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SUMMARY 

Microbial pathogens and herbivores are some of the key drivers of evolutionary 

adaptations by plants. As sessile organisms plants have to react quickly and strongly 

with defense responses to repel any invading organism. Besides preformed structures 

like thick cell walls and long thorns plants can activate innate immune responses that in 

a complex way lead to the activation of very efficient countermeasures. These include 

measurable changes on the plants hormone and gene expression levels but also plenty of 

secondary metabolites can be produced that directly have antimicrobial or herbivore 

repellent activity. Key to the timely initiation of defense responses is the perception of 

the invader and its detrimental activity. Plants carry highly specific pattern recognition 

receptors (PRR) to detect microbial or herbivore specific molecular signatures, so called 

microbe- or herbivore-associated molecular patterns (MAMP/HAMP). Less specific but 

equally efficient plant defenses can also be activated by the perception of self-molecules 

that behave differently once cell damage occurs. So called damage-associated molecular 

patterns (DAMP) are released passively or actively from damaged cells and serve as 

strong indicators of an infection or the presence of an herbivore.  

In this work the mechanisms around expression, activation and activity of recently 

described DAMPs, the family of plant elicitor peptides (PEPs), were investigated in 

more detail. PEPs are perceived by the plant they are released from via specific PEP 

receptors (PEPRs) and thereby trigger defense responses. PEPs are expressed as larger 

PROPEPs, and we first investigated the expression of seven formerly known and a 

newly identified eighth PROPEP and that of the two PEPRs in Arabidopsis tissues 

using the promoter-GUS fusion technique. We were able to show that expression of 

PROPEPs 1-3, 5 and 8 mostly overlapped and correlated with the expression of both 

PEPRs, whilst PROPEP4 and 7 were only weakly expressed in small areas of the roots. 

In silico analysis unveiled the influences of biotic stresses on the PROPEP expression 

patterns and showed that PROPEP 1-3 are most strongly regulated by defense-

associated mechanisms. To determine the subcellular localization of a selection of 

PROPEPs we observed PROPEP 1, 3 and 6 fused to Yellow Fluorescent Protein (YFP) 

within the cells and found PROPEP1 and 6 to be localized to the tonoplast membrane, 
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whilst PROPEP3 showed a cytoplasmic localization. Despite the apparent different 

expression and localization patterns of PROPEPs, the elicitation activity of the mature 

PEPs was very similar, even though all eight AtPEPs were perceived by AtPEPR1 while 

AtPEPR2 was activated exclusively by AtPEP1 and 2.    

Even though a lot of research has been already done on the responses induced after PEP 

elicitation the circumstances and the mechanism leading to PEP genesis from the 

PROPEP precursor has not been uncovered so far. Here, we observed the rapid 

formation of Arabidopsis PEP1 from PROPEP1 upon cell damage. Cleavage of 

PROPEP1 depended on the presence of the conserved arginine 69 and was impaired by 

chelating Ca2+ ions or addition of a metacaspase-specific inhibitor. This led to the

identification of the arginine-specific cysteine protease AtMetacaspase 4 (MC4). MC4 

activation correlated with PEP1 formation, MC4 was able to cleave PROPEP1 in vitro, 

and lack of MC4 impaired PROPEP1 cleavage in vivo. Furthermore, laser ablation 

experiments revealed damage-induced relocalization of PROPEP1 that was dependent 

on MC4 activity. Notably, PEPR1 internalization in cells adjacent to the site of laser 

ablation indicated PEP1 release. Thus MC4 is the bona fide protease for PROPEP1 

processing and thereby enables PEP1 relocalization to first the cytosol and, depending 

on the cellular integrity, the extracellular space. 

In a third project we gained knowledge about the conservation of the PROPEP-Pep-

PEPR system across the plant kingdom. We identified new PEPs in Brassicaceae, 

Solanaceae and Poaceae species with elicitor activity being limited to the plant family of 

their origin. We deduced Brassicaceae, Solanaceae and Poaceae specific amino acid 

motifs within the respective PEP families that are required for intra-family elicitor 

activity and seem to explain the interfamily incompatibility. In addition we identified a 

large number of PEPRs outside Arabidopsis and cloned the coding sequences of Zea 

mays PEPR and Solanum Lycopersicum PEPR for further characterization. Expression 

of these newly identified receptors in Nicotiana benthamiana demonstrated their 

functionality upon perception of the corresponding PEPs. Thus, contrary to PROPEPs, 

the PEPRs are interspecies compatible. 
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In summary with this study valuable new data on the characteristics and ubiquity of the 

PROPEP-PEP-PEPR system in general and the PROPEPs in particular were generated. 

Importantly, light was shed on the hitherto unknown processing of PROPEPs that not 

only significantly advanced PEP research but also the work on plant proteases which is 

struggling to identify in vivo substrates. Finally, this work might soon be recognized as 

the foundation to define the first plant cytokines.  
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1. INTRODUCTION

1.1 GENERAL INTRODUCTION 

As the primary producers of organic energy, the photosynthetically active plants are an 

obligate food source for a huge variety of organisms. From the smallest microbe to the 

largest elephant plants serve as a main source of resources and energy needed for 

survival. Via their roots plants obtain nutrients and water from the soil needed to run 

photosynthesis in the green aboveground parts, rendering them anchored to the ground 

at a given place and taking away the escape options from uncomfortable conditions like 

appearing herbivores. These biotic as well as abiotic stresses put plants under 

evolutionary pressure and drive the development of diverse adaptations including 

phenotypic adaptations like a waxy cuticula or thorns as well as molecular adaptations 

like the storage of secondary metabolites (Malinovsky et al., 2014). Some adaptations 

serve as physical barriers against biotic invaders, making the plant indigestible to some 

herbivores or less vulnerable and therefore reduce the likelihood of pathogen entry into 

the plant body at the site of wounding. A second and more specific line of defense 

especially against pathogens is formed by the plants` inducible innate immune system 

(Muthamilarasan and Prasad, 2013). It relies on a specific recognition machinery that 

allows the perception of whole classes of biotic stressors via their molecular fingerprints 

(Zipfel, 2014). For example the molecular fingerprints of microbes are based on greatly 

conserved molecules, so called microbe-associated molecular patterns (MAMPs), which 

are required by these microbes for their lifestyle and hence their survival (Mackey and 

McFall, 2006; Boller and Felix, 2009). These molecules allow a specific discrimination 

between self (plant-born molecules) and non-self (microbe-born molecules, MAMPs), a 

prerequisite for a specific response. Notably, plants are able to perceive their own 

molecules as well, for example in cases of danger or damage situations. So called 

damage-associated molecular patterns (DAMPs) are released by dying or wounded cells 

and are perceived by neighboring cells as danger signals (Heil et al., 2012; Heil and 

Land, 2014). 

MAMPs and DAMPs are perceived by specific plasma membrane bound pattern 

recognition receptors (PRRs) and thereby trigger signal transduction pathways for the 
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activation of defense reactions known as pattern-triggered immunity (PTI) (Chinchilla et 

al., 2006; Zipfel et al., 2006; Krol et al., 2010; Macho and Zipfel, 2014). These include 

rapidly induced direct defense responses like the production of anti-microbial 

compounds, repellent molecules, and volatile organic compounds (VOC) but also long-

term adaptations like altered gene expression patterns, strengthening of the cell wall, and 

shifted growth patterns (Boller and Felix, 2009). The perception of MAMPs signals the 

presence of potentially pathogenic microbes whereas the perception of DAMPs follows 

either mechanical damage or established infections which are accompanied by frequent 

cell death or damage to the host (Heil et al., 2012). 

Most DAMP and MAMP PRRs interact with a specific co-receptor upon binding of a 

specific ligand and thereby initiate a multitude of downstream responses including the 

induction of basal defense responses that subsequently lead to non-host resistance 

against an invading pathogen or the induction of wound healing (Heil et al., 2012; 

Zipfel, 2014). Involved components of PTI signaling are shown in figure 1.1 and will be 

described in more detail in the individual chapters. 

PTI represents the first layer of plant innate immunity. Nevertheless pathogens evolved 

specific strategies to overcome this first line of defense of their host. Pathogenic 

effectors, also called virulence factors, are able to inhibit crucial steps in PTI signaling 

(Deslandes and Rivas, 2012; Maffei et al., 2012). Effectors can either be injected into 

the host cells or be secreted into the extracellular space where they lead to blockage of 

crucial PTI signaling events. During Pseudomonas syringae pv. DC3000 infections on 

Arabidopsis, the pathogen injects the effectors AvrPto and AvrPtoB via a type III 

secretion system into the host cell. The two effectors directly interfere with receptor 

kinases that are crucial for PTI signaling (Xing et al., 2007; Gimenez-Ibanez et al., 

2009). Effectors can also act indirectly on the induction of PTI. The effector AprA of P. 

syringae is able to degrade monomers of the bacterial protein flagellin, a very strong 

elicitor of PTI, and thereby makes the bacterium “invisible” to the very first detection by 

the PRR FLAGELLIN SENSING 2 (FLS2) (Bardoel et al., 2011). Ultimately effectors 

serve the  
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MICROBE OR DAMAGE-ASSOCIATED MOLECULAR PATTERNs (MAMPs/ DAMPs) can be sensed by each 
individual plant cell via highly specific PATTERN-RECOGNITION RECEPTORs (PRRs) at the cell surface. 
Activation of the respective PRRs by ligand binding induces various downstream responses of which some are 
specifically induced upon only MAMP or DAMP perception, whereas the majority of responses are induced upon 
elicitor perception in general. Induction of defense mechanisms by PRRs finally leads to increased resistance 
against pathogens and is called pattern-triggered immunity (PTI). Volatile organic compounds (VOCs), protease 
inhibitors (PI) and further secondary metabolites are especially important as defense components that directly act 
against an invader but can also serve as signaling molecules. Microbes as well as herbivores developed effectors to 
inhibit recognition or defense mechanism by the plant. Effectors in turn can be recognized by specific resistance 
proteins (R proteins), that induce PTI responses on a much stronger level and in most cases lead to a hypersensitive 
reaction (HR) causing cell death and blocking of pathogen spreading. Defense mediated by microbial effectors is 
called effector-triggered immunity (ETI) 

 purpose to suppress the host immune responses to ensure successful infection thereby 

leading to so called effector triggered susceptibility (ETS) of the host (Deslandes and 

Rivas, 2012; Zhou et al., 2014). Hence, in addition to the basal immune system of plants 

including PTI, plants in turn evolved strategies to counteract ETS directly. This 

adaptation is referred to as effector-triggered immunity (ETI) and acts as a second layer 

of defense against pathogen infections (Jones and Dangl, 2006). ETI relies on specific 

immune receptors that sense effectors either directly or indirectly detect effector activity. 

Recognition is executed by resistance (R) proteins, intracellular nucleotide-binding 

leucine-rich repeat (NB-LRR) proteins that initiate a set of defense responses, which 

partially differ from the one induced by PTI. Defense responses initiated by the 
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activation of R proteins are mostly rapidly induced on a generally high level and often 

lead to a so called hypersensitive response (HR) (Mur et al., 2008). HR is a specific type 

of programmed cell death that is induced in pathogen infected tissue upon ETI and also 

in the surrounding areas, leading to necrosis in this area. HR is a characteristic 

mechanism in ETI and effectively blocks the spread of biotrophic pathogens from the 

infection side (Mengiste, 2012). 

PTI is a rather static building block of the innate immune system. It relies on the 

perception of highly conserved microbial structures, which cannot be easily altered by 

the microbe without effecting its survival or virulence. Effectors are in contrast to most 

MAMPs not essential for microbial survival and may therefore be altered by the 

pathogen to evade from ETI, or to more efficiently suppress PTI (Jones and Dangl, 

2006; Hein et al., 2009). In the same way R proteins require adaptation by the plant to 

keep up ETI. Since effector and R protein are both encoded in the respective genome it 

has been found that a given cultivar of a plant shows resistance to some strains of a 

given pathogen but not to other strains and vice versa some strains are able to infect 

some cultivars but not others (Boyd et al., 2013). When observed as a single situational 

snapshot, one effector interacts with one R protein and therefore this process has initially 

been described as “gene for gene” interaction. Due to co-evolution of host and pathogen 

this mechanism by which ETS and ETI interact is rather flexible and driven by the 

selective pressure ETS and ETI force to the respective suffering organism. Thus this 

dynamic interplay of PTI, ETS and ETI has been described in the "zigzag model" (figure 

1.2) as a sort of arms race of plants and pathogens (Jones and Dangl, 2006). Seen in an 

evolutionary context, pathogens get selected against the perception by the plant’s 

immune system and vice versa the plant’s immune system gets selected for the 

perception of invading pathogens.  
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Figure 1.2. The “Zigzag” model to co-evolution of plants defense mechanisms and pathogen countermeasures. 
Detection of MAMPs induces basal defense responses in plants that lead to PTI. Pathogens can evade from PTI or 
block its activation by carrying specific effectors that attenuate defense responses and render the plant susceptible to 
the pathogen (ETS). Recognition of effectors by plant R-genes induces enhanced defense responses stronger than basal 
PTI responses, thereby leading to the cell death-like HR and finally to ETI. Alterations of effectors as well as R-genes 
are seen as a sort of arms-race between pathogens and the host for ETS and ETI (adapted from (Jones and Dangl, 
2006)).  
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1.2 PLANT DEFENSE AND PERCEPTION OF DANGER 

SIGNALS 

“It is easier to resist at the beginning than at the end.” 

― Leonardo da Vinci 

Since plants lack an adaptive immune system, eradication of a manifested infection is 

rather difficult and therefore the above quote gives a fitting description of the mode of 

operation of the plants` defense machinery and emphasizes the need for a rapid detection 

of all kinds of pathogens. Thus the perception of molecular signatures like MAMPs and 

DAMPs is integral for the timely initiation of defense responses. In the following 

chapter these exogenous as well as endogenous elicitors will be described in more detail. 

1.2.1 Microbe-associated Molecular Patterns (MAMPs) 

Formerly described as pathogen-associated molecular patterns (PAMPs), these 

molecules have the ability to elicit defense responses upon their perception by other 

species. Since they are not exclusively restricted to be carried by pathogens the term 

Microbe-associated Molecular Patterns turned out to be more appropriate (Boller and 

Felix, 2009). As mentioned before MAMPs are highly conserved and crucial structures 

often found in a whole clade of microbes. Examples are peptidoglycans, the building 

blocks of the bacterial cell wall, Elongation factors that are essential for pathogen 

survival, or the flagellin monomer, which is required for movement by motile bacteria 

(Newman et al., 2013). The necrosis and ethylene-inducing peptide 1-like proteins 

(Nep1/NLP) are proteins secreted not only by bacteria but by many plant pathogens, 

ranging from fungi and oomycetes to bacteria and trigger defenses responses in 

Arabidopsis (Oome et al., 2014). 

Bacterial MAMPs 

Bacterial flagellin is the paradigm of a peptide MAMP (Felix et al., 1999). Flagellin is 

an essential protein to motile bacteria since it builds up the bacterial flagellum (Taguchi 
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et al., 2008). Some parts of the protein like the N- and C- termini are highly conserved 

whereas the middle part, which is exposed to the outside of the flagellum, is highly 

diverse in its amino acid (aa) sequence. Nanomolar concentrations of a conserved part of 

22 aa from the N-terminus of Pseudomonas syringae pv. tomato (Pst DC3000) flagellin 

have been found to be sufficient to elicit PTI in plants (Felix et al., 1999; Smith et al., 

2003). This so called flg22 epitope is perceived by most plant species through the 

leucine-rich repeat receptor like kinase (LRR-RLK) FLAGELLIN SENSING 2 (FLS2) 

(Gomez-Gomez et al., 1999; Bauer et al., 2001; Chinchilla et al., 2006). In Arabidopsis 

thaliana pretreatment with exogenously applied flg22 had a vaccination like effect to the 

treated plants and rendered them more resistant to subsequent infections with Pst 

DC3000, whilst the fls2 mutant, which is “blind” to flagellin, was found to be more 

susceptible than wild type plants (Zipfel et al., 2004). Sensing of the flagellin protein is 

also present in mammals by the cell surface receptor Toll-like receptor 5 (TLR5) that, in 

contrast to FLS2, perceives an epitope at the C-terminal end of flagellin (Hayashi et al., 

2001; Smith et al., 2003). There are also other epitopes of flagellin which are not as 

universal as the flg22 epitope like flgII-28, which is only perceived by solanaceous 

species and CD2-1, a C-terminal epitope perceived by rice (Cai et al., 2011; Veluchamy 

et al., 2014; Katsuragi et al., 2015). 

As described by the “Zigzag”- model it would be beneficial for bacteria to evade from 

this perception for example by alteration of the amino acid sequence of the flagellin 

protein. Indeed the Agrobacterium tumefaciens flagellin sequence is altered in such a 

way that it is not perceived by Arabidopsis FLS2 and therefore does not induce defense 

reactions (Zipfel et al., 2004). Symbiotic bacteria like Rhizobium meliloti have also been 

found to evade defense responses by alteration of the flagellin protein (Felix et al., 

1999). Another strategy to overcome PRR perception of flagellin was developed by P. 

syringae that expresses and releases the alkaline protease AprA, which specifically 

degrades flagellin and thus prevents detection by FLS2 (Bardoel et al., 2011).  

PRR mediated perception of bacterial microbes is furthermore not restricted to flagellin. 

In the group of protein MAMPs there are some more prominent examples. 

ELONGATION FACTOR THERMO UNSTABLE (EF-Tu) is a very abundant protein 

in bacteria and it is essential for elongation during protein synthesis (Jeppesen et al., 

2005). EF-Tu shows 90% sequence homology between hundreds of bacterial species, 
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and a highly conserved 18 or 26 aa (elf18/26) epitope of the N-terminus can be detected 

by Brassicaceae via the PRR EF-Tu RECEPTOR (EFR) (Kunze et al., 2004; Zipfel et 

al., 2006). Surprisingly, when transformed with the EFR coding sequence, other species 

like Nicotiana benthamiana, naturally insensitive to EF-Tu, become responsive to elf18 

treatment (Lacombe et al., 2010). This highlights the apparent conservation of the PRR-

operated downstream signaling pathways involved in PTI. Other proteinaceous bacterial 

MAMPs are the enigmatic MAMP of Xanthomonas (eMax) and cold-shock proteins 

(Felix and Boller, 2003; Jehle et al., 2013). But also non-proteinaceous MAMPs like 

peptidoglycan (PGN), β-glucans, and lipopolysaccharides (LPS) have been identified as 

elicitors of PTI in various studies (Erbs et al., 2010; Proietti et al., 2014; Zipfel, 2014; 

Gust, 2015). 

Fungal MAMPs 

Besides bacterial pathogens plants also need to be properly protected against fungal 

pathogens. As for bacterial MAMPs, plants carry PRRs that sense specific conserved 

fungal structures. Potent elicitors are the cell wall and membrane components chitin and 

ergosterol, which are again important building blocks of the fungus itself (Granado et 

al., 1995; Ferreira et al., 2007; Klemptner et al., 2014). But also factors that are essential 

for fungal virulence like the toxin cerato-platanin of Botrytis cinerea, or endo-

polygalacturonases and pectinases, which are secreted by many fungi to destroy the 

plant`s cell wall, are perceived as MAMPs by tobacco and Arabidopsis, respectively 

(Klarzynski et al., 2000; Frias et al., 2011; Zhang et al., 2014b).  

Viral MAMPs 

Viruses are obligate parasites and hijack the host translation machinery to reproduce 

themselves (Nelson and Citovsky, 2005). Viruses are often transmitted through vector 

organism like aphids or nematodes, which wound the plant by sucking or feeding on it 

and thereby transmit the virus into wounded plant cells (Bragard et al., 2013). Viral 

infections play important roles in the context of yield loss in agriculture and are 

therefore intensively studied. The potential to recognize virus-specific molecular 

patterns is rather restricted due to the very few building blocks a virus is composed of. 
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In several studies nuclear binding (NB)- domain leucine-rich repeat (LRR) receptors 

(NLR) have been identified that sense virus-specific coat proteins, movement proteins or 

replicases (Padmanabhan and Dinesh-Kumar, 2014). Furthermore, also nucleic acid 

combinations that are unusual to the ones present within healthy plant cells are 

perceived. These are for example virus specific double stranded (ds) RNA, single 

stranded (ss) RNA or free ds DNA that are sensed by different classes of receptors 

(Peisley and Hur, 2012; Berke et al., 2013). Again these elicitors are essential, virus 

specific components. But in contrast to other MAMPs, viral elicitors induce, if at all, not 

only PTI but especially virus-specific defense responses like activation of the RNA 

silencing machinery, and more often a HR is induced in comparison to PTI responses to 

restrict viral spread (Padmanabhan and Dinesh-Kumar, 2014). Perception of viruses as 

well as that of damage signals can induce another important mechanism, the so called 

systemic acquired resistance (SAR) and the slightly different induced systemic 

resistance (ISR), which makes tissues distant from the perception (infection) site more 

resistant to following viral infections (Choudhary et al., 2007; Yi et al., 2013). ISR and 

SAR effectively inhibit the infection with and the spread of viruses within the plant. 

1.2.2 Herbivore-associated Molecular Patterns (HAMPs) 

Herbivores are not classified as microbes and thus their molecular patterns are referred 

to as herbivore-associated molecular patterns (HAMP). As mentioned before, herbivores 

can directly serve as transporters for the spread of viruses between plants in addition to 

the damage caused by feeding on a plant (Bragard et al., 2013). Protection against 

herbivore feeding or sucking is thus very important to plants. The perception of 

herbivores can occur on two levels. First the direct perception of the herbivore via 

HAMPs that can be present in oral secretions (OS), the saliva, and oviposition fluids of 

the herbivore, or second, the perception of the damage caused by the herbivore via the 

perception of specific damage-associated molecular patterns (DAMPs) (Heil et al., 

2012; Klauser et al., 2015). The latter will be discussed in more detail in the following 

chapter. Several herbivore derived elicitors have been identified so far (Fürstenberg-

Hägg et al., 2013). The very first one which was identified is β-glucosidase found in 

regurgitate of Pieris brassicae caterpillars (Mattiacci et al., 1995). Further HAMPs 

found in OS of insects are the Spodoptera exigua fatty acid-amino acid conjugate 
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volicitin, inceptin found in OS of Spodoptera frugiperda, and caeliferins produced by 

Caelifera species (Turlings et al., 2000; Alborn et al., 2007). Inceptins are actually 

endogenous plant peptides derived from the highly conserved -subunit of chloroplastic 

ATP synthase (cATPase) (Schmelz et al., 2003; Schmelz et al., 2006). During insect 

feeding cATPase is degraded by herbivore digestive enzymes and breakdown products 

(inceptins of 11-13 aa length) contained in the regurgitate of the herbivore are perceived 

as strong indicators for actual feeding damage. Their perception induces amongst others 

the production of VOCs including terpenes, indole and methyl salicylate. 

As a precaution against damage by, not yet hatched caterpillars plants are able to 

perceive molecules that characterize oviposition on leaves. Bruchins derived from 

Bruchus pisorum and benzyl cyanide found in P. brassicae oviposition fluids are both 

strong elicitors perceived by various plants (Doss et al., 2000; Huigens et al., 2011). In 

addition to the induction of PTI and other specific HAMP responses, the responses to 

egg deposition include hypersensitive or necrotic responses, production of ovicidal 

chemicals and the development of neoplasm (Howe and Jander, 2008). Neoplasm is 

hardened tissue that is formed underneath an insect egg to hamper penetration or feeding 

of the hatched insect (Hilker and Meiners, 2011).  

Besides the knowledge about membrane-bound receptors that enable the perception of 

volicitin the identification of a specific HAMP receptor is still missing (Truitt et al., 

2004; Mithofer and Boland, 2008). 

Nematode-associated Molecular Patterns 

Nematodes cause tremendous damage annually to many agricultural plants (Singh et al., 

2015). Ascarosides are glycosides that carry a fatty acid side chain and have been 

identified exclusively from nematodes, in which they regulate development and social 

behavior (Choe et al., 2012). Only recently the first nematode specific elicitor ascr#18, 

the major ascaroside in plant-parasitic nematodes, has been described as a potent elicitor 

in several plant species (Manosalva et al., 2015). Further induction of defense responses 

by nematodes have been found to be dependent on plant PRRs, but no specific elicitor 

was identified in this context (Cai et al., 1997; Lozano-Torres et al., 2012). 
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1.2.3 Damage-associated Molecular Patterns (DAMPs) 

Direct contact with herbivores or pathogens can not only be detected via exogenous 

molecular signatures, but also indirectly via the changes that happen to the plant. The 

most common changes in the host plant physiology to which pathogen infections and 

herbivore feeding are inevitably linked is the emergence of damaged or wounded tissue 

(Heil et al., 2012; Heil and Land, 2014). Damaged tissue can be a direct consequence of 

feeding, or it occurs indirectly from HR or other forms of passive or induced cell death 

(Mur et al., 2008). Mechanical wounding alone has been shown to be sufficient to elicit 

plant defense responses and thus to be independent of an external stimulus but being 

triggered somehow by endogenous signaling molecules (Hilker and Meiners, 2010). A 

further specific set of PRRs has been found responsible for the detection of endogenous 

damage-associated molecular patterns (DAMPs) that get released from damaged cells. 

