kinase LovK which is 

the main activator of the general stress response. It is demonstrated that 

phosphorylated MrrA is an allosteric activator of LovK.  
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Taken together this work increases the understanding of how c-di-GMP 

regulates cell cycle progression and additionally gives insight into the modes of 

regulation of histidine kinases. 
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Introduction 
_____________________________________________________________________ 

 

C-di-Nucleotide signaling 

The following section on c-di-nucleotide signaling is written to be published as 

a review in Nature Reviews Microbiology. Text is written by Alberto Reinders 

(cyclases, phosphodiesterases, biofilm and motility) and myself (development, 

virulence, immunity, methods and “other c-di-nucleotides”). 

Abstract    
 
C-di-Nucleotides (cdN) are versatile signaling molecules used by bacterial and 

eukaryotic cells as second messengers. The best-studied example is bis-(3′-5′)-

cyclic dimeric GMP (c-di-GMP). Known since the late 1980`s it is now 

regarded a widespread bacterial second messenger. Recent discoveries, aided 

by the development of new techniques, shed light on the various processes 

controlled by c-di-GMP. C-di-GMP effectors display a wide range of targets, 

ranging from core cell cycle events to biofilm formation, motility and virulence. 

Here we review the latest discoveries focusing on effector proteins and the 

output functions controlled by c-di-GMP. We also briefly review the recently 

emerging second messengers c-di-AMP as well as c-GMP-AMP (cGAMP). 
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DGCs & PDEs 

 

A planktonic lifestyle is incompatible to a sedentary lifestyle and requires 

profound reprogramming of cell physiology [1–5]. To trigger the transition and 

establish the lifestyle the cellular c-di-GMP concentrations have to be precisely 

set and readily adjusted if the environment requires adaptation. This requisite 

demands a highly fine-tuned network that can sense a plethora of stimuli to 

ultimately establish the appropriate c-di-GMP regime. This is achieved through 

the antagonistic enzyme families, which comprise two of the largest known 

enzyme families in the bacterial kingdom [6], namely diguanylate cyclases 

(DGC), which condense two GTP into c-di-GMP [7] and c-di-GMP-specific 

phosphodiesterases (PDE), which degrade it [8,9]. Diguanylate cyclases are 

characterized by their consensus GGDEF motif, while c-di-GMP-specific 

phosphodiesterases either contain an EAL or HD-GYP-motif [10,11]. These 

proteins either exist as stand-alone proteins or fused to one another to function 

as so-called “composite proteins”. While composite proteins comprise a large 

fraction of c-di-GMP-related enzymes and are an avid research target, their 

function and especially the regulatory mechanisms regulating either of the 

enzymatic activity still remain elusive. A recurring theme is that most enzymatic 

domains come along with N-terminally associated accessory domains that in 

most cases are believed to serve as input domains regulating the enzymatic 

output domain. 

 

The recent advances in structure and mechanism of c-di-GMP synthesizing and 

degrading enzymes are centered on the regulatory features of these remarkable 

enzymes. For nearly a decade, PleD from C. crescentus served as a cornerstone 

in understanding the catalytic and regulatory mechanisms of diguanylate 

cyclases [12], stating that induced dimerization of the GGDEF-domain drives 

condensation of c-di-GMP [12]. Moreover, PleD is a precedent in respect to 

the inherent regulation of catalysis. Most diguanylate cyclases share an allosteric 

product inhibition site (I-site), most likely to refrain a bacterial cell from 

excessive GTP consumption or accumulation of unphysiologically high c-di-

GMP concentrations [13]. This feature however is not conserved throughout 

all active diguanylate cyclases. 

E.g., structural and biochemical insights into DgcZ (formerly YdeH [14]) from 

E. coli revealed that this particular cyclase does contain an inhibitory I-site, 

which nevertheless only shows its effect at unphysiologically high at c-di-GMP 

concentrations (ca. 40 µM) [14]. DgcZ is a constitutive dimer and its enzymatic 

activity is inhibited through subfemtomolar binding of zinc to the N-terminally 
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associated chemoreceptor zinc binding (CZB) domain. Mechanistically it was 

suggested that Zn2+-binding to the CZB arranges the GGDEF-domains of 

DgcZ such that their mobility is impeded, thereby hindering correct positioning 

of the substrates [14]. Not only does this study provide a novel 

activation/inhibition mechanism but is moreover the first diguanylate cyclase 

crystallized in presence of its cognate regulatory signal. 

Although the catalytic mechanisms of c-di-GMP-specific phosphodiesterases 

are well understood, the mechanisms regulating their activity are not. This is 

not surprising since we lack knowledge of the input signals that regulate the 

enzymatic domain. Moreover, it is unclear whether EAL-domains might 

experience some form of inherent regulation, which could even be uncoupled 

from their accessory domains. While for cyclases it is clear that two active and 

GTP-bound monomers have to dimerize in order to condense GTP into c-di-

GMP [12,14], dimerization of EAL-domain proteins was readily observed 

[9,15–17] but its role in enzyme activity remained rather enigmatic. Sundriyal 

and co-workers recently showed that c-di-GMP concentrations drive 

dimerization and hence activity of the EAL-domain of PdeL (formerly YahA 

[18]) from E. coli [17]. In fact mutating specific dimerization residues, which are 

conserved throughout all active EAL-domains, fully abolished substrate-

induced dimerization and concomitantly enzyme activity. Noteworthy there is 

accumulating evidence that PDEs show yet uncharacterized regulatory 

properties, which appear to be linked to changes in their quaternary structure 

[9,17]. Investigation of these observations is out for further scrutiny. 

A second class of c-di-GMP-specific phosphodiesterases is proteins containing 

the conserved HD-GYP motif. Although both classes are competent c-di-

GMP-specific phosphodiesterases, they are unrelated in terms of structure and 

their catalytic mechanism. While EAL domain-containing phosphodiesterases 

degrade c-di-GMP into linear pGpG, HD-GYP domain-containing 

phosphodiesterases degrade c-di-GMP in a one-step metal-assisted mechanism 

into two molecules of GMP [11]. Although numerous HD-GYP-domain 

proteins have been characterized in terms of their biological function [19], it 

was only in 2014 that the structure of an active HD-GYP-domain protein was 

solved in presence of it substrate c-di-GMP [11]. This study suggested that HD-

GYP-domain proteins can be subdivided in two distinct subgroups with a bi- 

or tri-nuclear catalytic center and completes the structural picture of all enzyme 

classes involved in c-di-GMP homeostasis [11]. 

However for bacteria that lack HD-GYP-domain proteins such as E. coli it 

remained unclear how pGpG is further catabolized into its breakdown product 

GMP. Although some phosphodiesterases exhibit mild activity to degrade 
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pGpG into GMP (PDE-B activity) [10], it is unlikely that this mild secondary 

activity can deplete rapidly accumulating pGpG concentrations e.g. during 

sessile-motile transitions. Orr and co-workers recently identified and 

characterized the oligoribonuclease Orn to be specific for degradation of 

pGpG to GMP, thereby coming full-circle in respect to a complete synthesis 

and degradation pathway of c-di-GMP [20]. These findings add an important 

regulatory link to the homeostasis of c-di-GMP and the network regulation as 

such, namely that certain EAL-domain containing proteins are product 

inhibited. Moreover we can now assign a regulatory role for a long-thought 

junk-product of c-di-GMP homeostasis [20,21]. 

Despite the knowledge we gained in the recent years in terms of structure and 

function of DGCs and PDEs it remains challenging to unequivocally assign the 

cognate physiological function of individual DGCs and PDEs under laboratory 

conditions. In fact, only few input signals have been identified so far [22–28]. 

To circumvent this issue a genetic study was carried out in E. coli that isolated 

motile suppressors of a non-motile ∆pdeH (formerly yhjH) strain and revealed 

that – irrespective of the cognate input signal – PDEs can indeed be 

mutationally activated to exhibit their enzymatic activity [29]. 

Finally, we would like to highlight, that DGCs and PDEs must be regarded as 

more than just simple homeostasis elements in the world of c-di-GMP. Rather 

many of these enzymes engage in further downstream signaling e.g., through 

protein-protein interactions and by regulation of biological processes in a more 

localized fashion [22,30]. This observation does not limit to so-called 

“degenerate proteins”, which have lost their catalytically ability yet maintaining 

their c-di-GMP-binding properties to function as bona fide c-di-GMP effectors 

[31–34]. Rather examples are emerging of active DGCs and PDEs that act as 

c-di-GMP sensors to control downstream processes by virtue of their active 

site [30]. An illustrative example is the PDE PdeR (formerly YciR [18]) from 

E. coli. Lindenberg and co-workers showed that the primary role of PdeR is not 

to degrade, but sense c-di-GMP and thereby control transcription of amyloid 

curli fiber genes via its interaction partners DgcM (formerly YdaM [18]) and 

the transcription factor MlrA [30]. 
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Figure 1: Components of the cyclic di-GMP signaling network. (A) 

Schematic overview of proteins generating and degrading c-di-GMP as well as 

exerting effector functions. (B) Structure of zinc-binding diguanylate cyclase 

DgcZ from E. coli (PDB-entry: 4H54). GGDEF-domain colored in orange 

(symmetry mate in light orange). Zinc-binding CZB-domain is shown in grey. 

C-di-GMP binding to antipodal I-site (IP & IP’) shown in magenta. Non-

hydrolysable GTPS in active site (A & A’) shown in red. (C) Crystal structure 

of a HD-GYP phosphodiesterase PmGH from Persephonella marina (PDB-entry: 

4MDZ). HD-GYP-domain colored in blue (symmetry mate in light blue). 

Associated N-terminal GAF domain and 5-linker helix colored in grey. C-di-

GMP bound to active site shown in magenta. (D) C-di-GMP effector protein 

BcsA (green and magenta) (PDB-entry: 4P02). BcsA is a cellulose synthase 

activated by c-di-GMP. PilZ-domain of BcsA is shown in purple. C-di-GMP 

shown in magenta. BcsA forms a complex with periplasmatic BcsB shown in 

grey  (E, F) Structure of PdeLEAL phosphodiesterase in relaxed (apo) (PDB-

entry: E, 4LYK) and tight conformation (PDB-entry: F, 4LJ3) (c-di-GMP-

bound, magenta). EAL-domains shown in blue and light blue for symmetry 

mate respectively. 

 

 

Development 
 
C-di-GMP controls Caulobacter crescentus cell cycle 
 
C. crescentus has become a widely used model organism to study bacterial growth 

and development. The C. crescentus cell cycle is characterized by a number of 

developmental stages which are synchronized with chromosome replication 

[35].  

C. crescentus swarmer cells have a single polar flagellum and are motile [35]. In 

this developmental period, the cells are not able to replicate the chromosome 

and are therefore blocked in G1 phase. During transformation into stalked 

cells, the swarmer cells eject the falgellum and produce an extension of the cell 

wall and membrane at the former site of the flagellum [36]. At the tip of this 

structure an adhesive compound, the holdfast, is formed which allows the cells 

to adhere to surfaces. During this developmental transition the cells also start 

replicating their chromosomes and enter S phase [37]. Next, this predivisional 

cell elongates and synthesizes a new flagellum at the pole opposite the holdfast. 

Division of this cell produces two morphologically different daughter cells: one 

cell still adheres to the surface via the stalk and re-enters S phase, whereas the 

other cell represents a new swarmer. One cell retains the stalk and immediately 
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re-enters S phase while the new swarmer cell shows a block in G1 and has to 

develop into a stalked cell before entering S phase (Fig. 2). 

In recent years it has become evident that C. crescentus development is tightly 

linked to the intracellular c-di-GMP levels [7,38]. PleD, the first described 

GGDEF diguanylate cyclase, turned out to be involved in this process. PleD is 

a response regulator which harbours a receiver domain and a GGDEF output 

domain [7,12,39]. Phosphorylation of the receiver domain at the swarmer to 

stalked cell transition leads to activation of the cyclase activity and recruits the 

protein to the stalked cell pole [7]. Loss of PleD results in hypermotile cells, 

inefficient ejection of the flagellum and strongly reduced stalk formation [7]. 

When c-di-GMP production is abolished completely by deleting all DGCs the 

phenotypes are more dramatic: The cells lose all polar appendages and are 

strongly elongated but still retain viability [38]. Since the phenotypes that are 

regulated by c-di-GMP change throughout the cell cycle, it was suggested that 

c-di-GMP levels vary in different developmental stages. Indeed, it was reported 

that c-di-GMP levels are low in swarmer cells and rapidly peak at the swarmer 

to stalked cell transition resulting in stalked cells with high intracellular c-di-

GMP levels [38]. These high levels decrease to intermediate levels as the cell 

progresses into a predivisional cell. C-di-GMP production by PleD causes the 

spiking c-di-GMP levels at the swarmer to stalked cell transition [38]. However, 

PleD is not the only protein contributing to this c-di-GMP peak. Later, 

degradation of a c-di-GMP-specific phosphodiesterase (PdeA) in the late 

swarmer cell was found to participate in raising the c-di-GMP levels [40]. High 

levels of c-di-GMP influence several cellular processes [38]. Once c-di-GMP 

levels peak a degenerate EAL domain protein, TipF, binds c-di-GMP and is 

thereby stabilized [36]. As a result, TipF localizes to new swarmer pole and 

recruits the PflI positioning factor and flagellar switch components to the site 

where the new flagellum is assembled [36] (Fig. 2A). Since c-di-GMP levels are 

high at the G1-S transition (swarmer to stalked cell) the question was asked 

whether c-di-GMP directly controls replication initiation. This connection of 

c-di-GMP and replication control becomes even more evident if the 

mechanisms controlling G1-S transition, PleD and PdeA (phosphodiesterase) 

regulation are compared. 

In C. crescentus, G1-S transition is highly dependent on the transcription factor 

CtrA which blocks DNA replication in the swarmer cell by binding to distinct 

binding sites in the oriC region [41,42]. CtrA activity is tightly controlled by 

phosphorylation and degradation [43,44]. At the G1-S transition, CtrA is 

rapidly dephosphorylated by the CckA-ChpT-CtrA phosphorelay and degraded 

by the ClpXP protease [43]. The phosphodiesterase PdeA is also degraded at 
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the G1-S transition in a ClpXP dependent manner [40]. Interestingly, the 

proteins controlling CtrA activity also contribute to c-di-GMP signaling. The 

diguanylate cyclase PleD is phosphorylated by two histidine kinases known as 

DivJ and PleC [45]. Notably these are the same histidine kinases that also 

phosphorylate the single domain response regulator DivK, a protein that 

activates phosphatase activity of CckA resulting in dephosphorylation of CtrA 

[46]. Hence, control of cell cycle progression and rise in intracellular c-di-GMP 

levels are coordinated. High c-di-GMP levels then signal back into cell cycle 

circuitry. So far two c-di-GMP effector proteins have been characterized that 

are involved in the control of CtrA activity. As mentioned previously, CtrA 

must be degraded at the G1-S transition. To allow for rapid degradation the 

ClpXP protease and CtrA are recruited to the stalked pole before CtrA is being 

degraded [34]. Localization of CtrA is dependent on the c-di-GMP binding 

protein PopA. PopA is a PleD homolog but has a degenerate active site and is 

no longer able to produce c-di-GMP [34,47] (Fig. 2C). Binding of c-di-GMP to 

the inhibitory site (I-site) is required for sequestration of CtrA to the stalked 

pole. At the stalked pole PopA acts as an adaptor for the ClpXP protease [48]. 

Low levels of c-di-GMP or lack of PopA completely abolishes degradation of 

CtrA. In addition, it has recently been shown that CckA is a c-di-GMP effector 

protein. C-di-GMP binding to CckA switches its activity from kinase to 

phosphatase mode thereby driving dephosphorylation of CtrA at the G1-S 

transition [49]. Additionally, it has been shown that in the predivisional cell, c-

di-GMP-dependent regulation of CckA contributes to the establishment of a 

CtrA phosphorylation gradient priming the two cell poles for their future fate 

after septation [49] (Fig. 2B, D). 

As demonstrated for C. crescentus c-di-GMP levels fluctuate during the cell cycle 

and is tightly associated with the swarmer to stalked cell transition. Also in other 

bacteria such a behavior was observed [50]. A novel tool allowed measurements 

of c-di-GMP levels in vivo. To do so a c-di-GMP binding protein from Salmonella 

enterica (YcgR) was fused C- and N-terminally to CFP and YFP [50]. Binding of 

c-di-GMP to this hybrid construct leads to a change in fluorescence resonance 

energy transfer (FRET) between the fluorophores and this correlates with 

intracellular c-di-GMP levels. It has been demonstrated that not only C. 

crescentus displays an uneven distribution of c-di-GMP at some point during cell 

cycle but also Pseudomonas aeruginosa, indicating a more general principle. During 

the P. aeruginosa cell cycle overall c-di-GMP levels remain relatively constant. 

Only during a very short period after cell division one daughter cell (always the 

one inheriting the polar flagellum) exhibits reduced levels of c-di-GMP [50]. In 

P. aeruginosa the heterogeneity is generated by the phosphodiesterase Pch [51]. 



14 

 

Pch localizes to the cell pole which will inherit the flagellum in dependence of 

the chemotaxis machinery. It is hypothesized that reduction of c-di-GMP levels 

at this stage promote diversity in the swimming behavior and that this would 

help to adapt to new environments [51]. Not only the Pch phosphodiesterase 

is localized but also DGCs and effector proteins localize. Localization of c-di-

GMP signaling components raises the question whether gradients, or in the 

most extreme form, local pools of c-di-GMP exist within single cells. The idea 

is further substantiated by the findings that c-di-GMP effector proteins and 

DGCs and PDEs might physically interact to form complexes [52,53]. Such 

localized centers of c-di-GMP signaling could minimize cross talk with other 

parts of the c-di-GMP signaling network. 
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Figure 2: C-di-GMP-dependent cell-cycle control and pole 

differentiation in C. crescentus. C. crescentus cell cycle produces two distinct 

daughter cells (middle panel). A non-replicating, motile swarmer cell and a 

replicating, sessile and surface-attached stalked cell. Transition from swarmer 

to stalked cell is c-di-GMP dependent. Throughout the cell cycle many 

processes are regulated by c-di-GMP. The strong diguanylate cyclase PleD is 

activated through phosphorylation by the histidine-kinase DivJ and localizes to 

the stalked pole at the G1-S transition resulting in high c-di-GMP levels (shades 

of grey in middle panel represent cellular c-di-GMP levels). At the future 

flagellated pole the c-di-GMP effector TipF binds c-di-GMP thus priming the 

site for flagellum assembly of the future daughter cell (A). Replication initiation 

is controlled by two parallel pathways. A proteolytic (C) and a phosphorylation 

pathway (B, D). Both are c-di-GMP dependent. The c-di-GMP effector PopA 

localizes CtrA to the ClpXP protease in a c-di-GMP dependent manner 

resulting in CtrA degradation that initiates chromosome replication (C). In the 

predivisional cell the cell cycle histidine kinase CckA adopts a bipolar 

localization. Recent findings suggest that CckA is active as a kinase at the 

flagellated pole, while it is kept in the phosphatase mode at the stalked pole (B, 

D). This configuration establishes a CtrA~P gradient across the predivisional 

cell. 

 

Streptomyces development 
 
Similarly to C. crescentus, the Streptomyces venezuelae developmental cycle involves 

clearly distinguishable stages. After spore germination, vegetative hyphae grow 

into the substrate to scavenge for nutrients. Later, the mycelium enters a 

reproductive stage, in which aerial hyphae grow out from the mycelium. In 

these aerial hyphae, spores maturate and are released into the environment. The 

regulation of aerial hyphae growth has been studied in the past. Recently, c-di-

GMP was found to play a critical role in the life cycle of S. venezuelae. Both, 

overproduction and depletion of c-di-GMP prevented the formation of aerial 

hyphae. While overproduction simply blocks development at this step, loss of 

c-di-GMP causes premature spore production bypassing the formation of aerial 

hyphae. These observations suggested that c-di-GMP is required for 

propagating through the reproductive stages. 

A similar phenotype (the loss of aerial hyphae) is observed when the master 

regulator of development in S. venezuelae, BldD, is deleted. BldD is a 

transcription factor regulating more than 100 genes [54]. For a long time, 

regulation of BldD remained unclear. However recently, it was shown that 

BldD is a c-di-GMP effector protein [55,56]. This connection was established 
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by capture compound pulldown experiments and further proven in vitro. The 

crystal structure of BldD bound to c-di-GMP reveals that two BldD molecules 

bind a c-di-GMP tetramer. Binding of c-di-GMP induces dimerization at low 

BldD concentrations and enhances DNA binding affinity. Therefore, c-di-

GMP binding to BldD is critical for providing the signal to develop aerial 

hyphae. 

So far, c-di-GMP was often described as a central regulator of motile to sessile 

transitions. The results described for C. crescentus and S. venezuelae clearly indicate 

that c-di-GMP is also involved in coordination of core cell and life cycle 

components.  

 

C-di-GMP controls development of a Eukaryote 
 
For a long time, c-di-GMP was thought to be found only in bacteria. It has 

now become clear that c-di-GMP is also sensed and produced by eukaryotes. 

The Amoeba Dictyostelium discoideum has been known to be controlled by the 

cyclic nucleotide cAMP [57]. In an environment with plenty of nutrients, D. 

discoideum replicates and lives as a unicellular amoeba. In case of insufficient 

nutrient supply, the cells start to aggregate and form a multicellular structure 

(the slug). This transition is dependent on the secretion of cAMP, which 

attracts other amoeba to the site where they assemble into the slug [57]. The 

structure will at some point form a fruiting body that consists of a long stalk 

and contains spores at the tip that are eventually released.  

Recent studies indicated that fruiting body formation is also controlled by 

another second messenger, c-di-GMP [58]. Bioinformatic searches revealed a 

gene encoding a GGDEF-domain containing protein. Deletion of this gene 

(dgcA) still allowed the cells to aggregate into multicellular structures but no 

fruiting body was observed [58]. Fruitification could be restored by expression 

of DgcA but restoration is dependent on an intact GGDEF domain. 

Interestingly, fruitification was restored when dgcA- strains were mixed with 

wild type strains indicating that c-di-GMP might be secreted. Indeed, droplets 

of c-di-GMP were able to restore fruitification of a dgcA- strain to normal levels 

[58].  

Initial attempts to clarify the mechanisms of c-di-GMP action involved 

expression studies of DgcA and developmental genes. Expression of DgcA is 

restricted to the anterior tip region of the slug, stalk and tip of the fruiting body. 

Consistent with this, c-di-GMP seems to regulate the expression of genes for 

stalk and spore biogenesis. Thus, the c-di-GMP signalling pathway in D. 

discoideum are still poorly understood and the downstream targets remain to be 

discovered. 
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Motility & Biofilm 
 
C-di-GMP has long been known to be a central regulator of biofilm formation 

and motility. In Escherichia coli there is a strict correlation between cellular c-di-

GMP levels and swimming velocity [59]. In fact, during entry into stationary 

phase, cells experience a c-di-GMP upshift. This upshift is a consequence of 

downregulation of the FlhDC-coregulated gate-keeper PDE PdeH (formerly 

YhjH [18]) [59,60]. Thereby c-di-GMP inhibits flagellar rotation through 

binding of the PilZ-domain protein YcgR to the MotA/FliG interface [59]. 

Moreover the interaction of YcgR with the flagellar switch complex inhibits the 

chemotactic behavior through biasing CCW rotations [61]. This interference 

with the locomotion apparatus was suggested to increase the probability of 

surface interaction as an initial step towards establishment of a surface-attached 

lifestyle (Fig. 3A). Interestingly this behavior seems to extend into the gram 

positive world where it was suggested that the PDE YuxH serves as a PdeH-

analogous motility gate-keeper to inhibit flagellar downregulation via 

interaction of the PilZ-domain protein YpfA with MotA [62,63]. 

Although it appears to be a common theme to inhibit motility in a c-di-GMP-

dependent manner, the strategies are very versatile throughout the bacterial 

kingdom. In contrast to E. coli, P. aeruginosa targets flagellar synthesis via the c-

di-GMP binding transcription factor and ATPase FleQ [64–66]. C-di-GMP 

binds to the Walker A motif of FleQ thereby repressing transcription of 

flagellar genes [65]. ATPases in general appear to be frequently targeted by c-

di-GMP and are an emerging field of interest in the c-di-GMP world [65,67]. 

ATPases and their link to c-di-GMP will be discussed in more detail later in 

this review. 

Apart from regulating flagellar motility, c-di-GMP has extended its control to 

other locomotion apparatuses such as type-IV pili (T4P). This was recently 

described for Myxococcus xanthus and Vibrio cholerae [68,69]. It is noteworthy to 

mention, that although in both cases c-di-GMP targets pili biogenesis, the 

mode of action seems to differ. While in M. xanthus, c-di-GMP negatively 

affects transcription of the major pilin (PilA) [68], c-di-GMP positively 

regulates the synthesis of MshA pili in V. cholerae through direct binding to the 

ATPase MshA [69]. These two examples emphasize the importance of c-di-

GMP during the establishment of initial surface contact and raise the awareness 

that c-di-GMP can be both repressor and activator for motility-dependent 

processes. 
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To regulate the maturation of biofilm structures, once bacteria have established 

surface contact, c-di-GMP exerts in function on all three layers of control 

(transcriptional [70–72], translational [73–76] and post-translational [77–79]). 

E.g., in V. cholerae roughly 100 motility and biofilm genes are inversely 

controlled on transcriptional level through c-di-GMP-dependent 

oligomerization of the transcription factor VpsT [80]. Reminiscent of VpsT the 

general stress sigma factor S in E. coli inversely regulates numerous motility 

and biofilm associated genes [81] such as amyloid curli fibers. Production of 

these fibers is regulated via the curli master regulator csgD by two parallel 

transcription-control pathways: (i) directly via S [82,83] and (ii) in a c-di-GMP-

dependent manner through a multiprotein signaling unit comprised of the 

transcription factor MlrA, the DGC DgcM and PDE PdeR [30]. The c-di-

GMP-dependent pathway controlling csgD expression via MlrA is highly 

sophisticated and involves a signaling cascade comprised of two c-di-GMP 

modules. At low intracellular levels trigger-enzyme PdeR inhibits both the 

cyclase activity of DgcM and transcriptional activity of MlrA (module I). 

During entry into stationary phase, PdeH is downregulated and the DGC DgcE 

concomitantly upregulated (module II). Increasing c-di-GMP levels are sensed 

by PdeR, which by that relieves its inhibiting function on both DgcM and MlrA 

thus derepressing csgD transcription and enabling curli production (Fig. 3C) 

[30]. 

This circuit demonstrates the intricate connectivity within the c-di-GMP 

network, since CsgD further activates the cyclase DgcC [82]. C-di-GMP 

produced by this cyclase is a potent activator for the PilZ-domain containing 

cellulose synthase BcsB. From a historic standpoint it is noteworthy to mention 

that only last year – 28 years post discovery [84] – the structure of c-di-GMP-

activated BcsAB complex was solved [75,85] (Fig. 1C). Numerous biofilm-

associated processes rely on post-translational regulation by c-di-GMP [73,86] 

and extends to targets other than PilZ domain-containing proteins. In 2013 

Steiner and co-workers identified that activation of the poly-beta-1,6-N-acetyl-

glucosamine (poly-GlcNAc)-synthesizing Pga machinery depends on c-di-

GMP-facilitated protein-protein interaction between PgaC and D [73](Fig. 3D). 

While for many bacteria the processes driving the motile-sessile switch are fairly 

well understood, the mechanisms underlying dispersal of single cells from a 

mature biofilm are not. Newell and co-workers however identified an active 

biofilm escape mechanism in Pseudomonas fluorescens [31,32,87]. Here c-di-GMP 

regulates the proteolytic degradation of an outer membrane adhesine and 

allows cells to escape a mature biofilm under phosphate starvation conditions. 

This example nicely illustrates how GGDEF and EAL-domain proteins can 
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engage in inside-out signaling, thereby regulating sessile-motile transitions (Fig. 

3B). 

C-di-GMP regulates these two opposing lifestyles by targeting processes on all 

layers of control. The opportunistic pathogen P. aeruginosa involves a highly 

complex c-di-GMP network to carefully control the c-di-GMP levels during 

development [51] and lifestyle transitions [32,69,86,88]. Nevertheless 

depending on the niche it resides in it readily engages in “ping-pong”-mutations 

that allow it to recurrently alternate its c-di-GMP regimes thereby stabilizing a 

beneficial lifestyle [89,90]. This happens on the basis of strong selective 

pressure (e.g., in the lung of cystic-fibrosis patients) and converges to affect c-

di-GMP-levels. 
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Figure 3: Overview showing the involvement of c-di-GMP in biofilm 

formation and dispersal. (A) During entry into stationary phase pdeH (blue) 

is downregulated. Increasing c-di-GMP levels curb motor rotation through 

interaction of c-di-GMP-bound YcgR (purple) to the MotA/FliG interface. 

Under laboratory conditions, four cyclases (depicted in orange) contribute to 

the global pool of c-di-GMP. (B) Activation of the BarA/UvrY system 

through fumarate/acetate activates small RNAs CsrB/C (red), which deplete 

CsrA from target mRNAs. Derepression of target mRNAs leads to translation 

of the Pga system as well as two cyclases DgcT and DgcZ. C-di-GMP post-

translationally activates the Pga machinery. (C) C-di-GMP-dependent 

production of amyloid curli fibers and cellulose. Curli gene expression is 

transcriptionally activated by c-di-GMP but is under superordinate control of 

S. C-di-GMP produced by the upstream cyclase DgcE (module I). The 

DGC/PDE-pair DgcM/PdeR form a complex with the transcription factor 

MlrA. C-di-GMP is sensed by the trigger enzyme PdeR, leading to activation 

of DgcM. DgcM activates MlrA thus enabling expression of the curli master 

regulator CsgD. CsgD activates DgcC (formerly: YaiC), which provides c-di-

GMP to post-translationally activate cellulose synthase. (D) Biofilm escape 

mechanism as described in P. fluorescens Pf0-1. Under phosphate starvation 

condition the Pst system activates a phosphorylation cascade, leading to PhoB-

activated expression of the PDE RapA (blue). RapA depletes c-di-GMP from 

active site of the degenerate EAL-domain protein LapD (light blue). C-di-

GMP-free LapD activates the periplasmic protease LapG, which in turn cleaves 

the outer-membrane adhesine LapA. 

 

C-di-GMP in virulence and immune system 
 
The widespread occurrence of c-di-GMP amongst many bacterial species and 

the diversity of controlled targets raised the question if c-di-GMP is an 

important virulence factor. An interesting example providing evidence is the 

2011 German outbreak of E. coli O104:H4. The strain caused an unusually high 

incidence of haemolytic uraemic syndrome (HUS) [91]. The genome of the 

causative strain has been sequenced and contains elements of 

enterhaemorrhagic E. coli (EHEC) and enteroaggregative E. coli (EAEC) [92]. 

Interestingly the genome sequence revealed the presence of one additional 

diguanylate cyclase (dgcX) [93]. DgcX is only present in E. coli O104H:H4 and 

closely related strains. This protein is strongly expressed and has an intact active 

(GGDEF) and inhibitory (RXXD) site [93]. It is usually inserted at the attB 

locus and flanked by prophage elements and is therefore thought to be acquired 

by horizontal gene transfer. A second c-di-GMP related mutation is an 
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insertion into the diguanylate cyclase ycdT [93]. This insertion decreases 

expression of YcdT [93]. ycdT is located divergently to the pgaABCD operon 

and in some strains contains an additional IS1 element with the promoter 

presumably activating transcription of the pgaABCD operon [93–96]. Notably 

the PGA machinery has been shown to be activated by c-di-GMP [73]. 

Upregulation of c-di-GMP and the PGA machinery could therefore help the 

strain to form the strong biofilms that are observed.  

 

Another example for the importance of c-di-GMP in virulence is Clostridium 

difficile.  In the course of C. difficile infections the bacteria adhere to the gut 

mucosa [97]. Clinical symptoms usually arise when the cells start expressing the 

two toxins TcdA and TcdB [98]. Interestingly, TcdA and TcdB are controlled 

by a c-di-GMP responsive riboswitch [99,100]. Not only the toxins are under 

c-di-GMP control. In the genome of C. difficile a total of 16 c-di-GMP 

responsive riboswitches were predicted [100]. These riboswiches are found 

upstream of flagellar and pili-related genes and the protease Zmp1 which is 

important in cleaving the fibronectin network of fibroblasts [97,100] (Fig. 4). 

Taken together, c-di-GMP appears to be important for several bacteria to 

deploy their virulence potential. However, production of c-di-GMP is noticed 

by host cells. The innate immune system is designed to rapidly detect pathogens 

and stage appropriate responses. While the adaptive immune system requires 

exposure to specific antigens to produce specific antibodies, the innate immune 

system recognizes certain structures of entering pathogens, so called pathogen 

associated molecular patterns (PAMPs), without the need for pre-exposure. 

Dedicated pattern recognition receptors (PRR) bind specific PAMPS and in 

response trigger inflammation and activate the complement cascade. Typical 

bacterial PAMPs that are recognized are flagellins, bacterial DNA, 

lipopolysaccharides and peptidoglycan. In the past few years it became evident, 

that cyclic dinucleotides such as c-di-GMP, c-di-AMP and cGAMP are also 

sensed by the mammalian innate immune system [101]. Recognition of c-di-

GMP in the cytosol of human macrophages leads to strong upregulation of 

interferon 1 production, a hallmark of activation of the innate immune system 

which then allows the detection of many bacterial species [102]. While the 

response to c-di-GMP shows a pattern similar to the response elicited by 

foreign DNA, it does not depend on the same Toll-like receptors. Rather, c-di-

GMP binds to an adaptor protein called STING (stimulator of interferon 

genes) resulting in its dimerization [103] (Fig. 4). STING dimerization causes 

re-localization of the receptor from its initial endoplasmic reticulum associated 

position to perinuclear microsomal compartments [103–105]. There, STING 
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interacts with TBK1 (TANK binding kinase 1) leading to phosphorylation and 

translocation of the transcription factor IRF3 (interferon regulatory factor 3) 

into the nucleus and to the induction of innate immune response genes (Fig. 

4).  

STING is not only important for c-di-GMP detection but appears to be a 

central sensor of c-di-nucleotides [106]. C-di-AMP as well C-GMP-AMP 

(cGAMP) induce a STING-dependent host cell response [107].  

Intriguingly, cyclic dinucleotides are not only recognized by STING, but also 

by the DEAD-box helicase DDX41, an alternative protein involved in type I 

interferon response [108]. Both, DDX41 and STING, are necessary to 

stimulate the immune response in the presence of c-di-NMPs. The authors of 

this work propose that DDX41 binds c-di-GMP and subsequently interacts 

with STING to activate the downstream cascade (Fig. 4). The reason why two 

individual cdN binding proteins in the same pathway are required for efficient 

activation of the interferon response remains unclear.  

 
Regarding c-di-GMP as a stimulator of innate immunity, the second messenger 

is used by the host immune system to interfere with the growth of invading 

pathogens. However, a recent report indicated that c-di-GMP might also take 

an active role for the benefit of invading bacteria in the host. As bacteria grow 

inside a host cell, they have to ensure sufficient supply of iron. To scavenge 

iron, many bacteria secrete ferric siderophores, which bind iron with high 

affinity and are then re-imported into the cell (Fig. 4). As a part of the immune 

response, the host cell interferes with this process by releasing siderochalins. 

Siderochalin (LCN2) binds and sequesters siderophores, thereby reducing iron 

availability to the bacteria [109]. Li et al. identified LCN2 in a bioinformatic 

screen for specific 3D motifs in proteins, which might fit to bind c-di-GMP. 

Indeed, when testing their results experimentally, LCN2 specifically bound to 

c-di-GMP, but not to other c-di-NMPs. Binding of c-di-GMP presumably 

occurs at the site of siderochalin-siderophore interaction, suggesting that c-di-

GMP might free siderophores from their caging by siderochalins thereby 

increase availability of iron. The authors propose that bacteria might actively 

secrete c-di-GMP to enhance their iron availability and thereby increasing their 

growth. 
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Figure 4: C-di-GMP is a virulence factor. It has been demonstrated that in 

several bacterial species virulence factors are controlled by c-di-GMP. This 

figure highlights the virulence factors of C. difficile. In the genome of C. difficile 

a total of 16 c-di-GMP responsive riboswitches are found. Two classes of 

riboswitches have been described. (i) type-I riboswitches, which bind c-di-

GMP and repress translation and (ii) type-II riboswitches, which act as 

translation activators. In C. difficile several are positioned upstream of known 

virulence factors such as flagellar genes, the gene encoding for the major pilin 

PilA and toxins and proteases. E.g., flagellar and pili genes are inversely 

regulated to facilitate initial surface contact. Moreover, the secreted zinc-

dependent metallo-protease Zmp1 leads to cleavage of collagen on the cell 

surface, while TcdA/B are glycosyltransferases that target intracellular host-

proteins such as small GTPases to disturb signal transduction [110]. C-di-GMP 

is expressed by many intracellular bacteria and thus is an ideal stimulus for the 

immune system. Indeed the innate immune system is able to detect c-di-GMP 

through the two c-di-GMP effectors STING and DDX41, resulting in the 

upregulation in IFNβ release. STING can thereby function as a receptor for 

other dinucleotides such as cGAMP. The host cell also expresses LCN2, a 

siderocalin, which is able to bind siderophore-Fe complexes secreted by 

bacteria to scavenge iron. As a counter-measure, c-di-GMP can bind LCN2 to 

inhibit siderophore-Fe complexion via LCN2. 

 

Other c-di-nucleotides  
 
Recently c-di-AMP has appeared as another cyclic nucleotide second 

messenger. When the structure of the DNA damage-sensing protein DisA of 

Bacillus subtilis was solved, the researches unexpectedly identified c-di-AMP to 

be bound to the N-terminal domain of the protein. Further investigations 

revealed, that this N-terminal domain produces c-di-AMP and was therefore 

termed diadenylate cylcase (DAC) domain [111]. Interestingly, c-di-AMP 

production by DisA strongly depends on the presence of branched DNA and 

thus, c-di-AMP was proposed to signal DNA damage. Since the initial 

discovery, different parts of the c-di-AMP network have been studied. Several 

DACs have been described, some of which are membrane-bound or specific 

for certain cellular functions, for example sporulation in B. subtilis [112,113]. C-

di-AMP degrading enzymes have been identified which contain a typical DHH 

motif that is required for efficient degradation of c-di-AMP to linear pApA or 

in some cases AMP [114,115]. Notably, c-di-AMP seems to be essential in a 

variety of different bacteria and any deregulation causes abnormal phenotypes 

[113]. However, the reason for c-di-AMP essentiality remains unclear. So far, 
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several c-di-AMP effector proteins have been identified. The first identified 

receptor was the TetR family transcription factor DarR found in Mycobacterium 

smegmatis [116]. DarR consists of a helix-turn-helix DNA-binding domain and 

a QacR-like domain. C-di-AMP binds to the QacR domain with high affinity. 

Although this domain is found in other proteins, it is not a general c-di-AMP-

binding domain. Deletion of DarR increases cell size and fatty acid synthesis 

[116]. In Staphylococcus aureus the first comprehensive screen was carried out to 

isolate several c-di-AMP effectors [117]. The identified effectors seem to be 

predominantly involved in the regulation of potassium intake on different 

levels [117].  The S. aureus cation-proton antiporter CpaA consists of several 

transmembrane domains, RCK_N and RCK_C domains. It was shown that c-

di-AMP directly binds to the RCK_C domain but it is unclear what the 

consequences of this interaction are [117,118]. KtrA is a gating component of 

the KtrB potassium transporter. Like CpaA it harbours a RCK_N and a 

RCK_C domain and the latter has also been shown to bind c-di-AMP 

[117,119]. In addition to the Ktr system, the expression of the of the Kdp 

potassium uptake system is regulated by c-di-AMP. The histidine kinase KdpD 

has a USP domain which binds c-di-AMP [117,120]. KdpD is part of a two-

component system with KdpE as its cognate response regulator. 

Phosphorylation of KdpE by KdpD results in activation of the kdpFABC 

operon encoding the Kdp potassium transporter components. It has been 

suggested that c-di-AMP downregulates the activity of the KdpDE two 

component system although it is unclear how the kinase activity is switched off 

by c-di-AMP [120]. The mechanistically best understood c-di-AMP effector is 

the pyruvate carboxylase from Listeria monocytogenes (LmPC) [121]. LmPC was 

identified amongst other effectors of unknown function in a c-di-AMP affinity 

pulldown [121]. In vitro experiments showed that c-di-AMP acts as an allosteric 

regulator and inhibits the activity of LmPC [121]. The crystal structure of the 

LmPC tetramer in complex with c-di-AMP revealed that c-di-AMP binding 

leads to large conformational changes in the protein/oligomer. Based on these 

findings the authors suggest that c-di-AMP locks LmPC into a conformation 

that is incapable of catalysis [121]. Until now several components of the c-di-

AMP network have been uncovered, yet it is still unclear why the molecule is 

essential and through which pathway it signals. 

 
The most recently discovered c-di-nucleotide is c-GMP-AMP (cGAMP). 

cGAMP is of special interest because it is produced by bacterial and eukaryotic 

cells, [122,123].  Bacterial cGAMP is produced by a cGAMP synthase located 

on the of the 7th pandemic island of Vibrio cholerae [122,124]. The only effector 

structures found to this date is a riboswitch found in Geobacter sulfurreducens and 
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STING [125–127]. Eucaryotic cGAMP in is synthesized by the cGAMP 

synthase (cGAS) which oligomerizes and is activated in response to dsDNA 

[123,128,129]. It was also shown that cGAMP produced in immune cells 

diffuses through gap junctions of neighbouring cells and thereby serves the 

signal for bystander cell activation [107,130]. Recent reports also suggest, that 

viral particles pack cGAMP and thereby deliver this second messenger to 

distant sites where it activates the host immune response [131,132]. 

Interestingly bacterial and mammalian cGAMP differ in the way the 

nucleotides are linked [124]. The mechanism by which bacterial and 

mammalian cGAMP synthase produce the product are different. As a result 

bacterial cGAMP has two 3`-5` phosphdiester linkages, while mammalian has 

one 3`-5`and one 2`-5` [133]. 

 

Methods for c-di-GMP effector identification  
 
In most organisms loss of c-di-GMP has diverse phenotypes. To assess which 

processes and pathways are controlled by c-di-GMP an increasing interest in c-

di-GMP effector proteins developed during the last years. Already in the early 

years of c-di-GMP research the PilZ domain has been recognized as a 

prototypical c-di-GMP binding domain. This domain is present in a variety of 

different bacteria and is often fused to other domains. Apart from this domain, 

little was known of other c-di-GMP effector proteins. Lately several 

approaches were developed to isolate effector proteins on a proteome wide 

scale. Two approaches involved affinity pulldowns of effector proteins and 

subsequent mass spectrometry analysis. One method used a so-called capture 

compound [134,135]. This synthesized compound contains a c-di-GMP moiety 

to specifically bind effector proteins, a crosslinking domain to covalently link 

the effector to the compound and biotin to allow for rapid sorting on 

strepdavidin coated magnetic beads. An alternative but very similar approach 

used c-di-GMP coated sepharose beads for affinity pulldown [136,137]. In both 

cases the proteins enriched in the pulldown were analyzed using mass 

spectrometry. These new methods were applied to many bacteria and resulted 

in discovery of several new c-di-GMP effector proteins in different species like 

P. aeruginosa, C. crescentus, S. venezuelae and the predatory bacterium Bdellovibrio 

bacteriovorus [55,134,135,138].  

 

Another method aimed at detecting new effector proteins by the expression of 

the complete ORFeome and subsequent testing of whole cell lysates for 

binding activity [139,140]. Such a procedure requires a high-throughput binding 

assay. Hence the DRaCALA (differential radial capillary action of ligand assay) 
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assay was developed. The idea behind this assay is that proteins and nucleotides 

(radioactive or fluorescent labelled c-di-GMP, c-di-AMP, etc.) are mixed and 

placed onto a nitrocellulose membrane. Protein and ligands bound to proteins 

are immobilized immediately at contact site while free ligand diffuses out. 

Therefore, if a protein interacts with the nucleotide ligand there will be a strong 

signal right at the site where it was spotted. If there is no interaction the ligand 

will diffuse out and result in dispersed signal [117,141]. 

 

These new techniques as well as conventional approaches have led to the 

identification of a plethora of novel effector proteins. It has become evident 

that c-di-GMP is sensed not only by bacteria but also by eukaryotes. The output 

functions controlled by c-di-GMP are very diverse and act on transcription, 

translation and allosterically. One group of effectors that recently has emerged 

to contain several c-di-GMP effectors are ATPases. The best-studied example 

is the P. aeruginosa transcription factor FleQ consisting of receiver domain, 

AAA+ and HTH domains. C-di-GMP interacts with the AAA+ domain and 

reduces its activity thereby decreasing expression of flagellar genes and 

derepressing EPS biosynthesis [65,142,143]. Interestingly a number of AAA+ 

ATPases involved in transport across the membrane are subject to c-di-GMP 

control [67]. FliI was isolated as potential effector in a capture compound 

pulldown screen in P. fluorescens. FliI is part of the soluble components of the 

flagellum and required for normal flagellum formation [67]. It was shown that 

binding of c-di-GMP reduces ATPase activity. FliI shares homology with the 

P. fluorescens type III ATPase HrcN and the type VI ATPase ClpB2 and indeed 

it was demonstrated that also these proteins bind c-di-GMP [67]. In addition 

Vibrio cholerae MhsE is another ATPase that senses c-di-GMP [69,141]. MhsE 

shares homology with a Type II ATPase but is involved in MhsA pili 

biogenesis. It was demonstrated that in this case c-di-GMP promotes ATPase 

activity. The data support a model where MhsE acts as a motor protein to drive 

pilus elongation [69]. Over-activation of MhsE by c-di-GMP leads to increased 

surface attachment and reduced motility. 
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Histidine kinases and two-component systems 

In the environment, bacteria encounter diverse stimuli to which they have to 

respond. Two-component systems and more complicated phosphorelays have 

evolved to perceive signals and translate them into a cellular response (Fig. 5). 

The classical two component systems consist of a sensor histidine kinase and a 

response regulator [144]. The sensory domain of histidine kinases registers a 

signal which leads to autophosphorylation on a conserved histidine residue. 

The phosphoryl group on this histidine residue is then transferred on an 

aspartate residue located in the receiver domain of a response regulator [144]. 

Usually, response regulators are fused to an output domain. Output domains 

can regulate transcription or have enzymatic functions (e.g. GGDEF, EAL or 

Helix-turn-Helix domains) and their activity is regulated by the 

phosphorylation state of the receiver domain [145–147]. Sometimes, response 

regulators only have a receiver domain but no output domain [148,149].   

 

Figure 5: Overview of two-component and phsophorelay systems. The 

classical two-component system is shown on the left and a phosphorelay on 

the right. The phosphoryl group is transferred from ATP to a histidine residue 

in the DHp domain. Subsequently the phosphoryl is moved to a conserved 

aspartate in the receiver domain. Figure adapted from [150]. 
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These proteins are called single domain response regulators and usually control 

downstream targets via protein-protein interactions. The best-studied class of 

single domain response regulators are the CheY proteins involved in 

chemotaxis [151,152]. Two component systems are modular and can be 

extended by further signaling components such as phosphotransferases (Fig. 

5). Phosphotransferases are proteins which resemble the DHp domain of 

histidine kinases and offer an additional step in the phosphorylation cascade 

[153,154]. Such schemes are found in systems where multiple components are 

integrated into one certain pathway or diverge into different pathways.  

The kinase activity of histidine kinases resides in two conserved domains. The 

catalytic and ATP binding (CA) domain binds ATP and transfers the γ-

phosphoryl group of the ATP to a histidine residue within the dimerization and 

histidine phosphotransfer (DHp) domain (Fig. 6). 

A few years ago, the structure of a histidine kinase was solved for the first time 

[155,156]. The two core kinase domains (DHp and CA) form a homodimer 

(Fig. 6). The DHp domain consists of two large α-helices which provide the 

dimerization interface and harbor the acceptor histidine residue [157]. The CA 

domain shows a classical βα Sandwich known as the Bergerat fold [155]. This 

domain binds the ATP molecule and has ATPase activity. For 

autophosphorylation, the CA domain has to undergo a conformational change 

to get in close proximity to the acceptor histidine residue in the DHp domain 

[158]. Phosphorylation occurs either in cis or in trans depending on the linker 

connecting the two α-helices of the DHp domain [159,160]. Once the 

phosphoryl group is transferred, the CA domain swings out leaving space for a 

cognate interacting receiver domain.  

Since there are many different histidine kinases and response regulators in a cell 

the risk of nonspecific phosphorylation between histidine kinases and response 

regulators of otherwise independent TCSs exists. The major mechanism to 

ensure specific phosphotransfer between a kinase and its corresponding 

receiver domain is molecular recognition. This means the phosphorylated 

histidine kinase is able to recognize the cognate response regulator and exclude 

all noncognate response regulators from interaction [150,161–163]. Several 

residues in the DHp α-helix and in the receiver domain determine specificity 

of the histidine kinase-response regulator interaction ensuring correct 

positioning of the receiver aspartate towards the phosphoryl group residing on 

the histidine in the Dhp domain [164]. It even has been shown that, by mutating 

several of these residues responsible for molecular recognition it is possible to 

rewire non-cognate histidine kinases and receiver domains [160]. 
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Figure 6: Structural representation of histidine kinases. (A) Schematic 

drawing of the dimer of the E. coli histidine kinase EnvZ. The two protomers 

are shown in yellow and orange. (B) Crystal structure of the Thermotoga maritima 

histidine kinase HK853 in complex with its cognate response regulator RR468. 

The protomers of the DHp and CA domains are shown in blue and cyan. 

RR468 is shown in gold and yellow. Figure adapted from [165,166] 

In addition it has been shown that histidine kinases not only have kinase activity 

but most of them also harbour phosphatase activity [167–169]. However, 

phosphatase activity is not just a reversal of the kinase activity since no 

backtransfer of the phosphoryl group from the receiver domain aspartate to 

the histidine residue in the DHp domain takes place [158]. In some cases, the 

histidine is involved in catalyzing the hydrolysis of the phosphoryl group on 

the receiver aspartate, but it has been reported, that in some cases the histidine 

is not necessary for removal of the phosphoryl group [170]. However, it has 

convincingly been demonstrated that the phsophatase activity is dependent on 

the DHp domain and that a specific stretch of amino acids next to the acceptor 

histidine is required for phosphatase function [167,168,171,172]. The signals 

switching the activities of histidine kinases are poorly understood. It has been 

shown in vitro, that ADP might be an activator of phosphatase activity but in 

vivo evidence is missing. 
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Caulobacter crescentus cell cycle 

To ensure survival of a species, all living organisms have to reproduce. Bacteria 

usually reproduce by cell division. This highly coordinated process involves cell 

growth, division and other mechanisms that enable the cell to produce viable 

offspring. A very useful organism to study the underlying processes of cell cycle 

progression is C. crescentus [35]. In this aquatic bacterium, cell cycle progression 

is tightly linked to the developmental stages (Fig. 7). One of the stages in the 

C. crescentus cell cycle is represented by the swarmer cell. This cell type typically 

has one polar flagellum and is therefore motile [173]. However, at this stage the 

cell is not able to replicate its chromosome [37,174]. After a while, motile 

swarmer cells transform into stalked cells. During this transition, the flagellum 

is ejected and at the same pole, an extension of the cell membrane, the stalk, 

grows [175]. At the tip of the stalk, there is a strongly adhesive compound called 

the holdfast. The holdfast enables the cells to attach permanently to surfaces. 

The transition from a motile swarmer cell to a sessile stalked cell temporally 

coincides with the initiation of chromosome replication [37]. The cell then 

continues to grow, replicates its chromosome and develops into a predivisional 

cell. The predivisional cell contains two chromosomes each anchored to the 

opposing cell poles via the origin of replication [176,177]. The predivisional cell 

harbours a flagellum at the non-stalked cell pole. Septation finally releases one 

stalked and one swarmer cell. The stalked cell will immediately restart the next 

round of replication while the swarmer cell first has to differentiate into a 

stalked cell. This coupling of development and cell cycle progression has made 

C. crescentus a well-studied model organism. 

CtrA – Central transcriptional activator 

In C. crescentus, chromosome replication at the swarmer to stalked cell transition 

is initiated by the transcription factor CtrA (central transcriptional activator 

A)[37,42,44,178]. CtrA consists of a receiver domain and a Helix-turn-Helix 

DNA binding domain [179]. As a transcription factor, CtrA binds to 

characteristic CtrA binding boxes which are found all over the chromosome 

[180]. These binding boxes contain a TTAA-N7-AATT motif and 

phosphorylation of the CtrA receiver domain is thought to enhance DNA 

binding affinity in most cases [41,178]. CtrA controls over 100 promoters, 

driving the expression of genes involved in a wide variety of cellular processes 

[178,180]. In addition to its function as a transcription factor, CtrA also blocks 

replication initiation. The C. crescentus origin of replication (oriC) is overlapped 

by five CtrA binding sites. These sites overlap with binding sites for DnaA, a  
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protein initiating replication and thereby, occupation by CtrA blocks replication 

initiation [41]. 

 

Figure 7: Schematic overview of the Caulobacter cell cycle. Chromosomes 

are depicted in blue and polar appendages in yellow. Black bars represent 

appearance and duration of cell cycle events while grey bars represent 

morphogenetic events. Figure was adapted from Sören Abel and [181]. 

 

Since CtrA is involved in the control of many essential functions, it is controlled 

tightly throughout the cell cycle. CtrA transcription is regulated in dependence 

of the cell cycle [180,182]. CtrA is expressed in the predivisional and swarmer 

cell and expression is turned off at the swarmer to stalked cell transition (Fig. 

7). Once CtrA is expressed, its activity is regulated by protein degradation and 

the phosphorylation status of the receiver domain [43,178]. At the transition to 

the stalked cell, the activity of CtrA is reduced. This is achieved by 

dephorphorylation of the CtrA receiver domain and degradation of CtrA. CtrA 

is a substrate of the ClpXP protease which gets localized to the stalked pole 
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during G1-S transition in a CpdR dependent process [178,183]. CtrA also gets 

localized to the stalked pole where it is degraded by ClpXP [183,184]. 

Localization of CtrA to the stalked pole depends on PopA [34]. PopA is a PleD 

homologue with a degenerate GGDEF site which brings CtrA to the stalked 

pole in a c-di-GMP dependent manner [34,47,185]. The second mechanism to 

control CtrA activity relies on phosphorylation of the CtrA receiver domain by 

the CckA-ChpT-CtrA phosphorelay. The phosphorylation status of the CtrA 

receiver domain is controlled by the CckA-ChpT-CtrA phosphorelay [186–

188]. CckA is a histidine kinase which transfers a phosphate from its receiver 

domain to the phosphotransferase ChpT. ChpT finally transfers the phosphate 

either to CtrA or CpdR [189]. 

CckA controls CtrA phosphorylation 

CckA is a membrane-bound hybrid histidine kinase consisting of two 

transmembrane helices, two PAS domains, two core kinase domains (DHp and 

CA) and a receiver domain [187]. The function of the two PAS domains is 

unknown. The CA domain binds ATP and transfers the γ-phosphate onto a 

conserved histidine residue in the DHp domain. The transmembrane domains 

localize CckA to the cell membrane. In a swarmer cell, CckA is uniformly 

distributed in the cell membrane and is thought to be active as a kinase. This 

keeps levels of CtrA~P high thereby blocking replication initiation 

[187,190,191]. At the swarmer to stalked cell transition, CckA remains 

uniformly distributed in the membrane but most likely switches its activity from 

kinase to phosphatase, thereby dephosphorylating CtrA [170] (Fig. 8). In the 

predivisional cell, CckA localizes to both cell poles and forms distinct foci. At 

this stage, it was hypothesized, that CckA is active as a phosphatase at the 

stalked pole but active as a kinase at the swarmer pole. This would result in a 

CtrA phosphorylation gradient inside the predivisional cell [192]. The resulting 

CtrA~P phosphorylation gradient across the predivisional would prepare the 

different poles for their future fate after cell division (Fig. 8). Since regulation 

of CckA activity is crucial for cell cycle progression, the protein has been 

studied extensively. 

Recent work suggested that CckA interacts with the pseudo histidine kinase 

DivL [193]. The DivL structure shows a conserved histidine kinase-fold, but 

the critical phospho-accepting histidine residue is mutated to a tyrosine and 

therefore most likely no longer capable of accepting phosphoryl groups [194]. 

Furthermore, the histidine kinase domains are dispensable for cell viability 

although the full length protein is essential [195,196]. It has been hypothesized 

that DivL might be a localization factor for CckA but these data remain largely 
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inconclusive. One of the functions of DivL could be to change CckA activity 

in the presence of phosphorylated DivK [193]. DivK is a single domain 

response regulator which has been shown to interact with DivL primarily in its 

phosphorylated state. The authors convincingly describe that phosphorylated 

DivK switches CckA from kinase into phosphatase mode by interacting with 

DivL, but there seems to be no direct interaction between DivK and CckA 

[193] (Fig. 8). 

 

Figure 8: Cell cycle-specific regulation of CckA. (A) CtrA regulatory 

factors are shown. CckA activity switches from kinase to phosphatase at the 

swarmer to stalked cell transition. In the predivisional cell, CckA shows a 

bipolar localization which ultimately results in a CtrA phosphorylation gradient 

across the predivisional cell (light blue). Localization of DivL, PleC and DivJ is 

indicated. (B) Current model of the CckA regulation. DivK is phosphorylated 

by DivJ and dephosphorylated by PleC. Phosphorylation of DivK promotes 

interaction with DivL, which permanently interacts with CckA. If bound to 

DivK~P DivL switches CckA from kinase to phosphatase mode. Figures 

adapted from [192,193] 
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DivK itself is regulated by several histidine kinases, two of which are known 

[45]. In the swarmer cell, DivK is kept in the non-phosphorylated form by the 

histidine kinase PleC [45]. PleC is thought to be a bifunctional histidine 

kinase/phosphatase but in the swarmer cell, it is predominantly active as 

phosphatase [45,197] (Fig. 8). At the swarmer to stalked cell transition, PleC 

disappears from the stalked pole and is replaced by the histidine kinase DivJ 

[45,198]. At this stage, DivJ phosphorylates DivK which then switches CckA 

from kinase into phosphatase mode [193]. Later in the cell cycle DivJ adopts a 

bipolar localization while PleC reappears at the new flagellated pole. A current 

model suggests that in the predivisional cell, this configuration keeps DivK 

phosphorylated at the stalked pole while PleC keeps levels of phosphorylated 

DivK low in proximity of the flagellated pole [192,199]. The activities of PleC 

and DivJ would therefore provide an explanation for the underlying 

mechanisms required to form a CtrA phosphorylation gradient. DivK is not 

only controlled by PleC and DivJ, but it also acts as a positive regulator of these 

two kinases [45]. This forward feedback loop ensures a rapid increase of 

phosphorylated DivK at the swarmer to stalked cell transition. Interestingly, 

PleC and DivJ not only phosphorylate DivK but also the strong c-di-GMP 

cyclase PleD [7,12,200,201]. Phosphorylation of the receiver domain leads to 

localization of PleD to the stalked pole where it is presumably active at the 

swarmer to stalked cell transition providing the cell with high levels of c-di-

GMP [200]. 

The general stress response 

In the environment, bacteria encounter a multitude of stresses. Adaption to 

stress is therefore essential for bacterial survival. Response to stress requires 

expression of genes that prevent the cells from damage. Stress adaptation in α-

proteobacteria involves the alternative sigma factor SigT required for the 

expression of stress related genes [202] (Fig. 9). In the cell, SigT activity is 

prevented by the anti-sigma factor NepR [203,204]. Upon stress perception, 

SigT is freed from NepR [205,206]. The mechanism of SigT activation depends 

on the activation of a two component system [202]. Releasing SigT requires a 

partner switch mechanism including PhyR [206,207]. PhyR is an anti-sigma 

factor antagonist consisting of a C-terminal receiver domain and an N-terminal 

sigma-like domain [208]. The sigma-like domain resembles the SigT 

transcription factor. Once PhyR is phosphorylated, it undergoes a 

conformational change resulting in sequestration of NepR and thereby releases 

SigT [203,204] (Fig. 9). Therefore, phosphorylation of PhyR is a crucial step for 

stress adaptation [209]. Numerous PhyR activating kinases (PAK) have been 
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shown to phosphorylate PhyR [202,210,211]. The input signals which activate 

these kinases are poorly understood. The only direct histidine kinase-activating 

signal described so far is blue light [211–213]. Other input signals are not 

known.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Activation of stress response in alphaproteobacteria. Schematic 

overview of activation of the general stress response in alphaproteobacteria. 

Phosphorylation of PhyR by dedicated PhyR-phosphorylating kinases (PAK) 

leads to release of SigEcfG (SigT in C. crescentus) from NepR by a partner switch 

mechanism [208]. This ultimately leads to transcription of stress related genes. 

Figure adapted from [208].  



38 

 

Aim of the thesis 
_____________________________________________________________________ 

 

The second messenger c-di-GMP is a central regulator of lifestyle decisions in 

bacteria. During the past ten years, a considerable amount of knowledge has 

been acquired on c-di-GMP signaling but its involvement in core cell cycle 

circuitry remains elusive. In this work, Caulobacter crescentus will be used to 

investigate the role of c-di-GMP on the cell cycle. Specifically, the G1-S 

transition will be followed in detail and the underlying mechanisms explored. 

The central components of this complex regulatory system will be assayed in 

an in vitro set up and the response to c-di-GMP will be tested. Moreover, the in 

vivo data will demonstrate the importance of c-di-GMP during the G1-S 

transition. Additionally, biochemical and structural analysis will give insights 

into the mechanisms which underlie kinase and phosphatase activities. 

Histidine kinases and response regulators also control various other functions 

in C.crescentus. Especially complex phosphorylation networks are required for 

stress adaptation. In the second part, the phosphorylation cascade leading to 

the activation of the general stress response will be analyzed in detail using 

biochemical approaches. 
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_____________________________________________________________________ 
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Summary:  

Fundamental to all living organisms is the capacity to coordinate cell division 

and cell differentiation to generate appropriate numbers of specialized cells. 

While eukaryotes use cyclins and cyclin-dependent kinases to balance division 

with cell fate decisions, equivalent regulatory systems have not been described 

in bacteria. Moreover, the mechanisms used by bacteria to tune division with 

developmental programs are poorly understood. Here we demonstrate that 

Caulobacter crescentus, a bacterium with an asymmetric division cycle, uses 

oscillating levels of the second messenger c-di-GMP to drive its cell cycle. We 

demonstrate that c-di-GMP directly binds to the essential cell cycle kinase 

CckA to inhibit kinase and stimulate phosphatase activity. An upshift of c-di-

GMP during the G1-S transition switches CckA from the kinase into the 

phosphatase mode, thereby licensing replication initiation and cell cycle 

progression. Finally, we show that during division, c-di-GMP imposes spatial 

control on CckA to install replication asymmetry of future daughter cells. These 

studies expose c-di-GMP as a cyclin-like molecule in bacteria that coordinates 

chromosome replication with cell morphogenesis in Caulobacter. The 

observation that c-di-GMP mediated control is conserved in the plant pathogen 

Agrobacterium tumefaciens unfolds a general mechanism through which this global 

regulator of bacterial virulence and persistence coordinates behaviour and cell 

proliferation. 
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To enable tissue homeostasis, metazoans tightly regulate the balance between 

cell proliferation and differentiation [216]. Central players in cell proliferation, 

development and cell fate decisions are cyclin-dependent kinases (CDKs) 

[217,218]. To drive cell cycle progression, CDKs associate with oscillating, 

stage-specific regulatory subunits called cyclins [219]. While in higher 

organisms cells generally undergo terminal differentiation, bacteria often rely 

on rapid growth to exploit available nutrients and thus need to dynamically tune 

behavioural programs with cell proliferation. How exactly bacteria couple 

behavioural processes with cell cycle progression remains unclear.  

A prime model to study the coupling of cell growth and behaviour in bacteria 

is the aquatic organism Caulobacter crescentus, which strictly separates cell motility 

from cell proliferation. C. crescentus divides asymmetrically to generate two 

specialized progeny, a sessile and replication competent stalked and a motile 

and replication inert swarmer cell. The swarmer cell (G1-phase) re-enters the 

replication cycle during differentiation into a stalked cell (S-phase) (Figure 1a). 

To control the motile-sessile transition, C. crescentus makes use of c-di-GMP, a 

second messenger controlling a wide range of behavioural processes in bacteria, 

including virulence, motility and biofilm formation [6]. C-di-GMP levels are 

low in swarmer cells, increase during differentiation to peak in stalked cells and 

later reach intermediate levels in the predivisional cell [38]. One of the main 

drivers of c-di-GMP fluctuations is the diguanylate cyclase PleD, which is active 

in stalked but turned off in swarmer cells [220] (Figure 1a). While a pleD mutant 

has reduced levels of c-di-GMP, a strain lacking all diguanylate cyclases (cdG0) 

is devoid of c-di-GMP [38]. The complete loss of motility and surface 

attachment in the cdG0 strain illustrates the importance of c-di-GMP 

oscillation for Caulobacter cell fate determination [38]. In contrast, the role of c-

di-GMP in cell cycle progression is unclear.  

Our studies originated from a genetic screen for synthetic lethal mutants in the 

cdG0 background. This strain, although viable, shows pronounced 

morphology and cell cycle defects [38]. We thus reasoned that c-di-GMP 

controls cell cycle progression together with a parallel pathway with partial 

functional redundancy. The screen revealed a strain with a transposon (Tn) 

insertion in the promoter region of the gene encoding the single-domain 

response regulator DivK (PdivK::Tn) (Extended Data Fig. 1a). Crossing back 

the Tn into the cdG0 mutant produced a strain with severe cell cycle defects 
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Figure 1: C-di-GMP regulates cell cycle progression via the CckA-CtrA 

phosphorelay. 

(a) Left: Localization of CckA and factors regulating CckA activity throughout 

the C. crescentus cell cycle. CckA kinase (red) and phosphatase (blue) activities 

are indicated. High and low levels of c-di-GMP are shown as grey or white 

areas, respectively. PDE=phosphodiesterase. Right: Regulatory modules 

inactivating CtrA to control Caulobacter S-phase entry. (b) Growth (left) and cell 

morphology (right) of strains indicated. 5-fold serial dilutions are shown. 

Pxyl::divK strains were grown on PYE (none) or PYE glucose (Gluc) plates. 

Representative of two biological replicates is shown. (c) Effect of PdivK::Tn on 

DNA replication in different genetic backgrounds. DNA content and cell mass 

were determined by flow cytometry. Averages and standard deviations for 

DNA content/cell mass were obtained from 4 biological replicates.  
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(Figure 1b, Extended Data Fig. 1b). This, and the observation that the DNA 

content per cell mass unit was severely reduced (Figure 1c), indicated that cells 

are severely compromised for replication initiation. In contrast, growth, 

division and replication were not affected when the PdivK::Tn was crossed into 

a cdG+ strain (Figure 1b, c). DivK levels were reduced about 10-fold in the 

cdG0 PdivK::Tn strain (Extended Data Fig. 1c), suggesting that DivK may be 

limiting for growth. This was confirmed by replacing the divK promoter 

upstream of the divK gene with the xylose-dependent promoter Pxyl. In the 

absence of the inducer or in the presence of glucose, which further represses 

Pxyl activity, DivK levels were strongly reduced compared to wild type 

(Extended Data Fig. 1d), resulting in severely reduced growth and replication 

in the cdG0 strain, but not in a cdG+ background (Figure 1b, Extended Data 

Fig. 1e). Together, this indicated that c-di-GMP and DivK convergently 

regulate cell cycle progression.  

DivK was recently shown to down-regulate the central cell cycle kinase CckA 

through a direct interaction with DivL, an unorthodox kinase that controls 

CckA via protein proteininteraction [46,194]. CckA initiates a phosphorelay 

controlling the activity of the response regulator CtrA [187,221] (Figure 1a). 

CtrA is phosphorylated and active in swarmer cells (G1) where it binds to the 

origin of replication (Cori) to inhibit replication initiation [178]. During 

differentiation into stalked cells CtrA is inactivated to license replication 

initiation [44]. CckA is bifunctional and can act both as kinase and as 

phosphatase to control CtrA via the phosphotransfer protein ChpT [170]. 

Accordingly, switching CckA from kinase to phosphatase activity during G1-S 

would rapidly reverse the phosphate flux to inactivate CtrA and authorize 

replication initiation. Hence, we reasoned that DivK and c-di-GMP could 

cooperate to inactivate CtrA. Because c-di-GMP controls CtrA degradation 

during G1-S transition through the effector protein PopA [34] (Figure 1a), the 

G1 arrest of the cdG0 PdivK::Tn strain could conceivably result from 

simultaneous over-activation and stabilization of CtrA. However, a mutant 

combining the PdivK::Tn allele with a popA deletion stabilizing CtrA was not 

affected in growth or DNA replication. In contrast, a PdivK::Tn ΔpopA strain 

that also lacked PleD, produced a strong G1 arrest (Figure 1c, Extended Data 

Fig. 1f). From this we concluded that c-di-GMP regulates both stability and 

phosphorylation levels of CtrA during the cell cycle (Figure 1a).  

To analyze how c-di-GMP regulates CtrA activity, individual components of 

the CckA-CtrA phosphorelay were purified and examined in vitro. In the 

absence of c-di-GMP CckA autophosphorylation and phosphotransfer via 
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ChpT to CtrA were readily observed. Strikingly, the addition of c-di-GMP 

completely abolished phosphorylation of all three components (Extended Data 

Fig. 2a). When CckA auto-phosphorylation was first carried out in the absence 

of c-di-GMP followed by the addition of c-di-GMP to the reaction mixture, 

rapid dephosphorylation of CckA was observed, arguing that c-di-GMP is a 

potent stimulator of CckA phosphatase activity (Figure 2a, Extended Data Fig. 

2b). Stimulation of the CckA phosphatase was specific to c-di-GMP with GMP, 

GTP or cGMP having no observable effect (Figure 2a). Experiments with all 

three components of the phosphorelay demonstrated that c-di-GMP 

effectively reverses the phosphate flux of the phosphorelay leading to the 

inactivation of CtrA (Figure 2b). To test if c-di-GMP also regulates CckA 

kinase activity we compared phosphorylation of wild-type CckA with 

CckA(V366P), a mutant lacking phosphatase activity in vitro (Extended Data 

Fig. 2c) [170]. When c-di-GMP was added together with [32P]ATP at reaction 

start, CckA(V366P) phosphorylation was strongly reduced as compared to a 

control lacking c-di-GMP (Extended Data Fig. 2c), indicating that c-di-GMP 

inhibits CckA kinase activity.  

These experiments demonstrated that c-di-GMP is a potent trigger to switch 

CckA from its default kinase into the phosphatase state. Consistent with this, 

purified CckA specifically binds radiolabeled c-di-GMP (Figure 2c, Extended 

Data Fig. 2d). Further studies exposed the catalytic ATP-binding domain (CA) 

as minimal binding region for c-di-GMP (Extended Data Fig. 2e-g). To identify 

amino acid residues of the CA domain that are specifically involved in c-di-

GMP binding, we concentrated on a candidate mutation that was recently 

isolated in the CckA homolog of the plant pathogen Agrobacterium tumefaciens 

(CckAAt). In this organism a spontaneous Y674D substitution in the CA 

domain of CckAAt was isolated as a motile suppressor of a mutant lacking PleC 

[222]. We hypothesized that CckAAt is also regulated by c-di-GMP and that in 

a pleC mutant with elevated levels of c-di-GMP (Figure 1a) the Y674D mutation 

restores its kinase/phosphatase balance by interfering with c-di-GMP binding. 

As shown in Extended Data Fig. 2h, autophosphorylation of purified wild-type 

CckAAt was specifically reversed when c-di-GMP was added, while the 

CckAAt(Y674D) mutant failed to respond to c-di-GMP. Moreover, c-di-GMP 

binding to CckAAt(Y674D) was strongly reduced as compared to the wild-type 

form of the protein (Extended Data Fig. 2h).  
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Figure 2: C-di-GMP binds to the catalytic domain to induce CckA 

phosphatase activity. 

(a) C-di-GMP specifically stimulates CckA dephosphorylation. CckA 

phosphorylation reactions were started by adding [32P]ATP (0 min) and 

supplemented with c-di-GMP (75 µM) at the time indicated (arrow). The inset 

shows CckA phosphorylation reactions supplemented with c-di-GMP and 

other nucleotides (75µM). Representative of two technical replicates is shown.  

(b) C-di-GMP reverses the phosphate flux of the CckA-ChpT-CtrA 

phosphorelay. Reactions were run for 30 min and c-di-GMP was added 

together with [32P]ATP at time 0 min (t0) or 15 min after reaction start (t15). 

Representative of three technical replicates is shown. (c) C-di-GMP binding 

affinity of CckA. Binding of wild-type CckA (WT) and CckA(Y514D) was 

determined by UV-crosslinking at increasing concentrations of [33P]c-di-

GMP(inset) and quantified as shown in the graph. Averages and standard 

deviations were obtained from three technical replicates. (d) C-di-GMP fails to 
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stimulate phosphatase activity of the CckA(Y514D) mutant. Phosphorylation 

reactions with wild-type CckA (WT) and Y514D mutant protein were analysed 

without (none) or with c-di-GMP added at time point 0 (t0) or after 15 min 

(t15). Representative of three technical replicates is shown. (e) Homology 

model of the CA domain of CckA based on a crystal structure of DivL (pdb 

4q20). Residues that show large (Δδ(HN) > 2 s.d.) and intermediate (2 s.d. 

>Δδ(HN) > 1 s.d.) amide chemical shift perturbations upon addition of c-di-

GMP are shown in purple and pink, respectively. Side chains of residues that 

contribute to c-di-GMP binding and c-di-GMP mediated phosphatase activity 

are shown in stick representation and coloured in red. A single molecule of 

ATP (yellow) was modelled into its putative binding site based on homology to 

CpxA (PDB: 4bix). D479, which is involved in ATP binding, is shown green. 

For more information, see legend to Extended Data Fig. 3.  

The equivalent substitution in Caulobacter CckA (Y514D) also resulted in 

strongly diminished c-di-GMP binding (Figure 2c). Importantly, the 

CckA(Y514D) mutant showed normal kinase activity but failed to 

dephosphorylate upon addition of c-di-GMP (Figure 2d). This was not due to 

a general lack of phosphatase activity, as the CckA(Y514D) mutant showed 

unaltered basal level phosphatase activity upon ATP depletion (Extended Data 

Fig 2i). Together this demonstrated that CckA(Y514D) is compromised for c-

di-GMP binding and, as a consequence, cannot switch to the phosphatase 

mode upon addition of c-di-GMP, resulting in constitutive CckA kinase activity 

in vitro. To define the c-di-GMP binding pocket on the surface of the CA 

domain we used a combination of structural modelling, biochemical analysis 

and NMR spectroscopy (Figures 2e, Extended Data Figs. 2i and 3a, b). This 

approach identified a set of six amino acids, F474, F493, Y514, W523, R537, 

and F539, which show significant NMR chemical shift perturbations upon c-

di-GMP titration experiments and are strictly required for c-di-GMP binding 

and phosphatase but not kinase activity (Figure 2e, Extended Data Figs. 2i and 

3b). All of these residues locate in close proximity of Y514 in a homology 

model of CckA (Figure 2e). Interestingly, six of these amino acid residues 

feature aromatic side chains and are well conserved in CckA homologs 

(Extended Data Fig. 4). This argues that c-di-GMP is coordinated by the CA 

domain of CckA via hydrophobic interactions, akin to the binding mode 

described for the human STING receptor [192]. 

Next, we set out to test if c-di-GMP executes its important cell cycle role 

primarily by interfering with the CckA kinase/phosphatase balance in vivo. We 

reasoned that a combination of PdivK::Tn and cckA(Y514D) should cause a 
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similar G1 arrest as observed for a strain lacking c-di-GMP altogether. 

Moreover, this combination should lead to a cell cycle arrest irrespective of the 

presence of c-di-GMP (Extended Data Fig. 5a). Indeed, cells carrying PdivK::Tn 

and cckA(Y514D) showed severe growth defects (Figure 3a), increased binding 

of CtrA to the Cori region (Extended Data Fig.  5b), and a strong G1 arrest 

(Figure 3b, Extended Data Fig. 5c). While this phenotype was independent of 

PleD, viability of the CckA phosphatase mutant (V366P) strictly depended on 

c-di-GMP (Figure 3a, b, Extended Data Fig. 5c). This indicated that down-

regulation of CckA kinase activity by c-di-GMP is sufficient to balance the 

kinase/phosphatase activities of the V366P mutant. To corroborate these 

findings we tested the same cckA alleles in strains expressing divK from the 

xylose-dependent promoter Pxyl. When Pxyl::divK cells were grown in the 

absence of xylose, DivK dropped below 10% of wild type and, as a 

consequence, cells developed a mild G1 arrest (Extended Data Fig. 5d).  

 

Figure 3: C-di-GMP controls CckA activity to initiate chromosome 

replication. 

(a) The cckA(Y514D) allele shows synthetic lethality with PdivK::Tn. 5-fold 

serial dilutions of strains containing combinations of cckA, PdivK, and pleD 

alleles were incubated on PYE plates for 2 days. Representative of two 

biological replicates is shown. (b) Combining the cckA(Y514D) and PdivK::Tn 

alleles leads to a G1 arrest. Exponential cultures of mutants containing 

combinations of cckA, PdivK, and pleD alleles were analysed by flow cytometry. 

Values of DNA content per cell mass are shown relative to C. crescentus wild 

type and were obtained as described in the legend for Figure 1c. Averages and 

standard deviations were obtained from three replicates. 
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This effect was aggravated in strains expressing cckA(Y514D) resulting in a 

strong reduction of the DNA/cell mass ratio (Extended Data Fig. 5d), severely 

reduced growth (Extended Data Fig. 5e), increased CckA~P phosphorylation 

levels (Extended Data Fig. 5f) and an overall reduction of the number of 

chromosomal origins per cell mass (Extended Data Fig. 5g). 

Taken together, these experiments lead us to propose a model where two 

convergent regulatory inputs, DivK and c-di-GMP, control the CckA 

kinase/phosphatase switch to authorize G1-S transition through the 

inactivation of the replication initiation inhibitor CtrA (Figure 1a). Intriguingly, 

cell type specific activity of both PleD and DivK is regulated by DivJ and PleC, 

two histidine kinase/phosphatase antagonists, which localize to opposite poles 

of the predivisional cell and during division asymmetrically partition into the 

daughter cells to determine their respective programs (Figure 1a) [223]. Thus, 

the two regulators show similar activation profiles during the cell cycle [45,220], 

thereby imposing tight coordination between the DivK branch and the c-di-

GMP branch of the CckA switch. This connection is further strengthened by 

the role of DivK as allosteric activator of the DivJ kinase, a positive feedback 

mechanism through which both DivK and PleD activity can be rapidly 

upregulated during G1-S transition [45]. Hence, DivK and c-di-GMP act as 

molecular connectors between two hierarchical phosphorylation modules, 

explaining how the cellular dynamics of PleC and DivJ translate into differential 

activities of the central cell cycle kinase CckA (Figure 4). Because the parallel 

morphogenetic program critically depends on PleD activation and the 

concomitant rise in c-di-GMP concentration [38], c-di-GMP induced 

inactivation of CtrA directly couples development to cell cycle progression. 

This is reminiscent of redundant pathways regulating cell cycle progression in 

higher eukaryotes, where a multitude of signals converge to control the activity 

of CDKs [224,225].  

In addition to its role in G1-S transition, CckA facilitates cell polarity during 

division. CckA localizes to both poles of dividing Caulobacter cells but adopts 

differential kinase/phosphatase activities at opposite poles [191,192] (Figure 

1a). The resulting cellular gradient of CtrA~P was proposed to establish 

asymmetric replication activities, which propagate to future daughter cells 

[192]. To test if c-di-GMP contributes to replication asymmetry during division 

we made use of fluorescent repressor-operator systems (FROS) to spatially 

resolve replication initiation events (Extended Data Fig. 6a,b)  [226]. While in 

a majority of wild-type cells chromosome replication originated at the old 

stalked pole, cells expressing cckA(V366P) or cckA(Y514D) lost replication 
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asymmetry almost entirely (Extended Data Fig. 6c). Cells lacking PleD also 

partially lost their replication preference for the stalked pole. Because active 

PleD, PleD~P, specifically localizes to the stalked pole [200,220], we analysed 

replicative asymmetry in a cdG0 strain expressing a heterologous diguanylate 

cyclase, DgcZ, from E. coli, which is uniformly distributed in the cell [14,38]. 

Although expression of dgcZ restored all developmental defects in this strain 

[38], it failed to establish the characteristic spatial replication bias (Extended 

Data Fig. 6c). From this we conclude that the spatial organization of c-di-GMP 

metabolism contributes to cell polarity by differentially regulating CckA at 

opposite cell poles. For example, a local environment with high levels of c-di-

GMP might impose CckA phosphatase activity at the stalked pole. 

Alternatively, a local trough of c-di-GMP may exist at the swarmer pole with 

the rest of the cell body containing high levels of c-di-GMP. To distinguish 

between these possibilities, we made use of a CckA variant that is unable to 

localize to cell poles because it lacks its membrane anchor (cckAΔTM). 

Expression of this mutant causes massive over-replication and cell 

filamentation, arguing that delocalized CckA functions primarily as a 

phosphatase for CtrA [170]. In agreement with this, expression of 

cckAΔTM(V366P), lacking phosphatase activity,did not show any adverse 

effects (Extended Data Fig. 6d). Strikingly, expression of cckAΔTM(Y514D) in 

a cdG+ strain (Extended Data Fig. 6d) or expression of cckAΔTM in a strain 

lacking c-di-GMP (Extended Data Fig. 6e) led to a strong G1 arrest, a hallmark 

of the CckA kinase mode. This indicated that the cellular pool of c-di-GMP 

strictly imposes phosphatase activity on delocalized CckA molecules. 