DAMPs induce a PTI comparable to the PTI initiated upon MAMP and HAMP 

perception (Macho and Zipfel, 2014; Zipfel, 2014). DAMPs can either be actively 

synthesized, or passively produced upon the damage of plant tissue (Ferrari et al., 2013; 

Tanaka et al., 2014; Minibayeva et al., 2015).  

Wounding is a strong predictor of infection as well, and therefore DAMP perception is a 

key element of innate immunity since it enables plants to detect damage independently 

of its origin from biotic or abiotic causes (Heil and Land, 2014). Consequently DAMP 

perception should in best cases fulfill three key mechanisms. First their perception 

should induce defenses against the potential perpetrators, like herbivores. The DAMP 

plant elicitor peptide 3 of Zea mayze (ZmPEP3) for example has been shown to trigger 

the biosynthesis of VOCs and protease inhibitors in a similar way as herbivore oral 

secretions so that pretreatment of maize plants with ZmPEP3 successfully conferred 

defense against the herbivore S. exigua (Huffaker et al., 2013). Second DAMPs should 

also induce PTI like responses to prevent the wounding site from turning into an 

infection site. The production of reactive oxygen species (ROS) is a key element of PTI, 

and ROS are also actively produced by damaged cells and have been shown to have 

direct antimicrobial as well as signaling functions (Jabs et al., 1996; Lamb and Dixon, 

1997; Minibayeva et al., 2015). Additionally, wound-induced methanol, and the plant 

hormone derivatives methyl jasmonate and methyl salicylate were tested positively for 

antimicrobial activity and are all signaling components either in the systemic tissue or to 
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neighboring plants (Goodrichtanrikulu et al., 1995; Zhang et al., 2006; Dorokhov et al., 

2012; Komarova et al., 2014). And finally the detection of DAMPs and therefore 

damage should induce healing responses. DAMP perception induces relocalisation of 

hydroxyproline-rich glycoproteins (HRGP) to the apoplast, where they undergo 

oxidative cross-linking and thereby play a central role in cell wall strengthening and 

wound healing. The ROS H2O2 is a required co-substrate during cell wall maturation at 

all stages (Tisi et al., 2008; Sujeeth et al., 2010; Delaunois et al., 2014).  

Peptidic DAMPs 

Peptides that are produced by the plant itself but trigger defense responses when 

perceived by the same plant are generally considered as DAMPs, even if not all peptide 

DAMPs are expressed during defense responses (Schmelz et al., 2006). Systemin was 

the very first peptide with signaling functions identified in plants; up to this point the 

known plant signaling molecules had nothing to do with peptides (Pearce et al., 1991). 

Meanwhile plenty of peptides have been identified in plants that are involved in all 

kinds of developmental and signal transduction processes (Tavormina et al., 2015). 

Systemin is an 18-amino acid peptide which is released from the 200-amino acid 

precursor ProSystemin upon cell damage or herbivore and pathogen attack by a so far 

unknown mechanism (Ryan and Pearce, 2003). Systemin was shown to induce various 

defense reactions and especially the expression of protease inhibitors which are crucial 

components in defense against herbivores (Zavala et al., 2004; Zhu-Salzman et al., 

2008; Hartl et al., 2011). The development of the alkalinization assay, by which the pH 

shift of suspension cultured plant cells during a defense response is measured, enabled 

the identification of Systemin homologues in tobacco leaf extracts. The two 

Hydoxyproline-rich glycoproteins Nicotiana tabaccum Hydroxyproline-rich Systemin I 

and II (NtHypSysI/II) have been identified in tobacco due to their induction of defense 

reponses in a way similar to Systemin, but they do not share any sequence homology to 

tomato ProSystemin (Pearce et al., 2001b; Pearce, 2011). Both are derived from a single 

precursor protein NtPreProHypSys, NtHypSysI from the N-terminus and NtHypSysII 

from the C-terminus. The precursor protein is, like many Hydroxyproline-rich proteins, 

localized to the cell wall. 
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The use of the alkalinization assay also helped to identify three further DAMP peptides. 

The PLANT ELICITOR PEPTIDE 1 (PEP1) was identified in Arabidopsis, termed 

AtPEP1, and found to have homologues in basically all plant species (they will be 

addressed in detail in a separate chapter) (Huffaker et al., 2006).  

Two peptide DAMPs found in the soybean Glycine max are the 8 aa long GmPEP914 

and the 12 aa long subtilase peptide (GmSubPEP).The first is derived from the N-

terminus of a 52 aa precursor termed GmPROPEP914. A second homolog GmPEP890, 

formed from GmPROPEP890, was identified by in silico analysis and differs from 

GmPEP914 in only one amino acid at the C-terminus (Yamaguchi et al., 2011). The two 

precursors share 85% sequence similarity but like the PEP precursors PROPEPs and 

Prosystemin they lack any known signal sequence for secretion. Also similar to 

PROPEPs, GmPROPEPs get upregulated in their expression upon perception of the 

mature peptides why they are assumed to serve as amplifiers of defense signaling 

responses (Heil et al., 2012). Just like PROPEPs they are furthermore upregulated by 

jasmonate, salicylate and ethylene signaling and they are mostly constitutively expressed 

in the roots (Yamaguchi et al., 2011).  

GmSubPEP, in contrast to GmPEPs, is a cryptic peptide since it is derived from a 

precursor with different primary function. GmSubPEP is formed from the S8 peptidase 

region of a Subtilisin-like protease (Pearce et al., 2010b; Pearce et al., 2010a). That 

region is specific to leguminose subtilases and therefore GmSubPEP is specific to only 

few plant species. The subtilase contains a signal sequence for secretion and is therefore 

believed to be secreted into the apoplast where the small signaling peptide is released 

from the subtilase by proteolytic cleavage either by itself or by another protease that is 

localized in the apoplast. In contrast to other peptide DAMP precursors the subtilase is 

constitutively expressed and not induced by any stress, defense or other immunity 

related processes (Pearce et al., 2010a).  

Systemin and PEPs are also believed to be activated by proteolytic cleavage of the 

precursor during stress responses or after the direct perception of other elicitors. 

Nevertheless no specific mechanism is known yet in any of these cases, and Prosystemin 

has furthermore been shown to be a functional elicitor in its Pro-form without further 

processing (Dombrowski et al., 1999). 
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Further DAMPs 

Inceptins and GmSubPEP are not the only molecules that are released from functional 

components of plant cells and act as DAMPs during cell damage. Many other building 

blocks of an intact cell are released during cell damage and can be sensed by 

neighboring cells.  

Around 7% of the plants` primary cell wall is built up by the pectic polymer 

Rhamnogalacturonan I whose backbone is composed predominantly of D-

galacturonosyl units (McNeil et al., 1980). Microbial pathogens secrete 

polygalacturonases (PG) to destabilize the host cell wall whereas endogenous PGs are 

induced by wounding and mechanical damage (Strand et al., 1976; Bergey et al., 1999; 

Orozco-Cardenas and Ryan, 1999; Jorge et al., 2006). Cell wall degradation by PGs 

leads to the release of galacturonosyl oligomers, so called oligogalacturonides (OGAs) 

(Ferrari et al., 2013). The exogenous application of OGAs induces PTI-like defense 

responses, such as the production of ROS, callose deposition (Galletti et al., 2008), the 

induction of defense genes and the activation of MAP Kinase cascades (Galletti et al., 

2011). OGAs are perceived through WALL-ASSOCIATED KINASE 1 (WAK1), an 

RLK that belongs to the WAK family which has only five members encoded in 

Arabidopsis (Verica et al., 2003).   

Extracellular ATP (eATP) is another example for a DAMP that is also sensed by 

mammalian cells. In plants it binds to the cell surface lectin-domain RK DOES NOT 

RESPOND TO NUCLEOTIDES 1 (DORN1)  which thereby senses nearby damage 

(Choi et al., 2014). 

1.3 PATTERN RECOGNITION RECEPTORS (PRR) 

Pattern recognition receptors are key components of the plants´ innate immunity. They 

reside in the plasma membrane and transduce the presence of MAMPs or DAMPs into 

intracellular signals (Macho and Zipfel, 2014; Zipfel, 2014). More than 600 RLKs that 

are associated with all kinds of signaling pathways and responses have been identified in 

the Arabidopsis genome (Shiu and Bleecker, 2001; Shiu et al., 2004). RLKs contain a 

divergent extracellular domain, formed by the N-terminus of the protein, that enables 

ligand binding, followed by a membrane anchor, an intracellular protein kinase domain, 
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and in some cases a juxtamembrane domain in between (Toer et al., 2009; Greeff et al., 

2012; Zipfel, 2014). The extracellular domain of RLKs determines their ligand 

specificity and their classification into further classes like leucine-rich repeat (LRR), 

lysine-motif (LysM), lectin motif, or epidermal growth factor (EGF)-like RLKs. LRR-

RLKs are typical receptors for peptide ligands, like the MAMPs and DAMPs flg22, elf 

18 and PEP peptides, respectively,  and form the largest subgroup of RLKs in 

Arabidopsis (Chinchilla et al., 2006; Yamaguchi et al., 2006; Zipfel et al., 2006). But 

also other ectodomains are involved in MAMP perception, like the lectin RLK DORN1 

that senses eATP (Choi et al., 2014). The RLKs can also be further separated into the 

two classes of RD and non-RD kinases (Shiu and Bleecker, 2003; Tor et al., 2009). RD 

kinases are serine/threonine kinases with a conserved arginine (R) residue in front of the 

catalytically active aspartate (D) which is important for its function as a kinase 

(Schwessinger et al., 2011). Non-RD kinases lack these amino acids , and may require 

the association with a RD-RLK as a co-receptor for the initiation and amplification of 

phosphorylation signals, just like RLPs (Dardick et al., 2012).  

A second class of PRRs binds their ligands at the ectodomain but lacks the intracellular 

kinase domain for further signal transduction, why they are termed RECEPTOR-LIKE 

PROTEINS (RLPs) and thus require the assembly with a co-receptor upon ligand 

binding to transduce the signal (Zipfel, 2014). Carbohydrates, like bacterial PGN and 

fungal chitin, are bound by LysM-RLPs. RLPs as well as RLKs have been shown to 

have functions in various physiological, developmental or defense-associated processes 

(Shiu and Bleecker, 2001; ten Hove et al., 2011; Araya et al., 2014). 

The most prominent PRR in plants is the receptor of bacterial flagellin FLS2 (Chinchilla 

et al., 2006). Also due to its similarity to mammalian TLR5, FLS2 has been intensively 

studied already. Orthologues of FLS2 have been identified in tomato, rice, grapevine 

and tobacco (Hann and Rathjen, 2007; Robatzek et al., 2007; Takai et al., 2008; Trdá et 

al., 2014). FLS2 is a LRR-RLK, with an ectodomain consisting of 28 LRRs with each 

LRR 23-25 aa in length followed by a single plasma membrane spanning domain and a 

non-RD serine/threonine kinase domain (Robatzek and Wirthmueller, 2012). Other 

peptide binding PRRs share similar structural patterns. The elf18-binding LRR-RLK 

EFR carries only 21 LRRs in its ectodomain, but it has been demonstrated that swaps of 
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the kinase domains between EFR and FLS2 resulted in a still functional EFR-like 

receptor (Albert et al., 2010). 

In contrast to FLS2 and EFR, which are both non-RD kinases there are important 

examples of RD kinases involved in MAMP perception. The LysM-RLK CHITIN 

ELICITOR RECEPTOR KINASE 1 (CERK1) can assemble in different ways with co-

receptors or with itself (Petutschnig et al., 2010; Willmann et al., 2011). AtCERK1 has 

been shown to sense bacterial PGN in a complex with the PGN binding RLPs 

AtLYM1/3 in Arabidopsis and AtCERK1 can also directly serve as a sensor for fungal 

chitin whilst it forms a homodimer. 

Some PRR with a non-RD kinase domain have been shown to assemble with a RD 

receptor kinas, which functions as a co-receptor after ligand binding. The best 

characterized example is the LRR-RLK BRI1-ASSOCIATED KINASE 1 (BAK1). 

BAK1 is a member of the SERK family and has initially been found to dimerize with 

the brassinosteroid receptor BRI1 to positively regulate brassinosteroid signaling. 

AtBAK1 has then been found to form ligand-dependent heteromeric complexes with 

several MAMP and DAMP receptors such as AtFLS2, AtEFR, and AtPEPR1 and 

AtPEPR2 (Chinchilla et al., 2007; Roux et al., 2011b; Schwessinger and Ronald, 2012). 

Therefore BAK1 mutants are strongly impaired in the perception of MAMPs and 

DAMPs. 

1.4 DEFENSE RESPONSES INDUCED DURING PTI 

The perception of elicitors triggers a variety of defense responses with different patterns 

and kinetics depending on the perceived elicitor. The induction of protease inhibitors for 

example is specifically induced after perception of HAMPs and some DAMPs but not 

MAMPs (Zebelo and Maffei, 2015; Zhu-Salzman and Zeng, 2015). Nonetheless there is 

a remarkable overlap by the induced responses and their kinetics. The most common 

PTI responses will be discussed in the following paragraphs, and an overview of the 

chronological induction and endurance of PTI responses is given in figure 1.3.  
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Figure 1.3. The chronology of PTI responses. Consecutive events can be measured after elicitation of 
plant cells. Altered membrane potentials (Vm) together with Ion fluxes are the earliest events, followed 
by production of messenger and defense molecules (JA, SA and ROS/H2O2). Ultimately gene activation 
and metabolic changes can lead to lasting adaptations and are induced at about one hour after elicitation. 
(adapted from Maffei et al. 2007)    

1.4.1 Electrical Signaling 

Biotic and abiotic stresses lead to an immediate change in the cell membrane potential 

by modulation of the ion flux at the plasma membrane level (Fürstenberg-Hägg et al., 

2013). The altered membrane potential can travel through the plant in an action 

potential-like way and thereby serve as a systemic defense signal. Membrane 

depolarization and ion flux have been measured after OS treatment but not after 

volicitin and inceptin treatments alone (Maffei et al., 2004; Maischak et al., 2007). The 

MAMPs elf18 and flg22 have been shown to induce strong membrane depolarization 

within 1-5 minutes after elicitor treatment and depolarization lasted for around 1 to 1.5 

hours (Jeworutzki et al., 2010). The measureable depolarization of the plasma 

membrane mostly depended on the opening of different ion channels upon biotic stress 

for example, but some of the produced molecules like H2O2 are strong depolarizing 

molecules (Maffei et al., 2007). 

1.4.2 Ion fluxes 

Elicitor perception induces the opening of plasma membrane channels and therefore 

within 1-2 min after a treatment the intracellular concentration of Ca2+ strongly increases

(Lecourieux et al., 2002). This ion flux is accompanied by the influx of H+, together

with the efflux of K+ and other anions like Cl- (Boller and Felix, 2009). That on one
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hand leads to depolarization at the plasma membrane and also the influx of H+ results in

alkalinization of the surrounding medium of suspension cultured plant cells (Mithofer et 

al., 2005).  In healthy cells the Ca2+ concentration is lowest in cytoplasm, around 10`000

times higher in the apoplast, and up to 100`000 times higher in cellular organelles like 

the vacuole. This gradient forces the ions to flow quickly into the cytoplasm once ion 

channels are opened, and once Ca2+ gets released into the cytoplasm it serves as a second

messenger by activating calcium-sensing proteins, such as calmodulin, calmodulin-like 

proteins, calcineurin B-like proteins, and Ca2+-dependent protein kinases (CDPKs). As a

result a cascade of downstream effects, like altered protein phosphorylation and gene 

expression patterns, can be detected (Ludwig et al., 2005; Boudsocq et al., 2010) 

1.4.3 Oxidative burst 

Also within only a few minutes, the enhanced production of ROS by the 

RESPIRATORY-BURST HOMOLOGUES (RBOHs), that are plasma membrane-

bound, can be measured (Torres et al., 2006; Miller et al., 2009). Tremendous amounts 

of ROS can be produced by the plant (O'Brien et al., 2012), which directly inhibit 

pathogen or herbivore growth like in the case of toxic H2O2 (Peng and Kuc, 1992; Apel 

and Hirt, 2004), or indirectly by cell wall cross linking (O'Brien et al., 2012). During 

defense reactions ROS is mainly produced by RBOHD, which has been shown to form a 

complex with EFR and FLS2 and to be phosphorylated by BIK1 upon elicitor treatments 

(Li et al 2014). ROS production is also accompanied by down-regulation of ROS 

scavengers that are normally produced in the cell to protect against toxic ROS produced 

during photosynthesis or other physiological processes (Apel and Hirt, 2004; Torres et 

al., 2006; Miller et al., 2009). Furthermore ROS serves as a second messenger by 

triggering the synthesis of SA and MAPK activation (O'Brien et al., 2012). 

1.4.4 Changes in protein phosphorylation and MAPK activation 

Cross-phosphorylation between FLS2 and its co-receptor BAK1 is observed 

immediately after the two receptors associate during flg22 perception and this might be 

a common feature for LRR-RLKs that assemble with a co-receptor (Chinchilla et al., 

2007; Schulze et al., 2010).  
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The intracellular MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade is a 

cascade of phosphorylation events that starts with the phosphorylation of a MAP 

KINASE KINASE KINASE (MAPKKK), which in turn phosphorylates a MAP 

KINASE KINASE (MAPKK) that then phosphorylates a MAP KINASE (MAPK). 

MAPKs can activate a variety of transcription factors to alter gene expression, and 

activate or inactive different proteins by transferring a phosphate group (Meng and 

Zhang, 2013). Hence MAPK cascades are not only activated after MAMP or DAMP 

perception but are also involved in signaling during developmental processes 

(Rodriguez et al., 2010). Phosphorylation and thereby activation of MPK3 and MPK6 

for example is used as an assay for defense signaling (Asai et al., 2008; Rodriguez et al., 

2010; Galletti et al., 2011). MAPK cascades are also conserved in mammals were they 

play a role in stress perception too and are generally seen as signal transducers of 

external stimuli into a cellular response (Kyriakis and Avruch, 2012).  

1.4.5 Changes in plant hormone concentrations 

Ethylene is an important gaseous plant hormone that is produced during fruit ripening, 

flowering, or the detection of abiotic and biotic stresses like salt or water stress (Wang et 

al., 2013). The initiation of PTI responses also comprises the increased production of 

ethylene that can be measured already after 15 min but lasts up to several hours after 

elicitor treatments. Perception of elicitors induces the activation of the rate limiting 

enzyme in the production of the ethylene precursor molecule 1-aminocyclopropane-1-

carboxylate (ACC), the ACC synthase. The enzyme gets activated within 10 min  and 

ACC is then later converted by the enzyme ACC oxidase to ethylene (C2H4), cyanide 

(HCN) and CO2 (Spanu et al., 1994; Ben-Amor et al., 1999). The production of ethylene 

serves as an important messenger molecule during defense responses and the 

ETHYLENE RESPONSE FACTOR (ERF) class of transcription factors play a very 

important role during PTI (Núñez-Pastrana et al., 2013).  

Other plant hormones that undergo changes during defense responses are JA, SA, 

abscisic acid (ABA) and auxin (Denance et al., 2013). Ethylene has been shown to 

cooperate in various cases with the expression of JA and thereby especially targets 

defense against nectrotrophic pathogens and herbivore pests (Rojo et al., 2003; Lorenzo 

and Solano, 2005). JA gets upregulated upon perception of HAMPs and DAMPs 
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(Klauser et al., 2015). In contrast the hormone SA is rather related to defense against 

biotrophic pathogens, and it gets upregulated after the perception of various MAMPs 

(Glazebrook, 2005). 

The important growth regulator auxin has been shown to indirectly promote infections, 

most likely by weakening of the cell wall during tissue expansion, and auxin treatment 

has been shown to downregulate SA and JA signaling genes (Ding et al., 2008). It seems 

not surprising that the reversed effect of suppression of auxin signalling during defense 

responses has also been observed. The perception of flg22 induces the microRNA 393 

(miR393) in Arabidopsis, which negatively regulates the RNA levels of the auxin 

receptor TRANSPORT INHIBITOR RESPONSE 1 (TIR1) (Navarro et al., 2006). 

Furthermore flg22 induces SA accumulation, which is known to stabilize the Aux/IAA 

protein and thereby also downregulates auxin-triggered responses (Wang et al., 2007). 

Moreover also JA has been shown to block growth by interfering with gibberellin 

signaling. JA stabilizes inhibitory DELLA proteins, and gibberellic acid (GA) responses 

like cell elongation and seed germination are inhibited (Yang et al., 2012). 

The prolonged treatment with MAMPs/DAMPs/HAMPs by supplementing them to 

liquid growth medium has an inhibitory effect on seedling growth (Boller and Felix, 

2009). The so called seedling growth inhibition is also used as a bioassay in plant 

defense responses and it is believed to depend on the trade-off effect from resource 

allocation away from growth stimulation to increased defense (Walters and Heil, 2007).   

In conclusion most plant hormones have been shown to be either influenced by, or to 

influence themselves, the defense responses in plants. Especially with regard to 

physiological adaptations against biotic and abiotic stresses a complex network of plant 

hormones seems to interact with each other (Denance et al., 2013; Nováková et al., 

2014). 

1.4.6 Receptor endocytosis 

The PRR FLS2 is localized in the plasma membrane but within 20-30 minutes after 

flg22 binding the receptor gets translocated into endosomes inside the cell (Robatzek et 

al., 2006). The mechanism of receptor internalization seems to be a common 

phenomenon and it is a requirement for full signaling strength (Robatzek, 2007; Irani 
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and Russinova, 2009). In tomato, it has been shown that the internalization of the PRR 

LeEIX2 upon EIX binding is dependent on a specific Yxxϕ motif in its C-terminus, 

which is important for clathrin-dependent endocytosis (Bar et al., 2010). Most 

interestingly mutation of this motif and therefore blocking of endocytosis abolished HR 

induction after EIX treatments (Ron and Avni, 2004). FLS2 does not contain the same 

motif but a PEST-like motif which mediates endocytosis after its mono-ubiquitination, 

and alteration of the motif again abolishes endocytosis (Robatzek et al., 2006). 

1.4.7 Transcriptional changes 

By altering the gene transcription every cell can control the strength of different cellular 

pathways, or the production of specific secondary metabolites for example, and short as 

well as long term responses against abiotic and biotic stresses can be regulated. Around 

30 minutes after flg22 and elf26 treatment, about 1000 genes have been found to be up- 

and further 200 to be downregulated (Zipfel et al., 2004; Zipfel et al., 2006). In the field 

of gene expression analysis, the fast progress in whole transcriptome/proteome 

technology highly facilitated data collection and comparison of different treatments on 

the whole transcriptome level. An important example is the comparison of gene 

expression patterns between resistant and susceptible plant cultivars. Comparison in the 

gene expression patterns of two susceptible and resistant wheat (Triticum aestivum) 

cultivars upon Blumeria graminis infection showed overlapping expression patterns for 

only around 50% of the 2978 identified genes; all other genes were significantly 

differently down, or upregulated (Xin et al., 2012). Similar work done with S. 

lycopersicum infected with tomato leaf curl virus showed that the resistant cultivar in 

comparison to the susceptible one had less downregulated WRKY genes (only 9 out of 

16), a four times higher upregulation of RLKs in the resistant cultivar and also more 

genes upregulated that are involved in the production of phenolic compounds (Chen et 

al., 2013). Such experiments show the important role of proper gene regulation during 

defense responses.  
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1.4.8 Callose deposition 

After MAMP treatment, for example with flg22 or chitosan, accumulation of callose 

((1,3)-β-glucan)  deposits can be observed within Arabidopsis leaves (Gomez-Gomez et 

al., 1999). Callose is located in so called papillae, which stretch from the plasma 

membrane to the cell wall. Whilst the role of callose is yet unclear its deposition goes 

hand in hand with that of phenolic compounds, ROS, cell wall proteins and polymers 

which have a clear antimicrobial or cell wall reinforcing function (Voigt, 2014).  

1.6 THE PROPEP-PEP-PEPR SYSTEM 

1.6.1 PLANT ELICITOR PEPTIDEs (PEPs) 

In 2006, Alisa Huffaker and co-workers found that a specific fraction of extracts 

prepared from Arabidopsis leaves induces medium alkalinization when added to 

cultured Arabidopsis cells (Huffaker 2006). A 23 aa peptide termed PLANT ELICITOR 

PEPTIDE 1 (PEP) was identified as the active compound of the fraction. AtPEP1 is 

derived from the C-terminus of the 96 aa precursor protein AtPROPEP1 (which will be 

described in more detail in the following chapter, figure 1.4). Synthetic AtPEP1 activates 

many PTI-associated responses when added to seedlings or plant parts, like medium 

alkalinization, ethylene, nitric oxide (NO) and ROS production, calcium influx, MAPK 

activation, the production of cGMP, increased JA levels, and expression changes of 

numerous genes already at low nanomolar concentrations (Huffaker et al., 2006; Krol et 

al., 2010; Flury et al., 2013; Ma et al., 2013; Gully et al., 2015; Klauser et al., 2015). 

Soon after the discovery of AtPEP1 two receptors that bind AtPEP1 were identified, the 

LRR-RLKs AtPEPR1 and AtPEPR2 (which will be described in more details below) 

(Yamaguchi et al., 2006; Krol et al., 2010; Yamaguchi et al., 2010). AtPEP1 and AtPEP5 

have been found in tissue extracts but in total seven AtPEPs and their associated 

PROPEPs (figure 1.4) have been identified in the genome of Arabidopsis by in silico 

analysis, and all of them have been shown to induce similar responses when added as 

synthetic peptides (Huffaker et al., 2006; Yamaguchi et al., 2010).  

The field of PEP research intensified when PEP orthologues have been identified first in 

Zea mays and subsequently in many other plant species including important crop species 
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(Huffaker et al., 2011; Huffaker et al., 2013). Elicitor activity of PEPs has then been 

shown in various species together with the induction of plant resistance against the 

bacterial pathogen Pst DC3000, and the fungal pathogens Cochliobolis heterostrophus 

and Colletotrichum graminicola (Yamaguchi et al., 2010; Huffaker et al., 2013). But not 

only microbial defenses were efficiently induced, ZmPEP3 treatment has been shown to 

mediate defense against S. exigua larval feeding (Huffaker et al., 2013). The importance 

of the PEP-PEPR system has been shown in Arabidopsis by the decreased resistance 

against S. littoralis feeding on pepr1 pepr2 mutant plants which are fully insensitive to 

PEPs (Klauser et al., 2015). Lastly the induction of JA synthesis is a trait more exclusive 

to HAMPs and some DAMPs to induce herbivore specific responses; MAMPs mostly 

induce SA rather than JA to mediate resistance against pathogens and to mediate SAR 

(Zhang et al., 2010). Herbivore specific defense responses but also microbial defenses 

often involve the production of secondary metabolites which have been analysed in 

more detail in maize. ZmPEP1 treatment induced the production of anthranilate and 

indole, precursors in the production of compounds in the benzoxazinoid hydroxamic 

acid defense, including for example DIMBOA-Glc (2,4-dihydroxy-7-methoxy-1,4-

benzoxazin-3-one glucoside), whose amount was also increased in ZmPEP1 treated 

plants (Huffaker et al., 2011).  DIMBOA-Glc is an antibiotic substance that protects 

plants against bacterial and fungal pathogens, and insect pests. In addition also ZmPEP3 

has been found to induce indole and HDMBOA-Glc (2-hydroxy-4,7-dimethoxy-1,4-

benzoxazin-3-one glcoside) a substance similar to DIMBOa-Glc (Huffaker et al., 2013). 

Both ZmPEPs furthermore induced the production of VOC, that serve as an anti-

herbivore response by attracting herbivore predators and indeed a highly significant 

increase of parasitoids on ZmPEP3 treated plants has been shown (Huffaker 2013). 

Together with the induction of sesquiterpenes the role of PEPs involves in contrast to 

most MAMPs, the induction of several herbivore specific defense responses. This 

hypothesis is supported by the finding that PEPs not only of maize but of various species 

induce VOCs and that PROPEP expression is strongly induced by application of oral 

secretions of S. exigua and S. littoralis (Huffaker et al., 2013; Klauser et al., 2015).  
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1.6.2 PROPEPs 

AtPROPEP1 includes the sequence of AtPEP1 within its C-terminus (figure 1.4) and was 

thus identified as the precursor protein of the AtPEP1 peptide (Huffaker et al., 2006). 

AtPROPEP1 is 96 aa in size and carries a large number of positively charged aa residues 

but lacks any known signal sequences. As mentioned, seven genes encoding 

AtPROPEPs have been identified in the Arabidopsis genome. The individual 

AtPROPEPs share rather low aa sequence homology; thus in silico searches were 

performed based on the conserved PEP motif in the C-terminus in order to find 

additional AtPROPEPs. Overexpression of AtPROPEP1 in Arabidopsis led to increased 

root branching and enhanced resistance against the oomycete Pythium irregulare. Like 

the PEPs identified in other species, also the corresponding PROPEPs gained attention 

in the respective species (Huffaker et al., 2011; Huffaker et al., 2013). Silencing of 

SlPROPEP was the first study performed on Solanum lycopersicum PROPEP (Trivilin 

et al., 2014). As a consequence of SlPROPEP silencing the plants showed weaker 

expression of defense genes and were highly attenuated in their resistance against the 

fungus Pythium dissotocum.  

With regard to the expression of the different PROPEP genes, most of them seem to be 

inducible in a positive feedback by PEP perception as well as by wounding and JA 

treatment (Huffaker et al., 2006; Huffaker et al., 2011; Huffaker et al., 2013; Ross et al., 

2014). Whilst some PROPEPs like AtPROPEP4, 5 and 6 seem to be generally very 

weakly expressed and are not inducible by JA and PEPs, other PROPEPs like 

AtPROPEP1, 2 and 3 and ZmPROPEP3 are highly responsive to treatments inducing 

defense responses. SmPROPEP, GmPROPEP, ZmPROPEP3 and AtPROPEP3 for 

example were highly induced upon OS treatments, whereas AtPROPEP1 and 

ZmPROPEP1 responded strongest to fungal pathogen treatments (Liu et al., 2013; 

Klauser et al., 2015). 
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Figure 1.4. Clustal Omega alignment of the amino acid sequence of AtPROPEPs 1-7. AtPEP1 and 
5 were initially identified by mass spectrometry and found to reside in the C-terminal region of their 
respective PROPEPs (underlined in black). The putative conserved SSGR/KxGxxN motif (highlighted 
in green) was used to identify further paralogues in the genome. 

1.6.3 PEPRs 

AtPEPR1 was initially identified by its affinity to labeled AtPEP1, and it has been 

confirmed as a functional receptor by enabling the perception of PEP in PEP-insensitive 

N. tabaccum (Yamaguchi et al., 2006). Since Arabidopsis mutants in PEPR1 (pepr1) 

only partially lost their responsiveness to PEP treatments, a second PEP receptor was 

hypothesized. A few years later AtPEPR2, which shares 76% sequence homology to 

AtPEPR1, was identified, the pepr1 pepr2 double mutant is completely insensitive to 

PEPs (Krol et al., 2010; Yamaguchi et al., 2010). AtPEPR1 and AtPEPR2 are induced 

by wounding, JA application, AtPEPs, MAMPs, OS and herbivore feeding but AtPEPR2 

induction is mostly weaker than that of AtPEPR1 (Klauser et al., 2015). None of the two 

is induced by SA as it is the case for their ligand precursor AtPROPEP1 (Huffaker et al., 

2006). 

AtPEPR1 and 2 are transmembrane LRR-RLKs of around 170 kDa in size, but in 

contrast to FLS2 and EFR they belong to the RD-kinases. Both AtPEPRs belong to the 

class LRR-XI RLKs which also includes various receptors associated with plant 

development, like for example CLAVATA1 (CLV1), the receptor of the CLE peptides 

(Wang and Fiers, 2010).  AtPEPR1 carries 26 LRR and AtPEPR2 25 LRR-motifs in 

their extracellular ligand binding domain (Yamaguchi et al., 2006; Yamaguchi et al., 

2010). Both receptors carry a guanyl cyclase (GC) domain which leads to the production 

of cGMP, an important messenger molecule (Qi et al., 2010; Ma et al., 2012). cGMP 
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activates Ca2+ channels, and the calcium influx normally observed after PEP perception

was blocked in AtPEPR1-GC mutants. Surprisingly it has been found that FLS2 

mediated calcium influx, that is not cGMP mediated and originates from the vacuolar 

pool of calcium, whilst activation of PEPRs leads to influx of extracellular calcium due 

to cGMP activation of plasma membrane bound Ca2+ channels (Ma et al., 2012).

Both AtPEPRs have a functional RD-kinase domain, but nevertheless they assemble 

with the co-receptor kinase BAK1, after PEP binding (Schulze et al., 2010; Tang et al., 

2015). Previous studies with alanine substitutions in the AtPEP1 aa sequence have 

shown that serine 15 and glycine 17 are crucial for AtPEP1 activity and that the glycine 

17 substituted AtPEP1 is unable to compete for PEPR binding with AtPEP1 (Pearce et 

al. 2008) . The determination of the crystal structure of the AtPEP1-AtPEPR1 complex 

confirmed that Serine 15, Glycine 17 and Arginine 23 (figure 1.4) are crucial for 

AtPEP1 binding to the AtPEPR1 LRRs, whilst in a model proline 19, glutamine 21 and 

histidine 22 support the complex formation of AtPEPR1 and AtBAK1 upon AtPEP1 

binding (Tang et al., 2015).  

Surprisingly, instead of BAK1 being important for signal transduction in the 

PEPR/BAK1 complex, BAK1 seems to be rather some sort of a regulator of PEPRs. 

BKK1 and BAK1 are known as important negative regulators of cell death, and it has 

been shown that whilst the phenotype of bak1-4 or bkk1-1 single mutants looked similar 

to wildtype plants, the double mutant bak1-4/bkk1-1 develops a lethal phenotype (He et 

al., 2007). This phenotype has been found to be partially restored in the pepr1 pepr2 

double mutant, indicating that PEPRs might play a role in cell death regulation (Yamada 

et al., 2016). That assumption is further supported by the fact that the lack of BAK1 

leads to increased cell death in plants after AtPEP2 treatments instead of an attenuation 

and also other defense responses were increased.  

1.7 FURTHER SIGNALING PEPTIDES 

A growing number of small signaling peptides have been identified in recent years also 

thanks to increasing technical advances, for example in quicker mass spectrometry 

analysis with much higher throughput. Since the discovery of Systemin, the very first 

signaling peptide in plants, in 1991 by Pearce and colleagues, plenty of peptides with a 
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plethora of functions were described in plants and are shown in a schematic overview in 

figure 1.6 (Tavormina et al., 2015). 

Peptides, defined as proteins smaller than 100 aa, they execute important signaling 

functions in all areas of physiological processes including all aspects of plant 

development as well as reactions to abiotic and biotic stresses. In the field of plant 

defense, peptides do not exclusively serve as signaling peptides but can also have direct 

antimicrobial or protease inhibitor functions and are best categorized based on their  

origin (Tavormina et al., 2015). Most peptides are expressed as larger proteins without 

any additional function and get further processed for the generation of the mature 

peptide. GmSubPEP and Inceptin peptides are exceptions, since they derive from 

proteins with different primary functions. Protease inhibitor peptides like 

Figure 1.6. Diversity of Plant Peptides. Numerous peptides are produced by plants with 
biological functions as signaling peptides or with secondary functions in defense for example. 
(adapted from Tavormina et al. 2015)  
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CYCLOTIDES, peptides with antimicrobial function like PLANT DEFENSINs (PDF), 

or some developmental regulators like CLE peptides are mostly expressed as preproteins 

or preproproteins (Jun et al., 2008; Craik and Malik, 2013; De Coninck et al., 2013; Lay 

et al., 2014). Preproteins carry an N-terminal secretion signal (NSS) that guides the 

peptide to the secretory pathway where it is active without further processing, whereas 

preproproteins undergo a further processing to release the peptide from the secreted 

proprotein (Tavormina et al., 2015). Proproteins, to which also the PROPEPs belong, as 

the name suggests, lack an NSS but get processed to release the peptide from the 

precursor and are potentially secreted by an unconvential secretory pathway either 

before or after processing (Ding et al., 2012).  

The first fully described pathway from secretion to processing and downstream 

signaling was just recently described for the Arabidopsis GRIM REAPER peptide 

(GRIp) (Wrzaczek et al., 2009; Wrzaczek et al., 2015). The preproprotein GRIM 

REAPER (GRI) is 169 aa in size and aa 1-30 serve as an NSS. In the extracellular space 

it co-localizes with the type II metacaspase 9 that cleaves GRI at arginine (R) 67 in the 

motif serine-lysine-threonine-arginine (SKTR), at lysine (K) 97 in the motif lysine-

alanine-asparagine-lysine (KANK), and at lysine 78 in the motif lysine-lysine-

isoleucine-lysine-lysine (KKIKK) leading to the release of the 11 aa GRIM REAPER 

peptide (GRIp). Whilst the precursor GRI is unable to bind to the LRR-RLK POLLEN 

SPECIFIC RECEPTOR-LIKE KINASE 5 (PRK5) GRIp binds PRK5 and thereby 

induces ROS-dependent cell death (Wrzaczek et al., 2015). 

For the precursor ProSystemin it has been shown, that activity depends only on the 

amino acids motif and therefore the precursor showed full activity already without 

further processing to the Systemin peptide (Dombrowski et al., 1999). Other signaling 

peptides like the CLE peptide CLAVATA3 have been shown to be processed in vitro, 

but no protease or inducing conditions were specified (Ni and Clark, 2006).  

1.8 PLANT PROTEASES 

Proteases are enzymes that are able to hydrolyze peptide bonds either within a protein, 

as endoproteases, or at the ends of proteins as exoproteases (Pesquet, 2012). In plants, 

five classes of endoproteases have been described: serine, cysteine, metallo, aspartic, 
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and threonine protease (Rawlings et al., 2014). Exoproteases are classified based on 

their specificity as aminopeptidases, that cleave proteins at the N-terminus, or 

carboxypeptidases, that cleave proteins at the C-terminus. In the MEROPS protease 

database 764 putative protease are currently listed to be present in the Arabidopsis 

genome (Rawlings et al., 2014). The cysteine protease class metacaspases have been 

shown to play important roles in cell death regulation and to be crucial for HR induction 

during pathogen infections (Watanabe and Lam, 2011a) . Overexpression of the aspartic 

protease CDR1 has been shown to be involved in a so far unknown upregulation of 

defense responses and many proteases have been found to be upregulated during 

infections or defense responses (van der Hoorn and Jones, 2004; Simoes et al., 2007; 

Hatsugai et al., 2015). The way in which a protease contributes to resistance is mostly 

unknown. Current hypotheses propose three different ways in which proteases could 

correspond to defense mechanisms (van der Hoorn and Jones, 2004). First, proteases 

could facilitate activation of PTI by releasing elicitors from pathogens. Second, they 

might act as positive regulators by releasing signaling peptides like Systemin or PEPs, 

and third, they might directly act on pathogen-derived proteins like crucial effectors and 

degrade them (discussed in more detail in van der Hoorn 2004). 

1.9 AIMS OF THE THESIS 

In the field of PEP research numerous responses to perception of synthetic PEP peptides 

have been described. Moreover, qPCR based expression data of some of the PROPEPs 

and both PEPRs have been collected but an enormous gap remains between PROPEP 

transcription in the beginning and eventually the perception of mature PEP peptides. The 

quite high number of seven identified PROPEPs in Arabidopsis might point either to 

genetic and functional redundancy or to independent functions of these genes and their 

encoded proteins due to specific expression and localization patterns. To gain 

understanding in the potential involvement of PROPEPs in different physiological 

processes, a first aim was to study the expression patterns and localization of 

Arabidopsis PROPEP proteins in planta. In addition, in silico analysis of available 

expression data was used to analyze potential biotic and abiotic influences on the 

expression of various PROPEPs, whilst the use of GUS reporter lines should lead to the 

identification of tissue-specific expression patterns. Furthermore the overexpression of 
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some PROPEPs translationally fused to YFP were used for determination of its 

subcellular localization. The overall aim of this part is to identify differences between 

individual PROPEPs to either prove or disprove a potential redundancy of the seven 

identified PROPEPs in Arabidopsis.  

To further fill the gap between PROPEP transcription and PEP perception, the 

circumstances as well as the mechanism of PEP genesis are addressed. The isolation of 

AtPEP1 and 5 from tissue extracts indicated a processing of PROPEPs but if PROPEPs 

are processed continuously or only upon damage during the extract preparation has not 

been revealed. Furthermore, the enhancer theory suggests PEPs to serve as amplifiers of 

previous defense responses like the perception of MAMPs, thus mature PEPs might be 

generated during defense responses as well. However, data supporting this hypothesis is 

lacking. Here, the circumstances of PROPEP processing was experimentally addressed 

using a variety of danger-associated treatments. In addition the application of various 

protease inhibitors might point to specific proteases that perform PROPEP processing 

and thus play a role in innate immunity as well. 

Finally PEP research focused on Arabidopsis PEPs although sequence analysis indicated 

the presence of orthologues in other plant species. Recently elicitor activity of Zea mays 

PEP1 has been demonstrated but preliminary data from our group indicated a missing 

interspecies compatibility of PEPs. Thus the identification of PEPs within the plant 

kingdom based upon comprehensive sequence analysis was performed. Intra- and 

interspecies elicitor activity of novel PEPs was determined and species specific amino 

acid motifs were deduced. Eventually corresponding PEPRs, which have not been 

described yet in other species, will be cloned and characterized. 

Taken together this work aims to characterize the PROPEP-PEP-PEPR system in more 

detail, to fill the gap between PROPEP transcription and PEP perception and to 

underline undermine the biological relevance of this system by demonstrating the 

presence and activity of this system in many plant species across the plant kingdom. 
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This work was prepared in collaboration with the team of Silke Robatzek. The aim 

was to analyze the potential redundancy of PROPEPs in Arabidopsis. Various 

PROPEPs were investigated for their specific expression patterns under various 

conditions as well as the tissue specific expression and subcellular localization were 

determined. I contributed on the experimental setup, prepared most of the 

transgenic lines used in this study and contributed in the evaluation of the results. 
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2.1 ABSTRACT 

In Arabidopsis thaliana, the endogenous danger peptides AtPeps have been associated 

with plant defenses reminiscent to those induced in pattern-triggered immunity. AtPeps 

are perceived by two homologous receptor kinases, PEPR1 and PEPR2, and are encoded 

in the C-termini of the PROPEP precursors. Here we report that, contrary to the 

seemingly redundant AtPeps, the PROPEPs fall at least into two distinct groups. As 

revealed by promoter-GUS studies, expression patterns of PROPEPs 1-3, 5 and 8 

partially overlapped and correlated with those of the PEPR1 and PEPR2 receptors, 

whereas the ones of PROPEPs 4 and 7 do not share any similarities with the former. 

Moreover, bi-clustering analysis indicates an association of PROPEPs 1, 2, and 3 with 

plant defense, whereas PROPEP5 expression was related to patterns of plant 

reproduction. Also at the protein level, PROPEPs appeared to be distinct. 

PROPEP3::YFP was present in the cytosol, but in contrast to previous predictions 

PROPEP1::YFP and PROPEP6::YFP localized to the tonoplast. Together with the 

expression patterns, this could point to potentially non-redundant roles between the 

members of the PROPEP family. By contrast, their derived AtPeps including a newly 

reported AtPep8, when exogenously applied, provoked activation of defense-related 

responses in a similar manner suggesting a high level of functional redundancy between 

the AtPeps. Taken together, our findings reveal an apparent antagonism between AtPep-

redundancy and PROPEP variability and indicate new roles for PROPEPs beside plant 

immunity.  

2.2 INTRODUCTION 

Danger- or damage-associated molecular patterns (DAMPs) are diverse molecules, 

which trigger the immune system upon perception (Scaffidi et al., 2002; Seong and 

Matzinger, 2004; Ahrens et al., 2012). Unlike microbe/pathogen-associated molecular 

patterns (MAMPs/PAMPs), which originate from microorganisms, DAMPs are 

endogenous molecules of the host (Boller and Felix, 2009). In animals, DAMPs can be 

produced in the context of damage as degradation products of proteins, DNA or the 
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cytoskeleton (Ahrens et al., 2012; Pisetsky, 2012), or they are signals associated with 

danger and thus are actively released (Wang et al., 1999). The latter DAMPs are 

reminiscent of cytokines such as interleukins, which are processed and released upon an 

imminent threat, for example the detection of MAMPs (van de Veerdonk et al., 2011). 

In plants, much less is known about potential DAMPs or cytokine-like proteins. 

Paradigms of plant DAMPs are cell wall degradation products such as 

oligogalacturonides (OGs), which trigger PTI (pattern-triggered immunity) upon 

detection (Rasul et al., 2012). They are released by the activity of microbe-secreted cell 

wall degrading enzymes and perceived by transmembrane PRRs (pattern recognition 

receptors) (D'Ovidio et al., 2004). Beside these prototype DAMPs, endogenous peptides 

have been identified that trigger a PTI-like response as well.  

The Systemins from the Solanoideae, a subfamily of the Solanaceae that comprises e. g. 

tomato (Solanum lycopersicum), pepper (Capsicum annuum) and potato (Solanum 

tuberosum), were first identified to induce the accumulation of proteinase-inhibitors, a 

typical anti-herbivore response, and later connected to the regulation of diverse defense 

responses (Pearce et al., 1991; McGurl et al., 1992; Ryan and Pearce, 2003). Tomato 

Systemin is an 18 amino acid (aa) long peptide processed from the 200 aa precursor 

protein called Prosystemin (PS). Despite many years of Systemin research the Systemin 

receptor is still a matter of debate (Holton et al., 2008; Lanfermeijer et al., 2008; 

Malinowski et al., 2009). Recently, the PS gene from tomato was shown to be expressed 

mainly in floral tissues, especially pistils, anthers and sepals, and only at lower levels in 

leaves. Treatment of leaves with methyl jasmonate (MeJA) led to a strong induction of 

PS expression (Avilés-Arnaut and Délano-Frier, 2012). Similar to the expression 

patterns, PS protein was constitutively found in floral organs including sepals, petals and 

anthers as well as in the vascular phloem parenchyma cells of leaves and stems, where it 

localizes to the cytosol and the nucleus (Narváez-Vásquez and Ryan, 2004). 

Endogenous DAMP- or cytokine-like peptides have also been found in Arabidopsis 

thaliana. Two of these 23 aa peptides, AtPep1 and AtPep5, have been purified from 

Arabidopsis leaf protein extracts (Huffaker et al., 2006; Yamaguchi and Huffaker, 

2011). They belong to a small family of seven homologous peptides, which comprise 

the C-terminal part of seven small precursor proteins called PROPEPs (Huffaker and 

Ryan, 2007). It is believed that the PROPEPs are cleaved to release the AtPeps which in 

turn are perceived by the two homologous receptor-like kinases PEPR1 and PEPR2 
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(Krol et al., 2010; Yamaguchi et al., 2010). Upon detection, the PEPRs trigger a set of 

responses reminiscent of PTI including induced resistance against subsequent infections 

with virulent Pseudomonas syringae bacteria (Huffaker and Ryan, 2007; Krol et al., 

2010; Yamaguchi et al., 2010). In addition to the classical PTI-associated responses, 

recent data show that treatment with AtPep3 led to an increase in cytosolic cyclic GMP 

(cGMP) suggesting that AtPeps activate cGMP-dependent signaling pathways (Qi et al., 

2010). 

To date, little is known about the expression, localization and function of the PROPEPs. 

The expression of a number of PROPEPs is induced upon treatment of Arabidopsis 

leaves with methyl jasmonate (MeJA), methyl salicylate (MeSA) as well as MAMPs 

and AtPeps (Huffaker and Ryan, 2007). At the cellular level, PROPEPs are thought to 

reside in the cytosol and to be exported to the extracellular space via an unconventional 

secretion system as the PROPEPs carry no known secretion or subcellular localization 

signals (Yamaguchi and Huffaker, 2011; Ding et al., 2012).  

In this study, we focused on the PROPEPs including an additional, eighth member of the 

PROPEP family in Arabidopsis, reported here for the first time. Our data demonstrate 

that all eight AtPeps elicit PTI-type responses in a similar manner and depend on the 

PEPR1/2 receptor pair revealing greatly functional redundancy. By contrast, bi-

clustering analysis, promoter-GUS expression and PROPEP::YFP localization studies 

identified significant tissue-specific differences and subcellular patterns that highlight 

potentially non-redundant properties of the precursors. Furthermore, our data led to the 

idea that some PROPEPs might play a role in plant development and reproduction, in 

addition to their described function in plant immunity. 

2.3 RESULTS 

AT5G09976 is a novel member of the Arabidopsis PROPEP family 

In order to gain insights into the sequence homology of PROPEPs compared to other 

precursors of plant signaling peptides, we searched the Arabidopsis genome and 

identified AT5G09976 as a new member of the PROPEP family. It clusters with the 

other seven PROPEPs despite an overall low sequence homology, and its C-terminus 

contains the conserved AtPep motif SSG-x2-G-x2-N (Fig. 2.1A). According to sequence 
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similarity PROPEP4 is the closest homolog of AT5G09976. Moreover, addition of a 

synthetic peptide based on the last 23 aa of AT5G09976 (Fig. 2.1A, highlighted with red 

bar) triggers similar responses in Arabidopsis plants like the other AtPeps (see below). 

Thus, we designate AT5G09976 as PROPEP8. Further searches for non-annotated 

sequences with similarity to the PROPEPs did not reveal any further PROPEP in 

Arabidopsis.  

Figure 2.1: Alignment of the eight Arabidopsis PROPEPs. ClustalW alignment of the amino acid 
sequences of all identified Arabidopsis PROPEPs including AT05G09976. Coloring is based in the 
Clustal color scheme.  