Based on these results we propose that the bulk volume of dividing C. crescentus 

cells experiences high levels of c-di-GMP and that CckA adopts strong kinase 

activity at the swarmer pole as a consequence of a microenvironment with low 

levels of c-di-GMP. This view is consistent with the idea that sequestration of 

CckA to the swarmer pole creates a microenvironment within the cell where 

CckA can avoid down-regulation by its other inhibitor, DivK~P [46,192]. We 

propose that CckA sequestration to this subcellular site also shields the protein 

from the cellular pool of c-di-GMP. Ultimately, it is the PleC phosphatase that 

reduces PleD~P and DivK~P levels at this subcellular site and, possibly 

together with one or several swarmer pole specific phosphodiesterases, 

imposes this spatial regime (Figure 1a, 4). The input from c-di-GMP might also 

explain how the entire cellular pool of CckA can be tightly regulated. 

Throughout the cell cycle, CckA localization is often patchy and dynamic 

without being strictly limited to polar regions [191]. Since the degree of co-

localization of DivK and CckA is unclear, c-di-GMP could effectively maintain 
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CckA in the phosphatase state in all cell types or subcellular regions harbouring 

high levels the second messenger.  

 

Figure 4: Model of the regulatory circuitry controlling cell cycle 

progression in C. crescentus.  

Two intercalated phosphorylation modules control replication initiation 

through the activity of the replication initiation inhibitor CtrA. When the PleC 

phosphatase is present at the swarmer pole, PleD and DivK are 

dephosphorylated. In this situation, phosphorylation modules 1 and 2 are 

uncoupled and CckA adopts DivL-imposed kinase mode to activate CtrA and 

block replication initiation. When the DivJ sensor kinase is present at the 

stalked pole, phosphorylation module 1 imposes control on module 2. PleD 

and DivK are phosphorylated, thereby switching CckA into the phosphatase 

mode and inactivating CtrA. In parallel, c-di-GMP facilitates CtrA degradation 

via PopA and the ClpXP protease. 

C-di-GMP is only one of several novel nucleotide-based second messengers 

that were recently discovered in bacteria [106]. Their global impact on cell 

physiology raised the question how these signalling compounds mediate 

specific cellular responses and how they integrate with other general signalling 

systems, in particular with two-component phosphorylation networks [227]. 

Our finding that c-di-GMP acts as a cyclin-like molecule in C. crescentus to 

control the activity of the cell cycle kinase CckA, establishes the first direct 

connection between the two most widespread regulatory networks of bacterial 

cells. The CckA-ChpT-CtrA pathway is conserved among most known 

members of the α-proteobacteria, including important pathogens like Bartonella 

or Brucella [228]. This opens up the exciting possibility that c-di-GMP-imposed 

control of sensor histidine kinases might represent a general and widespread 
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regulatory mechanism in bacteria. Considering that c-di-GMP plays a major 

role in regulating virulence and persistence, this provides important new entry 

points into better understanding the behaviour and propagation of bacterial 

pathogens. 
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Extended Data Figure 1 
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Extended Data Figure 1: Characterization of PdivK::Tn and Pxyl::divK 

derivatives 

(a) Schematic of the synthetic lethality screen. pBlue-pleD is a low copy number 

plasmid carrying both pleD and lacA genes, each with its own promoter. The 

lacA gene encodes a subunit of the LacABC dehydrogenase responsible for the 

breakdown of β-galactosides in C. crescentus [229]. An open arrowhead in the 

top panel indicates a representative blue colony on an X-gal agar plate. Out of 

independent 142,000 transformants representative white colonies or colonies 

with blue sectors indicating segregation of the unstable pBlue-pleD plasmid are 

indicated in the upper and lower panel. Genomic organizations of the divK 

locus in strains SH100 and SH111 are shown schematically. The exact position 

of the transposon insertion (PdivK::Tn) in the divK promoter region adjacent to 

the CtrA box is indicated by closed arrowheads. The transcription start site 

(+1) and the -10 and -35 elements are shown [230]. Mapping of the Tn to the 

CtrA binding site in the divK promoter region might imply that this lesion 

reduces divK expression by interfering with CtrA-mediated positive control. (b) 

Cell morphology and chromosome replication activity. Indicated strains were 

analysed microscopically and by flow cytometry to measure DNA content. 

Cells were grown with or without rifampicin as indicated. Chromosome 

equivalents (N) are indicated. Phase-contrast images are shown with scale bars 

of 5µm. Representative of two biological replicates is shown. (c) DivK levels 

deduced by immunoblot analysis. Cells grown in PYE were harvested at 

OD660 of ~0.2 and subjected to SDS-13% PAGE, followed by immunoblot 

analysis using anti-DivK antibodies. The intensities of the DivK bands were 

quantified using Image J and are shown as relative values to NA1000 wild type 

levels. Representative of two biological replicates is shown. (d) Subcellular 

levels of PleD, DivK, and CtrA in the Pxyl::divK derivatives. Cells of strains 

NA1000, UJ5065, UJ8012, and UJ8013 grown in PYE (none) or PYE 

supplemented with 0.2% glucose or 0.03% xylose were analysed by 

immunoblots as indicated. The intensities of the protein bands were quantified 

using ImageJ and are shown as relative values to NA1000 wild type. The vector 

control (pMR20) is indicated. Representative of two biological replicates is 

shown. (e) Chromosome replication activity of wild-type (UJ8012) and cdG0 

(UJ8013) strains expressing divK from the Pxyl promoter. Strains were grown 

exponentially in PYE (none) or PYE + glucose (Gluc), followed by flow 

cytometry analysis. Representative of two biological replicates is shown. (f) 

Effect of PdivK::Tn on cell morphology in strains lacking pleD, popA, or both. 

Scale bar = 5µM.Representative of two biological replicates is shown. 
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Extended Data Figure 2.1 
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Extended Data Figure 2: C-di-GMP binds to CckA to induce 

phosphatase activity.  

(a) C-di-GMP inhibits the CckA phosphorelay. In vitro phosphorylation 

reactions with purified proteins (+) in the presence or absence of c-di-GMP 

(75 µM). A CtrA mutant (D51E) lacking the phosphoryl-acceptor site is shown 

as a control. Phosphorylated proteins are marked. The weak band with a size 

similar to CtrA (lines 3 and 6) corresponds to a phosphorylated breakdown 

product of ChpT. Representative of three technical replicates is shown. (b) C-

di-GMP stimulates CckA dephosphorylation. Phosphorylation reactions with 

purified CckA were carried out as outlined in Figure 2a. After reaching 

saturation, dephosphorylation was initiated by the addition of increasing 

concentrations of c-di-GMP. Reactions were run for 15 min and were analysed 

by autoradiography. Representative of two technical replicates is shown (c) C-

di-GMP inhibits CckA auto-phosphorylation. Purified CckA wild-type and 

phosphatase mutant (V366P) were incubated with [32P]ATP and with (+) or 

without (-) c-di-GMP (75 µM) as indicated. C-di-GMP was added at the time 

points indicated. Representative of three technical replicates is shown. (d) C-

di-GMP specifically binds to CckA. Purified CckA protein was incubated with 

[33P] labelled c-di-GMP and cross-linked with UV light in the presence or 

absence of a 10-fold or 100-fold excess of competing non-labelled nucleotides 

as indicated. Representative of three technical replicates is shown. (e) The CA 
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domain of CckA specifically binds c-di-GMP. Purified protein of full length 

CckA (FL, lacking N-terminal TM domains) and the minimal binding unit (see 

(f)) was incubated with [33P] labelled c-di-GMP and cross-linked with UV light 

in the presence or absence of a 100-fold excess of non-labelled ATP or c-di-

GMP as indicated. Representative of three technical replicates is shown. (f) 

Schematic of the domain architecture and truncated constructs of CckA. 

Amino acids marking the boundaries of each construct are indicated. 

Constructs marked by green and red bars showed c-di-GMP binding or failed 

to bind c-di-GMP, respectively. (g) Truncated versions of the CckA proteins 

indicated in (a) were expressed, purified, and analysed for c-di-GMP binding 

using UV-crosslinking of [33P] labelled c-di-GMP37 (10 µM) in the presence (+) 

or absence (–) of a 100-fold excess of non-labelled c-di-GMP (1 mM). Samples 

were analysed by SDS-PAGE and autoradiography as indicated. Representative 

of two technical replicates is shown (h) Left: CckAAt, the CckA homolog of A. 

tumefaciens binds c-di-GMP. The c-di-GMP binding affinities of wild-type 

CckAAt and the CckAAt(Y674D) mutant protein were determined by UV-

crosslinking at increasing concentrations of [33P]c-di-GMP. Relative binding 

units and affinities are shown. Error bars are standard deviations. Averages and 

standard deviations were obtained from three technical replicates. Right: 

CckAAtis regulated by c-di-GMP. Wild-type CckAAt and CckAAt(Y674D) 

mutant were incubated with [32P]ATP (0 min) and supplemented with c-di-

GMP and other nucleotides (75 µM) at 30 min. Fractions were removed after 

30 min or 60 min as indicated and analysed by autoradiography.  Representative 

of two technical replicates is shown. (i) Phosphatase activity of CckA alleles in 

the absence of ATP. Reactions were allowed to autophosphorylate for 15 min 

before hexokinase and D-glucose were added to rapidly deplete ATP. A 

representative gel image for wild-type CckA is shown (top). Kinetic analysis 

revealed that CckA(Y514D) retains wild type-like phosphatase activity 

(bottom). Error bars are standard deviations. Averages and standard deviations 

were obtained from three technical replicates. (j) Mutational analysis of amino 

acids contributing to c-di-GMP binding and phosphatase control. Purified 

CckA wild-type and mutant forms were analysed for phosphorylation activity 

and [33P] c-di-GMP binding as indicated above. Note that the residue D479 is 

involved in ATP binding. Consequently, the D479A mutant lacks kinase 

activity, but is unaltered in its ability to bind c-di-GMP. Representative of two 

technical replicates is shown. 
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Extended Data Figure 3 
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Extended Data Figure 3: Characterization of the c-di-GMP binding site 

by NMR spectroscopy. 

(a) Top: 2D [15N,1H]-TROSY spectrum of 0.38 mM CckA-CA recorded at 

20°C. The sequence-specific resonance assignments are indicated. Bottom 

left:Sequence-specific secondary backbone 13C chemical shifts of CckA-CA 

relative to the random coil values of Kjaergaard et al. [231]. A 1–2–1 smoothing 

function was applied to the raw data. Consecutive stretches with positive and 

negative values indicate α-helical and β-strand secondary structure, respectively. 

The secondary structure elements inferred from these data are indicated above. 

Asterisks indicate unassigned residues. Bottom right: Profile-profile alignment 

of the CA domains of CckA and DivL carried out with HHpred [232] and 

formed the basis for the generation of the CckA homology model (shown in 

Fig. 2G) using the Modeller software [233]. The sequence identity is 25%. 

Secondary structure elements of CckA as determined by 13Cα secondary 

chemical shifts and of DivL, as derived from the crystal structure (pdb 4q20) 

are shown below the sequence alignment. The residue numbering of CckA is 

indicated. (b) Chemical shift perturbation of Cck-CA backbone amide moieties 

upon c-di-GMP binding. Left: Combined chemical shift changes of amide 

moieties, Δδ(HN), are plotted against the residue number. The magnitudes of 

one s.d. (0.021 p.p.m.) and two s.d. (0.042 p.p.m.) are indicated by a purple and 

pink line, respectively. The arrow points to residues I524 and H525 that 

experience intermediate chemical exchange upon c-di-GMP binding. Asterisks 

indicate unassigned residues. Right: Region of a 2D [15N,1H]-TROSY spectrum 

of a titration of c-di-GMP to CckA-CA at 20°C. Sequence-specific resonance 

assignments are indicated. 
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Extended Data Figure 4 
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Extended Data Figure 4: CLUSTALW alignment of the CA domain of 

CckA  

A CLUSTALW program is used to align the CA domain of CckA from C. 

crescentus and from different α-proteobacteria. A fragment of the CA domain is 

shown that corresponds to amino acids 467-546 of C. crescentus CckA. Residues 

involved in c-di-GMP binding are boxed (green) and red bars above the 

sequence indicate regions with significant chemical shift in NMR spectroscopy 

upon c-di-GMP titration. CLUSTALW scores for conservation, quality and 

consensus are indicated. 
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Extended Data Figure 5 
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Extended Data Figure 5: DivK and c-di-GMP convergently control C. 

crescentus growth and replication. 

(a) Model for the regulation of chromosome replication by the 

CckAkinase/phosphatase switch at reduced levels of DivK. Bold and dotted 

lines indicate strong and weak reactions, respectively. Dark circles indicate c-

di-GMP. Kinase (Kin) and phosphatase mode (Pho) of CckA are indicated. i) 

C-di-GMP authorizes S-phase entry by inducing CckA phosphatase. ii) C-di-

GMP is unable to bind to and induce phosphatase activity of CckA(Y514D) 

resulting in a G1 arrest. iii) C-di-GMP authorizes S-phase entry by reducing 

kinase activity of the phosphatase mutant CckA(V366P). iv) Cells lacking PleD 

fail to downregulate CckA(V366P) kinase activity. (b) CtrA binding to the Cori 

region is increased in cells harbouring cckA(Y514D) and PdivK::Tn. CtrA 

occupancy at Cori was analysed using ChIP and qPCR as described in 

Experimental Procedures. Error bars are s.d. (c) Combining the cckA(Y514D) 

and PdivK::Tn alleles leads to a G1 arrest. Exponential cultures of mutants 

containing different combinations of cckA, PdivK, and pleD alleles were analysed 

by light microscopy and flow cytometry. Representative examples of two 

biological replicates for phase contrast images and profiles of DNA content are 

shown with scale bars of 5µm. (d) Reduced divK expression in PxylX::divK 

strains containing the cckA(Y514D) allele leads to G1 arrest. Top: Schematic of 

the chromosomal arrangement of cells expressing divK from the Pxyl promoter 

(PxylX::divK) and harbouring different cckA alleles. The divK gene is fused to 

the PxylX promoter in the xylX locus. The chromosomal copy of divK at the 

original locus was replaced with a Ω-cassette. Different cckA alleles were 

introduced at the cckA locus by allelic exchange. Bottom left: Cellular levels of 

DivK and PleD as determined by immunoblot analysis in strains grown in the 

presence or absence of xylose. Cells expressing divK from its own promoter at 

the native locus (PdivK) were used as control. Note that for PxylX::divK 

derivatives grown in PYE, twice as many cells were used. Band intensities were 

determined with ImageJ and the respective values shown as relative units 

compared to wild type. Bottom right: DNA content per cell mass (DNA/mass) 

was analyzed as described in Figure 1c and values are shown below the graphs. 

Fractions of cells containing more than two chromosomes are indicated by 

brackets. Representative of two biological replicates is shown. (e) Colony 

forming ability of PxylX::divK strains carrying different cckA alleles. Five-fold 

serial dilutions of the indicated strains were spotted and grown for 2d at 30˚C 

on PYE plates with the supplements indicated. Representative of two biological 

replicates is shown. Note that these results are consistent with individual DNA 

replication profiles shown in Figure 3 and panel d. (f) Reduced divK expression 
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in PxylX::divK strains containing the cckA(Y514D) allele leads to increased 

CckA phosphorylation levels. The cellular fraction of phosphorylated CckA 

(CckA~P) was determined using Phos-tag gel electrophoresis. As a control 

CckA~P and CckA levels were determined in synchronized populations of 

wild-type cells proceeding through the cell cycle (bottom). PxylX::divK strains 

harbouring different cckA alleles were analysed during exponential growth at 

30˚C in the presence or absence of glucose (0.3%). The addition of glucose 

reduces leaky expression from the Pxyl promoter. Relative ratios of CckA~P 

to total CckA protein are shown. Error bars are s.d. Averages and standard 

deviations were obtained from three biological replicates. (g) Single cell 

analysis of the replication status of mutants with reduced DivK levels and 

abolished CckA control by c-di-GMP. Strains producing LacI-CFP and 

harbouring an array of lac operator (lacO) sites near the origin of replication 

were analysed [234]. FROS strains contained wild-type cckA or the 

cckA(Y514D) mutant allele, as well as PdivK::Tn-tet with wild-type pleD or ∆pleD 

as indicated. Representative phase contrast and fluorescence images of two 

biological replicates are shown. Numbers of origins per cell length units were 

analyzed statistically and the mean value and standard deviations obtained from 

two biological replicates are shown as a column graph. For each strain, a total 

of >900 cells were analysed using MicrobeTracker (http://microbetracker.org). 

Note that these results are consistent with the DNA replication profiles of 

equivalent strains without the FROS module shown in Figure 3 and panels c 

and d.  
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Extended Data Figure 6 

 

 

Extended Data Figure 6: C-di-GMP mediated spatial control of CckA 

directs replication asymmetry in dividing cells. 

Fluorescent repressor–operator system (FROS) analysis to visualize DNA 

replication in individual cells. Dividing cells of C. crescentus wild type (a) and 

cckA(Y514D) mutant (b) producing TetR-YFP and harbouring an array of tet 

operator (tetO) sites near the origin of replication were analysed by fluorescence 

microscopy. Frames from representative time-lapse movies used for panel c are 
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shown. Stalked/old poles of newly divided daughter cells are marked with red 

arrows; newly replicated origins are marked with blue arrows. (c) Spatial 

patterns of DNA replication were scored using a Tet-based FROS system and 

divided into three classes as indicated: Replication initiation at the Cori located 

at the stalked pole (ST, orange), swarmer pole (SW, green), or at both poles (BI, 

blue). The bar diagram shows the quantification of wild-type and mutant strains 

as indicated with numbers indicating percentage of cells falling into the three 

classes. Total number of cells analysed (n) is indicated above each bar. (d) 

Expression cckAΔTM leads to c-di-GMP dependent overreplication. C. 

crescentus wild-type strains expressing different cckAΔTM alleles were analysed 

by light microscopy and flow cytometry as indicated. The fraction of cells 

bearing more than two chromosomes is indicated and shown as percentage. 

Representative of two biological replicates is shown. (e) Expression cckAΔTM 

leads to c-di-GMP dependent overreplication. C. crescentus cdG0 strain 

expressing cckAΔTM was analysed by light microscopy and flow cytometry as 

indicated. The fraction of cells bearing more than two chromosomes is 

indicated and shown as percentage. Representatives of two biological replicates 

are shown. 
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Methods 

Strains and plasmids 

Strains used in this study are listed in Extended Data Table 1. Caulobacter strains 

are grown in Peptone Yeast extract medium (PYE) or minimal medium 

supplemented with glucose (M2G) at 30˚C [235]. When necessary, medium was 

supplemented with glucose (0.2%), xylose (0.03% 0.3%), and antibiotics as 

described [236]. When synchronized Caulobacter cell cultures were used, 

newborn cells were harvested by LUDOX density-gradient centrifugation 

method [38]. Generalized CR30 phage transduction was performed as 

described [235]. 

Strain UJ6777 was constructed by sequential 2-step transduction using a CR30 

phage lysate of MT15 [234]. Strains UJ8306, UJ8307, UJ8308 and UJ8314 were 

constructed by sequential 2-step transduction using a CR30 phage lysate of 

MT16 [234]. UJ8312 was constructed by sequential transduction using parental 

strain SoA1273 and CR30 phage lysates of MT16 and UJ6777. Strains UJ7212 

and UJ7214 were constructed using a parental NA1000 strain and suicide 

vectors pNTPS-cckA(Y514D) and pNPTS-cckA(V366P), respectively. To 

construct strains UJ6861 and UJ7304, lacA::Ω was transduced into UJ5065 

using a phage lysate of UJ6168. Subsequently, pBlue-pleD was transformed into 

the transductant, yielding UJ6861. xylX::tipNgfp was transformed into UJ6861, 

yielding UJ7304. Strain UJ7525 was constructed by sequential 2-step 

transduction. First, xylX::pPA28 was transduced into NA1000 using a phage 

lysate of UJ286. Resulting kanamycin-resistant colonies were subsequently 

transduced with ∆divK::Ω using a phage lysate of strain CJ403. Strains UJ7527, 

UJ7529, UJ7618, UJ7619, and UJ7620 were constructed similarly using UJ7212, 

UJ7214, UJ7417, UJ7418, and UJ7419, respectively, as a parental strain instead 

of NA1000. Strains UJ7417, UJ7418 and UJ7419 were constructed by double 

homologous recombination using pNPTS-cckA-3xF and parental strain 

NA1000, UJ7212 or UJ7214. Strains UJ7511 and UJ7512 were generated by 

integration of pMCS1-cckA into NA1000 and UJ7212. Strains UJ7873 and 

UJ7992 were constructed by double homologous recombination using pNPTS-

XdivK and a parental strain NA1000 (for UJ7873) or UJ5065 (for UJ7992), 

respectively. Strains UJ7939 and UJ7940 were constructed by transformation 

of pMCS5-k2t into NA1000 PdivK::Tn and NA1000 ∆pleD PdivK::Tn, 

respectively.  
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Plasmids and Oligonucleotides used in this study are listed in Extended Data 

Tables 2 and 3, respectively. To construct pBlue-pleD, a 2.5 kb fragment 

containing the pleD gene under control of the divK promoter was amplified 

using pPA41 and primers 5156 and 104, followed by digestion with ScaI and 

ligation to the ScaI fragment of pJC389. The insert was verified by DNA 

sequencing. To construct pNPTS-XdivK, the upstream (694 bp) of divK was 

amplified using NA1000 genome and primers 6151 and 6152. The product was 

digested with XhoI and SacII, ligated to the SalI-SacII fragment of pXMCS-1, 

resulting in pXdivKr. In parallel, a 1kb fragment containing the divK gene and 

its downstream region was amplified using SH119 genome and primers 6153 

and 6154, followed by digestion with EcoRI and NdeI and ligation to the EcoRI-

NdeI fragment of pXdivKr, resulting in pXdivKrl. Finally, the EcoRI-SphI 

fragment of pXdivKrl was subcloned into pNPTS138, yielding pNPTS-XdivK. 

For pMCS5-k2t, a part (444 bp) of the nptII gene was amplified by PCR using 

pAlmar1 and primers 6693 and 6694, followed by digestion with KpnI and SacI 

and ligation to the KpnI-SacI fragment of pMCS-5. For pXTCYC4-tipNgfp, the 

tipNgfp gene was amplified using pMR20-tipNgfp (UJ6350) and primers 5242 

and 105, followed by ligation into pGEM vector. The resulting plasmid was 

digested with NdeI and SacI, followed by ligation to the NdeI-SacI fragment of 

pXTCYC-4. To construct pET28a-His-MBP, the His-MBP fragment was 

amplified using pHIS-MBP-DEST and cckA and primers 5196 and 5278 

followed by digestion with BamHI and NcoI and subsequent ligation into 

pET28a. To construct pET-cckA, cckA was amplified using primers 5276 and 

5277 followed by digestion with BamHI and SalI and ligation into pET28a-His-

MBP. To introduce point mutations into pET-cckA SOE-PCR was used. 

Generally, pET-cckA was used as template with 5276/5277 as outside primers 

and internal mutagenic primers to introduce mutations. The following internal 

primers were used to introduce point mutations: V366P (5134/5135), Y514D 

(5448/5449), F474A (7725/7726), D479A (7727/7728), F493A (7729/7730), 

W523A (7735/7736), R537A (5502/5503), F539A (7737/7738). After fusion 

PCR inserts were BamHI and SalI digested and ligated into pET28a-His-MBP. 

To amplify truncated cckA fragments the following primers were used. pET-

cckA S72-I573 (5276/5454), pET-cckA G571-A691 (5455/5277), pET-cckA 

P541-A691 (5456/5277), pET-cckA F496-A691 (5457/5277), pET-cckA 

V417-A691 (5458/5277), pET-cckA S72-P546 (5276/5644), pET-cckA A312-

A691 (5646/5277), pET-cckA I292-P546 (5280/5644), pET-cckA A371-A691 

(5645/5277). Resulting PCR products were digested with BamHI and SalI and 

ligated into pET28a-His-MBP. To generate pET-cckA V417-A691 (N-ZIP) 

and pET-cckA A371-A691 (N-ZIP) N-ZIP was amplified using primers 5647 
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and 5648 using pUT18C-zip as template. The resulting PCR product was 

digested with BamHI and ligated into pET-cckA V417-A691 and pET-cckA 

A371-A691. Correct orientation of insert verified by sequencing. pET21b-

CckA Q379-A545 was generated using primers 7244 and 7249 and 

chromosomal DNA as template. Resulting PCR product was NotI and NdeI 

digested and ligated into pET21b. 

To construct pET-Agroccka, cckA was amplified from chromosomal DNA of 

Agrobacterium tumefaciens C58 using primers 6430 and 6431. To introduce Y674D 

mutation SOE-PCR was used using mutagenic primers (6436/6437). Inserts 

were digested with BamHI and SalI and ligated into pET28a-His-MBP.  

To construct pNPTS-cckA V366P the insert of pET-cckA V366P was cut out 

using BamHI and HindIII and ligated into pNPTS138. To construct pNPTS-

cckA Y514D a fragment was amplified using primers 5458 and 670 and pET–

cckA Y514D as template. PCR product was BamHI and HindIII digested and 

ligated into pNPTS138. To construct pNPTS-cckA-3xF a first fragment was 

amplified using primers 5456 and 5938 and cckA as template. A second PCR 

was run on the first PCR product to extend 3xFLAG using primers 5456 and 

5939. Downstream fragment was amplified from chromosomal NA1000 DNA 

using primers 5940 and 5941. The downstream and 3xFLAG fragments were 

fused by SOE-PCR using primers 5456 and 5941. This PCR product was 

BamHI and HindIII digested and ligated into pNPTS138. 

To construct pSA241.1 ctrA was amplified from chromosomal DNA using 

primers 1505 and 3708. PCR product was digested with BamHI and HindIII 

and ligated into pTRcHisA. pTRc-ctrA D51E was generated as pSA241.1 

except that SOE-PCR was used to introduce D51E mutation using mutagenic 

primers 4818 and 4819 and outside primers 1505 and 3708. To construct 

pMCS-cckA a fragment from pET-cckA P541-A691 was cut out using SacI and 

HindIII and subcloned into pMCS-1.  

To construct pBXMCS-cckA, pBXMCS-cckA V366P and pBXMCS-cckA 

Y514D a fragment was amplified from plasmid DNA (pET-cckA, pET-cckA 

V366P or pET-cckA Y514D) using primers 7200 and 7369. The resulting PCR 

product was NdeI and EcoRI digested and ligated into pBXMCS-2. 
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Screen for synthetic lethality 

Although a mutant unable to synthesize c-di-GMP (cdG0) shows pronounced 

abnormalities in cellular DNA content and cell morphology, its overall growth 

and viability were not affected. We reasoned that c-di-GMP, together with 

redundant pathways, maintains core bacterial cell cycle processes like cell 

division or chromosome replication. To probe for such interactions a genetic 

screen for synthetic lethality was adapted for the C. crescentus cdG0 strain [237]. 

The screen identifies transposon (Tn) mutants that stably retain the plasmid 

(pBlue-pleD) under non-selective conditions. pBlue-pleD expresses the 

diguanylate cyclase PleD as the sole source of c-di-GMP present in the 

screening strain. While this plasmid is unstable and easily lost in the absence of 

selection, a Tn insertion generating synthetic lethality in the cdG0 strain should 

render pBlue-pleD essential for growth, which in turn results in its stable 

maintenance without antibiotic selection. pBlue-pleD also carries lacA, a gene 

required for the metabolism of β-galactosides [229]. Because the lacA copy was 

deleted in the screening strain, its ability to metabolize β-galactosides relies on 

plasmid-borne lacA. Consequently, mutants that stably maintain the plasmid 

yield solid blue colonies on plates supplemented with X-gal, while mutants that 

loose the plasmid are easily recognized by their blue/white sectored 

appearance.  

Random transposon (Tn) mutagenesis was performed by transforming a 

transposon donor plasmid pAlmar1 into the screening strain (UJ7304 or 

UJ6861). Total 142,000 Tn mutants were grown at 30˚C for 1 week on PYE 

plates supplemented with 20 µg/mL kanamycin and 40 µg/mL X-gal. Solid 

blue colonies were streaked and incubated on an X-gal supplemented PYE 

plate for 3 days at 30˚C. Transposons were mapped by a 2-step arbitrary PCR 

as described [238]. Briefly, downstream of Tn was amplified by first PCR using 

primers 1228 and 1365. After purification, DNA fragments were further 

enriched by second PCR using primers 1365 and 1657. The products were 

sequenced using the primer 2614 (SO. and UJ, unpublished result).  

Spot growth assay 

The cell density of each culture was adjusted to OD660 of 0.014, followed by 

preparation of serial 5-fold dilutions. 5 µL of the culture were spotted onto 

PYE plate containing appropriate supplements and incubated for 2 days at 

30˚C. 
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Western blotting 

Anti-PleD (1:2000), anti-DivK (1:5000), and anti-Flag (1:10000) antibodies 

were used as primary antibodies, which were detected by HPR-conjugated 

rabbit anti-mouse or swine anti-rabbit secondary antibodies (Dako), followed 

by development with ECL detection reagents. 

Flow cytometry 

This assay was performed essentially as described [34]. Briefly, exponentially 

growing cells (100 µL) were fixed in ice-cold 70% ethanol. For rifampicin 

treatment, cells were incubated for 1h at 30˚C in the presence of rifampicin 

(final 30 µg/mL) before fixation. Cells were harvested by centrifugation, 

resuspended in 0.5 mL FACS buffer (10 mM Tris HCl pH 7.5, 1 mM EDTA, 

50 mM sodium citrate, and 0.01 % TritonX-100) containing 0.1 mg/mL 

RNaseA, and incubated at RT for 30 min. After harvesting cells by 

centrifugation, DNA was stained in 1 mL FACS buffer including 1.5 µM YO-

PRO-1 iodide (Invitrogen) at RT for 2h. The fluorescent intensity and the light 

scattering were analyzed using FACS Canto II (BD Biosciences). 

Protein purification  

Expression plasmids were transformed into E. coli BL21 (DE3) cells. Cells were 

grown in LB at 30˚C to an OD578 of 0.5 and subsequently induced with 300 µM 

IPTG for 4 hours. Cells were pelleted and frozen at -80˚C. Proteins were 

purified on a Äkta purifier using 1 ml HisTrap HP columns (GE Healthcare) 

and if higher purity was desired proteins were run on a size exclusion column 

(HiLoad 16/60 Superdex 200). For the purification the following buffers were 

used: lysis buffer (wash Buffer supplemented with protease inhibitor), wash 

buffer (16 mM Na2HPO4, 3.6 mM KH2PO4, 5.4 mM KCl, 500 mM NaCl, 2 

mM β-mercaptoethanol, 10 mM imidazole, pH 7.0), elution buffer (16 mM 

Na2HPO4, 3.6 mM KH2PO4, 5.4 mM KCl, 500 mM NaCl, 2 mM β-

mercaptoethanol, 500 mM imidazole, pH 7.0), storage and activity Buffer (10 

mM HEPES-KOH, 50 mM KCl, 10% glycerol, 0.1 mM EDTA, 5mM MgCl2, 

5 mM β-mercaptoethanol, pH 8.0). The A. tumefaciens CckA homolog was 

stored in an optimized buffer (10 mM HEPES, 125 mM KAc, 10% glycerol, 5 

mM MgCl2,, 5 mM β-mercaptoethanol, pH 7.5). 
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Kinase and phosphatase assays  

Generally, kinase and phosphatase assays were adapted from [170] and [239]. 

Reactions were run in activity buffer in presence of 500 µM ATP and 5 µCi 

[γ32P]-ATP (3000 Ci/mmol, Hartmann Analytic) at RT. Additional nucleotides 

were added at indicated time points. Reactions were stopped with SDS sample 

buffer and subsequently loaded (or stored on ice) on 10% SDS gels.  Wet gels 

were exposed to phosphor screen (0.5-3h) before being scanned using a 

Typhoon FLA 7000 imaging system (GE Healthcare). When needed, ATP was 

depleted from the reaction mixtures by the addition of 1.5 U hexokinase 

(Roche) and 5 mM D-glucose after 15 min of phosphorylation. 

UV crosslinking with [ 33P] c-di-GMP 

[33P] labeled c-di-GMP was produced using [α 33P]-GTP (Perkin Elmer) and the 

E. coli diguanylate cyclase DgcZ. Purification of DgcZ and production of c-di-

GMP is as described [14]. Purified proteins were incubated with labeled c-di-

GMP for 30 min in activity buffer at RT.  Proteins were cross-linked at 254 nm 

for 3 min at 4˚C and then diluted into SDS sample Buffer as described [240]. 

After 5 min boiling the samples were separated by SDS-PAGE. Gels were dried 

and exposed to phosphor screen overnight and then scanned on an imaging 

system. Band intensities were quantified using imageJ and binding curves were 

fitted with Graphpad Prism. 

Quantification of CckA~P levels in vivo 

Colonies grown on PYE plates or PYE supplemented with 0.2% glucose were 

resuspended in PYE and adjusted to the same OD. Cells were pelleted and 

resuspended in 100 µL lysis buffer (10 mM Tris-HCl, 4% SDS, one tablet phos-

stop (Roche), pH 7.5). Lysates were diluted into SDS sample buffer and 

analyzed by SDS-PAGE gels (7.5%) supplemented with 50 mM phos-tag 

acrylamide (Wako) and 100 mM manganese chloride. Gels were run at 4˚C at 

100 V for 3 hours. Before immunoblotting the gels were incubated for 10 

minutes in transfer buffer (1X TrisGlycine, 20% Ethanol) containing 1 mM 

EDTA and for another 10 minutes in transfer buffer without EDTA. Proteins 

were detected using anti-flag antibodies. 

NMR experiments 

NMR spectra were recorded at 20°C on Bruker Avance-700 and -900 

spectrometers equipped with cryogenic triple-resonance probes. CckA-CA 
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protein samples were prepared in 30 mM Tris-HCl at pH 7.5 with 100 mM 

NaCl, 5 mM MgCl2 and 2 mM DTT in 95%/5% H2O/D2O. For the sequence-

specific backbone resonance assignment of [U-2H, 15N, 13C]-labeled Cck-CA, 

the following NMR experiments were recorded: 2D [15N,1H]-TROSY-HSQC 

[241], 3D TROSY-HNCA [242] and 3D [1H,1H]-NOESY-15N-TROSY with a 

NOE mixing time of 100 ms [243]. For the c-di-GMP binding experiments a 

series of 2D [15N,1H]-TROSY-HSQC spectra of 380 µM [U-15N]-CckA-CA 

were recorded with c-di-GMP concentrations of 0 mM, 0.04 mM, 0.24 mM, 

0.6 mM, 1.32 mM, 2.54 mM and 4.27 mM. Chemical shift perturbations 

(Δδ(HN)) of amide moieties were calculated as:  

Δδ(HN) = [((δHref-δH)2+((δNref-δN)/5)2)/2]0.5. 

Chromatin immunoprecipitation (ChIP) and quantitative PCR (qPCR) 

ChIP was performed as described previously [244]. Cells were grown in 20 mL 

PYE until OD660 reached ~0.2. To crosslink protein-DNA complexes, 0.2 

mL of 1M Na-phosphate pH7.6 (final 10 mM) and 540 µL of 37% 

formaldehyde (final 1%) were added to the culture and incubated at RT for 10 

min, followed by incubation on ice for 30 min. After harvesting cells by 

centrifugation (2600xg for 30 min), cells were washed twice in 20 mL of ice-

cold PBS and resuspended in Buffer A (10 mM Tris HCl pH 8.1, 20% sucrose, 

50 mM sodium chloride, 10 mM EDTA, and 20 mg/mL lysozyme) to adjust 

final OD660 of 8. After incubation at 37˚C for 30 min, the equal volume of 

Buffer IP' (100 mM Tris HCl pH 7.5, 300 mM sodium chloride, 2% Triton X-

100, and 2x cOmplete protease inhibitor (Roche)) was added to the sample and 

incubation was continued for 15 min at 37˚C. Subsequently genomic DNA was 

sheared by sonication and cell debris was removed by centrifugation, yielding a 

clear lysate. A portion (30 µL) of the lysate was mixed with 70 µL TE buffer 

including 1% SDS to use as an input DNA. Another portion (0.2 mL) was 

incubated with the anti-CtrA antibody (0.8 µL) in a cold room for >12h with 

gentle agitation. The incubation was continued for 4h in the presence of 

Protein-A agarose beads (100 µL slurry), followed by washing beads 7 times in 

0.5 mL of ice-cold buffer IP (50 mM Tris HCl pH 7.5, 150 mM sodium 

chloride, and 1% Triton X-100) and two times in 0.5 mL of TE buffer. The 

beads were resuspended in 0.1 mL TE buffer containing 1% SDS and 

incubated at 65˚C for >12h to reverse crosslinking. DNA samples were 

purified using a DNA purification kit (Macherey-Nagel). qPCR was performed 

as described [245]. Briefly, oriC DNA was amplified by quantitative PCR 

StepOne Plus (Applied Biosystems) using Power SYBR Green PCR Master 
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Mix (Applied Biosystems) and primers 6708 and 6709. To measure background 

signals, a part of the ctrA coding region was amplified similarly using primers 

6710 and 6711. 

Scoring replication initiation using an oriC specific fluorescent 

repressor-operator system (FROS) 

To visualize DNA replication in individual cells we made use of a fluorescent 

repressor-operator system (FROS) that allows tracking of chromosomal origins 

during the cell cycle [229,234]. Cells used in these experiments produce TetR-

YFP and harbour tet operator (tetO) sites near the origin of replication. Binding 

of TetR-YFP molecules to the operator arrays yields a fluorescent signal that 

stains the Cori. Upon initiation of chromosome replication, duplicated operator 

arrays produce two discrete fluorescent foci. This enables tracking of 

replication initiation events at opposite poles of the predivisional cell. A (tetO)n 

cassette was integrated at the cc0006 locus by phage transduction using a phage 

lysate of MT16. TetR-YFP was expressed from the xylose promoter by 

induction with 0.3% xylose. tetR-yfp was introduced by transduction using a 

phage lysate of MT15.  

Replication asymmetry in the predivisional cell was investigated as described 

[192]. Briefly, cells grown O/N in PYE were diluted into PYE and grown to 

OD of 0.3. One hour before microscopy cells were induced with 0.3% xylose 

and subsequently mounted on an agar-pad supplemented with PYE 0.3% 

xylose and cephalexin (10 µg/mL), followed by time-lapse microscopy with 10 

min intervals for 5 hours.  

Microscopy 

Differential interference contrast (DIC), phase-contrast, and fluorescent 

microscopy analyses were performed using a DeltaVision system, Olympus 

IX71 microscope, and Photometrix CoolSnap HQ2 camera. Cells were 

mounted on 1.2% agar containing appropriate supplements. For statistics, cell 

length and the number of fluorescent foci were analyzed using MicrobeTracker 

(http://microbetracker.org). 

Statistical analysis 

For biochemistry we performed experiments as described earlier. All results 

documented are highly reproducible. Where indicated, mean values and 

standard deviations were obtained from at least three independent experiments 

http://microbetracker.org/
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(biological replicates). For flow cytometry, we analysed more than two 

biological replicates. The results were highly reproducible with reasonable 

standard deviation. For replicative asymmetry measurements, we used Z-test 

to show that confidence levels for all measurement were above 99.9% 

(www.mccallum-layton.co.uk/tools/statistic-calculators). 
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Strains used in this study 

NAME RELEVANT GENOTYPE REF. 