Bi-clustering expression analysis points at distinct roles for individual PROPEPs  

PROPEPs are thought to assist via the release of AtPeps in biotic stress resistance, but 

their individual roles have not been investigated in detail (Huffaker and Ryan, 2007; 

Boller and Felix, 2009). Whereas AtPeps are assumed to act rather redundantly, little is 

known about the spatial and temporal expression of PROPEPs. It has been shown that 

PROPEPs respond with slight differences to treatments with MeJA, MeSA and AtPeps 

(Huffaker and Ryan, 2007). In order to get a better idea about potential redundant as 

well as specific expression patterns of the PROPEPs in the context of biotic stress 

resistance, we performed a bi-clustering analysis focusing on 278 biotic stress-related 

microarrays that were downloaded from the TAIR website 

(ftp.arabidopsis.org/Microarrays/analyzed_data). Hereby the 22810 probes (representing 

genes) present on the used Affymetrix 25K arrays are grouped based on their expression 

patterns over the various biotic stress treatments. Genes with similar expression patterns 

group more closely together, as indicated by the dendrogram, and become part of a sub-

group (sub-clusters). Enrichment of GO-terms within one sub-cluster can be used to get 
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indications about the function of the genes in this sub-cluster. Moreover, the relative 

distance of genes within the main cluster shows the diversity of regulation of these 

genes.     

PROPEP containing clusters were selected by setting an individual cutoff within the 

dendrogram for each PROPEP to yield a cluster with less than 500 genes (Fig. 2.2). 

Figure 2.2: Bi-clustering analysis of PROPEPs based on expression profiles of biotic stress treatments. The 
similarity in expression pattern of 22810 different probes (representing genes) was assessed by performing a bi-
clustering analysis of the Log2 transformed expression values from 278 biotic stress related microarrays 
(upregulated genes are represented in yellow whereas downregulated genes are colored blue). The different types 
of treatments within this bi-clustering analysis are color coded above the clusters, with their details at the bottom of 
the figure. For multiple treatments typical examples are given as not each individual treatment could be color 
coded clearly. A full list of all treatments, including the dendrogram and the same color coding, is given in 
Supplemental Table 2. Genes that cluster relatively close are expressed similarly under various biotic stresses and 
vice versa. Only PROPEP 2 and 3 cluster very close together, suggesting that only those two PROPEPs are 
involved in similar processes under biotic stress. To obtain an indication in which processes each PROPEP is 
involved, GO-Term enrichment was performed on each sub-cluster containing a PROPEP (represented as separate 
clusters). The top five enriched GO-Terms of the sub-cluster, indicating the related processes, is shown to the right 
of each sub-cluster. Asterisks denote sub-clusters that showed no enriched GO-terms, therefore co-expressed genes 
with the PROPEP having a Pearson correlation coefficient > 0.6 were used for GO-term enrichment analysis. 
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PROPEP7 and PROPEP8 are not spotted on the used arrays, and therefore no bi-cluster 

analysis could be performed for these precursors. Of the family members PROPEP1-6, 

only PROPEP2 and PROPEP3 clustered together indicating that most of the PROPEPs 

are expressed in different ways upon treatment with various biotic stimuli. To get an 

indication in which processes the individual PROPEPs are involved in, a GO-term 

enrichment analysis was performed on the obtained clusters of which the top 5 terms are 

shown in Figure 2.2. Most enriched GO-terms within the top 5 of each cluster represent 

a relatively broad description of a process. To also provide data on the more specific 

processes that are underlying the expression of these clusters a full overview of all major 

and minor enriched GO-terms for each PROPEP is provided in Supplemental Table S1. 

As most PROPEPs appear to be involved in very different processes besides biotic 

stress resistance, also a co-expression analysis followed by a GO-term analysis on a set 

of abiotic or development related microarrays was performed (Supplemental Table S2). 

These results further support the idea that PROPEP transcription seems to be regulated 

individually and does not follow a general pattern valid for all PROPEPs. 

The PROPEP that has the most similar global expression pattern compared to 

PROPEP2 and 3 is PROPEP1, but beside the shared enriched defense associated GO-

terms (Fig. 2.2), they also have some characteristically different enriched GO-terms. The 

PROPEP1 cluster revealed an additional enrichment of GO-terms related to abiotic 

stress, hypoxia and ABA-signaling, whereas the PROPEP2 and 3 cluster is also 

associated with SA-signaling, (programmed) cell death and (trans-membrane) ion 

transport (Supplemental Table S1 and S2). Distinct from these more defense-associated 

PROPEPs is the cluster of PROPEP5 that is enriched for processes related to 

reproduction and shares the enrichment for gibberellin/terpenoid biosynthesis and lipid-

signaling with PROPEP6. The most directly noticeable different PROPEP in Figure 2.2 

is PROPEP4 which expression is induced in conditions where all the other PROPEPs 

are repressed and vice versa. As the cluster of PROPEP4 contained only 25 genes it was 

too small to result in any enriched GO-terms. To circumvent this, the genes that are co-

expressed with PROPEP4 given a Pearson correlation coefficient cutoff > 0.60 were 

used to perform a GO-term enrichment analysis. This resulted in an enrichment of 

organismal development, developmental processes and chromosome/chromatin 

organization associated GO-terms. 
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To further diversify the view on PROPEP regulation, we also analyzed the type of 

treatments and or conditions that have the strongest influence on the expression of each 

PROPEP, a full overview of treatments, conditions and their influence on expression is 

given in Supplemental Table S3. Here we found in agreement with the bi-clustering 

analysis PROPEP1 to be highly induced by abiotic stress treatments like salt, drought 

and osmotic stress whereas e. g. PROPEP5 transcription is highest in certain 

developmental stages of seeds and flowers.   

Overall our analysis indicates that, in contrast to AtPeps, the transcriptional regulation of 

PROPEPs is most likely non-redundant. Moreover, based on these findings we suggest 

that individual PROPEPs could play a role in very distinct functions in Arabidopsis as 

they appear to be not only associated with defense but also with processes ranging from 

abiotic stress resistance to development and reproduction. 

Analysis of PROPEP promoters reveals diverse spatial and temporal expression 

patterns 

To further investigate the potential difference in PROPEP expression at the tissue level, 

we generated transgenic Arabidopsis lines containing the putative promoter sequences 

of the PROPEP genes fused to β-glucuronidase (GUS). As shown in Figure 2.3, the 

promoters of PROPEP1, PROPEP2 and PROPEP3 exhibit similar expression patterns. 

These promoters confer expression mainly in in the root excluding the root tip. In adult 

leaves even after 24 h of staining nearly no blue precipitate is visible indicating very low 

activity of these promoters without stimuli. In contrast, wounding of leafs using a 

forceps led to a clear induction of these PROPEP promoters, which was restricted to the 

vasculature (Fig. 2.3, yellow arrows). Beside the great overlap between the expression 

patterns of the promoters of PROPEP1, PROPEP2 and PROPEP3, the latter produced 

also a GUS staining in the anthers of flowers.  

The promoters of PROPEP5 and PROPEP8 are also active in the root but restricted to 

the vascular tissue, reminiscent of the promoter of PEPR2 (see below). They share with 

the promoters of PROPEP1-3 the wound inducibility in the central vasculature of adult 

leaves. But whereas the promoter of PROPEP5 shows strong activity in the leaf-veins, 

the promoter of PROPEP8 did not produce any GUS staining in untreated leaves. In 

addition, they produced distinct stainings in adult flowers. The promoter of PROPEP5 is 

highly active in the filaments of flowers (Fig. 2.3, white arrow) whereas the one of 
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PROPEP8 is active in all flower tissues except for the petals. Thus, the promoters of 

PROPEP5 and PROPEP8 partially share their expression patterns with the ones of the 

promoters of PROPEP1-3 but show also differences to them and among each other. 

Intriguingly, the activity of the promoters of PROPEP4 and PROPEP7 are restricted to 

the tips of primary and lateral roots (Fig. 2.3, red arrows), whereas neither the other 

PROPEP promoters nor the promoters of PEPR1 and PEPR2 (see below) conferred any 

obvious GUS expression. Moreover, the expression of the promoters of PROPEP4 and 

PROPEP7 was not detected in flowers and not induced by wounding. 

Taken together, the promoter-mediated expression patterns of the PROPEPs fall clearly 

into two distinct groups. Group one, which comprises the promoters of PROPEP1, 2, 3, 

5 and 8, shows expression in the roots and slightly in the leaf vasculature. They are 

inducible by wounding. Group two, containing the promoters of PROPEP4 and 7, is not 

inducible by wounding and the basal expression is restricted to the root tips.  

PROPEP::YFP fusions identify localization to distinct subcellular compartments 

Next we generated transgenic Arabidopsis plants constitutively 

expressing PROPEP::YFP fusion proteins to assess their subcellular localization. 

It has been hypothesized that all PROPEPs localize to the cytoplasm based on 

the predicted function and the lack of an identifiable localization signal (Huffaker et 

al., 2006). In line with this hypothesis, PROPEP3::YFP localized to the cytoplasm 

(Fig. 2.4A). However, our findings with PROPEP1::YFP and PROPEP6::YFP 

were rather surprising and showed that these precursor proteins were associated 

with the tonoplast. To clearly distinguish the tonoplast from the plasmamembrane 

we performed a brief FM4-64 staining (Fig. 2.4A, red) that is often used to image 

the plasmamembrane. The overlay confirms that the YFP fluorescence and the one 

emitted from FM4-64 do not overlap. To exclude the possibility that subcellular 

localization is dependent on the cell-type, we imaged both, epidermal cells of 

cotelydons as well as root epidermal cells and observed that the localization patterns 

were the same. In contrast, a fusion protein of just the C-terminal part of PROPEP1, 

which represents AtPep1, with YFP produced a cytosolic localization indicating 

that the association of PROPEP1 with the tonoplast seems to depend on the N-

terminal part of PROPEP1 and is not due to a binding of AtPep1 to a yet unidentified 

tonoplast-localized protein (Fig. 2.4B). 
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Figure 2.3: Spatial and temporal expression patterns of PROPEP promoter-GUS lines. Fusion of 
putative promoter sequences of indicated PROPEPs to a β-d-glucuronidase (GUS) reporter reveals 
distinct expression patterns. Pictures show staining (2 h) of untreated 10 d old seedlings grown in sterile 
conditions on MS plates and adult leaves and flowers of soil grown plants (24 h staining). Wounding of 
adult leaves was done with a forceps and incubated for 2 h before staining. Red arrows indicate 
expression in root tips of the primary and lateral roots. Yellow arrows point to GUS staining in the 
vasculature after wounding. White arrows highlight flowers with GUS expression. Three independent 
transgenic lines have been analyzed for each construct showing similar results. 
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Figure 2.4: Subcellular localization of PROPEP::YFP fusion proteins. Confocal micrographs of 
Arabidopsis transgenic lines, expressing PROPEP::YFP (A) and Pep1::YFP (B) fusion proteins as 
indicated under the control of the CaMV35S promoter show single optical sections of cotyledon 
epidermal cells (top panel) or root epidermal cells (bottom panel). Co-staining with FM4-64 (red 
channel) highlights the plasma membrane (arrowheads). PROPEP1 and PROPEP6::YFP fusions 
localize to the tonoplast in both tissues (right panels - arrows) while PROPEP3::YFP (left panel) and 
Pep1::YFP (B) fusion protein localizes to the cytosol in both tissues. Similar results were obtained in 
two independent transgenic lines for each construct. Bars = 10 µm. C) Plasmolysis of root cells after 2 
min of 500 mM NaCl treatment. DIC = Differential interference contrast. 
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In order to further test the association of PROPEP1::YFP with the tonoplast we 

performed a plasmolysis triggered by a brief treatment with 500 mM NaCl. As shown in 

Figure 2.4C the YFP fluorescence remains at the tonoplast of the shrunken vacuoles. 

These findings demonstrate that members of the PROPEP family are present at two 

different subcellular compartments, the cytosol and the tonoplast. This might indicate 

non-redundant functions between the PROPEPs at the protein level or a yet not 

understood level of complexity of their involvement in cellular immunity. Moreover, it 

provides evidence for a potential role of PROPEP1 and 6 associated with the vacuole. 

The promoters of PEPR1 and PEPR2 confer overlapping patterns of expression, 

which resemble those of some but not all PROPEP promoters 

AtPeps are known to be detected by two homologous receptors, PEPR1 and PEPR2 

(Krol et al., 2010; Yamaguchi et al., 2010). To investigate the potential overlap of the 

expression patterns between the two PEPRs and the PROPEPs, we generated transgenic 

Arabidopsis lines containing the putative promoter sequences of the PEPR promoters 

fused to GUS. As shown in Figure 2.5, both promoters conferred expression in the 

vascular tissue of roots and leaves. No PEPR1/2 promoter-mediated GUS expression 

was observed in root tips. Focusing on the expression in roots, the activity of PEPR2 

promoter was more restricted to the central cylinder of the root whereas GUS expression 

of the PEPR1 promoter was present in most root tissues. Additionally, GUS expression 

mediated by the PEPR1/2 promoters was detected in stems but was almost absent in 

flowers.  
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Figure 2.5: Overlapping expression patterns of PEPR1 and PEPR2 promoter-GUS lines. Putative 
promoter sequences of PEPR1 and PEPR2 were fused to GUS and stably introduced in Arabidopsis 
plants. Tissues of transgenic plants were stained for 2 h (roots and seedlings) and 24 h (adult leaves, stems 
and flowers). GUS staining reveals a great overlap in the tissue-dependent expression of PEPR1 and 
PEPR2. Three independent transgenic lines were analyzed for each construct. Pictures show representative 
samples. 

When comparing the expression patterns between the receptors and the precursors, the 

PEPR1/2 promoter-mediated expression showed partially overlapping patterns with 

PROPEP1, 2, 3, 5 and 8. By contrast, PROPEP4 and 7 promoter-mediated expression 

was exclusive to the root tip, a tissue where the PEPRs were not expressed. These 

results show that, whereas the promoters of PEPR1 and PEPR2 highly overlap in their 

conferred expression patterns, they share only little overlap with the expression patterns 

generated by PROPEP promoters. This indicates potential new, unknown roles for at 

least PROPEP4 and PROPEP7 independent of PEPRs. 

PEPR1 and PEPR2 as well as all eight AtPeps trigger similar defense responses 

Previous studies showing that AtPeps triggered alkalinization in cell cultures and 

induced resistance to Pseudomonas syringae infection in plants provided evidence that 

some AtPeps are functionally redundant (Huffaker and Ryan, 2007; Yamaguchi et al., 

2010). To address the extent of functional redundancy between all known AtPeps, we 

monitored the activation of MAP kinases, the release of ethylene and the inhibition of 

seedling growth stimulated by the eight AtPeps in the single and double pepr1 pepr2 
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receptor mutants. As shown in Figure 2.6, all eight AtPeps activated the stress-related 

MAP kinases MPK3 and MPK6, induced the production of ethylene and inhibited 

seedling growth in a PEPR1- and partially PEPR2-dependent manner. Notably AtPep3 

to AtPep8 were not perceived in the pepr1 mutant, indicating that PEPR2, which is 

active in this mutant, does not perceive these peptides and, thus, is specific for AtPep1 

and AtPep2, whereas the pepr2 mutant responded to all peptides, indicating that PEPR1 

recognizes all eight AtPeps in a similar way (Fig. 2.6). Taken together, all eight AtPeps 

trigger a similar set of defense responses reminiscent of PTI in a PEPR1 and partially 

PEPR2 dependent manner. Thus, in contrast to the PROPEPs, the AtPeps as well as 

PEPRs appear to be highly redundant. 
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Figure 2.6: Defense responses activated by all eight AtPeps and both PEPRs. A) MAPK 
phosphorylation. Seedlings of indicated genotypes were treated for 15 min with 1 µM of the indicated 
elicitor peptide or without any peptide (contr.). MAPK phosphorylation was detected by immunoblotting 
using an anti-phospo-p44/42-MAP kinase antibody detecting the pTE-pY motif of MPK6 and MPK3. The 
immunoblot was reprobed with anti-Actin antibody to determine equal loading. B) Ethylene production. 
Seedlings of indicated genotypes were treated for 5 h with 1 µM of the indicated elicitor peptides or 
without any peptide (control). Columns represent averages of detected ethylene values of 5 biological 
replicates. Error bars indicate standard error of the mean. C) Seedling growth inhibition. 5 day old 
seedlings of the indicated genotypes were treated for 5 d with    1 µM of the indicated elicitor or without 
any peptide. Columns represent the mean weight of 12 seedlings out of 6 biological replicates. Error bars 
indicate standard error of the mean. Asterisks represent t-test results generated by comparing the labeled 
value to the respective control (* = p<0.05; ** = p<0.01; *** = p<0.001; ns = not significant). 
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2.4 DISCUSSION 

Current models discuss PROPEPs and AtPeps as i) enhancers of immunity, ii) damage-

signaling peptides or iii) elicitors of systemic defense responses, but based on published 

data reliable support for each model is scarce (Boller and Felix, 2009; Yamaguchi and 

Huffaker, 2011). Previous studies primarily focused on plant responses triggered by the 

addition of the synthetically produced peptides AtPep1 or AtPep3 and firmly established, 

that a treatment with these peptides enhances plant immunity via PEPRs (Yamaguchi et 

al., 2010, Krol et al., 2010). Likewise, the constitutive, ubiquitous expression of 

PROPEP1 or PROPEP2 improved plant resistance to an oomycete pathogen (Huffaker 

et al., 2006). But these studies did not adress the question of the presence or the 

underlying mechanism of the PROPEP/AtPep/PEPR system and thus cannot fully 

answer which (if any) of the current models are valid.  

Recently, two studies involving the pepr1 pepr2 double mutant suggested an interaction 

of AtPep-signaling with the defense hormone ethylene to maintain PTI responses (Liu et 

al., 2013; Tintor et al., 2013). Thus the “enhancer of immunity” model appears now as 

the most likely one. Here, we investigated the presence and regulation of PROPEPs to 

either further substantiate the “enhancer model” or to deduce new biological role(s) of 

the PROPEP/AtPep/PEPR system.  

PROPEP1, 2, 3 and maybe 5 and 8 play a role in immunity 

In agreement with previous works (Huffaker and Ryan, 2007; Yamaguchi et al., 2010) 

our bi-clustering showed that PROPEP1, 2 and 3 clustered together with genes 

implicated in plant defense. Moreover, the almost exclusive expression of these 

PROPEPs in the roots revealed by promoter::GUS fusions partially overlap with the 

ones of PEPR1 and PEPR2. Thus PROPEP1, 2 and 3 might play specific roles in the 

immune response of the root, which is supported by the report that constitutive 

expression of PROPEP1 led to an induced resistance against the oomycete root 

pathogen Pythium irregulare (Huffaker and Ryan, 2007). In contrast, these PROPEPs 

are not or only weakly expressed in adult leaves but rapidly induced in wounded leaf-

veins. Recently we showed that a pretreatment of leaf tissue with bacterial MAMPs led 

to an enhanced output of reactive oxygen species triggered by AtPep perception (Flury et 
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al., 2013). Since a progressive wave of reactive oxygen species has been discussed as a 

potential systemic signal, the enhanced expression of PROPEPs in wounded vasculature 

might contribute to the robustness of this system (Miller et al., 2009; Mittler et al., 

2011). 

PROPEP5 and PROPEP8 display expression patterns that partially overlap with the 

ones of PEPR1 and PEPR2 but in contrast to PROPEP1, 2 and 3, PROPEP5 and 8 are 

restricted to the root vasculature but are more expressed in the leaf-veins (PROPEP5) 

and the flowers (PROPEP8). However, PROPEP1, 2, 3, 5 and 8 together cover most 

plant tissues and since all eight AtPeps trigger redundant responses PROPEP5 and 

PROPEP8 could play in leaves and flowers, respectively, similar roles like PROPEP1, 2 

and 3 in roots.  

It has been hypothesized that PROPEPs are located to the cytoplasm and could be 

released to the extracellular space in a situation of danger using unconventional protein 

secretion mechanisms (Ding et al., 2012). We found indeed that PROPEP3::YFP was 

localized in the cytoplasm, but surprisingly PROPEP1::YFP as well as PROPEP6::YFP 

were detected at the tonoplast. Due to the acidic environment of the vacuole negatively 

impacting on YFP fluorescence, we assume that PROPEP1::YFP and PROPEP6::YFP 

are associated with the cytoplasmic side of the vacuolar membrane. Notably, the 

localization signal that directs the PROPEP to the tonoplast or a hitherto unidentified 

interaction domain, that could attach the PROPEP to a tonoplast-localized protein, 

resides in the N-terminus of the PROPEP since a fusion protein of only AtPep1 and YFP 

localized in the cytoplasm. Therefore it can be excluded that the AtPep itself binds to a 

tonoplast-localized receptor-like protein. Recently, it was shown that infection of 

Arabidopsis with the compatible oomycete Hyaloperonospora arabidopsidis (Hpa), the 

causal agent of the downy mildew, triggered a rearrangement of intracellular membranes 

leading to a relocation of the tonoplast close to the extra-haustorial membrane (Caillaud 

et al., 2012). However, neither the involvement of PROPEPs in resistance to Hpa nor 

the necessity of a tonoplast localization of PROPEP1 in the context of resistance to 

Pythium infection has been shown yet, but it will be interesting to study this potential 

connection.  
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Root tip expressed PROPEP4 and 7 are distinct from the other PROPEPs and 

might have dual functions 

PROPEP4 and PROPEP7 are located on chromosome 5 within a ~3.5 kb stretch. Both 

share the specific expression in the tips of primary and lateral roots, which does not 

overlap with the ones of PEPR1 and PEPR2. Moreover, they are currently the only 

PROPEPs, which are not induced by wounding. Therefore they are less likely to 

enhance plant immune responses locally. However, PROPEP4 and 7 could still be part 

of a systemic defense response. It has been reported that the Systemin peptide is 

transported via the phloem sap (Narváez-Vásquez et al., 1995). Moreover, a plethora of 

peptide transporters are encoded in the Arabidopsis genome which might facilitate the 

transport of AtPeps for systemic signaling (Stacey et al., 2002). Thus PROPEP4 and 7 

could be ideal candidates to study, if PROPEPs or AtPeps are transported systemically. 

The Affymetrix 25K microarrays do not represent PROPEP7. Our bi-clustering analysis 

produced only a small cluster of 25 genes that contained PROPEP4. Intriguingly, this 

cluster showed an expression pattern opposite to the ones of the other PROPEP 

containing clusters meaning that whenever biotic stress treatments lead to an induction 

of PROPEP4 expression, other PROPEPs are downregulated and vice versa. GO-term 

enrichment points at biological processes including chromatin and chromosome 

organization. However, this does not exclude a function in immunity. The mammalian 

DAMP high-mobility group protein B1 (HMGB1) binds to DNA, modifies the shape 

and regulates transcription. In case of danger it can be secreted by activated monocytes 

and macrophages, or it is passively released by necrotic or damaged cells. Detection of 

extracellular HMGB1 by RAGE (receptor for advanced glycation end products) of 

adjacent cells triggers inflammation (Scaffidi et al., 2002; Sims et al., 2010). 

The small PROPEP4 including gene cluster also shows the limitations of the bi-

clustering. Most of the used arrays were probed with samples based on seedlings or 

adult leaves. Genes with tissue restricted expression patterns like PROPEP4 might only 

be weakly detected on some of the biotic stress arrays leading to erroneous expression 

patterns.  

Taken together, PROPEP4 (and PROPEP7) are clearly distinct from the other PROPEPs 

in terms of tissue expression pattern as well as regulation within the biotic stress 

treatments. A more detailed analysis is needed to uncover their biological roles. 
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PROPEPs might play roles in plant reproduction and development 

Most plant signaling peptides originate from small (around 100 aa) proteins, which are 

processed at the C-terminus to release the active signaling peptide. These peptides have 

various functions especially in developmental processes such as apical meristem 

development as well as root growth (Matsubayashi and Sakagami, 2006; Katsir et al., 

2011). PROPEPs have been associated with plant innate immunity but share structural 

similarities (size and presence of signaling peptide in the C-terminus) with Arabidopsis 

signaling peptide precursors like RGF1, TDIF, CLV3, PSK1, CEP1 or PSY1. 

Remarkably, there might be also a functional overlap. In contrast to PROPEP1, 2 and 3 

bi-clustering showed that PROPEP5 clusters with genes associated with plant 

reproduction. Although we did not find this for PROPEP3, GUS analysis revealed an 

expression of both in the stamen. Thus, beside the proposed role in plant immunity, 

PROPEP5 and maybe also PROPEP3 could be involved in the development of the 

stamen and therewith in the regulation of reproduction. The involvement of small 

signaling peptides in this process has been demonstrated just recently. RALF (rapid 

alkalinization factor) signaling peptides regulate pollen tube elongation and the 

development of the female gametophyte in Solanaceous species (Covey et al., 2010; 

Chevalier et al., 2012). Thus, as a next step a detailed analysis of PROPEP3 and 

PROPEP5 knock-out mutants would be needed, to investigate a potential role of these 

PROPEPs in plant reproduction. 

Beside the impact of constitutive expression of PROPEP1 on resistance against Pythium 

infection it also promoted an increase in root biomass production (Huffaker et al., 2006). 

It was assumed that PROPEP1 expression somehow generated an advantage for 

Arabidopsis roots to grow in soil. In contrast, exogenous application of AtPeps blocked 

root growth and biomass production similarly to seedling growth inhibition triggered by 

MAMPs. Notably, application of AtPeps has a more pronounced negative effect on root 

growth compared to MAMPs (Krol et al., 2010).  

If root growth was also enhanced in sterile conditions by constitutive expression of 

PROPEP1 was not assessed (Huffaker et al., 2006), thus this advantage might or might 

not be based on an increased pathogen resistance of the root. A detailed analysis of 

propep1 knock-out mutants is needed to clarify if PROPEP1 takes part in additional 

processes like root development. 
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2.5 CONCLUSIONS 

Previous studies and our new data reported here show that all eight AtPeps trigger a PTI-

like response by binding to either PEPR1 or both PEPR1/2 receptors (Huffaker and 

Ryan, 2007; Yamaguchi et al., 2010). Interestingly, PEPR2 is specific for AtPep1 and 

AtPep2 whereas PEPR1 is unspecific and recognizes all eight AtPeps.  

In contrast to the AtPeps and the PEPRs we provide data indicating that PROPEPs are 

probably not redundant. They show individual spatial and temporal expression patterns 

and localize to distinct subcellular compartments. Beside their potentially diverse roles 

in innate immunity they might additionally be involved in plant development and 

reproduction. A detailed characterization of each PROPEP together with an analysis of 

their processing and release will be necessary to uncover the full array of functions of 

PROPEPs in plant biology.  

2.6 MATERIAL AND METHODS 

Plant material 

Mature Arabidopsis plants were grown in individual pots at 21° C and an 10 h 

photoperiod for 4-5 weeks. For induction of flowering, plants were moved to a 16 h 

photoperiod. For preparation of sterile seedlings, Arabidopsis thaliana seeds were 

surface-sterilized with 70 % ethanol and plated on half-strength Murashige and Skoog 

medium supplemented with 1% sucrose and 0.5% Phytagel (SigmaAldrich), stratified 

for at least 2 d at 4 °C and then germinated at 21 °C in continuous light (MLR-350; 

Sanyo). The T-DNA insertion lines SALK_059281 (pepr1) and SALK_098161 (pepr2) 

were obtained from by the Nottingham Arabidopsis Stock Centre (Nottingham, United 

Kingdom) and are in the Col-0 accession background.  

Generation of transgenic Arabidopsis lines 

The PROPEP and PEPR putative promoter sequences were amplified by PCR from 

genomic Col-0 DNA with specific primers (see Supplemental Table S4 for primers and 
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promoter sequences). Obtained sequences were introduced into the binary destination 

vector pBGWFS7 (Karimi et al., 2002) using Gateway-based cloning. PROPEPs were 

cloned from Col-0 cDNA using gene specific primers (Supplemental Table S4). 

Introducing PROPEP sequences into the binary destination vector pEarley101 by 

Gateway-based recombination led to the in frame fusion of YFP to their c-terminal ends 

(Earley et al., 2006). Arabidopsis plants were transformed by Agrobacterium 

tumefaciens using the floral dip method (Clough and Bent, 1998).  

Peptides 

Peptides of flg22 (QRLSTGSRINSAKDDAAGLQIA), AtPep1 

(ATKVKAKQRGKEKVSSGRPGQHN), AtPep2 

(DNKAKSKKRDKEKPSSGRPGQTNSVPNAAIQVYKED), AtPep3 

(EIKARGKNKTKPTPSSGKGGKHN), AtPep4 

(GLPGKKNVLKKSRESSGKPGGTNKKPF), AtPep5 

(SLNVMRKGIRKQPVSSGKRGGVNDYDM), AtPep6 

(ITAVLRRRPRPPPYSSGRPGQNN), AtPep7 

(VSGNVAARKGKQQTSSGKGGGTN), AtPep8 

(GGVIVKSKKAARELPSSGKPGRRN) obtained from EZBiolabs were dissolved in a 

solution containing 1 mg/mL bovine serum albumin  and 0.1 M NaCl to get peptide 

stocks of 100 µM concentration. Further dilutions were done with water.   

Microarray and data analysis 

Bi-clustering and co-expression analysis was performed as described by van Verk et al. 

(2011), with the following minor modifications: For bi-clustering, the Euclidean 

distance measure was used. To obtain separate clusters containing the PROPEPs, the 

first cluster within the dendogram containing less than 500 genes was selected. For gene 

annotations into biological categories, the AmiGO Term Enrichment software was 

employed (Carbon et al., 2009). For categorization of enriched GO-terms, the 

CateGOrizer tool (Hu et al., 2008) using Plant GO-Slim terms, applying the 

consolidated single occurrences count option. Supplemental Table S2 provides a list of 

the Affymetrix 25K microarrays from NASCArrays and AtGenExpress (downloaded 

from ftp.arabidopsis.org). 
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GUS staining 

Plant tissue was fixed in ice-cold 90 % acetone for 20 min, washed with water and then 

placed in GUS staining buffer (1 mM 5-bromo-4-chloro-3-indolyl β-d-glucuronide 

(Gold BioTechnology, St. Louis, Missouri, USA), 100 mM sodium phosphate (pH 7.5), 

0.5 mM potassium ferricyanide, 0.5 mM potassium ferrocyanide, 10 mM EDTA, and 

0.1% (v/v) Triton X-100) at 37 °C for 2 h (seedlings) and 24 h (adult leaves). Plant 

tissue was cleared with 70% (v/v) ethanol and photographed using an Olympus SZX12 

binocular in combination with an Olympus DP72 camera and the CellSens imaging 

software (Olympus America, Pennsylvania, USA). 

Fluorescence microscopy 

7 days old seedlings expressing the PROPEP::YFP and Pep1::YFP fusions were stained 

for 5 min in an aqueous solution containing FM4-64  (SynaptoRed, Sigma-Aldrich) 

diluted at 5 µg/mL and washed for 5 min in water prior imaging using an SP5 Leica 

Confocal Microscope. YFP (500 to 560 nm) and FM4-64 (620 to 650 nm) fluorescence 

was recorded simultaneously after excitation at 488 nm using a 63x water immersion 

objective. Plasmolysis was achieved by mounting roots in 500mM NaCl solution 2 min 

prior imaging.  

Measurement of ethylene production 

For measurement of ethylene accumulation, 5 seedlings (5 days after germination (dag)) 

were harvested into a 6 ml glass vial containing 0.1 ml of ddH2O, placed back into the 

growth chamber and left overnight (~ 16 h). Peptides were added to 1 µM final 

concentration and vials were closed air-tight with rubber septa. After 5 h of incubation 

on a shaker (100 rpm) at room temperature, ethylene accumulating in the free air space 

was measured by gas chromatography (GC-14A Shimadzu).  

MAPK phosphorylation 

10 seedlings (10 dag) were placed into 0.5 ml sterile water and left over night (16 h) 

floating. Peptides were added to a final concentration of 1 µM. After 15 min seedlings 

were shock frozen and ground to fine powder before addition of 80 µl extraction buffer 

(0.35 M Tris-HCl pH 6.8, 30 % (v/v) glycerol, 10 % SDS, 0.6 M DTT, 0.012 % (w/v) 

bromphenol blue). After boiling for 5 min, 10 µl of the total cellular protein extract was 
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separated by electrophoresis in 12 % SDS-polyacrylamide gel and electrophoretically 

transferred to a polyvinylidene fluoride membrane according to the manufacturer’s 

instructions (Milipore). We used monoclonal primary antibodies against phospho-

p44/42 MAP kinase (Cell Signaling Technologies) and actin (Sigma-Aldrich), with 

alkaline phosphatase-conjugated anti-rabbit and anti-mouse immunoglobulins (Sigma-

Aldrich) as secondary antibodies, as required. Signal detection was performed using 

CDPstar (Roche). 

Growth inhibition assays 

5 days after germination, sterile seedlings were transferred to liquid MS medium 

supplied with the peptides at 1 µM final concentration (one seedling per 500 µl of 

medium in 24-well plates). The effect of treatment with different peptides on seedling 

growth was analyzed after 10 days by weighing fresh weight. 

2.6 SUPPLEMENTARY DATA 

Supplementary data and tables are accessible via: 

http://jxb.oxfordjournals.org/content/64/17/5309/suppl/DC1
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This work aimed to identify family specific patterns in the perception of Peps by 

PEPRs of various species. I designed some of the performed experiments and 

contributed the work done on the PEPRs (fig. 5) and wrote that part of the 

manuscript. 
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3.1 ABSTRACT 

Plant elicitor peptides (Peps) are potent inducers of pattern-triggered immunity and 

amplify the immune response against diverse pathogens. Peps have been discovered and 

studied extensively in Arabidopsis and only recently orthologs in maize were also 

identified and characterized in more detail.  

Here we investigated the presence of PROPEPs, the Pep precursors, and PEPRs, the Pep 

receptors, within the plant kingdom and identified PROPEPs and PEPRs in most 

sequenced species of the angiosperms. We analysed the conservation and compatibility 

of the Pep-PEPR-system by using plants of the two distantly related dicot families, 

Brassicaceae and Solanaceae and a representative family of monocot plants, the 

Poaceae. All three plant families contain important crop plants including maize, rice, 

tomato, potato and canola. We found that Peps are not recognized by species outside of 

their plant family of origin, apparently because of a divergence of the Pep sequences. 

We define three family-specific Pep motifs and show that the integration of such a motif 

into the Pep sequence of an unrelated Pep enables its perception. We also observed 

transient transformation of Nicotiana benthamiana with the coding sequences of the 

AtPEPR1 and ZmPEPR1a led to the recognition of Pep peptides of Brassicaceae or 

Poaceae origin, respectively, and to the proper activation of downstream signalling. We 

conclude that the signalling machinery downstream of the PEPRs is highly conserved 

whereas the LRR domains of the PEPRs coevolved with the Peps leading to distinct 

motifs and with it interfamily incompatibility.  

3.2 INTRODUCTION 

Plant immunity is triggered by the recognition of exogenous as well as endogenous 

elicitors. MAMPs (microbe-associated molecular patterns) are well known 

representatives of the former whereas the latter are often classified as DAMPs (danger- 

or damage-associated molecular patterns) (Boller and Felix, 2009; Albert, 2013; Ferrari 

et al., 2013). Plant elicitor peptides (Peps) are emerging as paradigms for DAMPs due to 

their presence in dicot as well as monocot model plants and their supposed release upon 

damage (Huffaker et al., 2011; Yamaguchi and Huffaker, 2011; Bartels et al., 2013). In 

brief, Peps mature from larger precursor proteins called PROPEPs and are recognized 
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by LRR-RLKs (leucine-rich repeat receptor-like kinases) known as PEPRs (PEP 

RECEPTORs). Pre-treatment of Arabidopsis or maize plants with Peps triggers defence 

responses and significantly improves their resistance against diverse pathogens 

including bacteria, fungi as well as herbivores  (Huffaker et al., 2006; Yamaguchi et al., 

2010; Huffaker et al., 2011; Huffaker et al., 2013; Liu et al., 2013; Tintor et al., 2013).  

In Arabidopsis eight PROPEPs (PROPEP1-8) and two PEPRs (PEPR1 and PEPR2) 

have been identified (Krol et al., 2010; Yamaguchi et al., 2010; Bartels et al., 2013). 

Current models suggest a cleavage or processing of PROPEPs to produce Peps, which 

represent roughly the last 23 amino acids of the C-terminal part of the PROPEPs 

(Yamaguchi and Huffaker, 2011). Individual PROPEPs have been shown to localize to 

either the cytoplasm or to be associated with the tonoplast contributing to the 

assumption that Peps are released into the apoplast either actively as a response to 

danger signals or passively during damage and loss of cell integrity (Bartels et al., 

2013). Once in the apoplast they can reach PEPRs of adjacent cells and trigger and/or 

amplify immunity.    

Little is known about Peps and PROPEPs and even less about PEPRs in other dicot 

plants. A small member of Peps from Solanaceae (Eggplant SmPep1, Pepper CaPep1 

and Potato StPep1) and Fabaceae (Soybean GmPep3, Medicago MtPep1, Peanut 

AhPep1) was shown to induce the release of volatiles, a typical defence response against 

herbivore attack (Huffaker et al., 2013). In addition a very recent study reported the 

reduced expression of defence-related genes as well as a reduced resistance towards the 

necrotrophic fungus Pythium dissotocum in tomato plants upon silencing of a putative 

tomato PROPEP (Trivilin et al., 2014).  

In maize (Zea mays) two PROPEPs have been studied in more detail, ZmPROPEP1 and 

ZmPROPEP3 (Huffaker et al., 2011; Huffaker et al., 2013). The former is induced upon 

fungal infections whereas the latter is induced upon application of Spodoptera exigua 

oral secretions. Accordingly, treatments with ZmPep1 and ZmPep3 led to an 

upregulation of defence-related genes and improved resistance against fungal infections 

as well as herbivore feeding (Huffaker et al., 2011; Huffaker et al., 2013).  

In Arabidopsis an alanine-substitution approach has been used to identify the crucial 

amino acids for Pep perception by PEPRs (Pearce et al., 2008). In this study a minimum 

core of the last 15 amino acids of AtPep1 [AtPep1(9-23)] was described to show a 

comparably similar activity as the unmodified AtPep1. Moreover, exchange of serine15
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or glycine17 to alanine as well as the deletion of the terminal asparagine23 produced a

dramatic decrease in AtPep1 activity (Pearce et al., 2008). Recently the crystal structure 

of the AtPEPR1-LRR domain in complex with AtPep1 was released (Tang et al., 2014). 

The authors report that especially the C-terminal ten residues of AtPep1 interact closely 

with the AtPEPR1-LRR and they include the previously described and conserved ser15,

gly17 and asp23. In addition, modelling of the PEPR1-LRR/AtPep1/BAK1-LRR complex

indicated that proline19 as well as glutamine21 and histidine22 are important for the

PEPR1 BAK1 (BRI1-ASSOCIATED KINASE1) interaction. This interaction has been 

shown before to be crucial for mounting full strength defence responses upon AtPep1 

perception (Roux et al., 2011b). 

Despite the apparent common defence-amplifying action of PROPEPs from plant 

species as diverse as Arabidopsis and maize their amino acid-based homology is very 

low (Huffaker et al., 2011). Even among the PROPEPs from Arabidopsis there is only 

an overall amino acid sequence identity between 12% and 47% (Yamaguchi et al., 

2006). Moreover, already published Pep sequences show alterations in the conserved 

key amino acids, for example ZmPep1 has a C-terminal his23 instead of the asp23

whereas Peps of the Solanaceae show a gly15 instead of a ser15 (Huffaker et al., 2013). In

contrast, ZmPep3 is neither recognized by Eggplant (Solanaceae) nor by Soybean 

(Fabaceae) despite the presence of ser15, gly17 and asp23 (Huffaker et al., 2013).

Here, we performed a comprehensive search for PROPEPs and PEPRs throughout the 

plant kingdom taking into account the many recently sequenced plant genomes. We 

used the elicitor-triggered release of ethylene as a robust and widespread read-out to 

investigate the interspecies recognition of known and newly identified Peps from the 

many dicot crop plants in the Brassicaceae and Solanaceae and the monocot crops in the 

Poaceae. Indeed, Peps from one plant family are generally not perceived by plants 

belonging to another plant family despite the presence of PEPRs. Individual sequence 

alignment of all tested Peps from one family revealed family-specific Pep motifs. 

Inclusion of family-specific motifs into the sequence of incompatible Peps enabled their 

recognition. Further we cloned functional PEPRs from tomato and maize. Transient 

expression of AtPEPR1 and ZmPEPR1a in Nicotiana benthamiana led to AtPep1 and 

ZmPep1 sensitivity indicating that in contrast to Peps, PEPRs are interspecies 

compatible.     
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3.3 RESULTS 

Identification of PROPEP and PEPR homologs in multiple plant species within 

the angiosperms 

The structure and function of the Pep-PEPR system has been studied mainly in 

the model plants Arabidopsis thaliana and Zea mays (Huffaker et al., 2006; Krol 

et al., 2010; Yamaguchi et al., 2010; Huffaker et al., 2011; Bartels et al., 2013). 

However, already the initial publication suggested that PROPEPs might be present in 

a couple of plant species and not limited to Arabidopsis (Huffaker et al., 2006). We 

performed an extensive sequence search in public databases using the few 

previously described PROPEP sequences as well as the sequences of the 

hitherto only known PEPRs, AtPEPR1 and AtPEPR2, and identified a large number 

of novel PROPEPs and PEPRs (Supplementary Table S2). In Figure 3.1, we 

present the phylogenetic trees of all PROPEPs (Fig. 3.1A) and PEPRs (Fig. 

3.1B). PROPEPs form plant family specific clusters, for example AtPROPEP1 

clusters primarily with most Brassicaceae PROPEPs and not with PROPEP1 orthologs 

of distantly related plant species. We also performed a sequence comparison of all 

identified PROPEPs and found an astonishingly small sequence identity between 

PROPEPs (Supplementary Table S3). For example the orthologs AtPROPEP1/

ZmPROPEP1 and AtPROPEP3/ZmPROPEP3, which have been linked to fungal and 

herbivore resistance, respectively (Huffaker et al., 2006; Huffaker et al., 2011; 

Huffaker et al., 2013; Liu et al., 2013; Klauser et al., 2015), show as little as 5.5 % 

and 5.3 % identical amino acids, respectively. In general, a large number of 

PROPEPs show less than 10 % identical amino acids compared to other 

PROPEPs. Only within family-specific clusters and subclusters inside the 

Brassicaceae sequence identity ranges above 50 % (Supplementary Table S3). It 

has been proposed that the PROPEP C-terminal end To date there are two 

exceptions from the apparent rule that PROPEPs form family-specific clusters: 

AtPROPEP5 and AtPROPEP6. Especially the latter seems to be closely related to the 

PROPEPs of the Solanaceae and groups within their family-cluster. 
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Figure 3.1: Bootstrapped neighbour-joining tree of PROPEP and PEPR sequences. 

A Full-length amino-acid sequences of published and novel HMMER identified PROPEP sequences were used 
to build a bootstrapped neighbour-joining tree. PROPEPs in red highlight PROPEPs of which the respective Pep 
was shown to be an active elicitor in this study. (*) mark PROPEPs of which the respective Pep was shown in 
previous studies to be an active elicitor. Major families are highlighted with colours according to the legend. 
Scale-bar: amino-acid substitutions per site. B Full-length amino-acid sequences of PEPR sequences were used 
to build a bootstrapped neighbour-joining tree. Major families are highlighted with colours according to the 
legend. Scale-bar: amino-acid substitutions per site. 
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Therefore we propose to reclassify the two already described StPROPEP1 and 

SmPROPEP1, as StPROPEP6 and SmPROPEP6, respectively.  

In comparison to the limited number of PROPEPs in other plant families there is a clear 

overrepresentation of PROPEPs from species belonging to the Brassicaceae. Provided 

that other plant genomes are as well annotated as the ones from Arabidopsis and its 

relatives it seems that there was a recent multiplication of PROPEPs in the genome of a 

Brassicaceae ancestor and not in dicot species. A similar number of PROPEPs within 

one species has only been found in the monocot species maize (Zea mays, 7 PROPEPs) 

and rice (Oriza sativa Japonica group, 3 PROPEPs) (Fig. 3.1A and Supplementary 

Table S2). 

Regarding PEPRs it seems that to date most species contain only one PEPR (Fig. 3.1B) 

although two have been characterized in Arabidopsis (Krol et al., 2010; Yamaguchi et 

al., 2010). Similar to PROPEPs PEPR sequences form family-specific clusters (Fig. 

3.1B) with sequence identities ranging from 60 % to 90 % within a family cluster 

(Supplementary Table S5). Contrary to the low overall conservation of the PROPEPs 

the overall level of conservation of the PEPRs is around 40 % sequence identity much 

higher. 

So far no PROPEPs or PEPRs have been identified outside the angiosperms.  

Interfamily incompatibility of Peps 

Given the aforementioned variability of the PROPEP as well as Pep sequences the 

question arises, what is the structural basis of Pep perception and specificity. A first 

report in 2013 indicated that Eggplant and Soybean do not perceive Peps originating 

from species outside the Solanaceae and Fabaceae, respectively (Huffaker et al., 2013). 

However, the authors used only these two species together with the monitoring  of 

volatile production to characterize the perception of Peps and it is currently not certain if 

volatile emission is a typical response triggered by Pep binding to PEPRs. Here we used 

the production of ethylene as a robust and reliable output that has been used by multiple 

studies characterising Pep responses in conjunction with additional PTI-related 

responses like the production of reactive oxygen species or the phosphorylation of MAP 

kinases to monitor the perception of Peps in a number of different species (Krol et al., 

2010; Roux et al., 2011b; Bartels et al., 2013; Flury et al., 2013). We selected two 

species each of the distantly related plant families Brassicaceae (Arabidopsis thaliana 
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and Brassica rapa), Solanaceae (Solanum lycopersicum and Nicotiana benthamiana) 

and Poaceae (Zea mays and Lolium perenne) together with a representative Peptide 

(AtPep1, SlPep6 and ZmPep1, respectively) to determine interspecies and interfamily 

perception of Peps. As shown in Fig. 3.2 AtPep1 is only perceived by Arabidopsis and 

its close relative Brassica rapa causing a highly significant release of ethylene absent in 

the more distantly related species. The same is true for the perception of SlPep6 and 

ZmPep1 that are only perceived by the species belonging to the same plant family (Fig. 

3.2). Taken together, there seems to be an interfamily but not an interspecies 

incompatibility of Pep perception. 

Figure 3.2: Interfamily incompatibility of Peps. 
Eight to ten leaf discs of indicated plant species were treated for 5 h with 1 µM of the indicated elicitor 
peptides or without any peptide (control). Columns represent averages of detected ethylene values of 5 
biological replicates. Error bars show the standard error of the mean. Asterisks indicate significant 
differences of the labelled column to the control based on t-test results (* = p<0.05; ** = p<0.01; *** = 
p<0.001). 

Determination of novel family-specific Pep motifs 

The molecular characteristics of Pep recognition has been exclusively studied in 

Arabidopsis. An alanine-substitution approach using AtPep1 in combination with 

monitoring the medium alkalinisation response led to two major findings: i) A minimum 

core of the last 15 amino acids of AtPep1 [AtPep1(9-23)] is sufficient to cause activity 

comparable to that of full length AtPep1 whereas ii) exchange of serine15 or glycine17 to

alanine or deletion of the terminal asparagine23 almost completely abolishes elicitation

of the alkalinization response (Pearce et al., 2008). Thus it seemed that the motif 



Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: Interfamily incompatibility of perception but compatibility of downstream 
signalling 

62 

SxGxxxxxN, which is strictly conserved within all eight AtPeps, is critical for Pep 

activity.   

The peptides SlPep6 and ZmPep1 used in Fig. 3.2 do not conform to this rule. SlPep6 

contains a glycine at position 15 instead of a serine and ZmPep1 shows a histidine at the 

terminal position 23 instead of an asparagine and this might explain why they are not 

recognized by the Brassicaceae. In order to identify plant family-specific motifs we 

tested a larger number of family-specific peptides and derived consensus sequence. Fig. 

3.3A shows the recognition of all eight AtPeps and two BrPeps from Brassica rapa by 

Arabidopsis and B. rapa. In Fig. 3.3B a similar experiment is shown using four peptides 

from Solanaceae together with S. lycopersicum and N. benthamiana and in Fig. 3.3C six 

peptides from Poaceae are tested using Z. mays and L. perenne. Consistently, the 

collection of family-specific peptides triggered a significant induction of ethylene 

production indicating that these peptides were perceived by the respective species. This 

indicates that the Peps derived from the newly identified PROPEPs are indeed active 

Peps and that all peptides related to a plant family are recognized by (at least two) 

species from this plant family. Given these findings, we used the Pep sequences to build 

a weblogo for the visualization of the consensus sequence of each peptide group (Fig. 

3.3D). It shows that each family has evolved distinct and specific Pep motifs. For 

example in the Brassicaceae-specific sequence there is only one partially conserved 

proline whereas proline residues seem to play an important role in the sequence of Peps 

from Solanaceae whereas the Poaceae-specific consensus sequence is rich in glycine 

residues and conserved histidine residues at the terminal end of the peptides.  

Validation of novel Pep-motifs 

Are family-specific Pep-motifs sufficient for Pep recognition? In order to address this 

question, we mutated the sequences of AtPep1, SlPep6 and ZmPep1 to introduce the 

family-specific motif of non-origin plant families resulting in AtPep1-SOL and AtPep1-

MONO (containing the motifs of the Solanaceae (SOL) and the Poaceae (MONO, 

Monocots)), SlPep6-BRA and SlPep6-MONO (containing the Brassiceae (BRA) and 

Poaceae motifs, respectively) and ZmPep1-BRA and ZmPep1-SOL (see Supplementary 

Table S1). As demonstrated by the ethylene production of leaf tissue taken from the 

Brassicaceae representatives (Arabidopsis and B. rapa) these modified peptides 

containing the BRA-Pep-motifs are recognized and likewise the Solanaceae as well as 
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the Poaceae species respond to the “SOL” and the “MONO” peptides, respectively (Fig. 