JOE2913 CB15 ∆lacA::Ω [229] 

MT15 NA1000 xylX::pHPV472 Cori::(lacO)n [234] 

MT16 NA1000 ori::(tetO)n; xyl::pHPV472 [234] 

NA1000 Caulobacter crescentus wild type strain [246] 

SH100 UJ7304 PdivK::Tn This study 

SH111 UJ7214 PdivK::Tn This study 

UJ2827 NA1000 ∆popA [34] 

UJ286 NA1000 ∆pleD xylX::pPA28 [247] 

UJ2874 NA1000 ∆popA ∆pleD A. Duerig 

UJ4450 NA1000 ∆pleD [38] 

CJ403 NA1000 ∆divK::Ω pdivK-egfp [199] 

UJ5059 NA1000 cdG0::pleD+ [38] 

UJ5065 NA1000 cdG0 [38] 

http://www.mccallum-layton.co.uk/tools/statistic-calculators
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UJ6122 NA1000 ∆cc1850, ∆cc0740, ∆cc0857, ∆cc3285, ∆cc3094, 
∆cc0896, ∆cc0655 ∆cc2462 pRXMCS-2 

This study 

UJ6777 NA1000 ∆cc1850, ∆cc0740, ∆cc0857, ∆cc3285, ∆cc3094, 
∆cc0896, ∆cc0655 ∆cc2462 cc0006::(lacO)n xylX::pHPV472 

This study 

UJ6861 UJ5065 ∆lacA::Ω pBlue-pleD This study 

UJ7212 NA1000 cckA Y514D This study 

UJ7214 NA1000 cckA V366P This study 

UJ7304 UJ6861 xylX::tipNgfp This study 

UJ7417 NA1000 cckA-3xF This study 

UJ7418 NA1000 cckA Y514D-3xF This study 

UJ7419 NA1000 cckA V366P-3xF This study 

UJ7525 NA1000 xylX::pPA28(divK) ∆divK::Ω This study 

UJ7527 UJ7212 xylX::pPA28(divK) ∆divK::Ω This study 

UJ7529 UJ7214 xylX::pPA28(divK) ∆divK::Ω This study 

UJ7618 UJ7417 xylX::pPA28(divK) ∆divK::Ω This study 

UJ7619 UJ7418 xylX::pPA28(divK) ∆divK::Ω This study 

UJ7620 UJ7419 xylX::pPA28(divK) ∆divK::Ω This study 

UJ7873 NA1000 ∆pleD divK::Pxyl-divK This study 

UJ7939 NA1000 PdivK::Tn-tet This study 

UJ7940 NA1000 ∆pleD PdivK::Tn-tet This study 

UJ7992 UJ5065 divK::Pxyl-divK This study 

UJ8012 UJ7873 pPA41 This study 

UJ8013 UJ7992 pMR20 This study 

UJ8303 NA1000 pBXMCS-cckA This study 

UJ8304 NA1000 pBXMCS-cckA V366P This study 

UJ8305 NA1000 pBXMCS-cckA Y514D This study 

UJ8306 NA1000 ori::(tetO)n; xyl::pHPV472 This study 

UJ8307 UJ7212 ori::(tetO)n; xyl::pHPV472 This study 

UJ8308 UJ7214 ori::(tetO)n; xyl::pHPV472 This study 

UJ8312 NA1000::Plac-dgcZ-3xflag  ∆cc0655  ∆cc0740  ∆cc0857  
∆cc0896  ∆cc1850  ∆cc2462  ∆cc3094  ∆cc3285 ori::(tetO)n; 
xyl::pHPV472 

This study 

UJ8314 NA1000 ΔpleD ori::(tetO)n; xyl::pHPV472 This study 

UJ8328 NA1000 Δcc0091 Δcc0655 Δcc0740 Δcc0857 Δcc0896 Δcc1086 
Δcc1850 Δcc2462 Δcc3094 Δcc3148 Δcc3285 Δcc3396 
pBXMCS-cckA 

This study 

  
BL21 λ DE3 E. coli strain for protein purification: F– ompT gal dcm lon 

hsdSB(rB- mB-) λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) 
New 
England 
Biolabs 

BL21 
Rosetta 

E. coli strain for protein purification Novagen 



77 

 

DH10β E. coli donor strain for plasmid conjugation: F-mcrA 
D(mrr-hsd RMS-mcrBC) f80dlacZDM15DlacX74 endA1 
recA1 deoR D(ara, leu)7697 araD139 galU galK nupG rpsL 

Life 
Technologie
s 

DH5α A general E. coli cloning strain: F` endA1 hsdR17 (rK-mK 
plus) glnV44 thi1 recA1 gyr delta(Nalr) relA1 delta(lacIZYA-
argF)U169 deoR(ö80dlac delta(lacZ) M15) 

[248] 

S17 E. coli donor strain for plasmid conjugation [249] 

MT607 E. coli strain containing helper plasmid pRK600 for 
conjugation experiments  

[250] 

   

A. tumefaciens 
C58 

Agrobacterium tumefaciens wild-type strain  [251] 

 

Plasmids used in this study 

NAME DESCRIPTION  REF. 

pNPTS138 a kan+ suicide vector  [38] 

pMR20 a tet+ low copy vector  [252] 

pJC389 a low copy vector carrying lacA  [229] 

pBlue-pleD a pJC389 derivative carrying PdivK-driven pleD  This study 

pNPTS-XdivK a pNPTS138 derivative to create Xylose-driven 
divK at the divK locus 

 This study 

pAlmar1 a donor plasmid of the mariner-kan transposon  A. Levi 

pPA28 a kan+ integrating plasmid to create xylose-driven 
divK at the xylX locus 

 [247] 

pMCS5 a tet+ integrating plasmid  [236] 

pMCS5-k2t a pMCS5 derivative integrating at the mariner-kan 
locus 

 This study 

pXTCYC-4 a gent+ integrating plasmid carrying the xylose 
promoter 

 [236] 

pXTCYC4-
tipNgfp 

a pXTCYC-4 derivative carrying tipNgfp  This study 

pPA41 a pMR20 derivative carrying PdivK-driven pleD  [247] 

pXMCS-1 a spec/strep+ integrating plasmid carrying the 
xylose promoter 

 [236] 

pMCS-1 a spec/strep+ integrating plasmid  [236] 

pMCS1-cckA a pMCS-1 derivative, integrates spec/strep+ 
downstream of cckA 

 This study 

pMR20tipNgf
p 

a pMR20 derivative carrying tipNgfp  [199] 

pGEM-T a cloning vector  Promega 

pRXMCS-2 a kan resistant low-copy plasmid carrying the xylose 
promoter 

 [236] 

pBXMCS-2 a kan resistant high-copy plasmid carrying the 
xylose promoter 

 [236] 

pBXMCS-
cckA 

a pBXMCS-2 derivative expressing cckA (S72-
A691) 

 This study 
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pBXMCS-
cckA V366P 

a pBXMCS-2 derivative expressing cckA V366P 
(S72-A691) 

 This study 

pBXMCS-
cckA Y514D 

a pBXMCS-2 derivative expressing cckA Y514D 
(S72-A691) 

 This study 

pET28a Expression vector  Novagen 

pET28a-His-
MBP 

Expression vector to express N-terminal His-MBP 
fusion proteins 

 This study 

pET32b Expression vector to generate trx-fusions  Novagen 

pNPTS-cckA-
3xF 

a pNPTS138 derivative to introduce C-terminal 
cckA 3xFLAG tag 

 This study 

pNPTS-cckA 
V366P 

a pNPTS138 derivative to introduce V366P into 
chromosomal cckA 

 This study 

pNPTS-ccka 
Y514D 

a pNPTS138 derivative to introduce Y514D into 
chromosomal cckA 

 This study 

pSA241.1 pTrcHisA derivative for overexpression of N-
terminally His-tagged ctrA 

 This study 

pTRc-ctrA 
D51E 

Derivat of pSA241.1 overexpressing ctrA D51E  This study 

pENTR:chpT Entry clone of chpT lacking the first 28 codons of 
the annotated CC3470 gene 

 [170] 

pENTR:cckA-
HK-RD 

Entry clone of cckA containing only the kinase and 
receiver domains 

 [170] 

pTRX-HIS-
DEST 

For producing thioredoxin-His6-tagged proteins  [170] 

pHIS-MBP-
DEST 

For producing His6-MBP-tagged proteins  [170] 

pET-cckA To express N-terminal His-MBP-cckA fusion, 
cckA from C. crescentus without TM (S72-A691) 

 This study 

pET-cckA 
V366P 

Derivat of pET-cckA carrying indicated mutation  This study 

pET-cckA 
Y514D 

Derivat of pET-cckA carrying indicated mutation  This study 

pET-cckA 
F474A 

Derivat of pET-cckA carrying indicated mutation  This study 

pET-cckA 
D479A 

Derivat of pET-cckA carrying indicated mutation  This study 

pET-cckA 
F493A 

Derivat of pET-cckA carrying indicated mutation  This study 

pET-cckA 
W523A 

Derivat of pET-cckA carrying indicated mutation  This study 

pET-cckA 
R537A 

Derivat of pET-cckA carrying indicated mutation  This study 

pET-cckA 
F539A 

Derivat of pET-cckA carrying indicated mutation  This study 

pET-cckA 
S72-I573 

To express N-terminal His-MBP fusions of 
truncated cckA alleles 

 This study 

pET-cckA 
G571-A691 

To express N-terminal His-MBP fusions of 
truncated cckA alleles 

 This study 

pET-cckA 
P541-A691 

To express N-terminal His-MBP fusions of 
truncated cckA alleles 

 This study 

pET-cckA 
F496-A691 

To express N-terminal His-MBP fusions of 
truncated cckA alleles 

 This study 

pET-cckA 
V417-A691 

To express N-terminal His-MBP fusions of 
truncated cckA alleles 

 This study 

pET-cckA 
S72-P546 

To express N-terminal His-MBP fusions of 
truncated cckA alleles 

 This study 
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pET-cckA 
A312-A691 

To express N-terminal His-MBP fusions of 
truncated cckA alleles 

 This study 

pET-cckA 
I292-I573 

To express N-terminal His-MBP fusions of 
truncated cckA alleles 

 This study 

pET-cckA 
A312-I573 

To express N-terminal His-MBP fusions of 
truncated cckA alleles 

 This study 

pET-cckA 
A312-546 

To express N-terminal His-MBP fusions of 
truncated cckA alleles 

 This study 

pET-cckA 
I292-P546 

To express N-terminal His-MBP fusions of 
truncated cckA alleles 

 This study 

pET-cckA 
A371-A691 

To express N-terminal His-MBP fusions of 
truncated cckA alleles 

 This study 

pET-cckA 
R189-A691 

To express N-terminal His-MBP fusions of 
truncated cckA alleles 

 This study 

pET-cckA 
I292-A691 

To express N-terminal His-MBP fusions of 
truncated cckA alleles 

 This study 

pET-cckA 
V417-A691(N-
ZIP) 

To express N-terminal His-MBP fusions of 
truncated cckA alleles, additional C-terminal N-zip 

 This study 

pET-cckA 
A371-A691(N-
ZIP) 

To express N-terminal His-MBP fusions of 
truncated cckA alleles, additional C-terminal N-zip 

 This study 

pET-
AgrocckA 

To express N-termina His-MBP-cckA fusion, cckA 
from agrobacterium without TM (G74-E860) 

 This study 

pET-
Agroccka-
Y674D 

Derivat of pET-Agroccka carrying indicated 
mutation 

 This study 

pET21b-CckA 
Q379-A545 

To express CckA CA domain (379-545) with C-
terminal His-tag 

 This study 

 

Primers used in this study 

NAME SEQUENCE 

104 TGTAAAACGACGGCCAGT 

105 CAGGAAACAGCTATGAC 

670 TGCTAGTTATTGCTCAGCGG 

1033 GGAATTCCATATGACGAAGAAGGTCCTCATCGT 

1505 ATAAAGCTTTCAGGCGGCGTTAACCTGCTCGTT 

3708 AAAAGGATCCCGCGTACTGTTGATCGAGGAT 

4818 GATCTTATCCTGCTCGAGCTCAATCTTCCG 

4819 CGGAAGATTGAGCTCGAGCAGGATAAGATC 

5134 CGCCGCCGACCTCCCGCGCAAGCTCTTG 

5135 CAAGAGCTTGCGCGGGAGGTCGGCGGCG 

5156 AACGAGCTCTGGGCGCCCGCTGCTC 

5196 CATGCCATGGGCAAACATCACCATCACCATCACCCC 

5242 GAACATATGAAGCCTAAGAAGCGCCAACC 

5276 CGCGGATCCTCAGCGCTTTCCGGCGGCGAC 

5277 ACGCGTCGACCTACGCCGCCTGCAGCTGCTG 
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5278 CGCGGATCCGGTGAAGGGGGCGGCCGCGGAGC 

5279 CCGGGATCCCGCGCCGCCCCGCCACCCAGC 

5280 CCGGGATCCATCGACGTGTCCGAGCAGAAG 

5448 CGGGCCTAGGCCTAGCCACGGTCGATGGCATCGTTAAGCAGAG
CGAC 

5449 GTCGCTCTGCTTAACGATGCCATCGACCGTGGCTAGGCCTAGG
CCCG 

5454 ACGCGTCGACTTAGATGCGGCCGGCGCCCGAC 

5455 CGCGGATCCGGCCGCATCCTGTTCGTCGAGG 

5456 CGCGGATCCCCGGTCTATGAAGCGCCCGCC 

5457 CGCGGATCCTTCTTCACCACCAAGCCGGTGGG 

5458 CGCGGATCCGTGCGCGCCGACAAGAGCCAG 

5502 CCGAACGAAGGCGCGGCCTTCGCCATCTTCCTGCCGGTCTATGA
AG 

5503 CTTCATAGACCGGCAGGAAGATGGCGAAGGCCGCGCCTTCGTT
CGG 

5644 ACGCGTCGACTTAGGGCGCTTCATAGACCGGCAGG 

5645 CGCGGATCCGCTTTCTCGCGCAAGCAGACCG 

5646 CGCGGATCCGCCATCGGTCAGCTGGCCGG 

5647 CGCGGATCCGTACCTATCCAGCGTATGAAACAGC 

5648 CGCGGATCCACGTTCACCCACCAGTTTTTTC 

5938 GTCGATATCATGATCTTTATAATCACCGTCATGGTCTTTGTAGT
CGAACGCCGCCTGCAGCTGCTGCTTG 

5939 AAGGACGCAAGGCTTTTATTTATCGTCGTCATCTTTGTAGTCGA
TATCATGATCTTTATAATCACCGTC 

5940 TATCGACTACAAAGATGACGACGATAAATAAAAGCCTTGCGTCC
TTCGAGGCCCG 

5941 CCCAAGCTTCGGCTATCTGATCATGCTGATCGGGC 

5942 CTAGCTAGCTTATGCAGGCTGCCTTTCCAGCAGG 

5943 CAGACCTGATTCTGATGGACATCGCGCTGCCCGAAATCTCGGG
TCTG 

5944 CAGACCCGAGATTTCGGGCAGCGCGATGTCCATCAGAATCAGG
TCTG 

6151 GAAGTCTCGAGCAGATCATGAAAGAGCTTCATG  

6152 GAACCGCGGCATGCGGCAAAAGGTCGTCGATGAAG 

6153 GCCGAATTCAGCCAGTCGCCATAGGTCG 

6154 CAACATATGACGAAGAAGGTCCTCATCGTGG 

6430 CGCGGATCCGGCTTCATCGAGGTGATGCCGC 

6431 ACGCGTCGACTTACTCCTTGTCGTCGAGCATTTCG 

6436 GGTCTTGGCCTTTCGATGGTCGACGGCATCGTCAAGCAGTCGG
GTGGT 

6437 ACCACCCGACTGCTTGACGATGCCGTCGACCATCGAAAGGCCAA
GACC 

6693 CGTGGTACCTGATTGAACAAGATGGATTGC 

6694 TACGAGCTCGCTCGATGCGATGTTTCG 

6708 GCCTTCCCACATGGGGTT 

6709 CTGTCGTGTCTCAGGACGTT 



81 

 

6710 TACCCTTGCGCAGGGAGAGG 

6711 TTCGAAGGGTCACGCCCAGT 

7200 GGAATTCCTACGCCGCCTGCAGCTGCTGC 

7244 ATAATGCGGCCGCCGCTTCATAGACCGGCAGGAA 

7249 ATAATCATATGCAGCGCGAGGTGCTGGATCTG 

7369 GGATTTCCATATGTCAGCGCTTTCCGGCGGCGAC 

7725 CCGCCGACGGCGACACGGCCGCCATTGAGGTCAGTGACGATG 

7726 CATCGTCACTGACCTCAATGGCGGCCGTGTCGCCGTCGGCGG 

7727 GGCCTTCATTGAGGTCAGTGCCGATGGTCCGGGCATTCCG 

7728 CGGAATGCCCGGACCATCGGCACTGACCTCAATGAAGGCC 

7729 CCCGACGTCATGGGCAAGATCGCCGACCCGTTCTTCACCACCAA
G 

7730 CTTGGTGGTGAAGAACGGGTCGGCGATCTTGCCCATGACGTCG
GG 

7735 CGTTAAGCAGAGCGACGGCGCCATTCACGTCCACAGCCGTC 

7736 GACGGCTGTGGACGTGAATGGCGCCGTCGCTCTGCTTAACG 

7737 CGAAGGCGCGGCCTTCCGCATCGCCCTGCCGGTCTATGAAGCG
CCC 

7738 GGGCGCTTCATAGACCGGCAGGGCGATGCGGAAGGCCGCGCC
TTCG 
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Abstract 

Regulatory kinases represent central cellular switches in all kingdoms of life. 

Accurate regulation of their activity is vital for the execution of specific cellular 

programs [150]. In bacteria, signal transduction is mainly mediated by histidine 

kinases (HKs) that in response to specific stimuli initiate phospho-transfer to 

down-stream targets. Many HKs are bifunctional and can change, upon 

regulatory input, from kinase to phosphatase mode, thereby reversing the flux 

within the phosphorelay [167]. The cell cycle kinase CckA from Caulobacter 

crescentus controls the master regulator CtrA [187] and changes to phosphatase 

mode during the G1-S transition [49] to initiate cell replication. The switch is 

triggered directly by the second messenger c-di-GMP [49], thereby linking two 

signalling pathways, but it is unclear how this works mechanistically and 

whether c-di-GMP control of HKs is a general trait in bacteria. 

Here, we use a combination of structure determination, modeling and 

functional analysis to demonstrate that c-di-GMP allosterically up-regulates 

CckA phosphatase activity by noncovalently cross-linking the CA with the 

DHp domain. This domain constellation allows access of the phospho-Rec 

domain to the dimeric DHp stem [253], the pre-requisite for 

dephosphorylation. Furthermore, we show that also ADP promotes CckA 

phosphatase activity and infer that both ADP and c-di-GMP stabilize the same 

quarternary structure.  

Bioinformatic analyses predict c-di-GMP mediated control for a large class of 

HKs where it would substitute, modulate or overwrite transmembrane 

signalling and, thus, constitute a crucial and ancient input to the signal cascade. 
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The action of HKs hinges on domain rearrangements. The core of HKs 

comprises the DHp dimerization domain with the phosphorylatable histidine 

and the CA domain with the substrate binding pocket [155]. Both domains can 

form a tight complex to catalyze the transfer of the γ-phosphate of the CA 

bound ATP substrate onto the histidine of the DHp domain. How auto-

phosphorylation is controlled by external signals has been the subject of many 

studies [254,255] and re-arrangements in the dimeric DHp helix bundle in 

response to conformational changes in the periplasmic sensory domain appear 

to be central. Next, for phosphoryl transfer, the CA domain has to disengage 

to allow the Rec domain of the cognate response regulator to accept the 

phosphoryl group from the P~His [165,256].  

Many HKs are bifunctional in that they also catalyze the reverse reaction, i.e. 

dephosphorylation of the phospho-Rec domain. Such bifunctionality has been 

shown theoretically and experimentally to confer “absolute concentration 

robustness” to the signal output [257–259]. Mechanistically, dephosphorylation 

is believed to require rebinding of the phosphorylated Rec domain to the DHp 

stem and subsequent phosphoryl transfer to a trapped water molecule [253]. 

Here, we investigate structure/function relationships in CckA that has been 

shown to be exquisitely sensitive to c-di-GMP control [49]. 

CckA_CA structure.  CckA is a hybrid histidine kinase carrying a C-terminal 

Rec domain. The N-terminal part is predicted to consist of two transmembrane 

helices (with no intervening periplasmic domain) and two successive PAS 

domains (Fig. 1a). Various constructs were generated for structural and 

functional analysis. Figure 1b shows the high resolution crystal structure of the 

CA domain in complex with c-di-GMP and AMPPNP/Mg2+ (Tab. S1). The 

structure adopts the canonical CA fold with, however, a long insertion 

(between β4 and β5) that is folded as a helix/loop “tower” firmly attached to 

the outer face of the β-sheet by hydrophobic interactions. The c-di-GMP 

effector forms to H-bonds the main-chain of β6 and the edge of the β-sheet. 

In addition, the base stacks with Trp523 and, at an angle, with Tyr514. In 

addition, guanine N7 is H-bonded to Lys518. The identified primary binding 

site is consistent with NMR and mutant data published previously [49]. The 

remainder of the ligand forms artefactual crystal contacts with the His-tail of 

an adjacent molecule. Summarizing, the crystal structure defines a specific c-di-

GMP binding sub-site (primary binding site) on the CA domain and suggests 

that the distal part of the ligand may be available for binding to another domain 

in full-length CckA.   
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Figure 1: CckA domain arrangement and crystal structure of the CA 

domain in complex with c-di-GMP. (a) CckA domain arrangement and 

constructs used. (b-d) Crystal structure of CckA_CA with bound c-di-GMP 

and AMPPNP/Mg2+. The nucleotide lid partly covering the mononucleotide 

site (magenta), the gripper helix (grey), and the CckA specific insertion (tower, 

yellow) are distinguished by color. Detailed views of the c-di-GMP and the 

mononucleotide protein interactions are shown in (c) and (d) H-bonds are 

shown with green broken lines. 
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CckA_DHp-CA structure. The dimeric DHp-CA histidine kinase core 

structure (Figs. 2, S2a) shows a symmetric open domain constellation with the 

DHp helix bundle potentially accessible for Rec docking. Similar constellations 

have been found previously for HK853/RR468 [166] and CpxA/ADP [260].  

In all cases and here, the CA domain is binding to the DHp stem via the 

"gripper" helix and the “thumb" (Phe496). Strikingly, the two CA domains of 

the CckA dimer are found to be swapped compared to the other kinases 

(compare e.g. with Fig. 4a). Possibly, this difference is due to distinct crystal 

contacts (Fig. S1). The ATP lid (with bound ADP) is ordered and shows a 

similar conformation as in the structure of the isolated CA domain in complex 

with AMPPNP (Fig. 1). Unfortunately, no crystals were obtained in presence 

of c-di-GMP. 

 

 

 
Figure 2: Crystal structure of CckA_DHp-CA dimer. Cartoon 

representation with one of the subunits is colored in green (DHp domain) and 

orange (CA domain), the other in grey (with asterisked labels); other colors as 

in Figure 1. Some important residues and ADP/Mg2+ are shown in full. The 
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Cα atoms of Gly318 and Gly515 are shown as magenta spheres. The domain 

arrangement is similar as in CpxA/ADP/Mg2+ [260], but with domains 

swapped in the dimer (Fig. S4). The Phe496 "thumb" of CA is inserted between 

DHp helices, the "gripper" helix (cyan, residues 508 - 520) mediates most of 

the inter-domain contact. The connection of the DHp helices is right-handed. 

CckA ligand affinity.  Ligand binding has been measured by ITC (Figs. 3, S3, 

Tab S2). The ATP analog AMPPNP binds with high affinity (Kd ~10 μM) to 

the CA domain and to the full cytosolic CckA_ΔTM construct, whereas the 

ADP affinity is considerably lower. C-di-GMP binds to the isolated CA 

domain, both in presence of ADP or AMPPNP  (Fig. 3c) with a dissociation 

constant of about 20 μM, i.e. clearly above the physiological c-di-GMP 

concentration [49], but in line with the crystal structure that shows only half of 

the c-di-GMP ligand bound to the domain (Fig. 1).   

Strikingly, the full cytosolic construct (CckA_ΔTM), binds c-di-GMP only in 

presence of ADP, and not AMPPNP. The Kd (1.4 μM) is about an order of 

magnitude lower than that for CckA_CA (Fig. 3), suggesting that additional 

domain(s) contribute to binding and that ADP stabilizes a domain constellation 

that is competent for c-di-GMP binding. Indeed, distinct HK constellations 

have been observed in presence of ADP and AMPPNP [166,260,261] and, 

most relevantly, these have been correlated with phosphatase and kinase 

activity, respectively. Thus, c-di-GMP and ADP would synergistically stabilize 

the phosphatase state of the enzyme. The double domain construct 

(CckA_DHp_CA) binds c-di-GMP less strongly than the full cytosolic 

construct (Fig. 3). Thus, either additional domains contribute to the interaction 

or the structure of the dimeric DHp bundle is perturbed due to the absence of 

the N-terminal PAS2 domain, which is predicted to form a homotypic dimer 

(Fig. S9). 

Modeling suggests CA - DHp cross-linking by c-di-GMP.  More insight 

into possible c-di-GMP binding modes was obtained upon superimposition of 

CckA_CA/c-di-GMP ligand on CckA_DHp_CA (Fig. S2) or on a CckA model 

based on CpxA/ADP (Fig. 4a).  

In both cases, the “distal” (not CA bound) half of c-di-GMP points towards 

Arg374 of the second DHp helix. In fact, upon minor manual adjustment of 

the conformations, both moieties can be brought into close juxtaposition to 

form a canonical [262] O6, N7 - guanidinium interaction (Fig. S4). Crucially for 

the discussion later, this appears possible only when no side-chain is present in 

position 318 (Gly318 of DHp helix α1). In addition, Gln315 seems well poised 
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to interact with the ligand.  

Through such a binding mode, c-di-GMP would act as a non-covalent cross-

linker to stabilize the “open” domain constellation, the pre-requisite for access 

of the phospho-Rec domain to the DHp stem and phosphatase action. Such a 

mechanistic model would be fully consistent with the observed ligand binding 

characteristics (Fig. 3), in particular, the requirement of ADP for high-affinity 

c-di-GMP binding. Still, why c-di-GMP binding to the ATP bound 

conformation of CckA (Fig. 3c) is completely, and not only partially, abolished 

remains to be investigated. The elevated Kd for AMPNP in presence of (non-

saturating) c-di-GMP (Fig. 3b) is further evidence for negative cooperativity 

between these two ligands.  

 

 

Figure 3: Ligand binding to CckA. Dissociation constants of various CckA 

constructs as as measured by isothermal titration calorimetry (ITC). (a) ADP. 

(b) AMPPNP in absence or presence of 100 μM c-di-GMP. (c) c-di-GMP in 

presence of 5 mM ADP or AMPPNP. Further information is given in Table 

S2 and Fig. S5. 
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Functional analysis supports the mechanistic model. Functionally, CckA 

was assayed in vitro by auto-radiography upon incubation with [γ32P]-ATP. The 

time course (Figs. 5a, b) shows non-linear accumulation of the phosphorylated 

species indicating both kinase and phosphatase activity. As observed before 

[49], the protein gets efficiently dephosphorylated upon addition of c-di-GMP 

and phosphorylation is impeded when present from the beginning (Fig. 4c). 

Since c-di-GMP binds to CckA only in presence of ADP (Fig.3) and thereby 

promotes CckA dephosphorylation, we reasoned that ADP on its own might 

have a similar effect. Indeed, ADP induced dephosphorylation was observed 

as shown in Figures 5a,b.  Enhanced dephosphorylation by ADP has been seen 

before for EnvZ/OmpR [263] and PhoQ/PhoP [264] and is the cornerstone 

for a feed-back model [265] that explains the transient surge of phospho-PhoP 

upon activation .  

 

 

 
Figure 4: Modeled CckA_DHp_CA domain constellations. The crystal 

structures of the individual DHp helices and the CA domains of CckA are 

shown as obtained upon superposition on selected CpxA structures. (a) 

Phosphatase constellation as in CpxA/ADP complex (PDB code 4bix). C-di-

GMP is cross-linking the primary site (CA domain; Y514, K518, W523) with 
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the secondary site (DHp domain; G318, R374 nitrogens in blue). Full model 

shown in Extended Data Fig. 4. This constellation is predicted to be competent 

for dephosphorylation of cognate P~Rec (represented symbolically). (b) 

Kinase constellation as in CpxA/AMPPNP complex (PDB code 4biw). Note, 

that relative to the constellation in (a), the CA domain has turned around by 

about 70° to bring the AMPPNP substrate analog close to the phosphor-

acceptor histidine 322 (not shown, buried within the interface). (c), Excerpts 

of sequence logos for CckA orthologs (top) and histidine kinases in general 

(CckA orthologs plus paralogs; bottom). For the upper logo, only residues with 

a conservation contrast (Δcons) score in the upper quartile are shown. Residues 

related to c-di-GMP binding are labeled by their CckA numbers. 

 

Mechanistic model of CckA probed by mutagenesis. To test the 

mechanistic cross-linking model, we mutated Gly318 as well as Arg374 of the 

putative secondary binding site. Both mutants exhibited a decrease in c-di-

GMP affinity (Fig. 3) consistent with a loss of binding to the secondary site. 

Functionally, the G318A mutant was fully competent for auto-phosphorylation 

and ADP induced dephosphorylation (Figs. 5c,d), but showed virtually no 

response to c-di-GMP (Fig. 5c). Both is consistent with a loss of c-di-GMP 

mediated domain cross-linking due to the presence of the Cβ atom that would 

prevent the distal guanine to reach Arg374 (Fig. S4). Mutation of this arginine 

(R374A) completely abolished AMPPNP binding (Fig. 3A) and the mutant was 

consequently not amenable to further in vitro investigations. That this residue is 

important for substrate binding has been seen for the homologous arginyl 

residue in CpxA [260]. In addition, the role of residue Gly515 was tested. This 

residue is part of the domain interface (Fig. 2) and interacts with Gln315, which 

in turn appears well poised to interact with c-di-GMP (Fig. S4). A side-chain at 

position 515 would disturb the domain arrangement and, thus, may interfere 

with c-di-GMP mediated domain cross-linking.  Indeed, the phenotype of 

G515D was identical to that of G318A (Figs. 5b and c) further strengthening 

the cross-linking model. 

Additional functional insight was obtained with a CckA construct that lacks the 

receiver domain (CckA_ΔTMΔRec) and is therefore, by definition, 

phosphatase deficient. Fig. 5d shows that, under assay conditions, addition of 

c-di-GMP did not interfere with auto-phosphorylation. This is consistent with 

the mechanistic model that predicts lack of cross-linking for the ATP complex. 

The mutants were also investigated in vivo (Figure S6) taking DNA content as 

measured by flow cytometry as read-out for chromosome replication activity 

[49]. As previously reported [49], overexpression of CckA_ΔTM in a wild-type 
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cdG+ strain resulted in over-replication indicating dephosphorylated CtrA and 

hence dominant CckA phosphatase activity. The effect was found c-di-GMP 

dependent, since a distinct, more vector control like phenotype was observed 

upon expression in a cdG0 background [49]. The (kinase deficient) R374A 

mutant also caused over-replication, but in this case, the phenotype was 

virtually independent of expression strain and most likely due to basal (ADP 

activated) phosphatase activity superseding endogenous CckA kinase 

activity. Mutants Y514D and G515D showed severe replication deficiency 

indicating dominant kinase activity, which would be explained by the loss of c-

di-GMP mediated auto-dephosphorylation. In the cdG0 background, 

expression of these variants was lethal, possibly due to aggravation of the 

mutant effect by the absence of c-di-GMP mediated CtrA proteolytic turn-over 

[47,266]. Finally, the G318A mutation was toxic consistent with full replication 

deficiency, whereas Q315A was indistinguishable with wild-type over-

expression indicating a minor contribution (if any) of Gln315 to c-di-GMP 

binding. Summarizing, the in vivo data appear fully consistent with the proposed 

regulatory c-di-GMP mechanism. 

 

 

Figure 5: Net phosphorylation of CckA_ΔTM and other variants in 

response to c-di-GMP and ADP. (a) Time course of net CckA_ΔTM~P 

formation as measured by autoradiography upon addition of 500 μM 
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radioactively spiked ATP (bottom row). ADP or c-di-GMP was added to 

aliquots after 30 mins (top three rows). (b) Quantification of the data of (a). 

Continuous lines have been calculated based on the kinetic model shown in 

Fig. 6 obtained from the global fit to the data. (c) Net CckA phosphorylation 

for the indicated variants after 15 mins of ATP incubation, in absence and 

presence of c-di-GMP. (d) Net CckA phosphorylation for the same variants as 

in (c), but with addition (at t = 15 mins) of hexokinase/glucose for complete 

ATP to ADP conversion. The reaction was stopped after 65 mins. (e) Same as 

in (c), but for the mono-functional (kinase only) CckA_ΔTMΔRec construct 

with indicated incubation times. 

 

Bioinformatics. Having identified residues crucial for c-di-GMP mediated 

CckA control, we set out to study their conservation in other bacterial HKs. 

Two HK sequence families that broadly cover α-proteobacteria were generated 

based on the sequences of CckA from C. crescentus and a distant paralog, 

respectively (Fig. S10). While both groups carry the canonical residues that 

qualify them as histidine kinases, the orthologous group shows, in addition well 

defined, specificity determining positions (SPDs, [267]) as indicated in Fig. S8. 

Strikingly, all of the c-di-GMP related positions (labeled in Fig. 4) are SPDs, 

and moreover, highly or strictly conserved amongst the orthologs (with the 

only exception of Trp523 that often is replaced by Tyr or Phe).  

 

Kinetic model of CckA regulation. The various structural and functional 

aspects of CckA regulation by c-di-GMP and ADP have been consolidated in 

the kinetic model shown in Figure 6. Under physiological conditions and in 

absence of the c-di-GMP effector, the enzyme will be predominantly 

complexed with ATP, considering its tighter affinity and larger cellular 

concentration compared to ADP. Not considering other input signals, the 

enzyme will auto-phosphorylate and come to a halt as ATP complex after 

nucleotide exchange. The effect of c-di-GMP is proposed to rest on the 

(thermodynamic and probably also kinetic) stabilization of the ADP complex, 

which would be the only state competent for dephosphorylation. At the same 

time kinase action would get ADP product inhibited. 

This simple kinetic model fits well the progress curves of CckA 

phosphorylation acquired in absence and presence of the allosteric effectors 

(Fig. 4a), considering the small number of free parameters (Table S3). The fit 

gave a drastically enhanced ADP affinity in presence of saturating amount of 

c-di-GMP and this was modeled by a respective increase in the on-rate. 

Furthermore, the equivalent effects induced by c-di-GMP and ADP are 
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reproduced, although the ADP effect at low concentration is somewhat 

underestimated. Interestingly, simulations show that the ADP effect is very 

sensitive to the rate of debinding (kr) and the data are only fittable with a rather 

slow rate (10-2 to 10-3 s-1, similar to reaction rates k1 and k2; Table S3). A similar 

observation has been made for PhoQ/PhoP by Yeo et al. (2012) [265]. Further 

experiments are needed to obtain direct kinetic information.   

 

Figure 6: Kinetic model of CckA regulation. Kinetic regulatory model of 

CckA. Auto-phosphorylation and auto-dephosphorylation proceed with first-

order rates k1 and k2, respectively. For simplicity, no distinction is made 

between phosphorylation of H322 (DHp), D623 (Rec), or both. Red double 

arrows indicate ADP <-> ATP exchange. Top: After auto-phosphorylation the 

ADP product gets efficiently replaced by ATP. The dephosphorylation branch 

is not effective and the enzyme can catalyze phospho-transfer to the cognate 

down-stream partner (ChpT, not shown). Bottom: C-di-GMP allosterically 

stabilizes the ADP, the state that is competent for CckA 

autodephosphorylation. Note that re-phosphorylation is impeded due to ADP 

product inhibition. Phosphoryl groups will flow back along the phosphorelay. 
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In summary, we have shown that c-di-GMP, in synergy with ADP, reciprocally 

regulates kinase/phosphatase activity of a HK by stabilizing the ”open”, 

phosphatase competent constellation. In this way, the enzyme is rapidly 

converted to a sink for the phosphorelay, with the corresponding effect on the 

down-stream targets. Interestingly, ultrasensitive effector response has been 

predicted theoretically for such bifunctional enzymes with antagonistic 

activities [268] and this will be investigated further.   
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Extended Data Figure 1 

 

 

 

Extended Data Figure 1: CckA crystal packings. (a) Crystal packing of 

CckA_CA with two molecules in asymmetric unit (A, B). Also shown are two 

symmetry related molecules (A*, B*). The C-terminal His(6)-tails are shown 

blue. C-di-GMP is bound to the primary site of molecule A (orange). The 

primary binding site of B* (green) is blocked by the His-tail of a symmetry 

related molecule (B). The His-tail of A is mediating a crystal contact by 

interacting latterally with a β-sheet edge of B. (b and c) Crystal packing of 

CckA_DHp-CA. The crystal of space-group P6(3)22 is formed by β-sheet 

edge-to-edge association of CA domains across a crystallographic dyad. In 

combination with the crystallographic 6(3) screw axis, nano-tubes with a 

diameter of 45 Å are formed in z-direction. The nano-tubes are held together 

by DHp domains that form crystallographic dimers. 
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Extended Data Figure 2 

 

 

Extended Data Figure 2: Detailed views on CckA_DHp_CA and 

CckA_CA/c-di-GMP crystal structures. Viewing direction same as in Figure 

2. (a) Close up of domain interface. The "gripper" helix (residues 509 - 520) 

and the tower (456 - 471) are shown in cyan and yellow, respectively. The Cα 

atoms of Gly318 and Gly515 are shown as magenta spheres. (b) Same as (a), 

but showing, in addition, crystal structure of CckA_CA with bound c-di-GMP 

(all atoms, orange) superimposed. 

 

 

 

 

 

 

 

 

 



97 

 

Extended Data Figure 3 

Extended Data Figure 3: ITC binding profiles of several CckA constructs to 

ADP, AMPPNP and c-di-GMP. 

 

 

 



98 

 

 

 



99 

 

Extended Data Figure 4 

 

Extended Data Figure 4: Proposed model of full c-di-GMP binding to 

CckA_DHp_CA. The Cα atoms of Gly318 and Gly515 are shown as magenta 

spheres. (a) CckA model obtained by superposition of CckA DHp helices and 

CA domain onto the CpxA/ADP structure. The distal part of the c-di-GMP 

ligand (right) has been remodeled in extended conformation as (e.g.) obtained 

when bound to EAL domain [17]. The side-chain conformation of Arg374 has 

been changed to allow interaction with the c-di-GMP ligand. (b) Same view of 

CpxA/ADP structure has been shown. Phe403 (shown in magenta) engaged in 

the CA–DHp interface but key residues involve in c-di-GMP is missing.  
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Extended Data Fig. 5 

 

 

 

Extended data Figure 5: C-di-GMP specifically binds to CckA mutants. 

Purified CckA protein was incubated with [33P] labelled c-di-GMP and cross-

linked with UV light in the presence or absence of a 100-fold excess of 

competing non-labelled nucleotides as indicated. 
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Extended Data Figure 6 

 

Extended Data Figure 6: DNA replication activity of cells expressing 

various CckA variants. The indicated cckA(ΔTM) variants were expressed in 

the wild-type (+) or cdG0 (-) strain, followed by analysis of DNA content using 

flow cytometry. Representative DNA profiles of the two biological replicates 

are shown. The fraction of cells bearing more than two chromosomes is 

indicated and shown as percentage. Note that the cdG0 strain harboring either 

Y514D or G515D did not grow under the current experimental conditions. 

Q315A allele was tested only in the wild-type strain. *, Transformants did not 

grow. **, not tested. 
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Extended Data Figure 7 

 

Extended Data Figure 7: Sequence alignment between CckA ortho- and 

paralogs. CckA orthologs from UPEC E.coli (UNIPROT D3QK97), 

Pseudomonas putida (Q88GR7), Agrobacterium tumefaciens (Q7CZE9), and CckA 

from Caulobacter crescentus (H7C7G9) are shown at the top. Paralogs CpxA 

from E.coli (P0AE82) and Q9A4H9 from Caulobacter crescentus are shown at the 

bottom. The sequence alignment between CckA and CpxA conforms to the 

alignment between the crystal structures and secondary structure elements are 

indicated. Important CckA residues are annotated: a, Q315; b-c, G318, G319; 

d, R374; e, Y514; f, G515; g, K318. All of these residues are specifically 

conserved in the orthologous group. 
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Extended Data Figure 8 

 

Extended Data Figure 8: Specificity determining positions of CckA 

orthologs. Weblogos are shown for CckA orthologs, paralogs (bottom, yy 

sequences) and both groups together (middle). Latter graph highlights the 

residues that are essential for general histidine kinase function. Residues 

specifically conserved ( Δcons > x) in the orthologous CckA group (top) are 

indicated with an asterisk (to be done) and labeled with their CckA number, 

otherwise global residue numbering. 
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Extended Data Figure 9 
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Extended Data Figure 9: Structure prediction for PAS2 domain of CckA. 

(a) CckA_DHp-CA structure with joined homology model for the N-terminal 

PAS2 dimer. The PAS2 homology model was obtained based on PDB entry 

4gcz (structure of an engineered LOV-DHp-CA construct based on the LOV 

domain of YtvA and the DHp-CA domains of FixL. (b) YtvA/FixL template 

structure (PDB ocde 4gcz). Orientation such that the N-terminal LOV dimer 

is in same orienentation as the PAS2 dimer in (a). (c) Sequence alignment of 

CckA_PAS2-DHp with YtvA(LOV)-FixL(DHp) as obtained by HHpred and 

used for homology modeling. Note that the domain linker is shorter by 7 

residues in CckA, which is compatible with a coiled-coil dimer shortend by two 

turns. 
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Extended Data Table 1: Data collection and refinement statistics 
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Extended Data Table 2: ITC binding parameters for CckA with ligands 

 

 

 

* Note that at the employed concentration, the protein is not saturated with c-

di-GMP at the start of titration. Thus, upon titration, a contribution to the 

generated heat by c-di-GMP binding or unbinding should be considered. 