3.4A, B and C, respectively). However, despite a significant response to all peptides, the 

ZmPep1-BRA and ZmPep1-SOL peptides do not trigger an ethylene production 

comparable to the one triggered by perception of the species-specific control peptide 

indicating that additional residues outside the motifs contribute to Pep-PEPR interaction.  
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Figure 3.4: Validation of family-specific Pep motifs with mutated Peps 

Ten leaf discs of indicated plant species were treated for 5 h with 1 µM of the indicated elicitor peptides 
or without any peptide (control). BRA indicates the introduction of the Brassicaceae-specific motif into 
the Pep sequence, SOL indicates the introduction of the Solanaceae-specific motif into the Pep 
sequence and MONO marks mutated peptides containing the Poaceae (MONOcot)-specific motif in 
their sequence. Columns represent averages of detected ethylene values of 5 biological replicates. Error 
bars show the standard error of the mean. Asterisks indicate significant differences of the labelled 
column to the control based on t-test results (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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PEPRs show interfamily compatibility  

Furthermore, we investigated if PEPR sequence divergence correlated with an 

interfamily incompatibility of the system. In the first study describing AtPEPR1 the 

authors used the alkalinisation response of transgenic tobacco cells expressing AtPEPR1 

to show that AtPEPR1 recognises AtPep1 (Yamaguchi et al., 2006). Thus, at least 

AtPEPR1 functions also in tobacco cells and not just in Brassicaceae. Here we cloned 

and studied additional PEPRs by introducing the coding sequences of AtPEPR1, the 

tomato PEPR SlPEPR1 and the maize PEPR ZmPEPR1a into the expression vector 

pGWB517 and transiently expressing them in N. benthamiana leaves. Again we used 

the elevated production of ethylene as a read-out for the activation of PEPR signalling 

upon perception of Peps. Leaf tissue of N. benthamiana is naturally insensitive to 

AtPep1 and ZmPep1, however, when transformed with AtPEPR1 or ZmPEPR1 it 

responded with a strong production of ethylene (Fig. 3.5). Remarkably, in this assay we 

did not detect a significant ethylene production in SlPep6-treated leaf discs despite the 

previously noted sensitivity of wild type N. benthamiana leaves to SlPep6 (Fig. 3.2 and 

Fig. 3.3B). In contrast, leaf discs transiently expressing SlPEPR1 again responded with a 

strong ethylene production upon addition of SlPep6 (Fig. 3.5). This apparent 

discrepancy is based on the use of only three discs per replicate harvested from the 

transiently transformed leaves in this experiment compared to ten discs per replicate 

used in the assays based on wild type leaves. Three discs are not enough to detect the 

little ethylene production elicited in wild type discs upon SlPep6 treatment but are 

sufficient to show the strong SlPep6-dependent production of ethylene in leaf discs 

transiently transformed with SlPEPR1. Thus as reported before (Flury et al., 2013)Thus 

as reported before  the overexpression of PEPRs boosts Pep-triggered responses.  

Like SlPEPR1, also AtPEPR1 and ZmPEPR1a are able to activate downstream 

signalling pathways despite their transfer into the unrelated species N. benthamiana. 

This prompted us to further analyse PEPR-LRR domain, that detects Peps, and the 

PEPR-kinase domain which is crucial for downstream signalling. As shown in 

Supplementary Table S6 and Supplementary Table S7 the PEPR-LRR domains show a 

distinctly lower sequence identity than the PEPR-kinase domains. For example the 

sequence identity of AtPEPR1-LRR and SlPEPR1-LRR is 47.6 % whereas the one of 

AtPEPR1-kinase and SlPEPR1-kinase is 55.9 %. Within the large cluster of Poaceae-
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PEPRs the sequence identity of these PEPR-LRRs ranges between 52.4 % and 89.3 % 

whereas the sequence identity of the kinase domains ranges from 66.4 % to 95.3 %. This 

data supports the idea that the kinase domain is more strictly conserved since it has a 

catalytic role and interacts with the complex defence signalling network whereas the 

LRR domain is not subjected to catalytic constraints but has evolved necessary plasticity 

to recognise specific ligands as has done so with the Peps (PROPEPs). Based on the 

AtPEPR1-LRR-AtPep1 crystal structure a number of amino acids within the LRRs 

LRR4 to LRR18 of the AtPEPR1-LRR domain were identified to interact with AtPep1 

(Tang et al., 2015). Thus we further analysed the plasticity of the Pep-PEPR interaction 

by determining the conservation of the interaction site within the PEPR-LRR domain. 

As shown in Supplementary Figure S1 we aligned the LRR-domain sequences of all 

identified PEPRs and highlighted the Pep-interacting amino acids based on the 

AtPEPR1-LRR in magenta. Only seven of the 25 amino acids interacting with Pep show 

a considerable degree of conservation whereas the other 18 appear not to be conserved.   

Figure 3.5: Detection of Peps by transiently expressed PEPRs. 

Nicotiana benthamiana plants were transiently transformed with Agrobacteria containing pGWB517 
plasmids harbouring the coding sequences of either AtPEPR1, SlPEPR1 or ZmPEPR1a (as indicated). 
Leaf discs were harvested one day past transformation. Columns represent averages of detected ethylene 
values of 6 biological replicates (containing three leaf discs each) 5 h after treatment with the indicated 
peptides or without any peptide (control). Error bars show the standard error of the mean. Asterisks 
indicate significant differences of the labelled column to the control based on t-test results (* = p<0.05; 
** = p<0.01; *** = p<0.001). 
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Taken together, contrary to the PROPEPs PEPRs are interfamily compatible. Their 

kinase domains are more strictly conserved than their LRR including the Pep interaction 

site arguably reflecting the coevolution of the LRRs and the PROPEPs. 

3.4 DISCUSSION 

In recent years a couple of distinct endogenous signalling peptides involved in plant 

defence processes were reported (Albert, 2013). They were identified from different 

species but most of them, notably systemins, appear to be restricted to specific plant 

families (Ryan and Pearce, 2003; Pearce et al., 2010b). Two exceptions are PSKs 

(phytosulfokines) and RALFs (Rapid Alkalinization Factors) which have been shown to 

be present in a broad range of species but only a small number of reports link them to 

plant defence (Pearce et al., 2001a; Igarashi et al., 2012; Albert, 2013; Mosher et al., 

2013; Sauter, 2015). PSKs were classified as growth factors with additional functions in 

diverse developmental processes and PSK-triggered signalling was shown to negatively 

affect PTI (Igarashi et al., 2012; Hartmann et al., 2014; Sauter, 2015). Likewise, RALFs 

also regulate plant growth as well as other developmental processes including pollen 

tube elongation (Covey et al., 2010; Murphy and De Smet, 2014). Their association with 

plant defence is based only on the induction of physiological responses which have been 

linked to PTI (Pearce et al., 2001a; Albert, 2013). Thus, even though these peptides and 

their dependent signalling network are currently discussed as integrators of plant growth 

and defence they are regarded as growth factors rather than DAMPs (Murphy and De 

Smet, 2014; Sauter, 2015).   

In contrast, Peps have been tightly linked to plant defence and are regarded as DAMPs 

(Albert, 2013; Bartels and Boller, 2015). Despite their discovery in Arabidopsis already 

previous studies indicated that the Pep-PEPR system is not an invention made by the 

Brassicaceae but that at least PROPEPs are present in multiple species (Huffaker et al., 

2006; Huffaker et al., 2011; Huffaker et al., 2013; Trivilin et al., 2014). However, the 

first identified and characterized ortholog of AtPeps, ZmPep1, showed extensive 

differences in its amino acid sequence raising some doubts about its homology to 

AtPep1 (Huffaker et al., 2011). But their functional similarity has been shown in a 

number of studies thus the sequence diversity seems to be rather a sign for a strong 
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divergence of the system (Huffaker et al., 2006; Huffaker et al., 2011; Liu et al., 2013). 

Since a detailed analysis of the presence and activity of the Pep-PEPR system including 

the PEPRs has hitherto not been undertaken we took this opportunity to analyse the 

interspecies and interfamily compatibility of the system.     

Based on our data it is now clear that the Pep-PEPR system is widely present within the 

angiosperms. We could neither identify potential PROPEPs or PEPRs in the 

gymnosperms nor in lower plants. This does not necessarily mean that there are no 

PROPEPs or PEPRs since most sequenced plant genomes belong to species of the 

angiosperms and the seemingly high plasticity of the PROPEPs could mask their 

identification. Moreover, PEPRs likely evolved from the numerous receptors regulating 

plant development which additionally exacerbates their conclusive identification in the 

more primordial plant species (Yamaguchi et al., 2010).  

Consistent with previously reported data from Huffaker et al. (2013) we uncovered an 

interfamily incompatibility of Peps. Although a considerable number of Peps contain the 

previously identified ser15, gly17 and asp23 (Pearce et al., 2008), it appears that contrary

to the previous assumptions these residues may not be a prerequisite of Pep activity in 

general. The novel conserved motifs described in this study (Fig. 3.3D) rather point to 

the fact that a larger number of Pep residues are important for Pep-PEPR interaction and 

with it for Pep “activity”. The recently resolved crystal structure of AtPEPR1-LRR in 

conjunction with AtPep1 supports this idea since multiple Pep residues were found to be 

in close contact with the PEPR1-LRR (Tang et al., 2014). In addition, Proline19 as well

as Glutamine21 and Histidine22 seem to be crucial for the interaction of PEPR1 with its

co-receptor BAK1 (Tang et al., 2014). Notably, the lack of BAK1 together with its 

closest relative BKK1 (BAK1-LIKE1) completely impairs PEPR signalling (Roux et al., 

2011b). In summary, we found that there is no typical strictly conserved Pep motif and 

thus we propose that Peps and their precursors PROPEPs as well as the ligand-binding 

(LRR) domain of the PEPRs rapidly diverged producing distinct Pep motifs and as a 

consequence the interfamily incompatibility. However, it is also possible that some Peps 

retained a rather more generic sequence and structure that is still binding loosely to 

LRRs from more distantly related species. 

Contrary to the incompatibility of Peps the PEPRs appear to be interfamily compatible. 

Transient expression of AtPEPR1 and ZmPEPR1a in N. benthamiana enabled AtPep1 

and ZmPep1 sensitivity. In light of the higher level of conservation of the PEPR kinase 
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domain compared to the rather variable sequence of the PEPR LRR domain including 

the Pep interaction site it seems that only the Pep detection via the LRR domain features 

a substantial plasticity whereas the intracellular part of the PEPR operates a strictly 

conserved defence signalling system. In support of this view is the involvement of 

BAK1 and BKK1 as co-receptors of PEPRs (Schulze et al., 2010; Roux et al., 2011b). 

BAK1 in particular has been linked to numerous receptors involved in plant defence 

signalling and is thus regarded as a signalling hub (Chinchilla et al., 2009; Roux et al., 

2011b). In addition an observation similar to the PEPR interfamily transfer has been 

made with the interfamily transfer of EFR (EF-Tu RECEPTOR), that has evolved in the 

Brassicaceae to detect the presence of the bacterial protein EF-Tu (Zipfel et al., 2006; 

Lacombe et al., 2010). Expression of EFR in N. benthamiana or S. lycopersicum enabled 

the detection of EF-Tu in both species and improved the resistance against a number of 

pathogenic bacteria (Lacombe et al., 2010). Finally, PEPR signalling has been reported 

to induce jasmonic acid, salicylic acid as well as ethylene-dependent genes (Ross et al., 

2014). Since plant immunity is constructed as a robust network where jasmonic acid, 

salicylic acid and ethylene signalling significantly overlap to compensate for the loss of 

individual signals (Tsuda et al., 2009) PEPRs seem to occupy a central and/or flexible 

role here. Thus there is most likely no room for plasticity of the intracellular part of the 

PEPRs. However, if the plasticity of the Pep/PEPR-LRR interaction is of advantage for 

PEPR signalling (e.g. by evading inhibitory action of bacterial peptides) still needs to be 

determined.  

3.5 CONCLUSION 

Contrary to the detection of conserved MAMPs that requires an equally conserved 

detector domain of the MAMP receptor the sequences of Peps and PEPR-LRRs appear 

to evolve more dynamically resulting in a considerable divergence of the Pep-PEPR 

system. The identification of the variable plant family-specific Pep motifs will probably 

help to uncover more PROPEPs with the advancing number of sequenced plant 

genomes and the improved gene annotation. Moreover, activation of the Pep-PEPR 

system has been shown to effectively improve resistance against a broad spectrum of 

pathogens including bacteria, fungi as well as herbivores. Having learnt that the Pep-



Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: Interfamily incompatibility of perception but compatibility of downstream 
signalling 

70 

PEPR system is common among angiosperms, two approaches could be valuable for 

improving cultivation of crop plants. Firstly, marker assisted breeding should be 

implemented to track and conserve the Pep-PEPR system during crop plant breeding, 

and secondly, rationally designed synthetic Peps could be used to boost plant resistance 

of especially valuable crops when pathogen attack is imminent. Thus it is no surprise 

that integral parts of the Pep-PEPR system have already been patented. 

3.6 MATERIAL AND METHODS 

Plant material 

Arabidopsis thaliana Col-0 and Brassica rapa plants were grown individually in small 

pots at 21° C and a 10 h photoperiod for 4-5 weeks. Plants of the species Solanum 

lycopersicum, Nicotiana benthamiana, Zea mays and Lolium perenne were grown as 

single plants per pot at 24 °C and a 16 h photoperiod for 3-5 weeks. 

Peptides 

Peptides were obtained from Selleckchem (Houston, Texas, USA) and dissolved in a 

solution containing 1 mg/mL bovine serum albumin and 0.1 M NaCl to reach stock 

concentrations of 100 µM. Further dilutions were done in ddH2O. The list of peptides 

and their sequences can be found in Supplementary Table S1. 

Bioinformatics: 

Novel PEPR sequences were identified using NCBI blastp as well as tblastn on 

phytozome.com using the AtPEPR1 and AtPEPR2 sequences. For the identification of 

novel PROPEP sequences, all sequences from Bartels et al. (2013)  and Huffaker et al. 

(2013) were aligned per plant family and used as input for an hmmsearch search 

(HMMER v1.9; (Finn et al., 2011)) against the NR, RefSeq and UniProtKB databases 

with standard settings. Identified sequences were manually curated for the presence of a 

Pep motif at the C-terminal end of protein. Newly identified PROPEPs were used as 

additional input for a new hmmsearch. All identified PEPRs and PROPEPs are listed in 

Supplementary Table S2. 
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Identification of the kinase and LRR domain within the PEPR sequences was done by 

scanning for full Pfam domains (Finn et al., 2014) with default settings using CLC Main 

Workbench 6.7.1 (CLC bio, Aarhus, Denmark). For building the trees and identity 

graphs, all sequences were first aligned using CLC Main Workbench 6.7.1 (CLC bio, 

Aarhus, Denmark) and subsequently identities were called or the trees were built using 

neighbour-joining with 1,000 bootstraps. 

Visualization of Pep consensus sequences was done using WebLogo 2.8.2 

(http://weblogo.berkeley.edu/logo.cgi) (Crooks et al., 2004). 

Ethylene Measurement 

For wild type plants eighte to ten leaf discs (5 mm diameter cork borer) or equal leaf 

squares (cut with scissors) were harvested from fully expanded leaves and placed into a 

6 ml glass vial containing 0.5 ml of ddH2O. In case of transiently transformed N. 

benthamiana leaves, discs were harvested from at least three independently transformed 

leaves, mixed and distributed into the vials (3 each). After a 16 h incubation period in 

the growth chamber elicitor peptides (1 μM final concentration) were added and vials 

were closed with air-tight rubber septa. Vials were incubated for 5 h at room 

temperature before ethylene accumulating in the free air space was measured by gas 

chromatography (GC-14A Shimadzu). 

Cloning of ZmPEPR1a and SlPEPR1 

Total RNA of Zea mays and Solanum lycopersicum was extracted from a 1:1 mix of root 

and leaf material of three week old plants using Nucleospin RNA plant spin columns 

(Macherey-Nagel). Reverse transcription of mRNA into cDNA was performed using 

AMV-RT enzyme kit (Promega) together with a 21nt oligo dT primer. ZmPEPR1a 

coding sequence was amplified from Z. mays cDNA using forward (5`-

GGGACAAGTTTGTACAAAAAAGCAGGCTTGATGAAGCTGGTTTTCTGGCAT

TGGATTTTTCTATTCTTC-3`) and reverse primer (5`-

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTGCCGGTAGGCGCTGCTGTT

GGATTGCGATCCTG-3`) in a PCR reaction with Phusion polymerase (New England 

Bio Labs) in GC reaction buffer and 3% DMSO for amplification of GC-rich targets to 

generate a 3429-bp product. SlPEPR1 coding sequence was amplified from S. 

lycopersicum cDNA using forward (5`-



Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: Interfamily incompatibility of perception but compatibility of downstream 
signalling 

72 

GGGACAAGTTTGTACAAAAAAGCAGGCTTGATGAAGATAGCTGTTCATAAT

TTGATCTTTTTCTACTGC-3`) and reverse primer (5`-

GGGGACCACTTTGTACAAGAAAGCTGGGTCGTACTTGCTTCGTATACTCGA

ACTTGACCTTGTTAATAG-3`) in a standard PCR reaction with Phusion polymerase 

to generate a 3372-bp product. Correct PCR products were cloned into pDONR207, 

sequenced and subcloned into pGWB517 using the Gateway cloning technique 

according to the manufacturers protocol (Invitrogen).  

Transient Expression of PEPRs in Nicotiana benthamiana 

Agrobacterium tumefaciens GV3101 strains harbouring pGWB517 plasmids with either 

the coding sequence of AtPEPR1, SlPEPR1 or ZmPEPR1a were grown for 24 h in 

liquid YEB medium supplemented with appropriate antibiotics. Harvested cultures were 

resuspended in a solution containing 10 mM MES (pH 5.6) and 10 mM MgCl2 to reach 

OD600 = 0.1 and syringe infiltrated into 3-week-old N. benthamiana leaves. Infiltrated 

leaf areas were harvested 24 h after infiltration and used for the measurement of 

ethylene production upon peptide treatment as described above.  

3.7 SUPPLEMENTARY DATA 

Supplementary data and tables are accessible via: 

http://jxb.oxfordjournals.org/content/early/2015/05/22/jxb.erv236/suppl/DC1 



The DAMP precursor AtPROPEP1 is processed by the cysteine protease AtMetacaspase4 during wound response 

73

4. THE DAMP PRECURSOR ATPROPEP1 IS

PROCESSED BY THE CYSTEINE PROTEASE 

ATMETACASPASE4 DURING THE WOUND 

RESPONSE 

Tim Hander1, Robert Kumpf2,3, Debbie Rombaut2,3, Fausto Andres Ortiz-Morea2,3,

Eugenia Russinova2,3, Thomas Boller1, Frank Van Breusegem2,3, Sebastian Bartels1*,

Simon Stael2,3*
1Zürich-Basel Plant Science Center, University of Basel, Department of Environmental 

Sciences, Botany, Hebelstrasse 1, CH-4056 Basel, Switzerland 
2Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium 
3Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, 

Belgium 

To be submitted to Nature Cell Biology 

This manuscript represents the initial and main work of my thesis and was 

performed in collaboration with Simon Stael and his colleagues of the University in 

Ghent, Belgium. The work aimed to identify the key players and specific 

circumstance for the formation of AtPEP1 from the precursor protein 

AtPROPEP1. I performed the initial experiments showing that AtPROPEP1 is 

indeed cleaved in vivo that led to the collaboration with Simon Stael. Sebastian 

Bartels and me outlined the project and planned the individual experiments. I 

performed the experiments presented in figures 4.1 to 4.3 and S 4.1, and prepared 

cloning vectors and transgenic lines that were used in the other experiments. The 

manuscript was written by Simon Stael, Sebastian Bartels and me and is about to 

be submitted to Nature Cell Biology.    
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4.1 ABSTRACT 

In animals the immunological response to trauma comprises the production and release 

of cytokines such as interleukins. Although, the wound response has been intensively 

studied in plants, little is known about proteins with cytokine-like function. Here we 

report that mechanical damage triggers the instantaneous activation of Arabidopsis 

thaliana AtMETACASPASE4 and the subsequent cleavage of AtPROPEP1 to release 

the mature AtPEP1 peptide that induces basal immunity against a broad diversity of 

plant pathogens. Furthermore, confocal microscopy of targeted cell damage by laser 

wounding revealed that i) the inactive zymogen of AtMC4 and AtPROPEP1 both reside 

in the cytosol until a constitutive increase in calcium concentration upon cell membrane 

integrity loss triggers AtMC4 activation and thus AtPROPEP1 cleavage and ii) 

AtPROPEP1 cleavage is restricted to few cells surrounding the damage site. Our results 

favour a model in which tissue damage is a prerequisite for AtPEP1 signalling and 

highlight conserved spatiotemporal dynamics and control mechanisms of the wound 

response. 

4.2 INTRODUCTION 

Plants as sessile organisms are frequent victims of tissue and cellular damage. A 

multitude of animals feed on plants or cause collateral damage due to their movement. 

Whereas herbivore feeding is an immediate threat to the life of a plant, through the loss 

of tissue and cellular integrity, the wounds generated are also potential entry sites for 

microbial pathogens with often even more dramatic consequences for plant survival and 

reproduction (Heil and Land, 2014). Thus, plants need to respond rapidly to cellular 

damage with defense responses and tissue regeneration by recognizing it on the 

molecular level. The release of damage-associated molecular patterns (DAMPs) by 

pattern recognition receptors (PRRs) is one important danger signal originating in the 

wounded area, which may alert the surrounding still intact tissue. DAMP perception has 

been shown to induce plenty of responses in the local and systemic tissue (Heil et al., 

2012). The so far described molecules that serve as DAMPs are characterized by their 

relocalisation from specific cellular compartments (in intact cells) to the extracellular 
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space upon cellular damage, combined with their potential to elicit defense responses 

upon perception (Hernandez-Onate and Herrera-Estrella, 2015).  

A number of diverse DAMPs have been identified in plants including ATP, 

oligogalacturonides and peptides (Norman et al., 1999; Huffaker et al., 2006; Tanaka et 

al., 2014). The plant elicitor peptides (PEPs) have been recognized as peptidic DAMPs 

based on their endogenous origin and their ability to elicit pattern-triggered immunity 

(PTI) (Bartels and Boller, 2015). In Arabidopsis, the PROPEP gene family encodes 

eight PEP precursor proteins (PROPEP1 to PROPEP8) which each contain a PEP (PEP1 

to PEP8) at its C-terminus (Huffaker et al., 2006; Bartels et al., 2013). PEPs are 

perceived by the extracellular LEUCINE-RICH REPEAT (LRR) domain of 

transmembrane RECEPTOR-LIKE KINASEs (LRR-RLKs) named PEP RECEPTORs 

(PEPRs) and trigger PTI in conjunction with the their co-receptor BRI1-ASSOCIATED 

KINASE1 (BAK1) (Yamaguchi et al., 2006; Krol et al., 2010; Yamaguchi et al., 2010). 

The ORFs of all Arabidopsis PROPEPs lack a signal sequence, and they were reported 

to either localize to the cytoplasm (PROPEP3) or to be associated with the cytoplasmic 

side of the tonoplast (PROPEP1 and PROPEP6) (Bartels et al., 2013). Provided that they 

are not exported via hitherto unknown unconventional routes they might enter the 

extracellular space only in a situation of compromised cellular integrity like mechanical 

damage, but experimental data are lacking. Moreover, the isolation of PEP1 and PEP5 

from leaf-protein extracts is currently the only indication for the release of PEPs from 

their respective PROPEP, but here as well the circumstances and the mechanism is 

unknown (Huffaker et al., 2006; Yamaguchi and Huffaker, 2011). In mammals, 

proinflammatory cytokines like INTERLEUKIN-1α (IL-1α, classified as DAMP as 

well) or IL-1β are released during trauma and cell death (Gabay et al., 2010). Both are 

expressed as precursors (ProINTERLEUKIN-1α and ProIL-1β, respectively) which are 

proteolytically processed by the proteases calpain and CASPASE-1 to generate IL-1α 

and IL-1β, respectively (Watanabe and Kobayashi, 1994; Brough and Rothwell, 2007).  

In plants, metacaspases (MCs) have been previously suggested as homologs of the 

mammalian caspases based on structural similarities and their role in initiating and 

executing apoptosis (Uren et al., 2000; Fuchs and Steller, 2011; Tsiatsiani et al., 2011). 

Metacaspases strictly cleave C-terminally of the basic amino acids, arginine and lysine, 

whereas caspases prefer the acidic amino acid aspartate (Vercammen et al., 2004). The 
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Arabidopsis thaliana genome contains nine metacaspases that are classified based on 

their structure. Type I MCs, AtMC1-3, have an N-terminal prodomain containing a 

proline - glutamin rich repeat motif and a zinc finger motif, whereas type II MCs, 

AtMC4-9, have a larger linker region separating the large and small catalytic domains, 

p20 and p10, respectively (Tsiatsiani et al., 2011). AtMC4-9 are produced as inactive 

zymogens and are activated by autocatalytic cleavage of the linker region. Furthermore, 

most type II metacaspases require calcium for their activation and have a pH optimum 

of 7.5, except AtMC9 that is not calcium dependent and functions optimally at pH 5.5 

(Vercammen et al., 2004; Watanabe and Lam, 2011b). Several metacaspases from fungi 

and plants were found to be involved in programmed cell death (PCD) (Tsiatsiani et al., 

2011; Lam and Zhang, 2012), although the paradigms from metazoan PCD do not apply 

to plants (van Doorn et al., 2011) and lateral thinking has possibly even stalled the 

research of plant PCD and metacaspase function (Stael et al., 2014).  

Interestingly, increasing evidence is gained that caspases are involved in other processes 

than apoptosis, including development and wound healing (Fuchs and Steller, 2011). 