Furthermore, the problem is compounded by the distinct sign of the two ΔH 

contributions (endo- and exothermic binding of c-di-GMP and mono-

nucleotide, respectively). Therefore, the given parameters are only effective 

values. 
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Materials and Methods 

Plasmids 
 
For structural work and binding studies, the coding sequences for various CckA 

constructs were cloned into pET21b vectors between NdeI and NotI 

restriction sites which yielded C-terminally His6 tag variants. Plasmids and 

oligonucleotides are listed below. 

For in vitro activity assays, the previously described CckA_ΔTM construct 

cloned into the pET28a-His-MBP vector between BamHI and SalI restriction 

sites [49] and the derived point mutants were used. 

For in vivo studies pBXMCS-cckAQ315A, pBXMCS-cckAR374A, and 

pBXMCS-cckAG515D were generated by SOE-PCR using pBXMCS-2-

cckAWT as a template DNA, 7200 and 7369 as outside primers, and internal 

mutagenic primers. The mutagenic primers were as follows: 8543 and 8544 for 

Q315A, 6483 and 6484 for R374A, and 7901 and 7902 for G515D. After fusion 

PCR, the products were digested with EcoRI and NdeI, followed by ligation to 

the EcoRI-NdeI fragment of pBXMCS-2. To construct pBXMCS-

cckAG318A, PCR was performed using SH339 genomic DNA (Ozaki and 

Jenal, unpublished) and primers 7200 and 7369. The products were digested 

with EcoRI and NdeI, followed by ligation to the EcoRI-NdeI fragment of 

pBXMCS-2. 

 

Expression and Purification 
 
Proteins were expressed in E. coli Rosetta (DE3) cells. LB media were 

inoculated with 1% pre-culture at 37°C. Bacterial cultures were induced with 

0.1 mM IPTG at OD600 (0.6-0.8) and the incubation temperature was shifted 

to 22 0C. Cells were finally harvested overnight post induction by spinning the 

cultures at 5,000 rpm for 10 minutes (at 4°C using F8-6 rotor). For purification, 

the cell pellet was resuspended in buffer A (30 mM Tris HCl pH 7.5, 500 mM 

NaCl, 20 mM imidazole and 5mM MgCl2) with protease inhibitor cocktail 

supplied by Roche. Cells were lysed using a microfluidizer and the lysate was 

centrifuged at 16,000 rpm for 30 minutes (at 4°C using Sorvall SS34 rotor) to 

remove cell debris and any suspended particles. 

Clear supernatant was applied on a Ni-NTA column (5 ml pre pack column, 

GE healthcare) pre-equilibrated with buffer A. The column was pre 

equilibrated with buffer A until the baseline was reached. Bound protein was 

eluted with a 0 to 100 % linear gradient of buffer B (30 mM Tris HCl, pH 7.5, 

500 mM NaCl, 500 mM imidazole and 5 mM MgCl2). Fractions containing the 
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desired protein were pooled and concentrated to a final volume of 2-4 ml. The 

concentrated protein was then loaded on a Superdex S200-26/60 gel filtration 

column pre-equilibrated with SEC buffer (30 mM Tris HCl pH 7.5, 100 mM 

NaCl and 5mM MgCl2). Eluted protein peak was collected and the protein 

concentration was quantified by UV absorption (Nanodrop from Thermo 

scientific) and stored at -80°C. 

For in vitro activity assays, CckA_ΔTM and the derived point mutants were 

purified as described [49]. 

 

Crystallization, data collection and structure solution. 
 
Crystallization was performed using the sitting-drop vapour diffusion method. 

The CckA_CA construct was crystallized at a concentration of 15 mg/ml in 

presence of AMPPNP and c-di-GMP (1:5:3 molar ratio) in 30 mM Tris-HCl, 

pH 7.5, 200 mM NaCl, 5 mM MgCl2. Initial plate-like crystals were appeared 

after 10 days in 0.15 M ammonium sulfate, 25% polyethylene glycol 4000 and 

0.1 M MES pH 5.5 and were used for seed stock preparation. Upon seeding, 

well-diffracting plate-like crystals were obtained in 0.1 M ammonium sulfate, 

28.4% polyethylene glycol 4000 and 0.1 M MES pH 5.5. Crystals were frozen 

with cryo-oil (Hampton) as a cryoprotectant. 

After extensive crystallization trials the CckA_DHp-CA yielded a single hit 

obtained at a concentration of 15 mg/ml in presence of ADP (1:5 molar ratio) 

in 30 mM Tris-HCl, pH 7.5, 300 mM NaCl, 5 mM MgCl2. The protein 

crystallized in 30% PEG 550 MME, 30% PEG 2000 MME, Morpheus 

(Hampton) buffer 1 pH 6.5 and Morpheus carboxylic acids after 3-4 weeks. 

The crystals were frozen without any cryoprotectent. 

X-ray diffraction datasets were collected at the Swiss Light source, Villigen, 

Switzerland at 100 K. Datasets were processed either with MOSFLM [269] or 

XDS [270] and resulting intensities were scaled using SCALA from the CCP4 

suite [271]. Both structures were solved by molecular replacement. For 

determination of the CckA_CA structure, the CA domain of DivL (PDB code 

4q20 [194]) was used as search model. 

For determination of the CckA_DHp-CA structure, the CckA_CA was used as 

search model and the DHp domain was obtained by iterative model building 

and refinement. 

All structures were refined using REFMAC5 (CCP4). Model building was 

performed using COOT [272] and O. Ligand molecules and metal ions were 

modeled in Fo-Fc electron density maps. Finally, water molecules were added 

where the difference density in Fo-Fc map exceeded 3σ and potential hydrogen 

bonds could be formed. Data processing, structure refinement and validation 
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statistics are given in Extended Table 1. 

 

Binding studies by isothermal titration calorimetry 
 
 Thermodynamic parameters for ligand binding to CckA variants were 

measured by isothermal titration calorimetry (ITC) using a Microcal VP-ITC 

microcalorimeter. All calorimetric titrations were carried out at 25 °C or 12 °C, 

a syringe stirring speed of 300 rpm, a preinjection delay of 200 s and a recording 

interval of 250 s. Equilibrium association constant, binding stoichiometry (N), 

entropy (∆S) and enthalpy (∆H) of the binding reaction were derived by fitting 

the data to a single binding site model using ORIGIN7 (OriginLab). Since all 

N values indicated (within 25%) 1:1 stoichiometry, the data were refitted with 

a fixed N=1 value.  

 

Protein phosphorylation assay 
 
CckA phosphorylation was assayed by auto-radiography following the protocol 

given in [49]Reactions were run in presence of using 500 µM ATP and 5 

µCi γ32PATP (3,000 Ci mmol−1, Hartmann Analytic) at room temperature. 

Additional nucleotides were added at indicated time points. Reactions were 

stopped with SDS sample buffer and subsequently loaded (or stored on ice) on 

10% SDS gels. Wet gels were exposed to phosphor screen (0.5–3 h) before 

being scanned using a Typhoon FLA 7000 imaging system (GE Healthcare). 

Where applicable, ATP was converted to ADP by the addition of 1.5 U 

hexokinase (Roche) and 5 mM D-glucose. 

 

Flow cytometry 
 
This assay was performed as described previously [49]. Briefly, pBXMCS-2 or 

its derivatives carrying a cckA(∆TM) variant was transformed into NA1000 

(wt) or UJ5065 (cdG0). After incubation on PYE agar supplemented with 20 

µg/mL kanamycin and 0.1% glucose at 30°C for 2 d, the transformants were 

grown overnight at 30˚C in PYE medium supplemented with 5 µg/mL 

kanamycin and 0.1% glucose. A portion (0.2 mL) was diluted in 4 mL of PYE 

medium supplemented with 5 µg/mL kanamycin and 0.03% xylose and 

incubated for 4h, followed by cell fixation in 70% ethanol. After RNase 

treatment, DNA was stained with YO-PRO-1 iodide (Invitrogen) and the 

fluorescent intensity was analyzed using FACS Canto II (BD Biosciences). 

 

 

http://schirmerwiki.bioz.unibas.ch/1/7083
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Bioinformatics 
 
Consensus scores were calculated from multiple sequence alignments using an 

entropic (21-type) and Karlin-Like transformation of the BLOSUM45 matrix 

as per [273]. Specificity Determining Position Conservation Contrast Scores 

(SDP-Δcons) were calculated for each site of the C. crescentus CckA protein 

sequence by the difference in consensus score between an alignment of CckA 

orthologs and an alignment of CckA orthologs and paralogs multiplied by the 

consensus score of the CckA orthologs alignment. 

 

Fitting of kinetic data and simulations 
 
Enzymatic reactions were fitted to standard first-order and second-order 

reaction kinetics according to the model shown in Fig. 6. The system of coupled 

ordinary differential equations (ODEs) was set up using the Complex Pathway 

Simulator (COPASI) software [274]. Global fitting and simulations were 

performed using ProFit 6.2.14 (QuantumSoft). 
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Strains used in this study 

ORGANISM NAME RELEVANT GENOTYPE REFERENCE 

C. crescentus NA1000 Caulobacter crescentus wild-type strain [246] 

 UJ5065 NA1000 cdG0 [38] 

 UJ 8195 NA1000 cckA_77-545 This study 

 UJ 8198 NA1000 cckA_297-545 This study 

 UJ 8200 NA1000 cckA_379-545 This study 

E. coli BL21 λ DE3 E. coli strain for protein 
purification: F– ompT gal dcm lon 
hsdSB(rB- mB-) λ(DE3 [lacI lacUV5-
T7 gene 1 ind1 sam7 nin5]) 

New England 
Biolabs 

 BL21 Rosetta E. coli strain for protein 
purification 

Novagen 

 DH10β E. coli donor strain for plasmid 
conjugation: F-mcrA D(mrr-hsd 
RMS-mcrBC) 
f80dlacZDM15DlacX74 endA1 
recA1 deoR D(ara, leu)7697 araD139 
galU galK nupG rpsL 

Life 
Technologies 

 DH5α A general E. coli cloning strain: F` 
endA1 hsdR17 (rK-mK plus) glnV44 
thi1 recA1 gyr delta(Nalr) relA1 
delta(lacIZYA-argF)U169 
deoR(ö80dlac delta(lacZ) M15) 

[248] 

 

Primers used in this study 

NAME SEQUENCE 

5276 CGCGGATCCTCAGCGCTTTCCGGCGGCGAC 

5277 ACGCGTCGACCTACGCCGCCTGCAGCTGCTG 

6483 GCGCAAGCTCTTGGCTTTCTCGgcgAAGCAGACCGTGCAGCGCGAG
G 

6484 CCTCGCGCTGCACGGTCTGCTTcgcCGAGAAAGCCAAGAGCTTGCG
C 

7200 GAATTCCTACGCCGCCTGCAGCTGCTGC 

7243 ATAAT CATATG GGC GAC GCC GAC CAG GCT GAG 

7244 ATAAT GCGGCCGC CGCTTCATAGACCGGCAGGAA 

7245 ATAAT CATATG TCG CCG TTC GGC GCG GCC CTG 

7246 ATAAT CATATG GCCCTGCTGGAAGGCCTGGAG 

7247 ATAAT CATATG CAGAAGCAGATCGAGCTGCAG 

7248 ATAAT CATATG AAGATGCAGGCCATCGGCCAG 

7248 ATAAT CATATG CAGCGCGAGGTGCTGGATCTG 
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Plasmids used in this study 

NAME DESCRIPTION REFER
ENCE 

pBXMCS-2 a kan resistant high-copy plasmid carrying the xylose 
promoter 

[236] 

pBXMCS-CckA a pBXMCS-2 derivative expressing CckA (S72-A691) [49] 

pBXMCS-CckA 
Q315A 

a pBXMCS-2 derivative expressing CckA Q315A (S72-
A691) 

This 
study 

pBXMCS-CckA 
G318A 

a pBXMCS-2 derivative expressing CckAG318A (S72-
A691) 

This 
study 

pBXMCS-CckA 
R374A 

a pBXMCS-2 derivative expressing CckAR374A (S72-
A691) 

This 
study 

pBXMCS-CckA 
Y514D 

a pBXMCS-2 derivative expressing CckAY514D (S72-
A691) 

[49] 

pBXMCS-CckA 
G515D 

a pBXMCS-2 derivative expressing CckAG515D (S72-
A691) 

This 
study 

pET28a Expression vector Novagen 

pET28a-His-
MBP 

Expression vector to express N-terminal His-MBP fusion 
proteins 

[49] 

pET-CckA To express N-terminal His-MBP-cckA fusion, cckA from 
caulobacter without TM (S72-A691) 

[49] 

pET-CckA 
G318A 

Derivat of pET-CckA_ΔTM carrying indicated mutation This 
study 

pET-CckA 
R374A 

Derivat of pET-CckA_ΔTM carrying indicated mutation This 
study 

pET-CckA 
G515D 

Derivat of pET-CckA_ΔTM carrying indicated mutation This 
study 

pET21b Expression vector Novagen 

pET21b-CckA 
S72-A691 

To express C-terminal His fusions of CckA_ΔTM (S72-
A691) 

This 
study 

pET21b-CckA 
G77-A545 

To express CckA _ΔTMΔRec (77-545) with C-terminal 
His-tag 

This 
study 

pET21b-CckA 
Q297-A545 

To express CckA_DHp-CA domain (297-545) with C-
terminal His-tag 

This 
study 

pET21b-CckA 
Q379-A545 

To express CckA_CA domain (379-545) with C-terminal 
His-tag 

This 
study 

pET21b-CckA 
G318A 

Derivat of pET-CckA carrying indicated mutation This 
study 

pET21b-CckA 
R374A 

Derivat of pET-CckA carrying indicated mutation This 
study 
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Abstract 

Bacteria are exposed to constantly changing environments and to survive 

detrimental conditions they need to be able to rapidly respond to diverse 

stresses. In α-proteobacteria, the general stress response is coordinated by the 

alternative sigma factor SigT. SigT activation requires a partner switch 

mechanism initiated by the phosphorylation of the response regulator PhyR. In 

this work, we present evidence that the histidine kinase LovK contributes to 

PhyR phosphorylation and that the single domain response regulator MrrA, in 

its phosphorylated form, allosterically activates LovK. We have indentified at 

least two novel histidine kinases which activate MrrA through phosphorylation. 

Genetic data confirmed that MrrA plays a central role in the Caulobacter crescentus 

stress response and development and indicated the existence of additional 

upstream components and additional MrrA target kinases contributing to SigT 

activation in this organism. We conclude that MrrA acts as a connecting 

signalling hub that serves to integrate information input from a range of 

upstream stress responsive histidine kinases and passes this information on to 

the general stress response to activate SigT.  
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Introduction 

The general stress response (GSR) is critical to adapt to changing 

environments. In α-proteobacteria, response to stress requires transcription 

mediated by the alternative sigma-factor SigT. In non-stressed cells, SigT is 

sequestered and kept in an inactive form by the anti-sigma factor NepR [206]. 

Release of SigT involves a partner switch mechanism with the anti-sigma 

antagonist PhyR [203]. PhyR consists of a phosphorylated receiver domain and 

a sigma-like output domain. Phosphorylation of PhyR leads to a partner switch 

whereby the C-terminal sigma-like domain of PhyR binds to NepR thereby 

releasing SigT to induce the general stress response [204]. Since the partner 

switch mechanism depends on activated PhyR~P, the cognate histidine kinases 

involved in PhyR phosphorylation have an important role in activating the 

cascade. Several PhyR activating histidine kinases (PAKs) have been described 

[205,210]. In vivo experiments in Sphingomonas melonis have shown that certain 

PAKs are required to respond to certain stimuli [205]. For example PakC and 

PakF are required for heat shock response and PakF is also involved in 

response to NaCl induced stress [205]. How these kinases are activated remains 

unclear. C. crescentus has 12 presumable PhyR phosphorylating kinases but not 

many activating signals are known. [207,275]. One of these kinases, LovK, 

harbors a LOV (light, oxygen and voltage) sensing domain and is believed to 

respond to and to be activated by blue light [211] but otherwise signals remain 

obscure. One class of proteins that are known to control histidine kinases are 

single domain response regulators (SDRR) [45]. Single domain response 

regulators are found in all three kingdoms of life. They represent the 2nd largest 

subgroup of response regulators (RR) that can account for up to 90% of all RR 

in specific organisms [149]. Response regulators are phosphorylated on a 

conserved asparate residue in the receiver domain [144]. Phosphorylation often 

leads to a change in the activity of domains fused to the receiver domain [147]. 

However, in the case of SDRR the output function is difficult to determine. 

The paradigmal SDRR is CheY, which when phosphorylated, interacts with the 

flagellar motor to direct its rotational bias and to mediate a chemotactic 

response [151,152]. Based on sequence similarities and clustering with other 

chemotaxis genes, C. crescentus harbors seven presumable CheY proteins 

(CC0432, CC0437, CC0588, CC0591, CC0596, CC3258, CC3471). The 

remaining SDRRs of C. crescentus are generally summarized as ‘other’ CheY-like 

proteins (CC0440, CC1364, CC2249, CC310, CC3155) and ‘non-CheY-like’ 

SDRRs (LovR, CC0630, CpdR, DivK, CC2576, CC3015, CC3286) [149,276]. 

The function of most of these proteins is unclear. So far only few examples 

have been functionally characterized, including CpdR, DivK and LovR. CpdR 
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is phosphorylated by the CckA ChpT phosphorelay. CpdR in its non-

phosphorylated form recruits the ClpXP protease to the stalked pole at the G1-

S transition [40,48,184,189]. DivK is an essential SDRR that controls cell cycle 

progression and development in C. crescentus [45,186,193,199,277,278]. DivK is 

phosphorylated by the two histidine kinases PleC and DivJ [45]. DivK~P 

interacts with its downstream target DivL to control the activity of the 

bifunctional histidine kinase CckA. Additionaly DivK is part of a feedback loop 

that controls the activity of PleC and DivJ. Another SDRR is LovR that was 

implicated in regulating LovK mediated general stress response by acting as a 

phosphate sink to promote inactivation of PhyR [202,211].  

Because of their small size, SDRRs are thought to freely diffuse within the 

cytoplasm [149]. This makes SDRRs ideal candidates for cross-talk between 

different phosphorylation cascades and qualifies then as mediators that enable 

quick cellular responses to extracellular conditions and intracellular changes 

[146]. SDRRs show the conserved (βα)5 fold that is typical for receiver domains 

[279,280]. Phosphorylation on the conserved aspartate residue leads to subtle 

conformational changes on the α4-β5-α5 surface [279,280], through which 

SDRRs like CheY interact with their downstream targets [281]. Some SDRRs 

are phosphorylated by cognate kinases, while others solely function by protein-

protein interaction without phosphotransfer reactions being involved [281]. 

Because SDRRs lack dedicated output domains it is challenging to determine 

their downstream targets solely based on structural cues. Moreover, despite of 

recent progress in decoding interactions of response regulators with their 

cognate HKs [161,164] it remains challenging to accurately predict kinase-RR 

interactions if the respective genes are not clustered on the chromosome [161]. 

As a consequence, the signaling connectivity of many SDRRs is unclear with 

upstream HK(s) and potential downstream target(s) remaining unknown. Here 

we identify and characterize MrrA, a novel SDRR involved in the general stress 

response in C. crescentus. By combining genetic, biochemical and proteome 

approaches we were able to determine both upstream and downstream 

components of MrrA. In particular, we demonstrate that MrrA, in its 

phosphorylated form, acts as an allosteric activator of the LovK HK to 

stimulate the general stress response through phosphorylation of the anti-sigma 

factor antagonist PhyR. Taken together we suggest a complex phosphor-

regulatory circuit resulting in the activation of the general stress response in C. 

crescentus. 
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Results 

MrrA is involved in several cell cycle-regulated processes 

The genome of C. crescentus encodes 19 single-domain response regulators 

(SDRRs), 7 of these are CheY-like SDRRs [276]. Three of the non-CheY 

SDRRs (LovR, DivK, CpdR) have previously been characterized 

[40,184,202,221]. We screened four non-CheY SDRRs mutants (CC0630, 

CC2576, CC3015, CC3286) for phenotypes and found CC3015 (MrrA) to be 

involved in several cellular processes. Remarkably, MrrA has a negative effect 

on attachment as well as on motility (Figure 1A). In the wild type, these cell 

cycle-regulated processes are inversely controlled: Dividing Caulobacter cells give 

rise to one motile cell and one cell which is able to attach to surfaces. The 

adhesive cell can directly initiate chromosome replication and subsequently 

undergo cytokinesis, whereas the motile cell first needs to develop into an 

adhesive cell before it replicates its chromosome. Therefore it ejects its 

flagellum and initiates holdfast production and stalk formation during G1-S 

phase transition (reviewed in [282]). ΔmrrA mutants not only show increased 

attachment after 24h in PYE medium and increased colony size on PYE 

supplemented with 0.3% agar after 3 days, but also exhibited decreased biomass 

levels in stationary phase compared to wild type (Figure 1A). Furthermore, 

MrrA deficient cells could not be synchronized using a ludox centrifugation 

gradient. Instead, stalked cells and rosettes were found all over the 

centrifugation gradient. The defect in synchronizability and the solid pellet 

during preparation of the cells appeared to be holdfast-dependent (data not 

shown) and were therefore not analyzed in more detail. The other phenotypes 

were observed in stationary phase. When testing a fully functional 3xFLAG-

tagged version of MrrA, we found that MrrA is present throughout the cell 

cycle, and in exponential phase and in stationary phase at very low levels (data 

not shown). To check whether the function of MrrA is restricted to stationary 

phase, we took snapshots of wild type and ΔmrrA cultures in exponential phase 

(OD660 = 0.3) and compared the number and size of rosettes found in 20 

randomly taken pictures. As shown in Figure 1B, ΔmrrA forms more and bigger 

rosettes compared to wild type, suggesting that MrrA functions in exponential 

as well as in stationary phase. Accordingly, attachment is increased in 

exponential phase as well (data not shown). We wondered whether the 

increased attachment found in ΔmrrA cultures resulted from more holdfast 

material. Therefore, microscopy was performed using green-fluorescent 

Oregon Green® 488 WGA which stains the holdfast. Neither the holdfast area 
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nor the signal intensity was significantly different in cells lacking MrrA 

compared to wild type cultures (Table S1). 

Figure 1: MrrA phenotypes. PYE medium was used for all experiments. (A) 

ΔmrrA shows increased attachment, increased motility on agar plates and 

decreased biomass in stationary phase compared to wild type. (B) ΔmrrA forms 

more and bigger rosettes compared to wild type. 20 random snapshots of 

exponential phase cultures were taken and the number of rosettes were 

counted. The pictograms below the graph are an indication for the respective 

rosette size. (C) The c-di-GMP levels of wild type and ΔmrrA are not 

significantly different. (D) ΔmrrA shows decreased pPctrA-lacZ levels compared 
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to wild type. Exponential phase cultures were used for a kinetic β-galactosidase 

assay. Western blot analysis did not reveal a difference in CtrA levels. 

Since all processes found to be affected by MrrA are cell-cycle regulated, we 

checked whether the effect of MrrA depends on cyclic di-GMP (c-di-GMP). 

C-di-GMP is a secondary messenger responsible for the G1-S phase transition. 

Motility is only allowed in cells with low c-di-GMP levels, whereas attachment 

requires high c-di-GMP levels (reviewed in [283]). Indeed, all MrrA phenotypes 

depend on c-di-GMP (Figure S1). The lack of MrrA cannot restore the 

attachment defect of a strain which fails to produce c-di-GMP (cdG0 strain) 

(Figure S1A). Similarly, motility is not restored by ΔmrrA in a cdG0 strain 

(Figure S1B). Finally, in a cdG0 background, the lack of MrrA does not result 

in decreased biomass in stationary phase (Figure S1C). However, c-di-GMP 

levels of wild type and ΔmrrA cultures are not significantly different in mixed 

populations (Figure 1C). In summary, the SDRR CC3015 of C. crescentus was so 

far not analysed in literature. In this study, we show that attachment as well as 

motility are negatively regulated by CC3015 and that, in addition CC3015 plays 

a role in biomass production. Therefore, we renamed CC3015 MrrA for 

‘multifunctional single domain response regulator A’. 

The kinases CC2554 and CC2874 are potential interaction partners of 

MrrA 

MrrA negatively regulates two inversely controlled processes, attachment and 

motility. Additionally, it is required in C. crescentus cultures to reach wild type 

biomass levels in stationary phase (Figure 1). In order to find interaction 

partners of MrrA which could explain the observed phenotypes, we followed 

two independent approaches. Co-immunoprecipitation (Co-IP) experiments 

were carried out using exponential phase cultures with 3xFLAG-tagged MrrA. 

As controls wild type cells were used as well as 3xFLAG-tagged CC3286 to 

minimize the number of false positives that were obtained by subsequent mass 

spectrometry. Wild type cells functioned as a control for unspecific interactions 

with FLAG and CC3286 was selected as a control to minimize potential 

unspecific hits for SDRRs. Table 1A shows the hits which were double-

checked by bacterial two hybrid assays or in vitro phosphorylation experiments 

and Table S2 contains the complete data set obtained from Co-IP using mass 

spectrometry. DgcB, ChpT, ParE, CC2874 and CC1056 were selected for 

further analysis, either because they showed a high fold change (3xFLAG-

MrrA/wild type) or because the potential interaction partner might be 

associated with one of the MrrA phenotypes. CC2874 and ParE were amongst 

the best hits in terms of fold change together with several proteins involved in 
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amino acid metabolism or fatty acid synthesis (Table S1). Bacterial two hybrid 

assays showed interaction of MrrA with itself, but did not reveal interaction 

between MrrA and DgcB, ChpT, ParE or CC1056 (data not shown). 

In addition to Co-IP, we performed a yeast two hybrid screen in S. cerevisiae 

PJ69-4A [284]. MrrA was used as bait to fish potential interaction partners for 

the SDRR. Stringent selection on plates lacking adenine (SC-Trp-Leu-Ade) did 

not give rise to a single yeast colony that could be re-grown in liquid media. In 

a second approach 2.2 * 106 transformants were screened using less stringent 

selection on plates lacking histidine (SC-Trp-Leu-His +5 mM 3’AT). This 

screen resulted in 40 yeast colonies that were used for further analysis. Isolation 

of the prey library plasmids and subsequent sequencing showed that half of the 

transformants harboured plasmids that contained C. crescentus coding regions 

that were not in frame. The corresponding proteins are CC0648, CC0649, 

CC1107, CC2021, CC2407, CC2408, CC2952, CC3586, CC3587. We cannot 

exclude the possibility that despite the frame shift, true positive hits are among 

these proteins, since yeast is known to be able to compensate for translational 

frame shifts. Additionally, we found transformants with in frame coding 

regions on the prey library plasmids. Sequence analysis of the isolated plasmids 

revealed that (part of) the coding region of the following proteins was present 

on the plasmids: 1x CC1108 (methyltransferase FkbM), 1x CC2044 

(transposase) and on the same plasmid in frame CC1627 (LacI-like 

transcriptional regulator), 2x CC2330 (Xre-like transcriptional regulator), 1x 

CC2554 (PAS histidine kinase), 5x CC2874 (PAS histidine kinase, was also 

fished with Co-IP), 2x CC3164 (HipB-like transcriptional regulator), 1x 

CC3654 (conserved hypothetical protein, DUF domain). Autoactivation 

controls were positive for CC1108, CC2330 (one of two transformants) and 

CC3164. Transformants with CC2044-CC1627 and CC3654 did not grow after 

restreaking on selective plates without histidine (SC-Trp-Leu-His +5 mM 

3’AT). The remaining hits CC2554 and CC2874 as well as the second 

transformant with CC2330 on the plasmid (negative for autoactivation) were 

used for further analysis to investigate the potential interaction with MrrA. 

CC2330 did neither interact with MrrA in a bacterial two hybrid screen nor was 

phosphotransfer observable in in vitro phosphorylation experiments using 

purified proteins (data not shown). Since CC2330 also appeared several times 

in yeast two hybrid screens using other bait proteins (data not shown) it might 

be a false positive hit that appears with the yeast two hybrid library used in the 

laboratory. 
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In summary, at least CC2554 (Y2H) and CC2874 (Y2H and Co-IP) seem to be 

potential interaction partners for MrrA. 

CC2554 and CC2874 phosphorylate and dephosphorylate MrrA in vitro 

In search for potential interaction partners of MrrA we applied Y2H and Co-

IP experiments and found the kinases CC2554 and CC2874 to possibly interact 

with the SDRRs (Table S1). In addition, we selected the kinases CC2324 and 

CC2501 for our studies (Figure 2A). They were found by Capra et al. to weakly 

interact with MrrA in in vitro phosphorylation experiments [227]. Notably, 

Capra and co-workers purified truncated versions of the kinases and indicated 

that removal of the receiver domain might eventually result in unspecific 

phosphate transfer. In order to test whether CC2324, CC2501, CC2554 and/or 

CC2874 are real interaction partners of MrrA we constructed plasmids from 

which His6-MBP-kinase protein could be expressed (pIDJ079-081). The 

membrane spanning regions of CC2324, CC2501 and CC2874 are not encoded 

on the plasmids. 

First, we tested whether the purified kinases are active and able to 

phosphorylate MrrA. Therefore, 5 µM kinase and 10 µM MrrA were incubated 

with 500 µC labelled ATP for 10 min. Figure 2B shows that all kinases 

autophosphorylate independent of the presence of MrrA. CC2324 is the 

weakest kinase. The brightness and contrast of the radiogram had to be 

optimized in order to visualize CC2324 and the phosphotransfer to MrrA 

(Figure 2B, lane 1 and 2). The transfer therefore is likely to be unspecific. 

CC2501 reveals a strong autophosphorylation signal, but does not 

phosphorylate MrrA (Figure 2B, lane 3 and 4). CC2554 does not seem to be a 

strong kinase (compared to CC2501 and CC2874), but clearly 

autophosphorylates (Figure 2B, lane 5). Interestingly, as soon as MrrA is added 

to the reaction, MrrA becomes visible in the radiogram and the band of 

CC2554 disappears (Figure 2B, lane 6). CC2874 is the strongest of all four 

kinases and the phosphotransfer to MrrA is clearly apparent (Figure 2B, lane 7 

and 8). Accordingly, we continued working with CC2554 and CC2874 since 

they show clear autophoshporylation signals and in addition seem to interact 

with MrrA. The weak phosphotransfer shown by Capra et al. between the 

kinases CC2324 and CC2501 and the SDRR MrrA might, as they suggested, 

indeed result from unspecific phosphotransfer due to the truncation of the 

protein (missing the REC domain) [227]. These kinases were thus excluded 

from further in vitro phosphorylation analysis. 
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Figure 2: In vitro analysis of potential MrrA kinases. Proteins were used in 

the following concentrations: 10 µM MrrA, 5 µM of potential MrrA kinases 

(CC2324, CC2501, CC2554, CC2874), 1.5 units hexokinase, 5 mM D-glucose. 

500 µM ATP and 2.5 µCi [γ32P]ATP (3,000 Ci mmol-1) were used and the 

reactions were carried out for 15 minutes (unless indicated otherwise) at room 

temperature. (A) Domain architecture of the potential MrrA kinases CC2324, 
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CC2501, CC2554 and CC2874. (B) None of the kinases tested depends on 

MrrA for autophosphorylation. CC2324 is the weakest kinase tested. 

Autophosphorylation and the phosphotransfer to MrrA is only detectable 

when brightness and contrast of the radiogram are adjusted. CC2501 shows 

clear autophosphorylation but does not seem to be a kinase for MrrA. CC2554 

autophosphorylates and phosphotransfers to MrrA. MrrA inhibits the CC2554 

autophosphorlyation signal. CC2874 is the strongest kinase and results in the 

highest MrrA signal. (C) CC2554 and CC2874 both have phosphatase activity 

and are able to dephosphorylate MrrA. (D-E) CC2554 was prephosphorylated 

before added to other reactions as indicated by arrows or number. MrrA also 

inhibits CC2554 activity if CC2554 or MrrA are prephosphorylated.  

To check whether the phosphotransfer between the kinases CC2554 and 

CC2874 and MrrA is specific, we tested different incubation times (2 min – 30 

min) and different kinase concentrations. CC2554 autophosphorylates instantly 

(2 min) (Figure S2A, lane 1) and shows full activation between 10 min and 30 

min (Figure S2A, lane 3-5). The phosphotransfer to MrrA is also instant, after 

2 min the signal for CC2554 is gone and MrrA is clearly visible (Figure S2A, 

lane 6). MrrA phosphorylation increases with increasing concentration of 

CC2554 (Figure S2A, lane 7-10), whereas the band for CC2554 remains absent 

in the presence of the SDRR (Figure S2A, lane 7-10). Similarly, CC2874 is 

instantly autophosphorylated (no signal difference between 2 min up to 30 min 

incubation) and directly transfers phosphate to MrrA (Figure S2B, left panel, 

lane 1). The more MrrA is titrated into the mix, the more MrrA becomes 

phosphorylated by CC2874 (Figure S4B, right panel). Together these results 

suggest specific phosphotransfer between the kinases (CC2554 and CC2874) 

and MrrA. 

Next, we tested whether CC2554 and CC2874 can also act as phosphatases and 

if so, whether they are able to dephosphorylate MrrA. Therefore, each kinase 

was mixed with hexokinase and glucose +/- MrrA. As controls, hexokinase 

and glucose were not added to the in vitro phosphorylation reactions. As can be 

seen in Figure 2C, the signals for CC2554 (Figure 2C, lane 2) and CC2874 

(Figure 2C, lane 6) disappear in the presence of hexokinase and its substrate, 

indicating that both kinases have phosphatase activity. When MrrA is present 

in the mix as well, the signal for MrrA vanishes (Figure 2C, lane 4 and 8), 

suggesting that CC2554 as well as CC2874 can act as phosphatases for MrrA. 

The hypothesis that CC2554 is a phosphatase rather than a kinase for MrrA is 

supported by the finding that 20-fold excess of MrrA results not only in a loss 

of the CC2554 signal, but also in loss of the MrrA signal (Figure S4C, lane 9) 
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which was observed for two-fold excess of MrrA (Figure 2B, lane 6). 

Additionally, MrrAD53E mutant protein is not able to inhibit CC2554 kinase 

activity (data not shown). 

In order to analyse CC2554 and CC2874 in more detail, we expressed truncated 

versions of the proteins in which the PAS domains are missing (pIDJ088 = 

CC2554ΔPAS, pIDJ089 = CC2874ΔTMΔPAS). Furthermore, pIDJ090 was 

created for production of CC2874 without transmembrane domains and 

without REC domain (CC2874ΔTMΔREC), and pIDJ094 to express only the 

REC domain of CC2874 (RECCC2874). Figure S2C shows that the PAS domain 

of CC2554 is required for its function, CC2554ΔPAS does not 

autophosphorylate (Figure S2C, lane 4). We did not succeed in expressing 

CC2874 without its PAS domains from pIDJ090, the purified protein was very 

unstable and could not be used for the experiments. We wondered whether the 

observed signal of CC2874 was due to the phosphorylation of the histidine 

residue in the kinase domain, or due to the D782 in its REC domain and 

whether the REC domain of CC2874 competes for phosphorylation with 

MrrA. As can be seen in Figure S2D, the REC domain of CC2874 is neither 

required for the autophosphorylation activity of the kinase (Figure S2D, lane 

2) nor for the phosphotransfer to MrrA (Figure S2D, lane 4). This observation 

also indicates that the histidine of CC2874 is stable. Next, we mixed CC2874 

with different concentrations of MrrA and/or REC2874. Like MrrA, the REC2874 

shows no signal without CC2874 being present (Figure S2E, lane 1 and lane 3) 

and REC2874 becomes readily phosphorylated by CC2874 (Figure S2E, lane 

5) even if MrrA is present (Figure S2E, lane 6). In a competition experiment, 

either 5-fold excess of REC2874 or of MrrA was used to investigate whether one 

REC domain is preferred by CC2874. CC2874 is active enough to 

phosphorylate both REC domains even if one is present in excess (Figure S4E, 

lane 7 and 8). Considering the high activity of CC2874 and the fact that MrrA 

is always present at very low levels in C. crescentus, it is unlikely, that the potential 

competition between the REC domain of CC2874 and MrrA has physiological 

relevance in vivo. Interestingly, CC2554 is also inhibited if prephosphorylated 

before addition of other components suggesting that MrrA indeed activates 

CC2554 phosphatase activity (Figure 2D and Figure 2E). If MrrA is 

prephosphorylated by CC2874 and mixed with prephosphorylated CC2554, the 

signal from CC2554 disappears indicating that removal of phosphate from 

CC2554 is not due to a phosphate transfer reaction to MrrA (Figure 2D and 

Figure 2E). 
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Functional characterization of CC2554 and CC2874 in vivo 

We have validated, that at least CC2554 and CC2874 can act as kinases as well 

as phosphatases for MrrA in vitro. CC2324 and CC2501, which were suggested 

by Capra et al. to phosphorylate MrrA could not be identified as true MrrA 

kinases in our in vitro phosphorylation analyses [227]. However, since we cannot 

exclude CC2324 and CC2501 to be involved in MrrA-mediated signalling, we 

investigated the in vivo function of all four kinases. We constructed single 

deletion mutants for each kinase in wild type and ΔmrrA backgrounds as well 

as a strain in which all four kinases are lacking and IPTG-inducible 

overproduction constructs for each kinases in wild type and ΔmrrA 

backgrounds and tested them for the phenotypes identified for MrrA. 

Attachment, motility and biomass production were monitored. The only kinase 

that showed MrrA related phenotypes is CC2324. In a ΔCC2324 strain, 

attachment is downregulated to 50% (Figure 3A), whereas motility colonies size 

is upregulated to 140% (Figure 3B) and the corresponding cultures also 

produce more biomass in stationary phase (Figure S3A, upper left panel) 

compared to wild type. However, these phenotypes tested are still sensitive to 

the loss of MrrA, indicating that the effect of CC2324 on attachment, motility 

and biomass production in stationary phase is independent on MrrA. 

ΔCC2501, ΔCC2554 and ΔCC2874 did not reveal a phenotype and are still 

sensitive to loss of MrrA (Figure 3A, Figure 3B and Figure S3A). Since it might 

be a possibility, that loss of one kinase is compensated by other MrrA kinases, 

we constructed a strain in which all four kinases are missing. The strains 

behaved like a Δ2324 single mutant and was also still sensitive to loss of MrrA 

(Figure 3A, Figure 3B and Figure 3C). Our findings suggests that other MrrA 

kinases must exist which contribute to wild type levels for attachment, motility 

and biomass production in an MrrA-dependent manner. 

Nevertheless, while testing the overproduction strains, we could confirm that 

at least CC2554 and CC2874 are linked to MrrA in vivo. Figure S5B shows the 

attachment analysis of the kinase overproduction strains in the wild type and 

ΔmrrA background. As expected, the empty vector control shows an increase 

in attachment when MrrA is absent and induction with 200 µM IPTG does not 

significantly change the percentage of attachment in the empty vector controls 

(Figure S5B). The overproduction strains for CC2324 and CC2501 resemble 

the empty vector controls (Figure S3B). Overproduction of CC2554 in a wild 

type background, however, results in an increase of attachment, mimicking a 

ΔmrrA mutant. This observation is in line with our in vitro data, which indicate 

that CC2554 is a phosphatase rather than a kinase for MrrA. In this model, 
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overproduction of CC2554 would result in MrrA dephosphorylation in vivo, 

which would be equal to a loss of MrrA if phosphorylated MrrA is the active 

species. Indeed, an MrrAD53N mutant that cannot phosphorylate MrrA 

phenocopies a ΔmrrA strain (data not shown). In addition, purified MrrAD53N 

is not able to extinguish the CC2554 signal in in vitro phosphorylation assays 

(Figure S4C, lane 6), indicating that MrrA functions by phosphotransfer and 

not by protein-protein interaction. Notably, CC2554 overproduction not only 

has an effect on attachment in an MrrA-dependent manner (Figure S3B), but 

also on biomass production in stationary phase (Figure S3D). As expected, in 

the empty vector controls ΔmrrA shows decreased biomass in stationary phase 

compared to wild type. When CC2554 is overexpressed in the ΔmrrA 

background, more biomass is produced than in Caulobacter cultures that 

produce MrrA (Figure S3D). 

In summary our data show, that CC2554 likely acts as a phosphatase for MrrA 

to regulate attachment and biomass production in stationary phase cultures, but 

that CC2554 does not seem to be involved in the regulation of motility (Figure 

S3C). CC2874 overproduction results in wild type attachment and motility 

levels not only in the wild type, but also in cells lacking MrrA (Figure S3B and 

Figure S3C). This observation suggests that CC2874 might cross signal to 

another target that can compensate for the loss of MrrA as long as CC2874 is 

present at high levels. 
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Figure 3: In vivo characterization of CC2324, CC2501, CC2554 and 

CC2874. PYE medium was used for all experiments. CC2324 is the only kinase 

that shows a phenotype for attachment and motility, but it is still sensitive to a 

loss of mrrA. Deletion of all four kinases results in phenotypes similar to 

ΔCC2324, indicating that more kinases must exist to explain the ΔmrrA 

phenotypes. None of the kinases mutants showed a phenotype for biomass 
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production. (A) A 96-well plate attachment assay was analysed 24h after 

inoculation. Two biological and six technical replicates were used per 

experiment. At least three experiments have been performed per strain. (B) 

PYE plates supplemented with 0.3% agar were inoculated and colony sizes 

were measured 3 days after inoculation. 5 independent plates were analysed per 

experiment. At least 3 experiments have been performed per strain. (C) 

Biomass production was followed in a 96-well plate. Two biological and six 

technical replicates were used per experiment. At least three experiments have 

been performed per strain. Error bars indicate the standard deviation for each 

graph. 

In search for additional MrrA network components 

Our data suggest that CC2554 primarily acts as a phosphatase for MrrA, 

whereas CC2874 is a strong kinase for MrrA. Nevertheless, other kinases must 

exist to explain the phenotypes found for ΔmrrA. Since Co-IP and Y2H 

screening did not reveal additional true positive hits for phosphotransfer, and 

since so far we lacked downstream targets of MrrA, we compared the proteome 

between ΔmrrA and wild type cells. Table 1C shows all hits, that were at least 

four times up- or downregulated and Table S3 contains the whole data set. 

Amongst the best scores were three components of the SigT stress pathway of 

C. crescentus: the sigma factor SigT itself, which is required to control genes 

required for adaptation to stress; NepR, the anti-sigma factor; and PhyR, the 

anti-anti-sigma factor. Under growth-promoting conditions, NepR is bound to 

SigT to prevent the activation of the stress regulon. Upon stress, PhyR becomes 

phosphorylated by its cognate kinase PhyK upon which it undergoes a 

conformational change which allows the anti-anti-sigma factor to bind to NepR 

and to titrate it away from SigT. This sequence of events ultimately allows free 

SigT molecules to bind to the sigT motif present in promoters of genes under 

its regulation [203,206,207,275]. Indirect evidence led to the proposition, that 

LovK, a kinase which results in superattachment when overexpressed with its 

cognate response regulator LovR [211], might regulate the phosphorylation 

status of PhyR and thus, the response to stress in C. crescentus [202]. 

Nevertheless, direct evidence was not found so far. Notably, not only SigT, 

NepR and PhyR were dramatically downregulated in ΔmrrA cultures, but also 

LovK was downregulated to a ratio of 0.4 in ΔmrrA compared to wild type 

cultures (Table S3). 

The proteome comparison seems to place MrrA in the context of stress 

regulation, expecially when considering that all MrrA phenotypes (attachment, 

motility, biomass production) were originally scored in stationary phase when 
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cells are known to be stressed by factors like high cell density and nutrient 

limitation. We first set out to investigate the link between MrrA and SigT in 

more detail, before testing whether LovK might be a phospho-regulator for 

MrrA, since it was not identified in Co-IP or Y2H and the potential link to 

PhyR had not been validated so far. 

MrrA functions within the SigT stress pathway of C. crescentus 

In order to investigate whether MrrA is involved in the SigT stress pathway of 

C. crescentus, we used the pPsigU-lacZ reporter (pRKlac290-SigU, [202]). SigT is 

the master regulator of the general stress response in C. crescentus and regulates 

more than 40 transcriptional units, amongst others sigU. In literature, SigU is 

generally used as a reporter for SigT activity since so far SigT is the only protein 

identified to regulate sigU transcription by binding to its promoter region 

[207,275,285]. However, we cannot exclude that other factors contribute to 

regulate PsigU. To monitor whether MrrA feeds into the SigT pathway, we first 

compared exponential phase cultures with stationary phase cultures in the wild 

type, ΔmrrA, ΔsigT and the double mutant background ΔmrrAΔsigT. PsigU 

activity is detectable in exponential phase and, as expected, increases in 

stationary phase in wild type cells (Figure 4A). β-galactosidase activity was 

nearly not measurable in ΔmrrA, ΔsigT and the double mutant background 

ΔmrrAΔsigT, indicating that not only sigT is required for adaptation to stresses, 

but that the SDRR MrrA is also needed to activate the sigT pathway. To 

minimize the chance of artifacts due to heterogeneity and difficulties with cell 

lysis of stationary phase cells, we used exponential phase cultures for further 

experiments. Figure 5B shows that PsigU-reporter activity increases in response 

to osmotic stress (150 mM sucrose or 75 mM NaCl, applied for 10 min) in the 

wild type, but not in ΔmrrA, ΔsigT and the double mutant background 

ΔmrrAΔsigT, again highlighting the importance for MrrA to regulate stress 

adaptation. None of the exponential phase cultures responded to a temperature 

shift from 30 to 37°C during 20 min of stress exposure (Figure 4B). To define 

whether MrrA acts upstream or downstream of SigT, we performed western 

blot analysis and used P-egfp fusions in batch cultures. Neither overproduction 

of SigT, nor the addition of 150 mM sucrose to exponential phase cultures 

resulted in a detectable increase of MrrA-3xFLAG on western blots (data not 

shown). Similarly, PsigT-egfp levels were not increased in cultures overproducing 

or lacking MrrA (data not shown). 
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Figure 4: MrrA is involved in the SigT-stress pathway. PYE medium was 

used for all experiments. Two biological replicates were used per experiment 

and at least two experiments were performed per strain and condition. All 

strains shown harbour a plasmid on which lacZ is under control of the sigU 

promoter (pPsigU-lacZ = pRKlacZ290-sigU). Error bars indicate the standard 

deviation. (A) Kinetic β-galactosidase experiments were carried out using 

exponential as well as stationary phase cultures. 20 time points have been 

measured and the β-galactosidase activity is plotted as the slope (OD405) over 

time. (B) Overnight cultures were diluted to an OD660 of 0.05 and grown until 

OD660 of 0.3 before being exposed to the indicated stresses. 150 mM sucrose 

and 75 mM NaCl were applied for 10 min, the temperature shift to 37°C for 

20 min.  
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LovK directly connects MrrA with the SigT pathway of C. crescentus 

Our in vivo data show, that MrrA is required to activate the SigT stress pathway 

(Figure 4). A proteome comparison revealed that not only the stress pathway 

components SigT, PhyR and NepR are downregulated in ΔmrrA cultures 

compared to wild type, but that also the LovK kinase showed great reduction 

in its protein levels (Table S3). Since LovK has been proposed to feed into the 

SigT stress pathway [202], we purified all components and tested their 

connectivity by in vitro phosphorylation. Figure 5A shows, that LovK was not 

active by itself (also see Figure 5C lane 3), i.e. autophosphorylation as well as 

phosphotransfer to LovR (its cognate response regulator) and MrrA was not 

detectable (Figure 5A, lane 3-4). However, when we mixed all four proteins 

(CC2874, MrrA, LovK and LovR), a faint band for LovR became visible (lane 

7). Since CC2874 was not able to phosphorylate LovR (lane 5), the signal seen 

for LovR in lane 7 was likely to resulted from active LovK, which seemed to 

require either CC2874 or MrrA or both for activation. To get more insight, we 

performed another experiment in which CC2874, MrrA and LovK were mixed 

without LovR. Figure 5B shows that LovK was not active in the presence of 

CC2874 alone (Figure 5B, lane 2), but clearly autophosphorylated in the 

presence of CC2874 and MrrA (lane 3). As observed before, the LovK signal 

was lost in the presence of LovR (lane 5). Together, these data indicate that 

LovK requires phosphorylated MrrA for its activity. Although no LovR 

phosphorylation was detectable when the SDRR is solely incubated with 

CC2874, a faint signal became visible when MrrA was added to the mix (lane 

4), indicating that eventually, CC2874 might be able to cross-phosphorylate 

LovR. Equivalent results are obtained when CC2874 and MrrA are pre-

incubated with hot ATP before LovR, LovK or both LovRK are added to the 

mix (lane 6-8). 

Next, we tested the connectivity between MrrA-LovK and the SigT stress 

pathway (Figure 5C). Surprisingly, when CC2874, MrrA, LovK and PhyR were 

incubated with radioactively labelled ATP, almost no signal was visible for 

PhyR (Figure 5C, lane 6). A recent study by Herrou et al. showed, that PhyR 

phosphorylation becomes stable in the presence of NepR in in vitro 

phosphorylation assays [204]. They kindly provided us with the plasmid for 

NepR purification with which we managed to show for the first time with in 

vitro studies, that LovK indeed might transfer phosphate to PhyR (Figure 5C, 

lane 7). Since this experiment did not exclude that one of the other components 

in the mix required to activate LovK results in PhyR phosphorylation, we 

performed a control experiment in which first only CC2874, LovK, PhyR and 
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NepR were mixed with hot ATP. Figure 5D shows, that LovK is not active and 

that PhyR is also not detectable in the radiogram (Figure 5D, left radiogram, 

lane 1). Next, MrrA was added to the mix and time-course samples were taken 

ranging from 0.5 to 30 min (left radiogram, lane 2-7). As can be seen, LovK 

directly autophosphorylated and PhyR became visible after 2 min. The PhyR 

signal increased with incubation time. Interestingly, upon addition of LovR, the 

signal for MrrA was almost and the LovK signal totally lost after 0.5 min 

(Figure 5D, right radiogram, lane 2), whereas the PhyR signal remained stable 

within the 30 min tested (right radiogram, lane 2-7). This finding suggests that 

LovR switches LovK into phosphatase mode, and that LovK can 

dephosphorylate MrrA (the activator for LovK kinase) but not PhyR. To test 

whether LovK can function as phosphatase in our experimental set-up, we 

performed a phosphatase assay in which CC2874 and MrrA were incubated 

with LovK to activate LovK kinase activity (Figure 5E, lane 1). When 

hexokinase and glucose were added, the LovK signal was lost (lane 2), 

indicating that LovK can act as kinase and phosphatase in our buffer.  

Together, our findings show that LovK requires MrrA for kinase activity, and 

that LovR might function as the MrrA counterpart which switches LovK into 

its phosphatase mode. We show for the first time that indeed PhyR becomes 

phosphorylated by LovK in C. crescentus, and that this phosphorylation (at least 

in vitro) depends on active MrrA. 
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Figure 5: LovK connects MrrA with the SigT-stress pathway by 

phosphorylating PhyR. Proteins were used in the following concentrations: 

10 µM MrrA, 5 µM of CC2874, 5 µM of LovR, 5 µM of LovK, 5 µM of PhyR, 

5 µM of NepR, 1.5 units hexokinase, 5 mM glucose. 500 µM ATP and 2.5 µCi 

[γ32P]ATP (3,000 Ci mmol-1) were used and the reactions were carried out for 
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15 minutes (unless indicated otherwise) at room temperature. (A) LovK by 

itself does not autophosphorylate (lane 1) and cannot phosphotransfer to LovR 

(lane 3) or MrrA (lane 4). CC2874 is not able to phosphorylate LovR (lane 5). 

When all four proteins are mixed, MrrA phosphorylation by CC2874 is not 

visible and a weak signal for LovR becomes apparent, whereas LovK is not 

detectable in the radiogram (lane 7). (B) CC2874 cannot activate LovK 

autophosphorylation (lane 2), but when MrrA is added to the mix, LovK 

becomes visible in the radiogram (lane 3), indicating that phosphorylated MrrA 

is required for LovK kinase activity. The combination of CC2874 and MrrA is 

not potent to phosphorylate LovR (lane 4), but LovR addition to a mix 

containing CC2874, MrrA and LovK results in signal loss for MrrA and LovK 

(lane 5). As controls, CC2874 and MrrA were pre-incubated and LovR, LovK 

or both LovRK were added 10 minutes later (lane 6-8). The results are 

comparible to the corresponding lanes in which all proteins were mixed 

directly. (C) Activated LovK seems to transfer phosphate to PhyR, but the 

signal of PhyR is very weak (lane 6). Addition of NepR to the mix results in a 

strong PhyR signal (lane 7). (D) CC2874, LovK, PhyR and NepR were pre-

incubated with hot ATP resulting in a specific bands for CC2874 and some 

bands from degraded His6-MBP-CC2874 (left radiogram, lane 1). MrrA was 

added to the mix and time-course samples were taken between 0.5 min and 30 

min. Next to CC2874, MrrA and LovK become directly visible (left radiogram, 

lane 2), whereas PhyR phosphorylation by LovK increases with time (left 

radiogram, lane 2-7). LovR was added to the mix and time-course samples were 

taken from 0.5 to 30 min (right radiogram, lane 2-7). The signal for LovK 

vanishes completely, the signal for MrrA becomes very weak and the signal for 

PhyR remains visible on the radiogram (right radiogram, lane 2-7), supporting 

the idea that LovR switches LovK from kinase to phosphatase mode and that 

LovK dephosphorylates itself and also MrrA, whereas it cannot 

dephosphorylate PhyR. A signal for LovR is visible as well. (E) LovK has 

phosphatase activity (lane 1). Whether LovK can dephosphorylate MrrA 

cannot be tested, since CC2874 (which can function as a phosphatase for 

MrrA) is required in the mix to phosphorylate MrrA.  
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Discussion 

In this study we characterised the single domain response regulator CC3015 of 

C. crescentus and renamed it MrrA (multifunctional single domain response 

regulator A). Cells lacking MrrA show increased surface attachment, increased 

motility on semi-solid agar plates and reduced biomass in stationary phase 

(Figure 1). Moreover, a ΔmrrA mutant is not synchronizable using standard 

centrifugation procedure with ludox. Instead of two separate bands for 

swarmer and stalked/predivisional cells, a culture lacking MrrA shows stalked 

cells all over the gradient (data not shown). However, this phenotype is 

holdfast-dependent and was therefore not analyzed in more detail. MrrA is 

evenly distributed in the cytosol and present at low levels in all cell types. In 

line with the observation that the ΔmrrA phenotypes analysed in this study are 

most pronounced in stationary, phase its concentration is slightly increased in 

non-growing cultures (data not shown).  

In contrast to other bacteria, stress adaptation of C. crescentus is regulated by 

only one sigma factor. C. crescentus only encodes two sigma factors, SigT and 

SigU [286]. The sigU-promoter is generally used as a control for SigT activity. 

In wild type C. crescentus cells, SigT is usually bound by the anti-sigma factor 

NepR to prevent the activation of genes required for stress adaptation in 

growth promoting conditions. When cells encounter stress, the anti-anti-sigma 

factor PhyR becomes phosphorylated. This reaction goes along with a 

conformational change of the protein allowing PhyR~P to bind NepR and 

consequently to titrate NepR away from SigT. Accordingly, free SigT molecules 

can bind the SigT-recognition sequence (GGAAC-N16-17-CGTT) in SigT-

regulated promoters [207,275,285]. A proteomics analysis revealed that the 

stress pathway consisting of the sigma factor SigT, the anti-sigma factor NepR 

and the response regulator PhyR are significantly downregulated in a mutant 

lacking mrrA (Table S1). This could explain the observed stress sensitivity of 

the mrrA mutant, i.e. reduced biomass in stationary phase when cells encounter 

high cell densitiy and lack of nutrients and oxygen (Figure 1A). In line with this, 

we found that MrrA is required for transcriptional activation of a SigT-specific 

reporter (PsigU) (Figure 4). However, western blot analysis with a specific 

antibody raised against MrrA and microscopy analysis using PmrrA-egfp fusions 

showed that MrrA levels are not upregulated by osmotic stress and do not seem 

to be under control of SigT (data not shown). Together, these observations 

suggest, that MrrA functions upstream of SigT to regulate stress adaptation and 

that MrrA activity rather than MrrA expression is increased during harsh 

conditions. In line with this, we found that the conserved phosphoryl-acceptor 



137 

 

aspartic acid D53 is required for MrrA functionality, arguing that the protein 

elicits its functions through phosphorylation. Both an MrrAD53N and an 

MrrAD53E mutant both phenocopy a ΔmrrA strain (data not shown). 

Since MrrA seems to be involved in different signal transduction cascades and 

developmental pathways, we expected MrrA to interact with multiple proteins. 

We used co-immunoprecipitation (Co-IP) as well as yeast two hybrid screening 

(Y2H) to identify interaction partners of MrrA and unravel the MrrA network 

(Table 1). Ideally, we expected to find at least one kinase to regulate MrrA 

activity and different target proteins downstream of MrrA to regulate cell 

development and stress response. Since SDRR are known to kiss-and-fly during 

protein-protein interaction, we used formaldehyde in the Co-IP experiments to 

cross-link MrrA to its potential interaction partners. Interesting hits were 

double checked with bacterial two hybrid (B2H). In contrast to Co-IP, Y2H 

experiments are more likely to reveal direct interaction partners without 

revealing hits that are based on complex formation. As true positive hits the 

combination of assays revealed only two PAS histidine kinases, CC2874 and 

CC2554 (Figure 2). Both kinases were subsequently subjected to in vitro 

phosphorylation analysis using purified protein. 

Our data show that CC2554 is a weak kinase and can dephosphorylate MrrA 

in the presence of hexokinase and glucose. The PAS domain of CC2554 is 

required for autophosphorylation. Interestingly, we found that MrrA inhibits 

CC2554. When MrrA is incubated with autophosphorylated CC2554, a signal 

for MrrA becomes visible (CC2554 phosphorylates MrrA), but the 

autophosphorylation signal for CC2554 vanishes. This implies that either 

CC2554 cannot autophosphorylate in the presence of MrrA or that MrrA turns 

CC2554 in its phosphatase mode. Considering that CC2554 can act as a 

phosphatase for MrrA, the sole inhibition of autophosphorylation seems to be 

the more likely explanation. Inhibition of CC2554 is observed even in 3-fold 

excess of CC2554, but is not monitored with MrrAD53N mutant protein. The 

latter again suggests that phosphorylated MrrA is the active species. (Figure 2 

and Figure S2). 

The second kinase, CC2874, is the strongest kinase seen so far in our lab. 

Mutant CC2874 protein without PAS domains is unstable and could thus not 

be analyzed in our study. The REC domain of the kinase is not required for its 

function and CC2874 readily phosphorylates its REC domain as well as MrrA 

even if one of the proteins is present in 5-10 fold excess. Our results show that 

not only the phosphorylated Asp of the REC domain, but also the 
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phosphorylated His of the kinase domain of CC2874 are stable enough to be 

detected (Figure 2 and Figure S2). 

Using a phosphoprofiling screening method Capra et al. found two kinases, 

CC2324 and CC2501, that both showed weak phoshpotransfer to MrrA when 

expressed without their REC domain (Figure 2A) [227]. Notably, they showed 

for another protein that removal of the REC domain results in unspecificity 

[150]. We therefore purified the kinases CC2324 and CC2501 with their REC 

domains (only the membrane spanning regions were excluded in our 

constructs) and investigated possible phosphotransfer to MrrA. CC2324 is the 

weakest kinases of this study. The brightness and contrast of the radiograms 

had to be optimized in order to see a signal. In the adapted images, CC2324 

autophosphorylation as well as a signal for MrrA is slightly visible. CC2501 

shows clear autophosphorlyation signals, but phosphotransfer to MrrA was not 

detectable (Figure 2). Taken together, our in vitro phosphorylation assays 

suggest that CC2874 functions as a kinase for MrrA, whereas CC2554 might 

primarily be active as a phosphatase for the SDRR, which in turn deactivates 

CC2554 kinase activity. Although we cannot exclude that CC2324 and CC2501 

are interacting with MrrA in vivo, our in vitro data suggest that MrrA is not a 

specific target for either of the two kinases. 

To investigate whether the kinases CC2324, CC2501, CC2554 and CC2874 can 

explain the phenotypes observed for ΔmrrA, we constructed overproduction 

and deletion mutants for each kinase. Overexpression of CC2874 resulted in 

loss of sensitivity to mrrA deletion when scored for attachment and motility 

(Figure S3). Overproduction of CC2554 showed increased attachment levels in 

wild type background and compared to that decreased surface adherence in a 

ΔmrrA background. Additionally, the cells were not sensitive to a loss of mrrA 

in motility assays on semi solid agar plates (Figure S3). These data imply, that 

CC2874 and CC2554 are indeed involved in regulating attachment and motility 

in an MrrA-dependent way. However, single deletions of CC2501, CC2554 and 

CC2874 are not impaired in attachment, motility or stress adaptation. In 

combination with ΔmrrA, the double mutants phenocopy a ΔmrrA single 

mutant. Even a quadruple deletion mutant (ΔCC2324 ΔCC2501 ΔCC2554 

ΔCC2874) is still sensitive to loss of mrrA (Figure 3), arguing that other kinases 

exist that feed into the MrrA signaling cascade. Deletion of CC2324 shows 

phenotypes when scored for attachment, motility and biomass production, but 

the mutant is still sensitive to a loss of ΔmrrA, indicating that regulation of the 

phenotypes is MrrA-independent. In summary, our data imply that CC2554 

and CC2874 are connected to MrrA in vivo (overproduction data) but that other 
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kinases must exist that feed into the MrrA signaling cascade (quadruple kinase 

knock-out mutants). Recent work on the MrrA homolog SdrG of S. melonis 

supports this notion. SdrG is phosphorylated by seven kinases (PakA – PakG) 

and these kinases also mediate phosphotransfer to the anti-anti sigma factor 

PhyR. Furthermore, phosphorylation of other SDRR (PkrB, PkrC, PkrD, PkrF) 

also depends on the Pak proteins and PhyR is additionally regulated by the 

phosphatase PhyP [205,210]. These findings mirror the complexitiy found in 

our C. cresecentus system and might explain why phenotypes for the kinase 

knock-out mutants could not be found. Interestingly, SdrG has been shown to 

positively affect stress adaptation and to function upstream of PhyR, like MrrA 

[205,210].  

Next we decided to focus on the connectivity between MrrA, LovK and the 

SigT stress pathway. In addition to dramatic downregulation of PhyR, NepR 

and SigT, we also found decreased LovK levels in ΔmrrA compared to wild 

type cells (Table S3). So far, the link between MrrA and LovK has not been 

shown and the potential connection between LovK and PhyR in C. crescentus is 

missing essential in vitro data [202]. LovK was originally identified to be 

involved in surface attachment [211] and it has been suggested, that LovK only 

functions as a phosphatase for PhyR (reviewed in [275]) whereas PhyR 

phosphorylation depends on PhyK [207]. Notably, no study is published in 

which purified C. crescentus PhyK was used in vitro. Although essential in vitro 

data were missing another study proposed, that LovK of C. crescentus might 

phosphorylate PhyR, at least in the absence of LovR [202]. In line with these 

studies it has been shown for B. abortus that LovK (Bab2_0652) interacts with 

PhyR (Bab1_1671) [287]. Our in vitro phosphorylation assays provide the 

missing information in the signaling cascade. We show that phosphorylated 

MrrA is required to activate LovK autophosphorylation. Furthermore, we 

provide in vitro data showing that activated LovK can phosphotransfer to PhyR 

of C. crescentus. The PhyR~P signal is increased in the presence of NepR (Figure 

5). As described in the literature, the addition of NepR stabilizes 

phosphorylated PhyR by a yet unknown mechanism [204]. Interestingly, LovK 

can dephosphorylate MrrA, but is unable to act as a phosphatase for PhyR. 

Instead, LovK functions solely as a PhyR kinase in our assays (Figure 5). In 

order to switch off the activated SigT-stress adaptation pathway, PhyR would 

either have to be deactivated by dephosphorylation, or be degraded. At least in 

B. abortus, PhyR is degraded by ClpXP in the absence of stress [209]. Whether 

the same holds for true C. crescentus remains to be elucidated. Alternatively, 

other phosphatases, e.g. PhyK might function as deactivators for PhyR~P. 

Previous studies suggest that LovR functions as a phosphate sink for LovK, 
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resulting in LovK dephosphorylation [202,210,287]. Importantly, our data now 

show that LovR rather switches LovK into its phosphatase mode resulting in 

loss of the LovK and MrrA signal (Figure 5). Interstingly, E. litoralis harbours 

three LovK homologs (ELI02980 = EL368, ELI04860 = EL346 and 

ELI07650 = EL362). All three homologs can phosphotransfer to LovR. EL346 

and EL368 were also tested positive for phosphorylation of PhyR and the MrrA 

homolog ELI09195, and EL368 in addition showed phosphotransfer to 

ELI14085 (DivK) and ELI07690 (CpdR) [288]. Whether LovK of C. crescentus 

can also regulate the activity of DivK and CpdR still remains to be elucidated. 

Notably, ΔmrrA is phenocopied by cells overproducing LovRK. LovK and its 

cognate response regulator LovR were originally identified to lead to a 

superattachment phenotype when overproduced simultaneously [202]. In 

addition, cells overexpressing lovR and lovK are less stress resistant and 

accordingly, a lovRK double mutant was found to show increased cell survival 

under osmotic stress [202]. And we found that LovRK overproduction results 

in elevated motility (data not shown, Figure XH). So far, LovRK regulation of 

motility was not published. Together with the literature data we conclude that 

a lovRK overexpression strain phenocopies ΔmrrA. 

Taken together, we propose a model in which phosphorylated MrrA is required 

for the activation of the SigT pathway via LovK and at least one other kinase 

that phosphotransfers to PhyR, likely PhyK. MrrA itself becomes activated by 

CC2874 and CC2554 as well as other kinases. Both, CC2874 and CC2554 have 

phosphatase activity and are able to dephosphorylate MrrA. MrrA in turn 

inhibits CC2554 resulting in a feedback loop. Phosphorylated MrrA activates 

kinase activity of LovK and is counteracted by LovR, a SDRR that switches 

LovK into phosphatase mode resulting in dephosphorylation of LovK and 

MrrA. LovK connects MrrA to the SigT pathway by acting as a kinase for PhyR 

(Figure 6). Furthermore, MrrA indirectly has a negative effect on attachment 

and motility, whereas LovK (when overproduced together with LovR) does 

not only positively affect surface adherence as described before [211], but also 

leads to increased motility levels. Whether the regulation of attachment and 

motility is also wired by the SigT pathway remains to be elucidated. At least for 

LovK it has been proseded that its effect on attachment is independent of PhyR 

(reviewed in [275]). Due to the abundance of components upstream of PhyR 

genetic approaches are inconclusive at this point (data not shown). 

Furthermore, nepR deletion as well as SigT overproduction results in a lethal 

phenotypes (reviewed in [275]). 
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In summary, our research shows that the SDRR MrrA functions as a signaling 

bottleneck for stress adaptation and is also involved in the regulation of 

attachment and motility. Strikingly, MrrA has a negative effect on both, surface 

attachment and motility, although the corresponding cells types are inversely 

regulated in C. crescentus. How this is accomplished remains to be elucidated. 

Multiple kinases can activate MrrA by phosphorylation and in turn, MrrA 

affects downstream proteins in the signaling cascade. Importantly, the 

downstream proteins as well as upstream interaction partners of MrrA are 

reduntant to ensure proper response when cells encounter stress. This 

redundancy increases the complexity of the MrrA network and explains the 

difficulty to interpret our phenotypes found for deletion mutants upstream of 

PhyR. Notably, we showed for the first time, that LovK functions as a 

connector between MrrA and the SigT-pathway via PhyR. 
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Figure 6: MrrA network configuration. Schematic overview of the SigT-

activating cascade in C. crescentus.  
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Extended Data Figure 1 
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Extended Data Figure 1: MrrA phenotypes depend on cdG. PYE medium 

was used for all experiments. Error bars indicate the standard deviation for 

each graph. (A) A 96-well plate attachment assay was analysed 24h after 

inoculation. Two biological and six technical replicates were used per 

experiment. At least three experiments have been performed per strain. 

Attachment is fully abolished in a strain that cannot produce cdG. An mrrA 

deletion cannot restore attachment. (B) PYE plates supplemented with 0.3% 

agar were inoculated and colony sizes were measured 3 days after inoculation. 

5 independent plates were analysed per experiment. At least 3 experiments have 

been performed per strain. Motility on 0.3% agar plates is fully abolished in a 

strain that cannot produce cdG. An mrrA deletion cannot restore motility under 

these conditions. (C) Biomass production was followed in a 96-well plate. Two 

biological and six technical replicates were used per experiment. Strains lacking 

cdG show increased biomass in stationary phase compared to wild type and 

ΔmrrA cultures, and deletion of mrrA does not result in decreased biomass in 

stationary phase in a cdG0 background. 
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Extended Data Figure 2 
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Extended Data Figure 2: Additional in vitro characterization of CC2554 

and CC2874. Proteins were used in the following concentrations unless 

indicated otherwise: 10 µM MrrA, 5 µM of potential CC2554 and CC2874. 500 

µM ATP and 2.5 µCi [γ32P]ATP (3,000 Ci mmol-1) were used and the reactions 

were carried out for 15 minutes (unless indicated otherwise) at room 

temperature. (A) Autophosphorylation of CC2554 is visible after two minutes 

(lane 1) and saturated after 10 minutes (lane 3). If CC2554 is titrated into the 

mix, more MrrA becomes phosphorylated (lane 7-10). In the presence of MrrA, 

the CC2554 autophosphorylation signal is not visible, indicating that MrrA 

inhibits the activity of CC2554. (B) Autophosphorylation of CC2874 and 

phosphotransfer to MrrA is instant (lane 1). If MrrA is titrated into the mix, its 

phosphorylation signal becomes more intens with increasing concentration, 

indicating that CC2874 is active for several rounds. (C) MrrA alone is not 

phosphorylated (lane 1). The same applies for MrrAD53N (lane 2), which also 

does not become phosphorylated in the presence of CC2554 and cannot inhibit 

CC2554 (lane 6), supporting the idea that phosphorylated MrrA is the active 

species. The PAS domain of CC2554 is required for its function, as 

CC2554ΔPAS does not show autoactivation (lane 4). A 20x excess of MrrA 

(100 µM) compared to CC2554 results not only in loss of the CC2554 

autoactivation signal, but also in the loss of the MrrA signal (lane 9), supporting 

the idea that CC2554 is primarily a phosphatase for MrrA. (D) The REC 

domain of CC2874 is neither required for its autophosphorylation (lane 2), nor 

for phosphate transfer to MrrA (lane 4). Lane 4 also shows, that the 

phosphorylated His441 of CC2874 is stable, and that both, the His441 and the 

Asp728 in the REC domain can be made visible. (E) Like in the case of MrrA 

(lane 1), the REC domain of CC2874 cannot be phosphorylated without a 

kinase being present (lane 3). CC2874 can phosphotransfer to MrrA (lane 4) 

and to its own REC domain (lane 5). If both, MrrA and RECCC2874 are present 

in the mix, both become phosphorylated by CC2874 (lane 6). If one of the 

REC domains is present in 5-10x excess, still both signals are visible, indicating 

that CC2874 is active enough to phosphotransfer both REC domains 

efficiently (lane 7-8).  
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Extended Data Figure 3 
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Extended data Figure 3: Additional in vivo characterization of CC2324, 

CC2501, CC2554 and CC2874. PYE medium was used for all experiments. 

Error bars indicate the standard deviation for each graph. (A) Biomass 

production was followed in a 96-well plate. Two biological and six technical 

replicates were used per experiment. At least 3 experiments have been 

performed per strain. Deletion of CC2324, CC2501, CC2554 and CC2874 alone 

or in combination with ΔmrrA resemble wild type or ΔmrrA biomass 

production, respectively. (B) Overnight cultures were diluted to OD660 = 0.05, 

grown until OD660 = 0.3 before 200 µM IPTG were added to induce kinase 

overexpression. Cells were directly transferred to a 96-well plate and 

attachment was scored 24h after inoculation. Two biological and six technical 

replicates were used per experiment. At least 3 experiments have been 

performed per strain. Only CC2554 and CC2874 overproduction have an effect 

on attachment. Overproduction of CC2554 in wild type results in increased 

attachment, supporting the idea that CC2554 is a phosphatase rather than a 

kinase for MrrA. Overproduction of CC2874 results in decreased attachment 

in the ΔmrrA background. (C) PYE plates supplemented with 0.3% agar and 

200 µM IPTG were inoculated and colony sizes were measured 3 days after 

inoculation. 5 independent plates were analysed per experiment. At least 3 

experiments have been performed per strain. CC2324 and CC2874 are the only 

kinases that result in a phenotype when overexpressed. In both cases the strains 

are not susceptible to a loss of mrrA anymore. (D) Overnight cultures were 

diluted to OD660 = 0.05, grown until OD660 = 0.3 before 200 µM IPTG were 

added to induce kinase overexpression. Cells were directly transferred to a 96-

well plate and biomass was followed for 24h. Two biological and six technical 

replicates were used per experiment. Overexpression of CC2324 and CC2501 

does not show phenotypes. Overexpression of CC2554 or CC2874 however 

results in insusceptibility for a loss of mrrA. In both cases, the deletion of mrrA 

does not result in less biomass in stationary phase compared to overexpression 

of the kinases in the wild type background. 
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Extended Data Table 1 

 

A Protein Essential Function Total 
counts    

WT 

Total 
counts    
MrrA 

Fold 
change 

(MrrA/wt) 

T-
test 

 DgcB no signaling 1 11 11 0.03 

 ChpT yes signaling 0 9 9 0.00 

 ParE yes DNA 
replication 

0 22 22 0.01 

 CC2874 no signaling 0 24 24 0.04 

 CC1056 no DUF 1 15 15 0.05 

B Protein Essential Function Transformants 

 CC2330 no transcription 
factor 

2 

 CC2554 no kinase 1 

 CC2874 no hybrid kinase 5 

C Protein Essential Function Ratio (mrrA / wt) 

 CC2576 no SDRR 0.25 

 CC3147 no TonB-dep 
receptor 

4.34 

 MucRIII no transcription 

factor 
0.02 

 NepR yes anti-sigma 
factor 

0.10 

 PhyR no anti-anti-
sigma factor 

0.22 

 SigT no sigma factor 0.08 
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Extended data Table 1: In search for potential MrrA interaction partners. 

(A) Selected hits obtained by Co-IP using MrrA-3xFLAG to pull down 

potential interaction partners. All hits shown were double-checked by bacterial 

two hybrid either because of high fold change and/or because of possible 

association with one of the MrrA phenotypes. The full data set can be found 

in Table S2. (B) All in frame hits from the Y2H screen that did not show 

autoactivation and grew after restreaking on selective plates. (C) All hits from 

proteome comparison between wild type and ΔmrrA cultures that were 

minimally 4x down- or 4x upregulated. The full data set can be found in Table 

S3. 

Tables S2 and S3 showing pulldown and mass spec data are not included in this 

thesis. 
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Materals and Methods 

Protein purification 

E. coli BL21 containing the plasmid of interest were grown at 30C in LB 

medium and induced with 1 mM isopropyl -D-1-thiogalactopyranoside 

(IPTG) for protein overproduction at OD600 = 0.6. Cells were harvested 2 h 

after induction (5.000 rpm, 15 min, 4C) and the cell pellets were stored at -

80C. After resuspension of the pellet in lysis buffer (1x PBS, 10 µg/ml DNase, 

1 complete mini protease inhibitor tablet (Roche)), the cells were disrupted 

using french pressing (2 bar) and the supernatant containing the protein of 

interest was separated from the cell lysate by centrifugation (11.000 rcf, 1 h, 

4C). The supernatant was incubated with 1 ml Protino® Ni-NTA Agarose 

(Macherey-Nagel) (11 rpm, 1 h, 4C) before being loaded to the column. The 

column was washed with wash buffer (2x PBS, 500 mM NaCl, 10 mM 

imidazole (pH 8.0), 1 mM DTT) and the protein was eluted in 1 ml elution 

buffer (1 x PBS, 500 mM NaCl, 250 mM imidazole (pH 8.0), 1 mM DTT). 

Protein was dialysed in Spectra/POR® membranes with a cutoff of 3.5 kDa 

(for MrrA-His6 form plasmid pIDJ053) or 12-14 kDa (for all other proteins) 

(Spectrum Laboratories) using 500 ml dialysis buffer (10 mM HEPES-KOH, 

pH 8.0, 50 mM KCl, 10% glycerol, 0.1 mM EDTA, pH 8.0, 5 mM β-

mercaptoethanol, 5 mM MgCl2) per 1 ml protein. Soluble protein was separated 

from precipitated protein using ultracentrifugation (Optima™ Max-XP 

centrifuge and TLA-55 rotor from Beckmann Coulter) (100.000 rcf, 1h, 4C). 

Protein concentrations (µM) were determined with the following formula (A280 

/ extinction coefficient * 1000000 * dilution factor). The extinction coefficient 

was calculated on http://web.expasy.org/protparam/. 

Attachment Assays 

5 µl of C. crescentus overnight cultures were used to inoculate 160 µl PYE 

medium in standard 96-well plates. Unless stated otherwise, growth and 

attachment was allowed for 24h (200 rpm, 30C). OD660 was measured in an 

EL800 plate reader using the corresponding KJ Junior software (both Bio-Tek 

Instruments) and the wells were gently wasted four times with demineralized 

water. Attached cells were stained with 180 µl 0.1% crystal violet (200 rpm, 20 

min, 30C) and cells were washed three times with water before dissolving the 

crystal violet with 200 µl 20% acetic acid (200 rpm, 20 min, 30C). A600 was 

measured in an EL800 plate reader using the corresponding KJ Junior software 
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(both Bio-Tek Instruments) and used to calculate the attachment corrected for 

the cell density. 

Bacterial Two Hybrid 

Bacterial two hybrid (B2H) assays were performed as described in [289]. 

Proteins of interest were fused N- or C-terminally to the T18 or T25 fragment 

of the B. pertussis adenylate cyclase. The test strain SöA1080 was freshly 

transformed with the pUT18 and pKT25 derivative plasmids in all possible 

combinations. Transformants were screened on LB plates supplemented with 

ampicillin, kanamycin and 40 µg/ml X-gal (ON, 37C). Four single colonies of 

each transformation were grown in 100 µl LB supplemented with ampicillin 

and kanamycin in standard 96-well plates (200 rpm, 5 h, 37C). 2 µl of each 

logarithmically growing culture was spotted on Mc-Conkey agar plates (0.4% 

Mac Conkey Agar Base, Difco) supplemented with ampicillin, kanamycin and 

1% maltose. The plates were incubated at 30C for two days. Interaction was 

seen for positive controls (red colony) and not observed for negative controls 

(white colonies). 

β-galactosidase Assays 

Two independent C. crescentus cultures were grown per strain in 5 ml PYE (ON, 

150 rpm, 30C). The next morning, the cultures were diluted to an OD660 of 

0.05 in 5 ml PYE and grown until OD660 = 0.3 (unless for stationary phase 

cultures, which were taken directly from the ON culture). 2 ml culture were 

taken and the pellet resuspended in 2 ml fresh Z-buffer (0.06 M Na2HPO4, 0.04 

M NaH2PO4, 0.01 M KCl, 0.001 M MgSO4, 0.3% β-mercaptoethanol). 1 ml 

was used to measure the density of the suspension at A660. To the remaining 1 

ml 100 µl of 0.1 % SDS and 20 µl chloroform were added. The samples were 

vortexed for 10 sec and incubated for 15-30 min. Three technical replicates of 

200 µl each were transferred to a 96-well plate. 25 µl fresh ONPG (β-D-

galactopyranosid, 4 mg/ml stock) were added per well directly before 

measuring the kinetic β-galactosidase activity in an EL800 plate reader using 

the corresponding KJ Junior software (both Bio-Tek Instruments). 20 time 

points were taken for each measurement and the maximum slope was plotted 

as increase of OD405 per time point corrected for OD660 and volume. 
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Cyclic di-GMP Level Measurements 

Four independent C. crescentus cultures were grown per strain in 5 ml PYE (ON, 

150 rpm, 30C). The next morning, the cultures were diluted to an OD660 of 

0.05 in 15 ml PYE and grown until OD660 = 0.3. 10 ml of each culture was used 

for the cdG extraction. The cell pellets were resuspended in 100 µl H2O and 

transferred into a 1.5 ml screwcap reaction tube (5 min, 5000 rcf, 4C). H2O 

was added up to 1 ml and the cells were pelleted after vortexing (1 min, full 

speed, 4C). A 300 µl acetonitrile/methanol/water mixture (40/40/20 v/v) 

were used to lyse the cells using a three-step incubation (15 min at 4C followed 

by 10 min at 95C (shaking) and 1 min on ice). Cells and cell debris were 

collected (1 min, full speed, 4C) and the supernatant (extraction 1) was 

transferred to a fresh 2 ml reaction tube. Extraction of cdG from the pellet was 

repeated using 200 µl acetonitrile/methanol/water mixture (40/40/20 v/v) for 

15 min at 4C followed by centrifugation (1 min, full speed, 4C). The 

supernatant of extraction 2 was added to extraction 1 and a third extraction was 

performed on the pellet as described for extraction 2. In total 700 µl extraction 

volume were collected and stored overnight at -20C. The supernatant was 

centrifuged twice (20 min, full speed, 4C) and transferred to a fresh 1.5 ml 

reaction tube after each centrifugation step before being sent for mass 

spectrometry. Mass spectrometry was performed by Annette Garbe at 

Hannover University according to a facility-based standard protocol for cyclic 

di-GMP measurements. 