4.3 RESULTS 

AtPROPEP1 is instantaneously cleaved upon tissue damage 

To investigate if and how the plant elicitor peptides PEPs are released from their 

PROPEP precursors, we focused our effort on studying the conversion AtPROPEP1 to 

AtPEP1. AtPEP1 has been detected by mass spectrometry in an Arabidopsis leaf protein 

extract indicating a preceding endogenous cleavage or processing of AtPROPEP1 

(Huffaker et al., 2006). We used our previously described transgenic A. thaliana lines 

(Bartels et al., 2013) constitutively expressing either an AtPROPEP1-YFP fusion 

protein, an AtPEP1-YFP fusion protein or just YFP. With an anti-YFP antibody, we 

observed the composition of PROPEP1-YFP and PEP1-YFP in extracts prepared from 

frozen, homogenized whole seedlings in analogy to the initial publications. PROPEP1-

YFP, PEP1-YFP and YFP were clearly distinguishable by their size on a western blot 

(Figure 4.1A) and we realized that PROPEP1-YFP is rapidly cleaved during protein 

extraction. As little as 30 seconds of incubation after thawing of the frozen tissue 

powder, obtained by grinding under liquid nitrogen resulted in detectable accumulation 
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of PEP1-YFP. The levels of PEP1-YFP increased and peaked at around 5 minutes 

(Figure 4.1A). Free YFP generated in parallel, perhaps by the further cleavage of the 

AtPEP1-YFp (Figure 4.1A) Thus, proper and rapid handling of the samples is crucial to 

prevent PROPEP1-YFP protein cleavage during extraction in order to determine the 

background level of PEP1-YFP cleavage product in either unharmed or specifically 

treated leaf tissue. Besides the rapid accumulation of PEP1-YFP the amount of 

PROPEP1-YFP significantly decreased over time and also unspecific protein 

degradation occurred at later timepoints (Figure 4.1A). Next, we wondered if cleavage 

also occurs in vivo after wounding. We applied wounding by bruising of leaves and 

roots of PROPEP1-YFP expressing seedlings with a serrated forceps. We were able 

detect accumulation of PEP1-YFP but in a more uniform fashion over time compared to 

grinding of the seedlings (Figure 4.1B).  

Cleavage of AtPROPEP1 depends on the conservation of R
69

, the availability of

Ca
2+

 ions, and is inhibited by a metacaspase-specific inhibitor

Aligning the amino acids sequences of all eight Arabidopsis PROPEPs (Figure 4.2A) 

revealed a conservation of the arginine (R) residue N-terminal to the cleavage site in 

PROPEP1, indicating that the processing enzyme might be an R-specific protease 

(Huffaker et al., 2006). To investigate this, we mutated the arginine R69 residue in

PROPEP1-YFP (positively charged at physiological pH) to the negatively charged 

glutamate (E). As shown in Figure 4.2B the negatively charged glutamate residue in 

PROPEP1R69E-YFP fully impaired the formation of PEP1-YFP and also blocked the

degradation of the PROPEP1-YFP protein in both treatments (wounding of seedlings, 

and thawing of ground tissue).  

To further narrow down the group of enzymes that might cleave PROPEP1-YFP to 

release PEP1-YFP, we infiltrated seedlings with protease inhibitors and ion-chelators 

prior to grinding and determined PEP1-YFP formation after thawing. Most tested 

protease inhibitors had a slight attenuating effect on the accumulation of PEP1-YFP but 

only EGTA, EDTA and the metacaspase-specific protease inhibitor Z-VRPR-fmk were 
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Figure 4.1: AtPROPEP1 gets rapidly processed to PEP1 in vitro and in wounded tissue in vivo. A PROPEP1-YFP 
(arrow) degradation and appearance of PEP1-YFP (arrowhead) after incubation of tissue powder of whole seedlings at 
room temperature for the indicated time. YFP was loaded as a size control to distinguish the accumulation of free YFP 
in contrast to PEP1-YFP. Quantified band intensities (using ImageJ) are shown below the blot. Each bar represents 
mean of 5 replicates ± SE. B Comparison of PEP1-YFP (arrowhead) accumulation following wounding or incubation 
after thawing (Grinding).  

able to fully abolish the formation of PEP1-YFP (Figure 4.2C). Surprisingly a 

commercially available protease inhibitor cocktail for plant cells (Sigma Aldrich P9599) 

was not sufficient to block PEP1-YFP formation thus we suggest that EGTA or EDTA 

should be added in future formulations.  

In summary, the evidence points to the cleavage of PROPEP1-YFP by an arginine-

specific and Ca2+-dependent plant protease sensitive to a metacaspase-specific inhibitor.

Thus, we further focused on plant type II metacaspases. 
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AtMETACASPASE4 is instantaneously activated upon damage and cleaves 

AtPROPEP1 

Since MC4 is the most ubiquitously expressed metacaspase gene in Arabidopsis, which 

is a fitting prerequisite for a general damage response regulator. Therefore, we focused 

on MC4 (Watanabe and Lam, 2011a; Bartels et al., 2013; Kwon and Hwang, 2013). The 

inactive zymogen MC4 requires autocatalytic cleavage into lower molecular weight 

species, including the p10 and p20 (active) subunits (Watanabe and Lam, 2011b).  We 

used an AtMC4-specific antibody (Watanabe and Lam, 2011b) to determine the 

activation of MC4 in ground leaf tissue (Figure 4.3A) as well as in wounded seedlings 

(Figure 4.3B). Indeed, in both experiments MC4 zymogen is rapidly cleaved to generate 

active MC4 with kinetics comparable to the cleavage of PROPEP1, and the addition of 

ion chelators blocked the autocatalytic activation of MC4 (Figure 4.3C). The presence of 

p20 subunit on western blot is not necessarily an indication of proteolytic activity, i.e. 

the p20 subunit that is present at t0 might be a long-lived proteolytically inactive 

cleavage product (Watanabe and Lam, 2011b) (Figure 4.3A-B). However, the 

correlation between minute-scale PROPEP1 cleavage with appearance of MC4 lower 

molecular weight species, including a presumed active 26 kDa species (Watanabe and 

Lam, 2011b) (Figure 4.3A-C) prompted us to investigate if MC4 is indeed capable of 

cleaving PROPEP1. To test this, we used an in vitro transcription translation approach 

combined with recombinant protease treatment (TNT-protease assay). Increasing 

concentrations of recombinant MC4 (rMC4) led to the efficient cleavage of PROPEP1 

fused C-terminally to glutathione s-transferase (GST) already at low rMC4 

concentrations (Figure 4.3D). Furthermore in accordance to the in vivo assay 

PROPEP1ER69E was not processed to PEP1 but a band slightly smaller in size appeared

that potentially derives from an alternate cleavage site in the C-terminal region, 

indicating that the cleavage and not the binding site of the protease was altered by this 

mutation (Figure 4.3D and 2A).  
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Figure 4.2: Arginine 69 is the critical amino acid for AtPROPEP1 cleavage in vivo. A PROPEP1 arginine 69 lies 
N-terminal to the PEP1 cleavage site and is conserved within the A. thaliana PROPEPs (framed). AtPEP1 and AtPEP5 
that have been identified by mass spectrometry in protein extracts are highlighted in grey. B Mutation of arginine 69 
(R69) in PROPEP1 with glutamate (E) abolished wounding-induced accumulation of PEP1-YFP (arrowhead). C 
Whole seedlings overexpressing PROPEP-YFP were vacuum infiltrated with, ddH2O as a control or the protease 
inhibitors Antipain (100µM), Chymostatin (100µM), Pepstatin A (1µM), PMSF (1mM), E64 (10µM), 1,10-
Phenanthroline (20mM), Z-VRPR-fmk (50µM), EDTA (1mM), EGTA (1mM), and Protease inhibitor cocktail (1:100, 
Sigma Aldrich) respectively and assayed 5 minutes after tissue grinding and subsequent thawing.  

Finally, we transformed the PROPEP1-YFP construct into an atmc4 knock-out 

background to study if and to which extent the lack of MC4 impairs PROPEP1-YFP 

cleavage in vivo. As shown in Figure 4.3E lack of MC4 strongly impairs cleavage of 

PROPEP1-YFP in seedlings treated with our forceps-based wounding scheme. 
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Altogether, these results support the critical role of MC4 in the proteolytic cleavage of 

PROPEP1 into mature PEP1. 

AtPROPEP1-YFP fluorescent signal delocalizes from tonoplast to cytosol as 

revealed by laser ablation confocal scanning microscopy life cell imaging 

AtPROPEP1-YFP localizes to the cytoplasmic side of the tonoplast by an as yet 

unexplained mechanism whereas AtPEP1-YFP was detected in the cytosol (Bartels et 

al., 2013). Tonoplast localization of AtPROPEP1-YFP may present an obstacle to its 

export to the extracellular space via plasma membrane-localized peptide transporters or 

other means of unconventional secretion routes (Bartels et al., 2013). To gain a detailed 

view of the potential spatiotemporal behaviour of PROPEP1-YFP and PEP1-YFP 

localization in conjunction with its damage-induced cleavage we performed life cell 

imaging of AtPROPEP1-YFP transgenic A. thaliana roots by confocal scanning 

microscopy together with laser ablation (Figure 4.4A). Laser ablation has been utilized 

in plants to study the molecular mechanisms of tissue repair, embryo development, 

graviperception and microtubule remodelling (Blancaflor et al., 1998; Xu et al., 2006; 

Sampathkumar et al., 2014; Liu et al., 2015). The use of multi-photon laser ablation 

allowed us to afflict highly localized damage to root cells and immediate imaging of 

minute-scale subcellular changes in the cells surrounding the laser ablation site as well 

as the targeted cell(s). Initially, we targeted the epidermal cells of the root “transition 

zone” (Figure 4.4A) as these are known to have a weakly formed cell wall and the cells 

are highly interconnected. As previously reported in the transition zone of resting cells 

PROPEP1-YFP localization appears as a dynamically moving cluster of enlarged 

membrane vesicles (first two panels of Figure 4.4B) (Bartels et al., 2013). Propidium 

iodide (PI) is frequently used 
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Figure 4.3: The cysteine protease AtMetacaspase 4 gets activated during cell damage and cleaves PROPEP1 

to release PEP1 in vitro and in vivo  A Conversion of zymogenic AtMetacaspase 4 (*) to ist active p20 subunit 
(**) in tissue powder incubated at RT for the indicated time. B Comparison of AtMetacaspase 4 inactive (*) and 
active (**) forms after tissue wounding and grinding shows different strength of autocatalytic protease activation. C 
Addition of various protease inhibitors hinders AtMetacaspase 4 activation (**) whilst ion chelation blocks the 
accumulation of the active subunit. D TNT®-protease assay of PROPEP1 (PP1) and mutant variants fused to 
glutathione S-transferase (GST) with increasing amount of recombinant AtMC4 (rMC4). Full-length PROPEP1-
GST (arrow) was observed as wild type or mutated at Arg 69 (R) to Glu (E) The initial cleavage product occurring 
at lowest rMC4 concentrations is indicated with an arrowhead. At higher rMC4 concentration extended cleavage 
occurs at a site downstream resulting in a lower band indicated with a dash (-).E The wounding induced appearance 
of the PEP1-YFP band (arrowhead) was not observed in the metacaspase 4 T-DNA insertion mutant mc4-. 
Representative blots out of at least four replicates are shown. 

used as a cell wall stain in plants and is not permeant to intact plasma membrane 

(bottom panels of Figure 4.4B). Entry of PI to the cytoplasm and nucleus was observed 
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as a proxy for loss of plasma membrane integrity due to the laser ablation treatment. In 

the three cells hit by the laser, this happened immediately (time 00:00). Concomitant 

with PI entry, the YFP fluorescence (PROPEP1-YFP or PEP1-YFP) delocalized from 

tonoplast to cytosol, observed as a diffuse signal overlapping with the PI signal (Figure 

4.4B). Interestingly, the cells surrounding the initially targeted cell(s) would similarly 

react with a delocalization of the YFP signal from tonoplast to cytosol. This occurred 

within minutes after laser ablation (Figure 4.4B and Figure 4.5A). Usually, YFP signal 

dispersal from tonoplast to cytosol occurred concomitantly with PI entry.  

Figure 4.4 PEP1-YFP relocalizes from tonoplast to cytoplasm upon laser ablation in damaged and 

surrounding cells. A Region of the Arabidopsis root with the targeted zone indicated. B Epidermal cell 
layer of the root meristem transition zone of PROPEP1-YFP expressing seedlings was imaged before (top 
left panels) and after laser ablation (rest of the panels) by confocal microscopy. The wound site was 
continuously imaged up to 45 min after laser ablation over multiple confocal planes in Z dimension and 
the confocal plane shown here is midway the wounded cells. Laser target is indicated with an asterisk (* in 
timeframe 00:00). Notice the dispersal of YFP signal from tonoplast (PROPEP1-YFP) to the cytosol 
(PEP1-YFP) at time 00:00 in the cells surrounding the asterisk and the concomitant entry of PI (red signal) 
into these cells. In the next timepoints (01:18 to 08:14 min), YFP signal in the cell on the left of the 
wounded cells (indicated with an arrow) likewise  undergoes dispersal. However, this occurs before PI 
entry. In the later timepoints (31:12 – 35:58 min), YFP signal in the cell on the right (indicated with an 
arrow) underwent dispersal, concomitant with PI entry. Scalebar is 20 μm.  
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To test if the same phenomenon could be observed in older cells, we targeted the more 

expanded epidermal cells of the elongation and differentiation zone (Figure 4.4A). In 

agreement with our previous findings, incubation of the Arabidopsis roots with 1 mM 

EGTA inhibited YFP signal dispersal after laser ablation induced wounding suggesting 

that the relocalized YFP signal refers to PEP1-YFP (Figure 4.5B). AtPEP1-YFP again 

localizes to the tonoplast, which, due to turgor pressure in these cells, resembles a 

uniform inflated balloon (Figure 4.6A). 

Due to the larger size of the cells as compared to those of the transition zone (Figure 

4.4B), it was possible to damage and subsequently view the dispersal of PROPEP1-YFP 

signal in the targeted cell (Figure 4.6A). Incubation in 50 μM VRPR-fmk or 1 mM 

EGTA inhibited PROPEP1-YFP signal dispersal (Figure 4.6B and 4.6C, respectively). 

Figure 4.5 EGTA inhibits PROPEP1-YFP relocalisation from tonoplast to cytosol after wounding. 

A Laser ablation of Ler overexpressing PROPEP1-YFP (line 9358-2) in control condition (MES buffer 
pH 5.5). Note the transition of the sharp PROPEP1-YFP signal from tonoplast to the diffuse signal in the 
cytoplasm (indicated with white arrowhead) in the cell adjacent to the ablated cell. B Laser ablation of 
Ler overexpressing PROPEP1-YFP (line 9358-2) in presence of 1 mM EGTA (in MES buffer pH 5.5). 
The transition of the sharp PROPEP1-YFP signal from tonoplast to the diffuse signal in the cytoplasm in 
the ablated cell and the adjacent cell does not take place (indicated with white arrowhead). The 
surrounding cells start accumulating PI slightly later (indicated with yellow arrowheads). Also in these 
cells the transition is absent. Scalebar is 20 μm.  
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Figure 4.6 VRPR-fmk and EGTA inhibit PROPEP1-YFP delocalization from tonoplast to cytosol 

in epidermal cells of the transition and maturation zone. A Laser ablation of Ler overexpressing 
PROPEP1-YFP (line 9358-2) in control conditions (MES buffer pH 5.5). The targeted cell is indicated (*) 
on the image before ablation (time point 0, T0). Note that in the subsequent images at time points Tx and 
Ty, the center of imaging was moved to the right to focus more on the targeted cell. At each time point, 
the upper image shows the PROPEP1-YFP signal and the lower image shows the overlap with PI signal. 
Treatment with 50 μM VRPR-fmk (in MES buffer pH 5.5) B  and 1 mM EGTA (in MES buffer pH 5.5) 
C inhibits PROPEP1-YFP dispersal, indicated by an incomplete overlap of PROPEP1-YFP and PI 
signals. Scale bar is 20 μm. 

Wounding by laser ablation induces PEPR1 internalization in adjacent cells 

As wounding triggers cleavage of PROPEP1-YFP to release PEP1-YFP we wondered if 

sufficient amounts of PEP1 also enter the extracellular space and bind to PEPRs of 

adjacent cells. We therefore repeated the laser ablation experiment during confocal 

microscopy but used lines expressing PEPR1-GFP under its native promoter to observe 

ligand-induced receptor endocytosis. Endocytosis of receptors occurs upon ligand 

binding and leads to an accumulation of the receptor molecules in intracellular vesicles 

that can be observed as clustering of the labelled receptor (Irani and Russinova, 2009). 

Around 5 minutes after laser ablation clustering of PEPR1-GFP could be observed in the 

close area around the wounding site indicating the binding of PEP peptides by the 

receptor (Figure 4.7A). The receptor clustering spread away from the wounded area 

until the maximal observation time of 40 minutes. An alignment of several images 
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shows the spread of the signal over several rows of cells from the initial wounding site 

(Figure 4.7B).   

The triggering of PEPR1-GFP internalization around the wounded area points to a 

release of active PROPEPs or PEPs from these cells what then led to activation of the 

receptor.   

Laser ablation leads to increased calcium concentrations in the surrounding cells 

In this study, we demonstrate the necessity of calcium signalling for cleavage of 

PROPEP1-YFP, however the threshold concentration of calcium ions in the cytosol 

needed to induce cleavage remains unknown. Calcium spikes are abundant during 

normal plant development and stress responses (Dodd et al., 2010; Zhang et al., 

2014a), nevertheless, it would seem counter-productive to have PROPEP cleavage 

after every spike. To determine the precise role of calcium regulation in this process, 

we have imaged calcium fluxes after laser ablation in epidermal cells of the transition 

and maturation zone of the root tip with a nuclear localized Yellow Cameleon (YC3.6) 

probe (Figure 4.8). Calcium spikes of short duration are elicited immediately after 

laser ablation in the cells in close vicinity to the wounded area. While most cells return 

to calcium concentrations observed during resting state (Figure 4.8E,F,G), targeted 

cells and neighbouring cells that start accumulating PI keep a high calcium 

concentration (Figure 4.8E,F) or slowly accumulate high levels of calcium ions 

(Suppl. Fig. 4.1). It follows that a calcium spike per se is not sufficient to activate 

metacaspase and cleavage of PROPEP, but a more sustained elevation of calcium 

concentration is needed.



The DAMP precursor AtPROPEP1 is processed by the cysteine protease AtMetacaspase4 during wound response 

87

Figure 4.7 Laser ablation reveals the spatiotemporal behavior of PEPR1-GFP in wounded and surrounding 

cells. A The epidermal cell layer of the root meristem transition zone was imaged immediately after laser ablation (top 
panel) continuously until 40 min after ablation (bottom panel) by confocal microscopy. Images were taken in Z 
dimension and the maximum intensity projection is shown here. Laser target is indicated with an asterisk (*). Notice 
the overall increase in PEPR1-GFP signal strength in the surrounding cells with time. The neighboring cells located 
closest to the wounded cells respond first (appearance of endosomal bodies?) (indicated with arrows) with a  lag period 
for the more distal cells indicated with arrows . B Distribution of PEPR1-GFP signal in a stitched composite image of 
the surrounding region approximately 1 hour after laser ablation treatment (bright white region in the middle).  
Stitching performed with ImageJ MosaicJ plugin.  
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Figure 4.8 Varying calcium fluxes are elicited in the cells in close proximity of a laser ablation 

wound site. A 3D confocal image stack of the epidermal transistion zone cells of a nuclear localized 
YC3.6 calcium measurement construct (YC3.6-NLS) before laser ablation. Nuclei of interest are encircled 
and numbered. C Image immediately after laser ablation treatment (*). Notice the shift in color of white to 
yellow between A and C images for the encircled nuclei. B and D Overlay of propidium iodide (PI) stain 
image on A and C, respectively. E,F,G Quantitation of the YC3.6-NLS probe YFP/CFP ratio for the 
nuclei of interest as a readout for calcium flux in time. ROI = region of interest 
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4.4 DISCUSSION 

Numerous studies on the downstream effects upon application of synthetic PEPs have 

been performed within the last ten years after the first isolation of AtPEP1 from tissue 

extracts (Bartels and Boller, 2015). As an endogenous molecule with elicitor activity 

AtPEP1 has been categorized as a DAMP without further prove of its specific genesis 

during damage or stress treatments. Here we showed the proteolytic release of AtPEP1 

from its precursor AtPROPEP1 by the cysteine protease AtMC4 upon wounding. Both 

the activation of the protease as well as the processing of PROPEP1 happened 

immediately after the wounding stimulus. Mutation of the critical arginine 69 in front of 

the cleavage site as well as chelation of Ca2+ ions impaired PROPEP1 cleavage. Both

are necessary requirements for MC4 to be functional and thus provide further evidence 

that MC4 is the natural processing enzyme of PROPEP1 (Vercammen et al., 2004; 

Watanabe and Lam, 2011b). Moreover, MC4 is localized in the cytosol with PROPEP1 

being attached to the tonoplast but likely accessible to MC4 since laser ablation induced 

relocalization of PROPEP1-YFP is tightly connected to MC4 activity. Addition of 

metacaspase-specific inhibitors or chelation of Ca2+ ions both impaired relocalization of

the YFP signal strongly indicating that PEP1-YFP relocalizes to the cytosol and not 

PROPEP1-YFP. Finally PROPEP1 was not processed in a mc4 mutant background 

indicating that MC4 is the only or at least the main processing enzyme for PEP1 release 

from PROPEP1 in vivo. 

Arabidopsis MC4 has been characterized as a positive mediator of PCD (Watanabe and 

Lam, 2011a). PCD-inducing treatments led to an increasing MC4 activation starting 

after 6 h up to 96 h. In contrast, MC4 activation upon wounding is already detectable 

within the first 5 minutes to rapidly release PEP1. PEP1 perception does not trigger cell 

death in wild type plants but very recently PEPR1 PEPR2 activation was shown to 

induce extensive cell death in case of the depletion of their co-receptor BAK1 (Yamada 

et al., 2016). BAK1 depletion is a frequent strategy of microbial pathogens to deactivate 

MAMP-triggered immunity. Thus depending on additional signals and/or circumstances 

PEP1 release by MC4 activation might either contribute to PTI or to the formation of 

cell death. Notably, previous work already demonstrated that PEP1 treatment triggers a 

different outcome depending on additional signals. In that case the additional signal was 

a preceding treatment with the MAMP flg22 which exclusively induced a much stronger 
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oxidative burst upon subsequent treatment with PEP1 (Flury et al., 2013). These are 

interesting parallels to the comprehensive work on mammalian cytokines which can 

trigger very different responses depending on the surrounding milieu (Hanada and 

Yoshimura, 2002; Zhang and An, 2007). 

Another still unsettled question remains whether the mature PEP gets passively released 

upon loss of tissue integrity or actively secreted to the extracellular space to bind to 

PEPRs? Our data slightly favours the former, because PEP1-YFP dispersal usually 

occurs concomitant with intracellular accumulation of PI indicating loss of membrane 

integrity. Only on very few occasions, PEP1-YFP dispersal was seen before the entry of 

PI. Therefore, it is not unreasonable that if PI is able to enter the cell, PEP1 might be 

able to escape. Again, there are striking parallels with the mammalian cytokine system. 

The pro-inflammatory cytokine IL-1ß gets processed by the cell death cysteine protease 

caspase-1 (Brough and Rothwell, 2007). The release of mature IL-1ß as well as that of 

IL-1 depends on the activity of caspase-1 which is believed to lead to increased 

membrane permeability as it happens during cell death (Gross et al., 2012). PI has a 

molecular weight of 668.4 Da, whereas AtPEP1 

(ATKVKAKQRGKEKVSSGRPGQHN), has a theoretical molecular weight of 2491.84 

Da, respectively, so roughly 4 times the size of PI. However, our data do not disprove 

active secretion, neither prove passive release due to technical limitations, and await 

further experimentation for example the use of fluorescently labelled dextrans in the 

MW range of AtPEP1 to probe membrane permeabilization. Wound repair dynamics in 

single cell wounding assays reveal that the membrane can be open for minutes before 

complete resealing of the plasma membrane (Abreu-Blanco et al., 2011). This is well in 

the timeframe of PROPEP1 cleavage by MC4. 

On the basis of our results, we propose a working hypothesis presented in figure 4.9, in 

which PROPEP1 is spatially separated from the PEPRs and co-localized with the 

inactive protease MC4. Upon wounding MC4 gets activated in a calcium dependent 

way, what lead to the immediate release of the PEP1 peptide from PROPEP1. The 

release of PEP1 into the extracellular space for binding to the PEPRs of nighboring cells 

remains to be shown in this context. A similar mechanism could apply to other 

organisms or other PROPEPs as well. Our data also implies the presence of other 

proteases that get activated especially during tissue grinding and lead to the degradation 
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of PROPEP1 at other positions than arginine 69 as observed for PROPEP1R69E that

displayed degradation but without accumulation of PEP1-YFP (Figure 4.1A and 4.2B). 