Co-Immunoprecipitation 

Four independent overnight C. crescentus cultures of UJ5511 and UJ6643 were 

diluted to an OD660 of 0.05 in 500 ml fresh PYE. The diluted cultures were 

grown (30C, 180 rpm) to an OD660 of 0.3 and harvested (10.000 xg, 10 min, 

4C). The pellets were washed twice in 50 ml washing buffer (20 mM Tris pH 

8.0, 100 mM NaCl) (10.000 xg, 20 min, 4C) before being resuspended in 10 

ml Bug Buster (Novagen) supplemented with 1 pil complete mini protease 

inhibitor (Roche), 200 µg/ml lysozyme and benzonase (0.5 µl/ml). After an 

incubation step at room temperature (20 min, gentle shaking), undisrupted 

cells, cell debris and precipitated proteins were removed by centrifugation 

(10.000 xg, 15 min, 4C). The procedure was repeated with the precleaned 

supernatant. 150 µl Protino® Ni-NTA Agarose (Macherey-Nagel) was washed 

3x in 500 µl Bug Buster (1.000 xg, 1 min, 4C), and incubated with the cleared 

lysate (ON, 4C, 10 rpm on a rotary wheel). The beads were transferred to a 
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Biospin column (Bio-Rad) and washed 4x with 700 µl HNN-lysis buffer (50 

mM HEPES pH 7.5, 150 mM NaCl, 50 mM NaF, 5 mM EDTA) with 0.5% 

IGEPAL CA-630 (Sigma-Aldrich), before being washed 4x with HNN-lysis 

buffer without detergent. The protein extract was eluted using 3x 150 µl 0.2 M 

glycine (in HPLC water, pH 2.5). The eluate was neutralized with 150 µl ABC-

buffer (ammonium bicarbonate, 1M stock in HPLC grade water). Urea (8 M 

stock in 100 mM ABC-buffer) was added to a final concentration of 1.6 M and 

the sample was vortexed before reducing and alkylating disulfide bonds as 

follows. 1 µl TCEP (tris(2-carboxyethyl)phosphine, 0.2 M in 100 mM ABC-

buffer) was added per 40 µl protein extract (37C, 30 min, 1.000 xg). After 

cooling down, 1 µl fresh iodacetamide (0.4 M stock in HPLC water) was added 

per 40 µl protein extract and incubated in the dark (25C, 30 min, 500 rpm). 

Finally, 1 µl N-acetyl-cystein solution (0.5 M in 0.1 M ABC-buffer) was added 

per 40 µl sample, vortexed and incubated (25C, 10 min, 500 rpm). For 

proteolysis, 1 µg porcine trypsin (0.4 µg/µl stock, Promega) was added (ON, 

37C, 500 rpm). For peptide purification, 150 µl TFA (trifluoroacetic acid, 5 % 

stock in HPLC water) was added to decrease the pH below 3. C18-microspin 

columns (Thermo Scientific) were conditioned twice with 150 µl acetonitrile 

(1.600 rpm, 30 sec) and equilibrated 3x with 150 µl 0.1 % TFA (2.400 rpm, 30 

sec). The samples were loaded and the flow-through was collected in a fresh 

tube (1.800 rpm, 2 min). The flow-through was re-loaded and centrifuged again 

(1.800 rpm, 2 min). A mixture of 5 % acetonitrile, 95 % HPLC water (v/v) and 

0.1 % TFA was used to wash the columns 3x with 150 µl volume (2.400 rpm, 

30 sec). Bonded peptides were eluted into a new tube using 3x 100 µl elution 

buffer (50 % acetonitrile, 50 % HPLC water (v/v) and 0.1 % TFA) (1600 rpm, 

30 sec). A speed vac (Eppendorf) was used to concentrate the eluted peptide 

mixture to dryness. The peptides were dissolved in 50 µl LC-buffer A (0.15 % 

formic acid, 2 % acetonitrile) using 20 pulses ultrasonication (Vial Tweeter, 

Hielscher) (amplitude 100, cycle 0.5) and shaking (25C, 5 min, 1.400 rpm).  

Growth Experiments 

Two independent overnight C. crescentus cultures of each strain were diluted to 

an OD660 of 0.05 in PYE medium. Three technical replicates (165 µl) of each 

culture were loaded in a 96-well plate and growth was monitored at 660 nm 

every 15 min in a Synergy H4 hybrid reader (BioTek) using Gen5 2.00 software 

(BioTek) at 30C under shaking conditions (medium speed, continuous 

shaking). 
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In vitro Phosphorylation 

Kinase and phosphatase assays were adapted from [49]. Reactions were 

incubated in dialysis buffer in presence of 500 µM ATP and 2.5 µCi [γ32P]ATP 

(3,000 Ci mmol-1, Hartmann Analytic) at room temperature. Additional 

proteins were added and samples taken at indicated time points. Reactions were 

stopped by the addition of SDS sample buffer and subsequently loaded (or 

stored on ice) on 12% SDS gels. Wet gels were exposed to phosphor screens 

(0.5-1.5 h) before being scanned using a Typhoon FLA7000 imaging system 

(GE Healthcare). In experiments assessing phosphatase activity in the absence 

of ATP, ATP was depleted by the addition of 1.5 u hexokinase (Roche) and 5 

mM D-glucose 15 minutes after phosphorylation.  

Microscopy 

Two independent overnight cultures of C. crescentus were either taken directly 

for microscopy, or first diluted to an OD660 of 0.05 and grown until OD660  0.3. 

500 µl culture was pelleted (1 min, 16000 rpm) and the cells were resuspended 

in 50 µl (exponential phase culture) or 500 µl (stationary phase culture) fresh 

PYE medium. 0.4 µl culture was spotted on a PYE patch containing 0.1 % 

agarose. For holdfast staining, 2.5 µl green-fluorescent Oregon Green® 488 

WGA (ThermoFisher Scientific) was added per 750 µl PYE-agarose. Cells were 

monitored using a Deltavision set up from Applied Precision: IX-71 

microscope (Olympus), CoolSnap HQ2 camera (Photometrix), Softworx 5.5 

software. The following set up was used to aquire snapshots: 100x phase 

contrast objective (NA 1.3), GFP filterset (Ex 475/28, Em 525/50) for holdfast 

visualization, xenon-lamp.  

Motility Assays 

To compare motility colony size, fresh single colonies were picked and patched 

into a PYE motility agar plate (PYE medium supplemented with 0.3 % agar). 

Colony growth was allowed in a humid chamber (30C, 3 days). The plates were 

scanned and the diameter of five independent colonies per strain was calculated 

using Image J software (freeware on http://imagej.nih.gov/ij/).  
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Proteome Comparison 

Four independent cultures of C. crescentus were diluted in 15 ml PYE to an 

OD660 of 0.05 and grown until OD660 0.3. 10 ml of the cultures was pelleted 

(4000 xg, 40 min, 4C) and the pellets were dissolved in 200 µl cold lysis buffer 

(8 M Urea, 0.1 M ammonium bicarbonate, 0.1 % RapiGest) by vortexing (10 

sec), ultrasonication (Vial Tweeter, Hielscher) (2x 10 sec, amplitude 100, cycle 

0.5) and shaking in a Thermomixer C (Eppendorf, 5 min, 1400 rpm, RT). After 

centrifugation (30 min, 4C, max speed), the supernatant containing the 

solubilized proteins was transferred to a fresh tube and the protein 

concentration was first measured using a standard Bradford assay (Bio-Rad) 

and then adjusted to a final concentration of 1 mg/ml. To reduce and alkylate 

disulfide bonds, 50 µg protein extract were taken and 1 µl TCEP (tris(2-

carboxyethyl)phosphine, 0.2 M stock in 0.1 M Tris pH 8.5) was added per 40 

µl protein extract (37C, 1h, 1000 rpm). After the samples were cooled down, 

1 µl fresh iodacetamide solution (0.4 M stock in HPLC water) was added per 

40 µl sample and incubated in the dark (25C, 30 min, 500 rpm). Finally, 1 µl 

N-acetyl-cysteine solution (0.5 M stock in 0.1 M Tris pH 8.5) was added per 40 

µl sample, vortexed and incubated (RT, 500 rpm, 10 min). For the proteolysis 

Lys-C (0.2 µg/µl stock, Wako) was added to a final enzyme/protein ratio of 

1:100 (37C, 4 h, 550 rpm). The sample was diluted 1:5 (v/v) to a final urea 

concentration below 2 M using fresh 0.1 M ABC buffer (ammonium 

bicarbonate in HPLC water). Porcine trypsin (0.4 µg/µl stock, Promega) was 

added to a final trypsin/protein ratio of 1:50 (37C, ON, 550 rpm). Post 

digestion, TFA (trifluoroacetic acid, 5 % stock in HPLC water) was used to 

decrease the pH below 2. For the solid phase extraction C18-microspin 

columns (Harvard Apparatus) were conditioned with 150 µl acetonitrile (2400 

rpm, 30 sec) and equilibrated twice with 150 µl TFA (0.1 % stock in HPLC 

water, 2400 rpm, 30 sec). The sample was transferred twice through the column 

(2000 rpm, 2 min) before the column was washed 5x with 150 µl wash buffer 

(5 % acetonitrile, 95 % HPLC water and 0.1  % TFA) (2400 rpm, 30 sec). The 

peptides were eluted twice with 150 µl elution buffer (50 % acetonitrile, 50 % 

HPLC water and 0.1 % TFA) and concentrated under vacuum to dryness using 

a table top concentrator (Eppendorf). The peptides were dissolved to a final 

concentration of 0.5 µg/µl in LS-MS/MS buffer (0.15 % formic acid, 2 % 

acetonitrile, HPLC water) using 20 pulses ultrasonication (Vial Tweeter, 

Hielscher) (amplitude 100, cycle 0.5) and shaking in a Thermocycler (37C, 5 

min, 1.400 rpm) (Eppendorf).  
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Yeast Two Hybrid Screening 

E. coli DH5α pIDJ041 (UJ6743) was used to isolate high quantities of bait 

plasmid DNA to screen for MrrA interaction partners. S. cerevisiae PJ69-4A 

(UJ5292) [284] was transformed with pIDJ041 according to standard small-

scale transformation procedure (Clonetech Manual, Protocol No. PT1172-1, 

Verstion No. PR8Y2629). Single colonies of S. cerevisiae PJ69-4A containing the 

bait-plasmid pIDJ041 were used for library-scale transformation with a C. 

crescentus library made inhouse as described by Clonetech (Clonetech Manual, 

Protocol No. PT1172-1, Verstion No. PR8Y2629). Stringent selection on 

plates lacking adenine (SC-Trp-Leu-Ade) did not give rise to a single yeast 

colony that could be re-grown in liquid media. In a second approach 2.2 * 106 

transformants were screened using less stringent selection on plates lacking 

histidine (SC-Trp-Leu-His + 5 mM 3’AT). To isolate prey plasmids for 

sequencing, cells of 8 ml overnight yeast culture (grown at 30°C, 180 rpm) were 

collected (5 min, 1000 xg) and resuspended in 500 µl sorbitol buffer (1 M 

sorbitol, 1 mM EDTA pH 8.0, 14.5 mM β-mercaptoethanol, 300 u lyticase). 

The reaction was incubated for 30 min at 30°C and mixed every 10 min. The 

spheroblasts were collected (5 min, 1600 xg) and the plasmids were isolated 

using a standard plasmid isolation kit (Sigma).   

Oligonucleotides, plasmids, strains and media 

Oligonucleotides, plasmids and bacterial strains are listed in Table 1, 2 and 3, 

respectively. Caulobacter crescentus was grown in PYE or M2G medium at 30C 

[235]. E. coli DH5 was used as host for cloning and grown in LB at 37C. 

When required, the growth media were supplemented with antibiotics at the 

following concentrations (liquid / solid medium): 5/50 µg ml-1 of ampicillin, 

5/20 µg ml-1 of kanamycin, 2.5/5 µg ml-1 of tetracycline, 1/2 µg ml-1 of 

chloramphenicol, 15/20 µg ml-1 of nalidixic acid (C. crescentus) and 50/100 µg 

ml-1 of ampicillin, 30/50 µg ml-1 of kanamycin, 12.5/12.5 µg ml-1 of 

tetracycline, 20/30 µg ml-1 of chloramphenicol, 15/30 µg ml-1 of nalidixic acid 

(E. coli). 
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Table 1: Oligonucleotides used in this study 

NAME SEQUENCE (5’3’) PURPOSE 

prIDJ025_check_KOcc3015-
F 

CTGAAGGACCAGCTGAACG check 
integration 
pIDJ005 

prIDJ026_check_KOcc3015-
R 

CTTGACCGGTCGACACGAC check 
integration 
pIDJ005 

prIDJ033_cPCR_pNPTS138-
F 

CATGATTACGCCAAGCTACG colony pcr 
pNPTS138 

prIDJ034_cc0284up-
F+HindIII 

GGCCGGAAGCTTGACCGCGTTGC
TTCACGAG 

pIDJ002 

prIDJ035_cc0284up-R+NheI GGCCGCGCTAGCGATCAAAAGCG
TCCTTGGCTATTG 

pIDJ002 

prIDJ036_cc0284down-
F+TGA+NheI 

GGCCGGGCTAGCTGATACGCCAG
CTGGGGGGC 

pIDJ002 

prIDJ037_cc0284down-
R+EcoRI 

GGCCGGGAATTCCACCTTCTCGG
CGGTGATCAGAC 

pIDJ002 

prIDJ043_cPCR_pNPTS138-
R 

CGACGGCCAGTCCGTAATAC colony pcr 
pNPTS138 

prIDJ044_cc0284-
F+SLICpSRK 

CAATTTCACACAGGAAACAGCATA
TGAGCCGGCCAGCGCTCGATGTT
C 

pIDJ007 

prIDJ045_cc0284-
R+SLICpSRK 

CCGGGTCGAATTTGCTTTCGAATT
GCTAGCTCAGGTCAGGGTGTCAA
CCAC 

pIDJ007, 
pIDJ050 

prIDJ046_cPCR_pSRK-F GCTCACTCATTAGGCACC colony pcr 
pSRK 

prIDJ047_cPCR_pSRK-R GCGGCTATTTAACGACCC colony pcr 
pSRK 

prIDJ052_cc3015-
F+SLICpSRK 

CAATTTCACACAGGAAACAGCATA
TGAAGACACTCTCGTCCCTG 

pIDJ010 

prIDJ053_cc3015-
R+SLICpSRK 

CCGGGTCGAATTTGCTTTCGAATT
GCTAGCTCAGGCGATCTGCGCGA
CCAGC 

pIDJ010 

prIDJ056_cc3015up-
F+HindIII 

GGCCGGAAGCTTCCTCAAGCGCA
AGAACCAC 

pIDJ005 

prIDJ057_cc3015up-R+NheI GGCCGGGCTAGCGGATCAGAGC
TCCAAGGC 

pIDJ005 

prIDJ058_cc3015down-
F+TGA+NheI 

GGCCGGGCTAGCTGACGAGCCG
GTCTCTGCATC 

pIDJ005 

prIDJ059_cc3015down-
R+EcoRI 

GGCCGGGAATTCCCACGACTTCC
TCAACGGTCG 

pIDJ005 

prIDJ069_ccna3110up-
R+ATG+2cod+EcoRI 

GGCCCGGAATTCTGTCTTCATGG
ATCAGAGCTCC 

pIDJ015 

prIDJ070_ccna3110-
F_noATG+EcoRI+3xFLAG
+KpnI 

GGCCGGGAATTCGACTACAAAGA
CCATGACGGTGATTATAAAGATC
ATGATATCGATTACAAGGATGAC
GATGACAAGggtaccAAGACACTCTC
GTCCCTG 

pIDJ015 

prIDJ071_ccna3110down-
R+NheI 

GGCCGGGCTAGCCCGATCCTGAC
CCAGGTG 

pIDJ015 

prIDJ075_egfp-F+EcoRI GGCCCGGAATTCAGCAAGGGCGA
GGAGCTG 

pIDJ020 
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prIDJ076_egfp-R+KpnI GGCCGGggtaccCTTGTACAGCTCG
TCCATGCC 

pIDJ020 

prIDJ077_check_KOccna028
6-F 

CAGCTTGTCTACTTCTTCGG  

prIDJ078_check_KOccna028
6-R 

GATCAACCTTGGTGGGTTCG  

prIDJ081_seq_pIDJ005-F GCAAAAAGGGTCGAAACG  
prIDJ082_seq_pIDJ005-R GTCCTCAAAAGTACGCGC  
prIDJ083_3xFLAG_inner-F CAAGGATGACGATGACAAG  
prIDJ084_3xFLAG_inner-R CTTGTCATCGTCATCCTTG  
prIDJ105_cPCR_pMR10-R CTCTTCGCTATTACGCCAGC pMR10 
prIDJ106_ccna3110up-
F+HindIII 

GGCCGGAAGCTTCCAGACCTTCA
TCTTCTACC 

pIDJ028 

prIDJ107_ccna3110-R+XbaI GGCCGGTCTAGATCAGGCGATCT
GCGCGACCAGC 

pIDJ028 

prIDJ110_ccna3110up+Hind
III-F 

GGCCGGAAGCTTCCTTTGGAAAG
AGGACTTGC 

pIDJ029 

prIDJ111_ccna3110+EcoRI-
R 

GGCCCGGAATTCGGCGATCTGCG
CGACCAGCCCTTC 

pIDJ029 

prIDJ112_EcoRI-3xFLAG-
KpnI-ccna3110down-F 

GGCCGGGAATTCGACTACAAAGA
CCATGACGGTGATTATAAAGATC
ATGATATCGATTACAAGGATGAC
GATGACAAGTGAGGTACCCGAGC
CGGTCTCTGCATC 

pIDJ029 

prIDJ113_ccna3110down-
R+NheI 

GGCCGGGCTAGCCCTTGGTTTTC
AACGCCATG 

pIDJ029 

prIDJ114_egfp-
F+EcoRI+3gly 

GGCCCGGAATTCGGCGGCGGCG
TGAGCAAGGGCGAGGAGctg 

pIDJ030 

prIDJ115_egfp-
R+KpnI+TAA 

GGCCGGGGTACCTTACTTGTACA
GCTCGTCCATGC 

pIDJ030 

prIDJ116_pIDJ030-seq-R CATTGCCCAACAGGTTAG  
prIDJ117_egfp-
R+link+KpnI 

GGCCGGGGTACCGCCGCCGCCCT
TGTACAGCTCGTCCATGC 

pIDJ033 

prIDJ118_egfp-F+EcoRI GGCCCGGAATTCGTGAGCAAGG
GCGAGGAGCTG 

pIDJ033 

prIDJ119_check-ccna3110-
D53D-F 

GATCGACGCAGCCCTGCTGG pIDJ034 

prIDJ120_ccna3110-D53N-R CCAGGTTCACGTTCAGCAGGGCT
GC 

pIDJ034 

prIDJ121_ccna3110-D53N-F GCAGCCCTGCTGAACGTGAACCT
GG 

pIDJ034 

prIDJ122_ccna3110-
downD53N-R+EcoRI 

GGCCGGGAATTCGCCTTTCGGCC
GCGCTAGAAG 

pIDJ034 

prIDJ123_check-ccna3110-
D53N-F 

GATCGACGCAGCCCTGCTGA pIDJ034 

prIDJ129_lovK-up-
F+HindIII 

GGCCGGAAGCTTGCGTTCCTCGC
GCAGGAGGAG 

pIDJ040 

prIDJ130_lovK-up-R+NheI GGCCGGGCTAGCGGCTAAGCTCC
CACCTCCC 

pIDJ040 

prIDJ131_lovK-down-
F+NheI 

GGCCGGGCTAGCCAAGGACGCTT
TTGATCATG 

pIDJ040 

prIDJ132_lovK-down-
R+EcoRI 

GGCCGGGAATTCCAGGTCAGGG
TGTCAACCAC 

pIDJ040 

prIDJ133_check-KOlovK-F GGGCTTGGGCCTTGAAGCAG pIDJ040 
prIDJ134_check-KOlovK-R GACGCTTCAACATGAGGATG pIDJ040 
prIDJ135_ccna3110-
F+EcoRI 

GGCCGGGAATTCATGAAGACACT
CTCGTCCCTG 

pIDJ041 
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prIDJ136_ccna3110-
R+BamHI 

GGCCCGGGATCCTCAGGCGATCT
GCGCGACCAG 

pIDJ041 

prIDJ139_pGBD-C1-F-col GCTAGAAAGACTGGAACAGC  
prIDJ140_pGBD-C1-R-col GATCAGAGGTTACATGGCC  
prIDJ141_ccna3111-F+NdeI GCCCGGCATATGTTGGAAAGAGG

ACTTGCGG 
pIDJ043 

prIDJ142_ccna3111-R+TGA GGCCGGGCTAGCTCAGAGCTCCA
AGGCGCGCAAAG 

pIDJ043 

prIDJ143_ccna3111up-
F+HindIII 

GGCCGGAAGCTTCCTGGTCGTCG
ACGAGTACGG 

pIDJ044 

prIDJ144_ccna3111up-
R+NheI 

CGGCGCGCTAGCAGGCCGGCGG
CGGATAGACC 

pIDJ044 

prIDJ145_ccna3111down-
F+NheI+TGA 

GGCCGGGCTAGCTGATCCATGAA
GACACTCTC 

pIDJ044 

prIDJ146_ccna3111down-
R+EcoRI 

GGCCCGGAATTCATTGCCCAACA
GGTTAGC 

pIDJ044 

prIDJ163_ccna0287-
F+TTG+NdeI 

GCCCGGCATATGTTGGAAGACTA
TTCGGAATCG 

pIDJ050 

prIDJ168_pET28a-seq-F CATACCCACGCCGAAACAAGC pET28a 
sequencing 

prIDJ169_ccna3110noTGA-
R+XhoI 

GGCCGGCTCGAGGGCGATCTGC
GCGACCAG 

pIDJ053 

prIDJ170_ccna3111-TGA-
R+XbaI 

GGCCGGTCTAGATCAGAGCTCCA
AGGCGCGCAAAG 

pIDJ054 

prIDJ173_cPCRseq-egfp-R GACTTGAAGAAGTCGTGCTGCTT
C 

pGFPC-2 

prIDJ174_cPCRseq-pGFPC-
2-F 

GAAAGGCTCAGTCGAAAGAC pGFPC-2 

prIDJ183_ccna3110-D53E-R CCAGGTTCACCTCCAGCAGGGCT
GC 

 

prIDJ184_ccna3110-D53E-F GCAGCCCTGCTGGAGGTGAACCT
GG 

 

prIDJ187_plac290_cPCR-F GAGCTGCGCAAGGACATAATC  
prIDJ188_plac290_cPCR-R GGCCTCAGGAAGATCGCAC  
prIDJ201_cPCR-
seq_pGFPC2-R 

GTGGATAACCGTATTACCGCC  

prIDJ202_cPCR-
seq_pIDJ067-F 

GCTGACCTATGATGTTTCCG  

   
prIDJ203_ccna2967up-
F+NheI 

GGCCGGGCTAGCCGCGAACATTC
CAGTGATAGCC 

pIDJ068 

prIDJ204_ccna2967front-
R+EcoRI 

GGCCCGGAATTCTTATCAGGCAT
AGAGCGTCACCAGC 

pIDJ068 

prIDJ205_ccna2967back-
F+EcoRI 

GGCCCGGAATTCGATCATGCCTG
GCGGCAAGAG 

pIDJ068 

prIDJ206_ccna2967down-
R+HindIII 

GGCCGGAAGCTTGGCAGTTCAAC
CTCGACTTC 

pIDJ068 

prIDJ207_check-
KOccna2967-F 

CATTCCTCCTGGTACTGCCCTTC pIDJ068 

prIDJ208_check-
KOccna2967-R 

CCTCGTCCCGATCTTCTTCG pIDJ068 

prIDJ213_ccna2409up-
F+NheI 

GGCCGGGCTAGCCCTTCACAAGC
ATGCGAATG 

pIDJ070 

prIDJ214_ccna2409front-
R+EcoRI 

GGCCCGGAATTCTTAGCAAAGCA
CCTGAACACGG 

pIDJ070 

prIDJ215_ccna2409back-
F+EcoRI 

GGCCCGGAATTCGAGTTCGACCT
CCTGATGCTG 

pIDJ070 
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prIDJ216_ccna2409down-
R+HindIII 

GGCCGGAAGCTTGACTCGACCTT
AATCACGTC 

pIDJ070 

prIDJ217_check-
KOccna2409-F 

GATCGATGCTCCGACAAAGC pIDJ070 

prIDJ218_check-
KOccna2409-R 

GATGGTGTCGAAGAACCGCC pIDJ070 

prIDJ219_ccna2587up-
F+NheI 

CCGGCCGCTAGCCAAGCACGATG
TCCTCTTCG 

pIDJ071 

prIDJ220_ccna2587up-
R+EcoRI 

GGCCCGGAATTCGATCGTGGCCG
AAAACAGCTAAATC 

pIDJ071 

prIDJ221_ccna2587down-
F+EcoRI 

GGCCCGGAATTCTGAACAGGCCG
CGCGCTCAGGGTAAAC 

pIDJ071 

prIDJ222_ccna2587down-
R+HindIII 

GGCCGCAAGCTTCTGCGCACGGG
CTTTGGCAATGTGG 

pIDJ071 

prIDJ223_check-
KOccna2587-F 

CAACGGCGAGATCTACAACG pIDJ071 

prIDJ224_check-
KOccna2587-R 

GTCGCTCTACAACGAGACCAAC pIDJ071 

prIDJ241_ccna2967-F+NdeI GCCCGGCATATGGTGTTGCGCGT
CTTAGGTAAG 

pIDJ076 

prIDJ242_ccna2967-R+TGA GGCCGGGCTAGCCTGAACCGTCA
GTGCGGTC 

pIDJ076 

prIDJ243_cc2501-F+NdeI GCCCGGCATATGTTGGCCGCGAC
GGATTGTCTC 

pIDJ077 

prIDJ244_cc2501-R+TGA GGGCCCGCTAGCTCAGGCCGCGT
GCGACCTTCC 

pIDJ077 

prIDJ245_cc2324-F+NdeI GCCCGGCATATGTTGCTCGCCGA
GCGCCGCCCAGCAGTG 

pIDJ078 

prIDJ246_cc2324-R+TGA GGCCGGGCTAGCCTAGGCGGCG
ACCTTGGCGGGATCGGTCCG 

pIDJ078 

prIDJ247_cc2874noTM-
F+BamHI 

CCGGCCGGATCCGTCGCAGCGGT
CGCCGAAG 

pIDJ079 

prIDJ248_cc2874-R+EcoRI GGCGGCGAATTCTGAACCGTCAG
TGCGGTC 

pIDJ079 

prIDJ249_cc2501noTM-
F+EcoRI 

GGCGGCGAATTCCTCGAAACCAT
GCACGCAGAG 

pIDJ080 

prIDJ250_cc2501-R+HindIII GGCCGCAAGCTTTCAGGCCGCGT
GCGACCTTCC 

pIDJ080 

prIDJ251_cc2324noTM-
F+EcoRI 

CCGGCCCGAATTCCTGCTGATCAT
TGCGCCGCTG 

pIDJ081 

prIDJ252_cc2324-R+HindIII GGGCCCAAGCTTCTAGGCGGCGA
CCTTGGCGGGATC 

pIDJ081 

prIDJ253_cPCR-seq_H-
MBP-F 

CGTCAGACTGTCGATGAAG  

prIDJ254_cPCR-seq_H-
MBP-R 

CTAGTTATTGCTCAGCGGTG  

prIDJ255_cc2554-F+EcoRI GGGCCCGAATTCGTGGCCGAAGA
AACATCGG 

pIDJ082 

prIDJ256_cc2554-R+HindIII GGGCCCAAGCTTTCACCCCAGCG
GCATGAATG 

pIDJ082 

prIDJ257_cc2554-F+NdeI GCCCGGCATATGGTGGCCGAAGA
AACATCGG 

pIDJ083 

prIDJ258_cc2554-R+TGA GGGCCCAAGCTTTCACCCCAGCG
GCATGAATG 

pIDJ083 

prIDJ259_lovK-R+TAA GGCCGGGCTAGCTTACTATTGCG
TCCCATTGATG 

pIDJ084 
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prIDJ260_cc2554up-F+NheI GGCCGGGCTAGCGCCATGGCCTC
CTCCGAC 

pIDJ085 

prIDJ261_cc2554up-
R+EcoRI 

GGCCCGGAATTCGCCACGTCCCT
GCCCGAGAG 

pIDJ085 

prIDJ262_cc2554down-
F+EcoRI 

GGCGGCGAATTCTGAGCCTCACC
CCGTATCCC 

pIDJ085 

prIDJ263_cc2554down-
R+HindIII 

GGCCGGAAGCTTCGCGAGACCTT
CGGCTATTC 

pIDJ085 

prIDJ264_check-KOcc2554-
F 

CTGGCTGAACTCTTCGACTG pIDJ085 

prIDJ265_check-KOcc2554-
R 

GTTCCTGGTGCTGGAGGTTAC pIDJ085 

prIDJ266_seq_2874-F CTACGAGGTCGAGTATCGTC pIDJ076 
prIDJ267_seq_2501-F GCGATATCACCGAGCGTAAG pIDJ077 

prIDJ268_seq_2324-F GACGCTGAGCCATGAAATTC  
prIDJ269_seq_2324-R CAGCAACAGCAGTGTCTCGC  
prIDJ270_seq_2501-F CATCATCCGCAGCCTTGAAC  
prIDJ277_MrrAnoATG-
F+EcoRI 

CCGGCCGAATTCAAGACACTCTC
GTCCCTGAAGG 

pIDJ086 

prIDJ278_MrrA-TGA-
R+HindIII 

GGGCCCAAGCTTTCAGGCGATCT
GCGCGAC 

 

prIDJ279_CC2554noPAS-
F+EcoRI 

CGGCCgGAATTCCTGGCGGAGAG
CCATCGGC 

 

prIDJ280_CC2874noPAS-
F+EcoRI 

CGCGCCGAATTCCCGAGGCCAAG
CTGACCGGC 

pIDJ087 

prIDJ281_CC2874+TGA-
R+HindIII 

GGCCGGAAGCTTTCAGTGCGGTC
GCGCCTGGG 

pIDJ087 

prIDJ282_CC2874noTMD-
F+EcoRI 

GGCCGGGAATTCGGGCTGCGCG
GCGCCATGCG 

pIDJ088 

prIDJ285_ccna3110-D53N-F CGGCCGAGATCAACGCAGCCCTG
C 

pIDJ090 

prIDJ286_ccna3110-D53E-R GCAGGGCTGCCTCGATCTCGGCC
G 

pIDJ090 

prIDJ287_ccna3110-D53E-F CGGCCGAGATCGAGGCAGCCCTG
C 

  

prIDJ295_RECofCC2874no
ATG-F+BamHI 

CGCGCCGGATCCCATATCCGCGC
CCAGACGCC 

pIDJ089 

prIDJ298_cc2330-R+XbaI GGCCGGTCTAGATCAGGGGGCG
TCGTCGTCC 

pIDJ094 

prIDJ299_MrrA-F+XbaI GGCCGGTCTAGACAAGACACTCT
CGTCCCTGAAGG 

pIDJ094 

prIDJ302_CC2330-F+XbaI GGCCGCTCTAGACAACGATCGAC
CCGCAGCCG 

pIDJ097, 99, 
101, 103 

prIDJ303_CC2330-R+KpnI GCGGCCGGTACCAAGGGGGCGT
CGTCGTCCACCATG 

pIDJ097, 103 

prIDJ304_CC2330-
R+TGA+KpnI 

GCGGCCGGTACCAATCAGGGGG
CGTCGTCGTCC 

pIDJ099, 101 

prIDJ305_CC1974-F+XbaI GGCCGGTCTAGACTCCTCCTCCG
ATAAGATCCC 

pIDJ098, 100, 
102, 104 

prIDJ306_CC1974-R+KpnI GGCCGCGGTACCAACAAATCCAG
ATCCGCCGACG 

pIDJ098, 104 

prIDJ307_1974-
R+TGA+KpnI 

GGCCGCGGTACCAACTACAAATC
CAGATCCGCCGACG 

pIDJ0100, 102 

prIDJ308_DgcB-F+XbaI GGCCGGTCTAGACTCGGACGTCG
AAACCACGCTG 

pIDJ105, 106, 
107, 108 

prIDJ309_DgcB-R+KpnI GGGCGCGGTACCAAGTTGGCGG
CGCCGGGCATGGACTC 

pIDJ105, 
pIDJ108 
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prIDJ310_DgcB-
R+TGA+KpnI 

GGGCGCGGTACCAATCAGTTGGC
GGCGCCGGGCATGGACTC 

pIDJ106, 
pIDJ107 

prIDJ311_CC1056-F+XbaI GGCCGGTCTAGACACTCAGCATC
GCACTTGGCG 

pIDJ109, 110, 
111, 112 

prIDJ312_CC1056-R+KpnI GGGCGCGGTACCAACGTCGCGG
GCTTGGCCAGCTC 

pIDJ109, 
pIDJ112 

prIDJ313_CC1056-
R+TGA+KpnI 

GGGCGCGGTACCAATCACGTCGC
GGGCTTGGCCAGCTC 

pIDJ110, 
pIDJ111 

prIDJ314_CC1974-seq-F GAGCACCTCCAGGTGTTCTC pIDJ113, 114, 
115, 116 

prIDJ315_ParE-seq-F CAGCTGAAGGAGACCACCATG pIDJ113, 
pIDJ116 

prIDJ316_DgcB-seq-F GAGGAGTTCGCGATGATCTTC pIDJ114, 
pIDJ115 

prIDJ317_CC1056-seq-F CCTCTATTTCACCGCCTTCG  
prIDJ318_CC1056-seq-R GTTGGCGATATTGGCGGCGTAC  
prIDJ319_CC1056-seq-R2 CTTGGCGATCTCGCTGGACTTC  
prIDJ320_ChpT-F+XbaI GGCGCCTCTAGACACCGAGACCG

TCACCGAGACCACC 
 

prIDJ321_ChpT-R+KpnI GGGCGCGGTACCAACGCCGGGA
CCCAGGCGGCGATC 

 

prIDJ322_PhyR-F+XbaI GGCGCCTCTAGACAGTCTTCTTGC
TCGCTTGGC 

 

prIDJ323_PhyR-R+KpnI GGGCGCGGTACCAAGGCCGCCTT
AGCGGTGCGGC 

pIDJ117-118-
119-120 

prIDJ324_PhyR-F+NdeI GCCCGGCATATGATGAGTCTTCT
TGCTCGCTTGGC 

pIDJ117-118-
119-120 

prIDJ325_PhyR+TGA-
R+NheI 

GGCCGGGCTAGCTCAGGCCGCCT
TAGCGGTG 

pIDJ121-122-
123-124 

prIDJ326_PhyRnoATG-
F+BamHI 

CGCGCCGGATCCAGTCTTCTTGCT
CGCTTGGC 

pIDJ121-122-
123-124 

prIDJ327_PhyR+TGA-
R+HindIII 

GGGCCCAAGCTTCAGGCCGCCTT
AGCGGTG 

pIDJ125 

prIDJ328_pUC18C-seq-F GTCTTCTACGAGAACCGTGC pIDJ125 
prIDJ329_LovKnoTTG-
F+BamHI 

CGCGCCGGATCCGAAGACTATTC
GGAATCGCG 

pIDJ126 

prIDJ330_LovK+TGA-
R+HindIII 

GGGCCCAAGCTTCTATTGCGTCC
CATTGATGG 

pIDJ126 

prIDJ331_LovRnoATG-
F+BamHI 

CGGCCCGGATCCAGCCGGCCAGC
GCTCGATGTTC 

 

prIDJ332_LovR+TGA-
R+HindIII 

GGGCCCAAGCTTTCAGGTCAGGG
TGTCAACCAC 

pIDJ127 

prIDJ333_PhyKnoATG-
F+EcoRI 

CGCGCCGAATTCACCGTCTTTACC
GGCCGC 

pIDJ127 

prIDJ334_PhyK+TGA-
R+HindIII 

GGGCCCAAGCTTTCAGCCAGCGG
CGCTCAGCGC 

pIDJ128 

prIDJ335_PhyK-template-R CGCCTTCGACCGTGTTGCAG pIDJ128 
prIDJ336_PhyK-template-F GAAATCTGTAATTGCGCCGTC 

 
 

prIDJ337_PhyKup-F+NheI GGCCGGGCTAGCCCGCACCTTCG
CGCTTTTGC 

pIDJ130 

prIDJ338_PhyKup-R+EcoRI GGCCCGGAATTCGGTCACCGCAA
GGCGCTCAATC 

pIDJ130 

prIDJ339_PhyKdown-
F+EcoRI 

GGCCGGGAATTCTGATCCGGAAC
CGCGCTTCG 

pIDJ130 

prIDJ340_PhyKdown-
R+HindIII 

GGCCGGAAGCTTCATTCGTCAGA
TGGTGCGCTG 

pIDJ130 
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prIDJ341_check-KOphyK-F GACGAGGTCGTCAACGAGCC pIDJ130 
prIDJ342_check-KOphyK-R GATCCGCATGCTGATCAAG pIDJ130 
prIDJ343_seq_lacZ-
plasmids-R 

GCACCACAGATGAAACGCC  

prIDJ344_seq_lacZ-
plasmids-F 

GCCTTCCGGTTCCATTCCTG  

prIDJ345_int-lacZ-R-atClaI CACGCTCATCGATAATTTCACCGC  
prIDJ346_NepRnoATG-
F+EcoRI 

CCGCGGGAATTCAACTTCGGCGT
CGAGGACATG 

pIDJ132 

prIDJ347_NepR-TGA-
R+HindIII 

GGGCCCAAGCTTCTACTCGCCCCC
CGCCGGAC 

pIDJ132 

 

 

Table 2: Plasmids used in this study 

NAME VECTOR RELEVANT INFORMATION REFERENCE 

pNPTS138 pNPTS129 Suicide vector containing sacB and 
nptI, kanr 

[38][290] 

pSRK-kan pBBR1MCS-2 broad-host-range expression vector 
containing lac promoter and lacIq, 
lacZα+, and kanr 

[291] 

pRKlac290 pK2 for transcriptional fusions to lacZ [292]  
pRKlac290-
PsigU 

pRKlac290 pPsigU-lacZ, tetr [202] 

pSGL1  pPctrA-lacZ, tetr [178] 
pMR10  Low copy vector, kanr [252] 
pBBR  Broad-host-range vector, kanr [293] 
pGBD-C1  For yeast two-hybrid screening, 

GAL4BD, trp1, ampr 
[284] 

pGBD-C1-
kan 

pGBD-C1 For yeast two-hybrid screening, 
GAL4BD, trp1, kanr 

 

pGAD-C1  For yeast two-hybrid screening, 
GAL4AD, leu2, ampr 

[284] 

pET28a  Expression vector Novagen 
pET-His6-
MBP 

pET28a Expression vector to express N-
terminal His6-MBP fusion proteins 

[49] 

pUT18 pUC19 For bacterial two-hybrid, ampr [289] 
pUT18C pUC19 For bacterial two-hybrid, ampr [289] 
pKT25 pSU40 For bacterial two-hybrid, kanr [289] 
pKNT25 pSU40 For bacterial two-hybrid, ampr [289] 
pT18-zip pT18 Positive control for bacterial two-

hybrid, ampr 
[289] 

pT25-zip pT25 Positive control for bacterial two-
hybrid, ampr 

[289] 

pIDJ002 pNPTS138 clean knock-out of lovR, kanr This study 
pIDJ005 pNPTS138 clean knock-out of mrrA, kanr This study 
pIDJ007 pSRK-kan pPlac-lovR, kanr This study 
pIDJ010 pSRK-kan pPlac-mrrA, kanr This study 
pIDJ015 pNPTS138 3xFLAG-mrrA, kanr This study 
pIDJ020 pNPTS138 egfp-mrrA, kanr This study 
pIDJ028 pMR10 pPmrrA-mrrA This study 
pIDJ029 pNPTS138 mrrA-3xFLAG, kanr This study 
pIDJ030 pNPTS138 mrrA-linker-3xFLAG, kanr This study 
pIDJ033 pNPTS138 3xFLAG-linker-mrrA, kanr This study 
pIDJ034 pNPTS138 mrrAD53N, kanr This study 
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pIDJ038 pSRK-kan pPlac-mrrAD53N, kanr This study 
pIDJ040 pNPTS138 clean knock-out of lovK, kanr This study 
pIDJ041 pGBD-C1 Gal4DB-mrrA This study 
pIDJ043 pSRK-kan pPlac-CCNA03111, kanr This study 
pIDJ044 pSRK-kan pPlac-CCNA03111-mrrA, kanr This study 
pIDJ045 pNPTS138 clean knock-out of CCNA03111, kanr This study 
pIDJ046 pNPTS138 clean double knock-out of 

CCNA03111-mrrA, kanr 
This study 

pIDJ050 pSRK-kan pPlac-lovRK, kanr This study 
pIDJ053 pET28a Production of mrrA-His6 This study 
pIDJ054 pMR10 pPCCNA03111-CCNA03111, kanr This study 
pIDJ060 pNPTS138 mrrAD53E, kanr This study 
pIDJ061 pSRK-kan pPlac-mrrAD53E, kanr This study 
pIDJ068 pNPTS138 knock-out of CC2874, kanr This study 
pIDJ070 pNPTS138 knock-out of CC2324, kanr This study 
pIDJ071 pNPTS138 clean knock-out of CC2501, kanr This study 
pIDJ076 pSRK-kan pPlac-CC2874, kanr This study 
pIDJ077 pSRK-kan pPlac-CC2501, kanr This study 
pIDJ078 pSRK-kan pPlac-CC2324, kanr This study 
pIDJ079 pET-His6-

MBP 
Production of His6-MBP-
CC2874noTM, kanr 

This study 

pIDJ080 pET-His6-
MBP 

Production of His6-MBP-
CC2501noTM, kanr 

This study 

pIDJ081 pET-His6-
MBP 

Production of His6-MBP-
CC2324noTM, kanr 

This study 

pIDJ082 pET-His6-
MBP 

Production of His6-MBP-CC2554, 
kanr 

This study 

pIDJ083 pSRK-kan pPlac-CC2554, kanr This study 
pIDJ084 pSRK-kan pPlac-lovK, kanr This study 
pIDJ085 pNPTS138 knock-out of CC2554, kanr This study 
pIDJ087 pET-His6-

MBP 
Production of His6-MBP-MrrAD53N, 
kanr 

This study 

pIDJ088 pET-His6-
MBP 

Production of His6-MBP-
CC2554noPAS, kanr 

This study 

pIDJ090 pET-His6-
MBP 

Production of His6-MBP-
CC2874noTMnoREC, kanr 

This study 

pIDJ094 pET-His6-
MBP 

Production of His6-MBP-
CC2874onlyREC, kanr 

This study 

pIDJ095 pET-His6-
MBP 

Production of His6-MBP-MrrAD53E, 
kanr 

This study 

pIDJ097 pUT18 T18_MrrA-CyaA, ampr This study 
pIDJ098 pUT18 T18_CC2330-CyaA, ampr This study 
pIDJ099 pUT18C T18_CyaA-MrrA, ampr This study 
pIDJ100 pUT18C T18_CyaA-CC2330, ampr This study 
pIDJ101 pKT25 T25_CyaA-MrrA, kanr This study 
pIDJ102 pKT25 T25_CyaA-CC2330, kanr This study 
pIDJ103 pKNT25 T25_MrrA-CyaA, kanr This study 
pIDJ104 pKNT25 T25_CC2330-CyaA, kanr This study 
pIDJ105 pUT18 T18_ParE-CyaA, ampr This study 
pIDJ106 pUT18C T18_CyaA-ParE, ampr This study 
pIDJ107 pKT25 T25_CyaA-ParE, kanr This study 
pIDJ108 pKNT25 T25_ParE-CyaA, kanr This study 
pIDJ109 pUT18 T18_DgcB-CyaA, ampr This study 
pIDJ110 pUT18C T18_CyaA-DgcB, ampr This study 
pIDJ111 pKT25 T25_CyaA-DgcB, kanr This study 
pIDJ112 pKNT25 T25_DgcB-CyaA, kanr This study 
pIDJ113 pUT18 T18_CC1056-CyaA, ampr This study 
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pIDJ114 pUT18C T18_CyaA-CC1056, ampr This study 
pIDJ115 pKT25 T25_CyaA-CC1056, kanr This study 
pIDJ116 pKNT25 T25_CC1056-CyaA, kanr This study 
pIDJ117 pUT18 T18_ChpT-CyaA, ampr This study 
pIDJ118 pUT18C T18_CyaA-ChpT, ampr This study 
pIDJ119 pKT25 T25_CyaA-ChpT, kanr This study 
pIDJ120 pKNT25 T25_ChpT-CyaA, kanr This study 
pIDJ121 pUT18 T18_PhyR-CyaA, ampr This study 
pIDJ122 pUT18C T18_CyaA-PhyR, ampr This study 
pIDJ123 pKT25 T25_CyaA-PhyR, kanr This study 
pIDJ124 pKNT25 T25_PhyR-CyaA, kanr This study 
pIDJ125 pSRK-kan pPlac-phyR, kanr This study 
pIDJ126 pET-His6-

MBP 
Production of His6-MBP-PhyR, kanr This study 

pIDJ127 pET-His6-
MBP 

Production of His6-MBP-LovK, kanr This study 

pIDJ128 pET-His6-
MBP 

Production of His6-MBP-LovR, kanr This study 

pIDJ129 pET-His6-
MBP 

Production of His6-MBP-PhyK, kanr This study 

pIDJ130 pNPTS138 Knock-out of phyK, kanr This study 
pIDJ131 pET28a Production of His6-PhyR, kanr This study 
pIDJ132  NepR This study 

 

 

Table 3: Strains used in this study 

NAME RELEVANT GENETIC CONTENT REFERENCE 

S. cerevisiae 
UJ5292 PJ69-4A, MATa trpl-901 leu2-3,112 ura3-52 his3-200 

gal4Δ gal80Δ LYS2::GALl-HIS3 GAL2-ADE2 
met2::GAL7-lacZ 

[284] 

E. coli 
UJ2710 DH5α, Δ(lacZYA-argF) U169 deoR recA1 endA1 

hsdR17 phoA sup144 thi-1 gyrA96 relA1 (ϕ80 

lacZDM15) 

 

[248] 

UJ257 S17-1, F–lambda(-) thi pro recA hsdR–hsdM+ RP4 
derivative 

[249] 

UJ6697 BL21 DE3, fhuA2 [lon] ompT gal (λ DE3) [dcm] ∆hsdS 
λ DE3 = λ sBamHIo ∆EcoRI-B 
int::(lacI::PlacUV5::T7 gene1) i21 ∆nin5, for protein 
expression 

NEB 

AB1768 MG1655 cyaA::frt, for bacterial two-hybrid analysis [73] 
C. crescentus 
UJ5511 NA1000 hfs+ (hfsA restored) Elvira 

Friedrich 
UJ6390 NA1000 hfs+ ΔmrrA This study 
UJ6308 NA1000 hfs+ ΔlovR This study 
UJ8020 NA1000 hfs+ ΔlovR, ΔmrrA This study 
UJ6758 NA1000 hfs+ ΔlovK This study 
UJ6890 NA1000 hfs+ ΔlovK, ΔmrrA This study 
UJ7911 NA1000 hfs+ ΔCC2324 This study 
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UJ7912 NA1000 hfs+ ΔCC2324, ΔmrrA This study 
UJ7913 NA1000 hfs+ ΔCC2501 This study 
UJ7914 NA1000 hfs+ ΔCC2501, ΔmrrA This study 
UJ8078 NA1000 hfs+ ΔCC2554 This study 
UJ8079 NA1000 hfs+ ΔCC2554, ΔmrrA This study 
UJ8102 NA1000 hfs+ ΔCC2874 This study 
UJ8102 NA1000 hfs+ ΔCC2874, ΔmrrA This study 
UJ8548 NA1000 hfs+ ΔCC2324, ΔCC2501, ΔCC2554, 

ΔCC2874 
This study 

UJ8549 NA1000 hfs+ ΔCC2324, ΔCC2501,  ΔCC2554, 
ΔCC2874, ΔmrrA 

This study 

UJ5934 NA1000 hfs+ ΔCC0091, ΔCC0655, ΔCC0740, 
ΔCC0857, ΔCC0896, ΔCC1086, ΔCC1850, 
ΔCC2462, ΔCC3094, ΔCC3148, ΔCC3285, 
ΔCC3396 

Elvira 
Friedrich 

UJ6630 NA1000 hfs+ ΔCC0091, ΔCC0655, ΔCC0740, 
ΔCC0857, ΔCC0896, ΔCC1086, ΔCC1850, 
ΔCC2462, ΔCC3094, ΔCC3148, ΔCC3285, 
ΔCC3396, ΔmrrA 

This study 

UJ7218 NA1000 hfs+ pSRK-kan, kanr This study 
UJ6728 NA1000 hfs+ ΔmrrA pSRK-kan, kanr This study 
UJ8097 NA1000 hfs+ pIDJ076, kanr This study 
UJ8098 NA1000 hfs+ ΔmrrA pIDJ076, kanr This study 
UJ8099 NA1000 hfs+ pIDJ077, kanr This study 
UJ8100 NA1000 hfs+ ΔmrrA pIDJ077, kanr This study 
UJ8182 NA1000 hfs+ pIDJ078, kanr This study 
UJ8193 NA1000 hfs+ ΔmrrA pIDJ078, kanr This study 
UJ8191 NA1000 hfs+ pIDJ083, kanr This study 
UJ8192 NA1000 hfs+ ΔmrrA pIDJ083, kanr This study 
UJ7127 NA1000 hfs+ pPsigU-lacZ, tetr This study 
UJ7126 NA1000 hfs+ ΔmrrA, pPsigU-lacZ, tetr This study 
UJ8957 NA1000 hfs+ ΔlovR, pPsigU-lacZ, tetr This study 
UJ8958 NA1000 hfs+ ΔlovR, ΔmrrA, pPsigU-lacZ, tetr This study 
UJ8816 NA1000 hfs+ ΔlovK, pPsigU-lacZ, tetr This study 
UJ8817 NA1000 hfs+ ΔlovK, ΔmrrA, pPsigU-lacZ, tetr This study 
UJ8688 NA1000 hfs+ pPctrA-lacZ, tetr This study 
UJ8689 NA1000 hfs+ ΔmrrA, pPctrA -lacZ, tetr This study 
NA1000 Holdfast mutant derivative of wild type CB15 [246] 
UJ5760 NA1000 ΔCC0164 This study 
UJ8172 NA1000 ΔmrrA, ΔCC0164 This study 
   
SoA05 CB15 wild type [35] 
UJ7096 CB15 ΔmrrA This study 
UJ7014 CB15 ΔsigT  [203] 
UJ7081 CB15 ΔsigT, ΔmrrA This study 
UJ8722 CB15 ΔlovK This study 
UJ8723 CB15 ΔlovK, ΔmrrA This study 
UJ8724 CB15 ΔlovK, ΔsigT This study 
UJ8725 CB15 ΔsigT, ΔlovK, ΔmrrA This study 
FC375 CB15 xyl::pMT585-lovR, kanr [211] 
FC437 CB15 van::pMT528-lovK, specr,strepr [211] 
FC438 CB15 xyl::pMT585-lovR van::pMT528-lovK, kanr 

specr,strepr 
[211] 

FC423 CB15 xyl::pMT585 van::pMT528, kanr, specr,strepr [211] 
UJ7285 CB15 pPsigU-lacZ, tetr This study 
UJ7288 CB15 ΔmrrA, pPsigU-lacZ, tetr This study 
UJ7124 CB15 ΔsigT, pPsigU-lacZ, tetr This study 
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UJ7125 CB15 ΔsigT, ΔmrrA, pPsigU-lacZ, tetr This study 
UJ8726 CB15 pPctrA-lacZ, tetr This study 
UJ8727 CB15 ΔmrrA, pPctrA-lacZ, tetr This study 
UJ8696 CB15 ΔsigT, pPctrA-lacZ, tetr This study 
UJ8697 CB15 ΔsigT, ΔmrrA, pPctrA-lacZ, tetr This study 

 

 

Recombinant DNA techniques and oligonucleotidesocedures for DNA 

purification, restriction, ligation, agarose gel electrophoresis and 

transformation of E. coli were carried out as described before in [294]. 

Restriction enzymes were obtained from New England Biolabs (NEB) and all 

PCR were performed with Phusion (NEB). Oligonucleotides were purchased 

from Sigma-Aldrich Chemie. All constructs were sequence verified. C. crescentus 

and E. coli S17-1 were used for bi-parental conjugation as described before 

[235]. 
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Additional results 

CckA suppressor screen 

In order to gain further insight into the CckA regulation mechanisms, a CckA 

suppressor screen was set up (done by Shogo Ozaki). The screening strain 

contained low levels of DivK and a single chromosomal copy of CckA V366P 

or CckA Y514D. Additionally, CpdR was deleted to prevent CtrA from 

degradation and therefore the strain completely relies on CtrA phosphorylation 

to be viable. This strain presumably has very high CtrA phosphorylation levels 

and therefore grows poorly. Suppressors easily arise and can be selected for 

when cells are grown in liquid culture. The DNA of the suppressors was 

isolated and the most likely targets to acquire a mutation were sequenced, 

namely, CckA, CtrA and DivL. Mutations were observed in all of the 

mentioned proteins, and the CckA suppressors were subsequently tested in vitro 

(Additional Data Figure 1). Interestingly, the suppressor mutations isolated for 

CckA V366P and Y514D were found within the same domain. CckA 

T358A/V366P shows no detectable autophosphorylation in vitro although this 

suppressore restores the growth defect. Similarly, CckA T506A/Y514D 

showed no autophosphorylation. Therefore, it seems that as long as CckA 

activity is not counterbalanced by its phosphatase activity the cells only require 

very little kinase activity. This is in contrast to the CckA Y514D/S568W 

suppressor. This allele showed autophosphorylation levels comparable to 

wildtype CckA. It is not clear how this suppressor restores the growth defect. 

The suppressor mutation is close to the receiver domain. Thus, it is conceivable 

that the phosphotransfer between the histidine in the DHp and the aspartate 

in the receiver domain is compromised and therefore results in lower levels of 

phosphorylated CtrA. Further investigations could aim at looking at the 

phosphpotransfer between CckA and ChpT. In addition, the screen was 

certainly not saturated and presumably more suppressor mutations could be 

identified in a saturated screen and tested regarding their kinase activity. 
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Additional Data Figure 1: Characterization of CckA suppressors. 

(a) In vitro phosphorylation of CckA and derivatives. When indicated, c-di-

GMP was added after 15 minutes of autohosphorylation and reactions were 

incubated for another 15 minutes. (b) Purified CckA protein was incubated 

with [33P]c-di-GMP and cross-linked with UV light in the presence or absence 

of a 100-fold excess of competing non-labelled c-di-GMP as indicated. 
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Additional CckA mutants 

In the course of this thesis many CckA alleles were cloned, purified and tested 

for in vitro phosphorylation activity and c-di-GMP binding. These data were 

only partially used for publications. Therefore, in this section, the remaining 

data are presented. 
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Additional Data Figure 2: In vitro activity of CckA mutants. 

In vitro phosphorylation of CckA and derivatives. When indicated, c-di-GMP 

was added after 15 minutes of autohosphorylation and reactions were 

incubated for another 15 minutes. 
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Additional Data Figure 4: C-di-GMP binding of CckA mutants. 

Purified CckA protein was incubated with [33P]c-di-GMP and cross-linked with 

UV light in the presence or absence of a 100-fold excess of competing non-

labelled c-di-GMP as indicated. 
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CtrA-c-di-GMP interaction 

In the previous chapters, it was described how c-di-GMP controls C. crescentus 

cell cycle by interfering with CtrA degradation and phosphorylation. In 

addition, it was suggested that CtrA might directly bind c-di-GMP. This 

observation was initiated by a screen which was performed in a c-di-GMP free 

strain. This strain has several phenotypes [38]. Lack of c-di-GMP causes an 

attachment defect, a motility defect and potentially also affects replication and 

cell division. The screen aimed to find spontaneous mutations that restore 

motility on swarm agar plates in a c-di-GMP free strain. Surprisingly, all isolated 

mutations are within the Helix-turn-Helix domain of CtrA (Sören Abel, 

unpublished). One mutation is known as SokA (suppressor of cold sensitive 

DivK). This mutation was isolated as a suppressor of an over-activated CtrA 

phosphorylation pathway indicating that a c-di-GMP free strain also suffers 

from over-activated CtrA. Before we discovered the c-di-GMP-dependent 

CckA regulation, we focused on the binding of c-di-GMP to CtrA. Sören Abel 

initiated this project and I continued the trials to prove a direct CtrA-c-di-GMP 

interaction. 

C-di-GMP-binding of CtrA was assessed by several different methods. First, 

UV crosslink of 33P-labelled c-di-GMP was tested (Additional Data Figure 4a). 

Unfortunately, it was not possible to reproduce a saturating binding curve to 

determine Kd values for c-di-GMP. To determine if the residual binding is 

specific, competition with non-labelled nucleotides was tested. Ten-fold excess 

of c-di-GMP, GTP or ATP over [33P]c-di-GMP only mildly reduced binding. 

In contrast, 100X excess resulted in strong reduction of binding independent 

of the competing nucleotide (Additional Data Figure 4b). These experiments 

did not allow a satisfying conclusion and therefore, further assays were applied. 

CtrA could be pulled down using the capture compound but the competition 

control confirms the non-specific nature of the c-di-GMP interaction 

(Additional Data Figure 4c). Another assay used to test c-di-GMP-binding was 

differential scanning fluorimetry (DSF). This assay is used to determine the 

denaturation point of a protein. Often, interaction with a ligand increases 

protein stability and therefore, the melting point shifts to higher temperatures. 

Interestingly, from all tested nucleotides, only c-di-GMP induced a temperature 

shift. The shift varies between 6.5°C and 8.5°C depending on the protein 

concentration. To observe the shift, c-di-GMP concentrations need to reach 

100X excess over the protein concentration, with lower c-di-GMP 

concentrations no shift was detectable (Additional Data Figure 4d, e). 
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Additional Data Figure 4: Characterization of the CtrA-c-di-GMP 

interaction. 

(a) C-di-GMP binding affinity for CtrA. Binding was determined by UV-

crosslinking at increasing concentrations of [33P]c-di-GMP. Quantified band 

intensity is shown. (b) Purified CtrA protein was incubated with [33P]c-di-GMP 

and cross-linked with UV light in the presence or absence of a 10-fold or 100-

fold excess of competing non-labelled nucleotides as indicated. (c) C-di-GMP 

binding determined by capture compound pulldown experiments. Amount of 

protein determined by western blot stained with α-FLAG antibody. 

Competition with non-labelled nucleotides as indicated. (d) C-di-GMP 

increases denaturation temperature of CtrA. Denaturation temperature 

determined by differential scanning fluorimetry (DSF). The red arrow indicates 
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the shifted curve for 100X c-di-GMP. (e) Temperature shift induced by c-di-

GMP depends on protein concentration. Temperature shift increases from 

6.5°C to 8.5°C if protein concentration is reduced from 20 µM to 5 µM.  

CtrA DNA binding - Electrophoretic mobility shift assay 

Considering that the output function of CtrA is DNA-binding, we tested if c-

di-GMP alters the DNA-binding capacity of CtrA. The rational behind the 

experiment is that at the G1-S transition, when CtrA has to be removed from 

the DNA, the c-di-GMP levels are high. Binding of c-di-GMP to CtrA could 

weaken the interaction with DNA and therefore clear the DNA from CtrA. 

The target promotor used for the experiments is PilA, a well-described CtrA 

target. The results show that CtrA binds the PilA promotor at high 

concentrations (Additional Data Figure 5). However, addition of c-di-GMP 

does not result in reduction of DNA binding activity.  

 

 

Additional Data Figure 5: C-di-GMP does not interfere with CtrA 

binding to DNA. (a) Binding of CtrA to the pilA promoter was determinded 

by electrophoretic mobility shift assay. CtrA concentrations used were 0, 0.02, 

0.08, 0.2, 0.8, 3 and 12 µM. (b) An experiment identical to that described in (a) 

was performed, with the exception that 75 µM c-di-GMP was added. 



178 

 

Considering these experiments, we stopped further experiments investigating 

the effects of c-di-GMP on CtrA. However, it should be noted that when 

intracellular c-di-GMP levels raise, CtrA exists mostly in its phosphorylated 

state. Therefore, it could be possible that only phosphorylated CtrA is capable 

of binding c-di-GMP. To test this CtrA could be phosphorylated prior to 

measuring c-di-GMP and DNA-binding affinities.  

 

Additional Data Materials and Methods 

Unless not otherwise stated below, procedures required for the additional data 

are as described in [49]. 

Electrophoretic mobility shift assay (EMSA) 

The assay was essentially done as described in [295]. CtrA-His6 was diluted in 

binding buffer (25 mM Tris, 100 mM KCl, 5mM MgCl2, 5% glycerol and 0.05% 

dodecyl maltoside, pH 7.5). Protein was mixed with BSA (0.5 mg ml-1), 

sonicated salmon sperm DNA (0.05 mg ml-1) and Cy3 labelled fragments of the 

pilA promoter region (25 nM). Samples were incubated for 10 min before 

loaded on 4% TBE polyacrylamide gels. Gels were scanned with a Typhon FLA 

7000 imager (GE Healthcare) 

Differential scanning fluorimetry (DSF) 

Concentration of purified protein was adjusted to 20 µM. Reaction buffer 

contained 1X PBS (pH 7) supplemented with 2 mM β-mercaptoethanol. 

Nucleotides were added to the reaction as indicated. SYPRO orange dye was 

diluted to 5X final concentration. Reaction plate was incubated for 15 minutes 

before start of the experiment. Temperature gradient and fluorescence read-

out was done using a Biorad thermocycler. Gradient was run from 10°C to 

90°C at 0.5°C increments. BioRad CFX Manager 2.1 was used to analyze the 

data. 

Capture compound pulldown experiments 

Protein concentration was adjusted to 0.5 µM. Reaction was incubated in 1X 

PBS, 2 mM β-mercaptoethanol. Capture compound was used at a final 

concentration of 10 µM. Crosslink was done at 280 nm and 4 minutes at 4°C. 

Competition with unmodified nucleotides was done as indicated. Reactions 

were incubated with 30 µl magnetic streptdavidin beads (Invitrogen). Reaction 

was washed six times with 1X wash buffer (50 mM Tris-HCl pH 7.5, 1mM 
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EDTA, 1M NaCl, 8.5 µM n-octyl-ß-D-glucopyranoside). Proteins were 

detected by western blot using α-CtrA antibody (rabbit) as described in [49]. 

Plasmid construction 

Plasmids and Oligonucleotides used in this section are listed in Additional Data 

Tables 1 and 2.  

To construct mutated CckA alleles, the following procedure was applied: 

Generally, pET-cckA was used as template with 5276/5277 as outside primers 

and internal mutagenic primers to introduce mutations. The following internal 

primers were used to introduce point mutations: R374A (6483/6484), R380A 

(6485/6486), R412A (6489/6490), R418A (6491/6492), R451A (7721/7722), 

R457A (7723/7724), F474A (7725/7726), D479A (7727/7728), F493C 

(7729/7730), F493A (7729/7730), V513C (5542/5543), V513A (7731/7732), 

R529A (5500/5501), A534C (5544/5545), R537A (5502/5503), F539A 

(7737/7738), F539C (5546/5547), Q553C (5548/5549), R565A (5506/5507), 

R583A (5510/5511), R588A/R591A/R593A (5516/5517). To create CckA 

Δ454-468 fragments were PCR amplified using primer combinations 

5276/7742 and 5277/7741. After fusion PCR, inserts were BamHI and SalI 

digested and ligated into pET28a-His-MBP. The following mutants were 

amplified from a pBXMCS2 plasmid already containing the cckA allele with the 

appropriate mutation. PCR products were amplified using 5276/5277. Plasmid 

templates were: pBXMCS2-cckA F372A, pBXMCS2-cckA Q376A, 

pBXMCS2-cckA L508A, pBXMCS2-cckA T512A, pBXMCS2-cckA G515D, 

pBXMCS2-cckA I516A, pBXMCS2-cckA K518A, pBXMCS2-cckA Q519A, 

pBXMCS2-cckA I524P. Resulting PCR products were BamHI and SalI digested 

and ligated into pET28a-His-MBP. pET-cckA T358A/V366P, pET-cckA 

T506A/Y514D, pET-cckA Y514D/S568W and pET-cckA G318A were PCR 

amplified using chromosomal DNA containing the indicated mutations using 

Primers 5276/5277 and subsequent ligation into pET28a-His-MBP. 
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Additional Data Plasmids 

NAME  DESCRIPTION REF. 

pET-cckA G318A  Overexpression of CckA alleles This study 

pET-cckA F372A  Overexpression of CckA alleles This study 

pET-cckA R374A  Overexpression of CckA alleles This study 

pET-cckA Q376A  Overexpression of CckA alleles This study 

pET-cckA R380A  Overexpression of CckA alleles This study 

pET-cckA R412A  Overexpression of CckA alleles This study 

pET-cckA R418A  Overexpression of CckA alleles This study 

pET-cckA R451A  Overexpression of CckA alleles This study 

pET-cckA R457A  Overexpression of CckA alleles This study 

pET-cckA F474A  Overexpression of CckA alleles This study 

pET-cckA D479A  Overexpression of CckA alleles This study 

pET-cckA F493A  Overexpression of CckA alleles This study 

pET-cckA F493C  Overexpression of CckA alleles This study 

pET-cckA L508A  Overexpression of CckA alleles This study 

pET-cckA T512A  Overexpression of CckA alleles This study 

pET-cckA V513A  Overexpression of CckA alleles This study 

pET-cckA V513C  Overexpression of CckA alleles This study 

pET-cckA G515D  Overexpression of CckA alleles This study 

pET-cckA I516A  Overexpression of CckA alleles This study 

pET-cckA K518A  Overexpression of CckA alleles This study 

pET-cckA Q519A  Overexpression of CckA alleles This study 

pET-cckA I524A  Overexpression of CckA alleles This study 

pET-cckA R529A  Overexpression of CckA alleles This study 

pET-cckA A534C  Overexpression of CckA alleles This study 

pET-cckA R537A  Overexpression of CckA alleles This study 

pET-cckA F539A  Overexpression of CckA alleles This study 

pET-cckA F539C  Overexpression of CckA alleles This study 

pET-cckA Q553C  Overexpression of CckA alleles This study 

pET-cckA R565A  Overexpression of CckA alleles This study 

pET-cckA R583A  Overexpression of CckA alleles This study 

pET-cckA 
R588A/R591A/R593A 

 Overexpression of CckA alleles This study 

pET-cckA deltaLooP  Overexpression of CckA alleles This study 

pET-cckA T358A/V366P  Overexpression of CckA alleles This study 
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pET-cckA T506A/Y514D  Overexpression of CckA alleles This study 

pET-cckA Y514D/S568W  Overexpression of CckA alleles This study 

pBXMCS2-cckA F372A  To overexpress CckA ΔTM Shogo Ozaki 

pBXMCS2-cckA Q376A  To overexpress CckA ΔTM Shogo Ozaki 

pBXMCS2-cckA L508A  To overexpress CckA ΔTM Shogo Ozaki 

pBXMCS2-cckA T512A  To overexpress CckA ΔTM Shogo Ozaki 

pBXMCS2-cckA G515D  To overexpress CckA ΔTM Shogo Ozaki 

pBXMCS2-cckA I516A  To overexpress CckA ΔTM Shogo Ozaki 

pBXMCS2-cckA K518A  To overexpress CckA ΔTM Shogo Ozaki 

pBXMCS2-cckA Q519A  To overexpress CckA ΔTM Shogo Ozaki 

pBXMCS2-cckA I524P  To overexpress CckA ΔTM Shogo Ozaki 

    

 

Additional Data Primers 

NAME SEQUENCE 

5276 CGCGGATCCTCAGCGCTTTCCGGCGGCGAC 

5277 ACGCGTCGACCTACGCCGCCTGCAGCTGCTG 

5500 GGCTGGATTCACGTCCACAGCgcgCCGAACGAAGGCGCGGCCTTC 

5501 GAAGGCCGCGCCTTCGTTCGGcgcGCTGTGGACGTGAATCCAGCC 

5502 CCGAACGAAGGCGCGGCCTTCgccATCTTCCTGCCGGTCTATGAAG 

5503 CTTCATAGACCGGCAGGAAGATggcGAAGGCCGCGCCTTCGTTCGG 

5506 CCCGCCAAGCCGCGCGCCGCTgccGACCTGTCGGGCGCCGGCCGC 

5507 GCGGCCGGCGCCCGACAGGTCggcAGCGGCGCGCGGCTTGGCGG
G 

5510 GTCGAGGACGAGGACGCCGTGgccAGCGTCGCCGCCCGCCTGCTG 

5511 CAGCAGGCGGGCGGCGACGCTggcCACGGCGTCCTCGTCCTCGAC 

5516 GCCGTGCGCAGCGTCGCCGCCgccCTGCTGgccGCCgcgGGCTACGAG
GTGCTTGAGGCG 

5517 CGCCTCAAGCACCTCGTAGCCcgcGGCggcCAGCAGggcGGCGGCGAC
GCTGCGCACGGC 

5540 CCCGACGTCATGGGCAAGATCtgcGACCCGTTCTTCACCACCAAG 

5541 CTTGGTGGTGAAGAACGGGTCgcaGATCTTGCCCATGACGTCGGG 

5542 CGGGCCTAGGCCTAGCCACGtgcTATGGCATCGTTAAGCAGAGCGA
C 

5543 GTCGCTCTGCTTAACGATGCCATAgcaCGTGGCTAGGCCTAGGCCC
G 

5544 CACAGCCGTCCGAACGAAGGCtgcGCCTTCCGCATCTTCCTGCCG 

5545 CGGCAGGAAGATGCGGAAGGCgcaGCCTTCGTTCGGACGGCTGTG 

5546 CGAAGGCGCGGCCTTCCGCATCtgcCTGCCGGTCTATGAAGCGCCC 

5547 GGGCGCTTCATAGACCGGCAGgcaGATGCGGAAGGCCGCGCCTTC
G 
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5548 CCCGCCGGCGCGGTCGCCGTCtgcGCCGTCGCCGAGCCCGCCAAG 

5549 CTTGGCGGGCTCGGCGACGGCgcaGACGGCGACCGCGCCGGCGG
G 

6483 GCGCAAGCTCTTGGCTTTCTCGgcgAAGCAGACCGTGCAGCGCGAG
G 

6485 CCTCGCGCTGCACGGTCTGCTTcgcCGAGAAAGCCAAGAGCTTGCG
C 

6485 CTCGCGCAAGCAGACCGTGCAGgcgGAGGTGCTGGATCTGGGCGA
GC 

6486 GCTCGCCCAGATCCAGCACCTCcgcCTGCACGGTCTGCTTGCGCGA
G 

6489 CAAGCTGATCACCGACTATGGCgcgGACCTGCCGCAGGTGCGCGCC
G 

6490 CGGCGCGCACCTGCGGCAGGTCcgcGCCATAGTCGGTGATCAGCTT
G 

6491 GGCCGCGACCTGCCGCAGGTGgcgGCCGACAAGAGCCAGCTCGAG
AC 

6492 GTCTCGAGCTGGCTCTTGTCGGCcgcCACCTGCGGCAGGTCGCGGC
C 

7721 GCGTCGTGCGCATCGCCACCGCGCGCCTGACCCG 

7722 CGGGTCAGGCGCGCGGTGGCGATGCGCACGACGC 

7723 CCGCACCGCGCGCCTGACCGCCGACGAGGCGATCCAGC 

7724 GCTGGATCGCCTCGTCGGCGGTCAGGCGCGCGGTGCGG 

7725 CCGCCGACGGCGACACGGCCGCCATTGAGGTCAGTGACGATG 

7726 CATCGTCACTGACCTCAATGGCGGCCGTGTCGCCGTCGGCGG 

7727 GGCCTTCATTGAGGTCAGTGCCGATGGTCCGGGCATTCCG 

7728 CGGAATGCCCGGACCATCGGCACTGACCTCAATGAAGGCC 

7729 CCCGACGTCATGGGCAAGATCGCCGACCCGTTCTTCACCACCAAG 

7730 CTTGGTGGTGAAGAACGGGTCGGCGATCTTGCCCATGACGTCGG
G 

7731 CGGGCCTAGGCCTAGCCACGGCCTATGGCATCGTTAAGCAGAGCG
AC 

7732 GTCGCTCTGCTTAACGATGCCATAGGCCGTGGCTAGGCCTAGGCC
CG 

7737 CGAAGGCGCGGCCTTCCGCATCGCCCTGCCGGTCTATGAAGCGCC
C 

7738 GGGCGCTTCATAGACCGGCAGGGCGATGCGGAAGGCCGCGCCTT
CG 

7741 CGGCGTCGTGCGCATCCGCACCGCGGACGGCGACACGGCCTTCAT
TG 

7742 CAATGAAGGCCGTGTCGCCGTCCGCGGTGCGGATGCGCACGACG
CCG 
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Discussion & Outlook 
_____________________________________________________________________ 

 

C-di-GMP has become a widely studied molecule in the past few years. During 

this time, it has become evident that c-di-GMP regulation goes beyond the 

motile-sessile transition and that this molecule controls a plethora of additional 

cellular processes in bacteria. Although our studies have added cell cycle 

progression and replication control to this growing list, the details of how c-di-

GMP influences the bacterial cell cycle remain incomplete.  

We have characterized a mechanism by which c-di-GMP controls the central 

cell cycle circuitry in Caulobacter crescentus. We have identified a novel c-di-GMP 

effector protein, CckA, which shares no common binding motif with known 

c-di-GMP binding proteins. CckA was isolated as a histidine kinase controlling 

the central cell cycle transcription factor CtrA [186]. CtrA itself controls the 

activity of more than 100 genes and, in addition, blocks DNA replication in the 

G1-phase swarmer cell [178]. Our data indicated that c-di-GMP binding to 

CckA changes its activity from the default kinase to phosphatase activity [49]. 

This ultimately results in dephosphorylation of CtrA upon entry into S-phase 

and licensing of replication initiation. It was shown previously that c-di-GMP 

levels fluctuate during the cell cycle with peak levels at the swarmer to stalked 

cell (G1-S) transition [38]. The strong upshift of c-di-GMP thus nicely 

coincides with the activation of CckA phosphatase activity.  

However c-di-GMP is not the only determinant of CckA activity [186]. DivK 

is also involved in switching CckA into the phosphatase conformation, 

although it is neither entirely clear how DivK contributes to CckA regulation 

nor is the physiological reason for this redundancy evident from these studies 

[193]. Concluding from our data, we suggest a model where DivK and c-di-

GMP together control G1-S transition. In contrast, it appears that in the 

predivisional cell, c-di-GMP is the only determinant of CckA activity and 

responsible for the differential activation at the poles. A c-di-GMP-blind 

mutant is no longer able to maintain replicative asymmetry during this stage of 

the cell cycle. Further research should thus aim at understanding how DivK 

and c-di-GMP synergistically control CckA at the G1-S transition. 

Furthermore, the role of DivL in CckA control is unclear. DivL is a histidine 

kinase-like protein lacking the conserved acceptor histidine [193,195]. 

Interestingly, DivL interacts with CckA and DivK but neither the 

consequences of this interaction nor the temporal and spatial pattern of this 
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interaction are known [193]. Hence, understanding the role of DivL could help 

understanding how CckA is controlled and why this additional pathway was 

introduced during evolution.  

In the polarized predivisional cell, CckA localizes to both poles but is active as 

a phosphatase at the stalked pole and as a kinase at the swarmer pole [192]. It 

has been proposed that bipolar localization results in a gradient of activated 

CtrA~P across the predivisional cell [192]. We have shown that c-di-GMP is 

responsible for these opposing activities in the predivisional cell resulting in 

replicative asymmetry due to establishment of a CtrA phosphorylation gradient 

across the cell [49]. To explain our experimental observations, we proposed a 

model where c-di-GMP levels are lower at the swarmer cell pole as compared 

to the rest of the cytoplasm. This implies specific spatial control of c-di-GMP 

producing and degrading enzymes. We favour a model in which one or several 

PDEs colocalize with CckA at the flagellated pole, thereby installing a local 

trough of c-di-GMP which locally forces CckA into the kinase mode. However, 

we were not able to determine if a specific phosphodiesterase or a subset of 

phosphodiesterases at the swarmer cell pole is the cause of this gradient. 

Further research should investigate the key components involved in 

asymmetric c-di-GMP distribution and differential CckA activation.  

Apart from highlighting the molecular and cellular details of Caulobacter cell 

cycle control, our results are especially interesting for the histidine kinase field 

in general. Many histidine kinases are bifunctional and also catalyze 

phosphatase reactions [167,263]. In most cases, the molecular and structural 

details to this switch are unclear and there are no structures are available which 

show a histidine kinase in its phosphatase conformation. One reason for this 

lack of knowledge is that often signals responsible for kinase or phosphatase 

activation are unknown. Even if such signals have been identified, membrane 

integral HKs with the input domain separated from the catalytic kinase core by 

a lipid bilayer are difficult to dissect biochemically or structurally. To the best 

of our knowledge, CckA is the first example of a His kinase/phosphatase 

controlled by a small ligand. This has opened up a promising opportunity to 

gain deeper understanding of how histidine kinases are regulated. Our findings 

that c-di-GMP regulation is confined to the cytoplasmic kinase core domains, 

makes CckA an attractive and tractable protein to understand the important 

and widely conserved kinase/phosphatase switch.  

Together with our collaborators in Structural Biology, we recently succeeded 

to solve the crystal structure of the CA domain of CckA bound to c-di-GMP. 

Not only did the structure confirm the region of c-di-GMP binding which we 
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have previously determined by a mutagenesis and NMR approach, but it also 

uncovered a completely new c-di-GMP binding site. Unfortunately, it was so 

far not possible to solve the structure of the full-length protein with and 

without c-di-GMP. Future work should thus focus on structure/function 

aspects of the full-length CckA and its regulation by c-di-GMP. This will allow 

to draw general conclusions about the conformational changes which histidine 

kinases undergo to switch to a phosphatase mode. In addition to c-di-GMP, 

ADP binding was described as potential activator of phosphatase activity [263]. 

However, how ADP induces phosphatase activity remains obscure. We could 

show that for CckA binding affinity of ADP was very low in the absence of c-

di-GMP, but strongly increased upon addition of c-di-GMP. Based on this, we 

speculate that c-di-GMP stabilizes the ADP molecule which remains bound to 

the protein after ATP hydrolysis, thereby triggering phosphatase activation. 

Consequently, future work will aim at determining the off rates of ADP in the 

presence and absence of c-di-GMP.  

We have shown that the c-di-GMP dependent kinase-phosphatase switch is 

conserved in the CckA homolog of Agrobacterium tumefaciens [49]. Since CckA is 

a conserved protein in α-proteobacteria it is conceivable that many CckA 

homologs are controlled by c-di-GMP [228,296]. At the same time it is 

tempting to speculate that c-di-GMP regulation of histidine kinases predates 

the evolutionary separation of different proteobacterial branches and that a 

subclass of this large signaling family has adopted c-di-GMP control in a wide 

range of different bacteria. In silico analyses have recently indicated that this is 

indeed the case and that a subgroup of histidine kinases shares key determinants 

for c-di-GMP binding with the CckA subgroup found in α-proteobacteria. This 

includes a set of HKs in gamma-proteobacteria like Escherichia or Pseudomonas. 

It will be most rewarding to investigate activity; c-di-GMP dependence; and 

cellular role of selected members of this newly identified subfamily of HKs.  

The second major part of this thesis investigated the general stress response in 

C. crescentus. Similar to the core cell cycle events described above, the stress 

response is controlled by phosphorylation cascades [210,275]. In order to 

respond to various stresses, C. crescentus upregulates the alternative sigma factor 

SigT [285]. Activity and induction of SigT depend on a partner switch 

mechanism [206]. SigT is bound by NepR and kept in an inactive form [203]. 

Upon phosphorylation, the response regulator PhyR interacts with and 

sequesters NepR, thereby freeing SigT [202,207]. Hence, activation of this 

cascade by different sources of cellular stress critically depends PhyR 

phosphorylation. Several upstream kinases of PhyR have been described, one 
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of them being LovK [202,210]. Although LovK harbors a light sensing LOV 

domain, its mode of activation and its specific role in SigT control has remained 

elusive. In this work, we demonstrate that MrrA, a small single domain 

response regulator, controls the activity of LovK. We identified two cognate 

upstream kinases of MrrA capable of transferring phosphate onto MrrA. 

Phosphorylated MrrA was then shown to strongly induce autokinase activity of 

LovK, thereby activating the general stress response. Although our studies 

uncovered MrrA as a molecular connector between different layers of PhyR 

phosphorylation control, several questions remained unsolved. Mutational 

inactivation of MrrA completely prevented activation of SigT-dependent 

transcription in vivo, arguing that MrrA is indeed a central player of the stress 

response in C. crescentus. However, loss of its downstream target LovK had no 

significant effect. Based on this, we postulate the existence of additional 

downstream targets of MrrA, which contribute to signaling into the general 

stress response. A very attractive candidate is PhyK, since the mutational 

inactivation of this protein resulted in an abolished general stress response. 

Future work will thus focus on the in vitro activity of PhyK and its dependence 

on the presence of activated MrrA, MrrA~P. Moreover, it appears that 

additional components of this important stress pathway are missing upstream 

of MrrA. Although we have identified two cognate histidine kinases that 

specifically phosphorylate MrrA in vitro, mutational inactivation of these kinases 

was not sufficient to block activation of the general stress response. Therefore, 

additional histidine kinases must exist which are able to phosphorylate MrrA. 

Future work should aim at identifying such missing kinases to get a better 

insight into the activation of the general stress response in C. crescentus. Likewise, 

specific cellular stressors will have to be investigated in order to dissect the role 

of each of the upstream components and to appreciate the central role of MrrA 

in this general cellular homeostasis system.  
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