AtMetacaspase 9 has recently been shown to activate the cell death mediator GRIM 

REAPER by proteolytic cleavage and the protease is also involved in the initiation of 

autophagy (Wrzaczek et al., 2015; Escamez et al., 2016). Autophagy is a process that 

often precedes the later apoptotic cell death, and AtPROPEP3 was shown to be strongly 

upregulated during autophagy-like senescence and might thereby serve as an additional 

DAMP in the pathway of self-inflicted cell damage potentially activated by metacaspase 

9 (Minina et al., 2014a; Gully et al., 2015). PROPEP3-YFP localized freely in the 

cytoplasm and metacaspase 9 has a functional optimum at pH5.5 (Bartels et al., 2013; 

Kwon and Hwang, 2013). To meet MC9 PROPEP3 would either be present in 

intracellular vesicles which are formed during autophagy or enter the extracellular space. 

The latter has just been demonstrated (Yamada et al., 2016). Another potential pair 

might be formed by metacaspase 8 and PROPEP2. PROPEP2 gets upregulated by 

numerous stress responses, patterns similar to metacaspase 8 which was shown to be 

involved in and being upregulated by numerous stress related responses (He et al., 2008; 

Bartels and Boller, 2015).  

Notwithstanding our evidence of a novel co-localization system between the inactive 

protease metacaspase 4 and its target substrate PROPEP1, further investigations will 

likely lead to the identification of further PROPEP and protease pairs which, however, 

may differ in their way of interaction from the mechanism of PROPEP1 and 

metacaspase 4 reported in this study.  
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the zymogen form of metacaspase (zMC) with the PEP precursor PROPEP (PP) together in the cytosol 
with PP attached to the tonoplast. After cell damage and loss of membrane integrity, a steady influx of 
calcium to the cytoplasm converts zMC to its active form (MC) to cleave the PEP peptide. In a matter of 
seconds to minutes PEP is released from the tonoplast to the cytosol from where it can passively diffuse 
through the compromised plasma membrane, or alternatively is actively secreted to the extracellular space, 
to signal the surrounding intact cells through the BAK1-PEPR1/2 receptor kinase complex. Potentially, 
PEP is actively secreted. Surrounding cells can sense the initial perturbation through the generation of 
calcium spikes (bottom row second cell from left). Surrounding cells can lose their plasma membrane 
integrity and undergo similar fate as the initially damaged cells (bottom right cells). 

4.5 MATERIAL AND METHODS 

In vitro TNT-protease assay 

Unmodified and mutated PROPEP coding sequences (CDS) were cloned by gateway 

method to destination vectors pDEST15 (N-terminal glutathione S-transferase (GST) 
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tag) and pDEST24 (C-terminal GST tag). TNT-protease assays were performed as 

described in (Minina et al., 2014b). Recombinant AtMC4 (rMC4) and mutated 

AtMC4C139A (alanine substitution of active site cysteine at position 139) fused to a His-

tag were expressed and purified from E. coli as previously described (Vercammen et al., 

2004). 

Laser wounding and microscopy 

Seedlings were grown upright on ½ MS plates (0.7% agarose, no sucrose) with 48 h of 

stratification and seven to ten days of growth at 16 h light, 8 h dark conditions. 

Seedlings were transferred to microscopy slides in 150 μl of tap water containing 

propidium iodide (PI; 0.01 mg/ml) and 10 mM 2-(N-morpholino)ethanesulfonic acid 

(MES-KOH) buffer pH 5.7, and when indicated, 50 μM Z-Val-Arg-Pro-DL-Arg-

fluoromethylketone trifluoroacetate (Z-VRPR-fmk; Bachem) or 1 mM ethylene glycol 

tetra-acetic acid (EGTA). Microscopy slides were taped at one end as a spacer to avoid 

squeezing and damaging the root tip after transfer and roots were carefully covered with 

standard glass slips. Laser wounding was carried out with a Ti:Sa laser (MaiTai 

DeepSee multiphoton laser from SpectraPhysics) at an excitation wavelength of 900 nm 

at 70% power and for variable durations of 300 -7000 ms, for multiphoton laser ablation 

of precise focal regions. Confocal images were acquired on a Zeiss LSM780 confocal 

microscope (Zeiss, Jena, Germany) with a Plan-Apochromat 63x/1.4 Oil objective or 

40x water objective, argon laser at excitation wavelength  514 nm and respective regions 

of emission for yellow fluorescent protein (YFP) and PI. Ratiometric measurement of 

intracellular calcium concentrations was performed with a Yellow Cameleon 3.6 probe 

fused to a nuclear localization signal (YC3.6-NLS) according to (Costa et al., 2013). PI 

stain was excited at wavelength 561 nm, as not to excite the YFP moiety of YC3.6-NLS. 

Z-stacks were taken repeatedly over time following laser wounding. Ratiometric signal 

was quantified using ImageJ software for regions of interest (ROI) encircling the nuclei 

of cells surrounding the wound site. 

Plant material and treatments 

For preparation of sterile seedlings, A. thaliana seeds were surface sterilized with 70% 

ethanol and plated on ½ Murashige and Skoog (MS) medium supplemented with 1% 

sucrose and 0.5% Phytagel (Sigma-Aldrich), stratified for at least 2 d at 4 °C, and then 
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germinated at 21 °C in continuous light (MLR-350; Sanyo). After 5 days indivual 

seedlings were transferred into liquid ½ MS 1% sucrose medium and grown for 

additional 9 days. Seedlings treated with protease inhibitors [Antipain 100µM, 

Chymostatin 100µM, Pepstatin A 1µM, PMSF 1mM, E64 10µM, 1,10-Phenanthroline 

20mM, Z-VRPR-fmk 50µM, EDTA 1mM, EGTA 1mM, Protease Inhibitor Cocktail 

Sigma Aldrich 1:100 (MFCD00677817) (all PIs: Sigma Aldrich).] were vacuum 

infiltrated with the individual solution for 3x 2minutes and incubated at RT for 

additional 10 minutes before freezing. For the wounding treatment, 8 seedlings were 

pooled and squeezed with serrated forceps 5 times and incubated at room temperature 

(RT) for the indicated time before freezing in liquid nitrogen and subsequent analysis by 

western blot. Treated and untreated seedlings were ground to powder with mortar and 

pestle under constant supply of liquid nitrogen since the use of automated homogenizers 

lead to thawing and immediate PEP detection in the western blot. Tissue powder was 

stored at -80°C and defrozen at RT. PROPEP1-YFP, PEP1-YFP and YFP in Col-0 were 

described in Bartels et al. 2013.  

Generation of transgenic Arabidopsis lines 

Mutated PROPEP sequences were prepared by site specific mutagenesis of the original 

coding sequence in the plasmid pearley101 (Bartels 2013). Arabidopsis plants were 

transformed by Agrobacterium tumefaciens using the floral dip method (Clough and 

Bent, 1998) 

Western blotting 

Ground tissue was immediately supplemented with preheated 3xSDS loading buffer 

(w/v; 0.5M Tris pH 6.8, 15% glycerol, 0.3M DTT, 5% SDS, Bromophenol blue) boiled 

for 5 minutes and centrigued for 5 minutes at 16´300g to remove cellular debris. 

Proteins were separated in 10% precasted SDS polyacrylamide gels (Genscript) for 

PROPEP-YFP and PEP-YFP separation or in 4-20% precast gradient SDS 

polyacrylamide gels (Genscript) for MC4 subunit separation. Analysis was done by semi 

dry western blotting using anti-GFP antibodies (mouse, 1:1000 Roche) or anti-

AtMetacaspase 4 (rabbit, 1:15000 (Watanabe and Lam, 2011a)).   
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4.6 SUPPLEMENTARY DATA 

Supplementary Figure 4.1 Varying calcium fluxes are elicited in the nearby cells of a laser ablation 

wound site. (A) 3D confocal image stack of epidermal maturation zone cells of a nuclear localized YC3.6 
calcium measurement construct (YC3.6-NLS) before laser ablation. Nuclei of interest are encircled and 
numbered. (C) Image immediately after laser ablation treatment. Notice the shift in color of white to 
yellow between (A) and (C) images for the encircled nuclei. (B) and (D) Overlay of propidium iodide (PI) 
stain image on (A) and (C), respectively. (E)(F) Images ten minutes after ablation show the increased 
accumulation of PI in nuclei 1 and the cell. (G)(H) Quantitation of the YC3.6-NLS probe YFP/CFP ratio 
for the nuclei of interest as a readout for calcium flux in time. ROI = region of interest 
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5. GENERAL DISCUSSION

Since the discovery of PEPs and PEPRs in 2006, PEP research has mainly revolved 

around its impact on plant immunity (Bartels and Boller, 2015). Hypotheses were 

postulated about PEPs being enhancers of PTI or about the DAMP nature of PEPs. Both 

hypotheses are well supported by numerous studies and more recently, to increase the 

complexity of the picture, first studies associate PEPs and PEPR signaling with plant 

development. The work presented here contributes important pieces to this puzzle and 

opens up new routes to fully understand the possibly many roles of the PROPEP-PEP-

PEPR system. 

The links between plant development and the PROPEP-PEP-PEPR system 

The idea of the PROPEP-PEP-PEPR system being involved in plant development was 

born already with the discovery of the Arabidopsis PEP receptors PEPR1 and PEPR2. 

Unlike other PTI-activating PRRs like FLS2, both cluster in LRR-RLK subfamily XI 

which mostly contains receptors involved in plant development and differentiation 

processes (Krol et al., 2010; Yamaguchi et al., 2010). Thus the PROPEP-PEP-PEPR 

system might have evolved from a previous developmental system to a system with a 

new function in innate immunity. In Drosophila the prominent Toll system, which is 

conserved in mammals, has evolved from a development regulation system to a system 

with dual function in development and innate immunity (Valanne et al., 2011). In 

Drosophila nine Toll receptors have been identified of which Toll is crucial for innate 

immunity whilst the others are associated with developmental processes. The inactive 

precursor peptide Spätzle resides in the haemolymph and gets processed either upon 

MAMP detection by the endogenous serine protease Spätzle Processing Enzyme (SPE) 

or by pathogen derived proteases (Jang et al., 2006; Hetru and Hoffmann, 2009; 

Yamamoto-Hino and Goto, 2016). The binding of Spätzle to Toll induces the expression 

of antimicrobial molecules and mutants in this system are highly compromised in their 

defense against pathogens (Aggarwal and Silverman, 2008; Ming et al., 2014). 
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Conversion from development to immunity might have happened within the LRR-RLK 

class XI in the PROPEP-PEP-PEPR system in similar way. In light of this idea the 

observation of a bushy root phenotype in AtPROPEP1 overexpression lines and a more 

bushy growth of the aerial parts in AtPROPEP2 overexpression lines gets a new quality 

(Huffaker et al., 2006). Notably, a continuous exposure to synthetic AtPEP1 or AtPEP2 

does not induce a bushy growth but triggers SGI indicating that PROPEPs might have 

retained some impact on plant development. SGI is accredited to the trade-off between 

resource allocation to either defense or growth, but in contrast to flg22, that leads to an 

overall reduction of seedling growth, AtPEP1 most strongly affects root growth with an 

overall level of SGI being weaker compared to SGI elicited by MAMPs (Krol et al., 

2010). Ma and coworkers linked this effect to the regulation of amino acid exporters, the 

GLUTAMIN DUMPERS, via PEPR2 signaling raising doubts about PEP-triggered SGI 

being a sign for activated PTI (Ma et al., 2014).   

Heil et al. (2014) proposed, that a “real” DAMP should be present in all tissues that 

might be exposed to damage. Some classic DAMPs like ATP and OGAs fulfill this 

criteria, whereas most AtPROPEPs and both AtPEPRs were found to be expressed 

exclusively in the roots (Ferrari et al., 2013; Tanaka et al., 2014). The PEP system might 

thus have developed from a system with regulatory function in the roots and indeed 

other closely related receptors of the LRR-RLK class XI have been already 

characterized in more detail regarding developmental regulation of root growth. For 

example, treatments with CLE peptides or overexpression of their receptor the, LRR-

RLK CLV1 leads to inhibition of lateral root formation but does not alter growth of the 

primary root and thereby serves as negative regulators of lateral root formation, similar 

to their function in the shoot (Araya et al., 2014). GSO1 and GSO2 are the closest 

phylogenetic relatives of PEPR1 and PEPR2 in the class XI LRR-RLKs (Yamaguchi et 

al., 2010). They are important regulators of cuticle formation in the embryo and mutants 

in this pathway are (as a secondary effect) strongly affected in root growth (Tsuwamoto 

et al., 2008; Racolta et al., 2014). Based on the observation that the extracellular 

protease (subtilase) ABNORMAL LEAF-SHAPE 1 (ALE1) is crucial for GSO1/GSO2-
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dependent cuticle formation, GSO1/GSO2 seem to be activated by a so far unknown 

peptide ligand (Xing et al., 2013). 

Just recently we linked PEP signaling to the induction of dark-induced senescence, a 

mechanism, which might either be induced as some sort of defense response by 

restricting available nutrients to impair pathogen growth or it might again point to the 

involvement of PEP signaling in other regulatory processes (Gully et al., 2015). 

Interestingly, GSO1 functions in the formation of the casparian strip and thereby has a 

strong influence on the proper homeostasis of nutrients (Pfister et al., 2014).  

PEPRs have been shown to interact with the co-receptors BAK1 and BKK1, and in a 

structural modeling approach three amino acids in AtPEP1 have been hypothesized to 

stabilize the bond between AtPEPR1 and AtBAK1 (Roux et al., 2011a; Tang et al., 

2015). This motif of proline 19, glutamine 21 and histidine 22 (figure 1.4) found in 

AtPEP1 is not conserved within the Arabidopsis PEPs and did not play a role in the 

activity of AtPEP1 when mutated to alanine (Pearce et al., 2008). Surprisingly, PEPR 

activation in a BAK1-deficient background triggered extensive cell death whereas bak1-

5 bkk1 mutants were insensitive to PEP1 treatments (Yamada et al., 2016). The former 

was linked to PROPEP3 thus PEPRs might recruit different SERKs via different binding 

affinities depending on the PEPR-bound PEP and its amino acid motif at position 19-21-

23.  

Such mechanism might point to potentially different roles of different PROPEPs, which 

is further supported by the work presented here since tissue-specific expression patterns 

of PROPEPs supports their non-redundant functions. We found PROPEP4 and 

PROPEP7 promoters activated in the root tip up to the elongation zone and Bicluster 

analysis showed association of PROPEP4 with morphogenesis and other developmental 

processes. In addition we showed that PEPR promoters are not or only weakly expressed 

in this region, so that either PROPEP4 and 7 might signal on a weaker intensity than 

other PROPEPs due to lower expression of the receptor in this region, or they might 

signal not directly to neighboring cells but a bit further from the root tip to the 

elongation zone or further on the root. If we assume PROPEPs to serve as sensors for 

damage or other unsuitable conditions, PROPEPs 4 and 7 might detect growth of the 
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root in unsuitable ground and then signal to distant PEPRs that might induce root 

branching as observed after PROPEP overexpression (Huffaker et al., 2006).  

Lastly since the measurement of defense responses are mostly performed with synthetic 

peptides that are known to activate the receptor in a strong way and the peptides are also 

applied mostly in high nano- to -molar concentrations, the measured responses are 

somewhat artificial with regard to their strength since PEPs are rather unlikely to be 

released in -molar concentrations. The TDIF peptide, a CLE family peptide hormone, 

has been shown to have a dose-dependent effect on shoot and root morphology, and also 

intracellular PLETHORA transcription factors have been shown to regulate root 

development in a dose dependent way by expression regulation of PIN proteins in the 

root tip (Galinha et al., 2007; Hirakawa and Bowman, 2015). Furthermore, Stahl and 

Simon mentioned the importance of posttranslational modifications on signal peptides 

for their specificity and activity which is ignored when working with synthetic peptides 

(Stahl and Simon, 2012). Additionally studies on FLS2 showed that responses were of 

different strength depending on the tissue in which the receptor was activated, so that 

also a tissue-specific effect might apply to the PROPEP-PEP-PEPR system (Wyrsch et 

al., 2015). 

The role(s) of the PROPEP-PEP-PEPR system in innate immunity 

The involvement of the PROPEP-PEP-PEPR system in innate immunity has doubtlessly 

been shown (Bartels and Boller, 2015). Our findings in this context prove on the one 

hand previous assumptions like the assignment of PROPEPs (or at least AtPROPEP1) as 

DAMPs but on the other hand raise new questions due to the predominant localization 

of AtPROPEP1 in roots. We observed immediate processing of Arabidopsis PROPEP1 

after cell damage, and based on our explanation, PEP1 serves as a sensor of cell damage 

rather than as an amplifier of for example MAMP-triggered defense responses. 

However, preceding MAMP perception seems to induce an increase in PROPEP1 

abundance that could enable a more pronounced damage response in case of a 

subsequent cellular damage (Bartels and Boller, 2015). This might allow discrimination 
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between benign microbes and damage-inflicting pathogens and thus the elicitation of an 

adequate response. Due to the lack of specific antibodies, PROPEP abundance in tissues 

and cells can only be deduced from transcriptional and promoter-GUS-based data which 

currently favors a constitutive presence of PROPEP1 at least in the roots. Beside 

PROPEP1 also PROPEP2 and 3 were clearly linked to plant immunity (Bartels et al., 

2013; Logemann et al., 2013). A recent study by Yamada and coworkers introduced a 

PROPEP3-specific antibody and revealed that AtPROPEP3 protein is not present under 

normal conditions but is expressed only upon previous elicitation for example due to 

bacterial infection (Ross et al., 2014). But in contrast to PROPEP1, that is 

proteolytically cleaved, PROPEP3 seems not to be processed prior to secretion into the 

medium after AtPEP perception (Yamada et al., 2016). Such behavior would indicate 

that PROPEP3 is not involved in direct damage perception but serves as an actual 

amplifier of the PEP response. Such a role of amplification of previous defense 

responses has also been assigned to the PEP-PEPR system as it has been shown that 

MAMP perception prior to PEP treatments led to an increased oxidative burst (Flury et 

al., 2013; Klauser et al., 2013). Moreover, the PROPEP-PEP-PEPR system seems to be 

involved in the regulation of defense responses in general, since it has been shown that 

the system enhances ethylene-induced defense responses and is crucial for proper 

calcium signaling during defense responses as well as for the induction of systemic 

responses (Qi et al., 2010; Ma et al., 2012; Liu et al., 2013; Tintor et al., 2013; Ross et 

al., 2014).  

In addition to an amplifying effect, the PROPEP-PEP-PEPR system also enhances the 

robustness of plant innate immune against pathogen-mediated perturbations. PROPEP2 

and PROPEP3 expression has been tested in the defense signaling mutants sid2, ein2 

and dde2. Whilst several defense responses are strongly affected in these mutants 

PROPEP2 and PROPEP3 expression induced by pathogen infection was highly robust 

and thereby also coupled locally to systemic defense responses (Ross et al., 2014). The 

robustness of the plants innate immune system has been suggested to be the main benefit 

over an adaptive immune system since this ensures perception of non-self while it 
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lowers the risk of aberrant self-perception, the predominant cause of autoimmune 

diseases and hybrid necrosis (Janeway and Medzhitov, 2002; Chae et al., 2014).  

In this thesis also evolutionary aspects of the PROPEP-PEP-PEPR system have been 

investigated which further support the view of PROPEP-PEP-PEPR being important for 

the robustness of plant innate immunity. Based on our observed interspecies 

compatibility of PEPRs they appear to be well integrated into the invariant core of the 

plants` immune system, whereas PEPs and PEPR LRRs exhibited extensive changes in 

their sequences resulting in interspecies incompatibility that is, however, irrelevant for 

effective PEPR signaling within one species. 

The PROPEP-PEP-PEPR system can also serve as a backup of the immune system. 

Several microbial effectors have been identified to target Arabidopsis BAK1 and 

therewith impair PTI (Zhou et al., 2014). Although BAK1 serves as a co-receptor for 

PEPRs as well, PEPR activation in bak1-3 and bak1-4 backgrounds led to much 

stronger defense responses and even induced a hypersensitive response in leaves 

(Yamada et al., 2016). That effect might be enabled by other members of the SERK 

family that interact with PEPRs and again points to the robustness of the PROPEP-PEP-

PEPR system in plant immunity compared to other signaling pathways operated by 

PRRs like FLS2 and EFR.  

An important question concerns the activation of the PROPEP-PEP-PEPR system after 

expression of the PROPEP protein. As described above, PROPEP3 seems to be secreted 

in its full length without any further processing. We found PROPEP3-YFP to be 

localized to the cytoplasm, and secretion via unconventional pathways from the 

cytoplasm to the extracellular space might be a possible mechanism (Ding et al., 2012). 

In the case of the Systemin peptide, it has been shown that albeit it is cleaved off from 

its precursor Pro-Systemin, the cleavage is not a requirement for its activity, and the 

precursor holds full elicitor activity (Dombrowski et al., 1999). The same might be true 

for at least some PROPEPs, and since PROPEP3 secretion has been observed in its full 

length, it might have full elicitor activity without further processing (Yamada et al., 

2016). PROPEP1-YFP was found to be localized to the tonoplast membrane and even 

though it might have elicitor activity in its precursor form, its tonoplast localization 
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prevents interaction with PEPRs. PEP1-triggered PEPR signaling first requires the 

activation of MC4 to cleave PROPEP1; this leads to relocalization of the mature PEP1 

peptide into the cytoplasm, which seems to enable its subsequent entry into the 

extracellular space. In other similar systems a precursor molecule and its activating 

enzyme are located in different cellular compartments. Cellular damage disrupts this 

separation, brings together the two components and therewith enables the processing of 

the precursor into the mature signaling compound (Borlinghaus et al., 2014). Notably, 

the processing of PROPEP1 by metacaspase 4 describes a new mechanism since the 

protease is already co-localized with its substrate but as an inactive zymogen that 

requires first an activating stimulus. Wounding (or wounding-induced Ca2+ influx) as a

robust stimulus and the subsequent rapid generation of PEP1 again points to the 

robustness of the PROPEP-PEP-PEPR system. Wounding and/or cellular damage is a 

process that inevitably occurs during feeding but also during pathogen infection due to 

lytic enzymes or as a consequence of the hypersensitive response (Heil, 2012; Heil et al., 

2012). Although pathogens might also carry protease inhibitors to block the activity of 

metacaspases, the release of unprocessed PROPEP3 from the cytoplasm might in this 

context serve as a backup mechanism (Song et al., 2009). 

The activity of full length PROPEPs has not been investigated yet, but since 

AtPROPEP1 localizes to the tonoplast membrane it should anyway be unable to bind to 

the extracellular membrane. KEKE motifs have been shown to be involved in protein-

protein interactions in a calcium-dependent way and to target proteins to the proteasome 

(Rani et al., 2016). AtPROPEP1 carries a KEKE motif in its N-terminus and in the C-

terminal region flanking the cleavage site at arginine 69 (figure 1.4). The N-terminal 

motif might mediate the localization to the tonoplast by interacting with another protein 

embedded into the membrane and the second KEKE motif close to the cleavage site 

might be important for binding of MC4. Alteration of the motif would be a suitable tool 

to investigate this.  
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Parallels of the PROPEP-PEP-PEPR system with mammalian cytokines 

PEPs have been assigned a role as plant DAMPs, and our observation of Arabidopsis 

PEP1 formation upon cell damage is another strong support for this view (Huffaker et 

al., 2006; Bartels and Boller, 2015). However, a closer look at the suggested criteria 

defining a DAMP raises doubts about PEPs being just DAMPs (Heil and Land, 2014):  

(1) A DAMP should not be present or be inactive in an intact cell and should be present 

in exposed cells. On the one hand we found PROPEP1-YFP to be bound to the tonoplast 

membrane and the mature PEP to be released during cell damage but on the other hand 

the expression of PROPEP1 is restricted mainly to the roots and is thus, in contrast to 

other DAMPs like ATP and OGAs, not present in all cells. 

 (2) Since damage is often followed by infections a DAMP should effectively induce 

defense or resistance mechanisms. This criterion seems to be sufficiently fulfilled by the 

PROPEP-PEP-PEPR system as described by various examples above. 

(3) A DAMP should induce wound healing. Currently not much is known about the 

induction of wound healing processes by PEP treatments but this is an interesting point 

for future studies on PEP-triggered responses.  

Nevertheless most DAMPs described in plants and especially mammals are 

characterized by their inactive nature and a distinct primary role in unwounded cells. 

This is the case especially for structural molecules like actin, OGAs, cholesterol or 

strictly intracellular molecules like mtDNA, RNA, ATP that get exclusively released 

from damaged cells (Heil, 2012; Heil and Land, 2014). Peptides with signaling function, 

especially in the well-studied mammalian field, are mostly not classified exclusively as 

DAMPs but often as cytokines due to their multiple functions. Cytokines are small 

secreted peptides with signal functions either on the cells that secreted them, nearby 

cells or on distant cells (Zhang and An, 2007). Cytokines mostly act within the 

mammalian adaptive and innate immune system and activate or inactivate different cell 

types and thereby modulate various layers of the immune system. The most prominent 

cytokines are the Interleukins that have crucial functions in activation and regulation of 

the immune system and together with Toll-like receptors (TLRs) form a sophisticated 

machinery for MAMP perception and response induction (Akdis et al., 2011). 
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The Toll system of Drosophila introduced before is conserved in mammals, in which 

Toll-like receptors (TLR) and Interleukin receptors (IL-R) serve as the key receptors in 

innate immunity (Kawai and Akira, 2011). While Toll signaling controls both immunity 

and development in Drosophila in mammals TLRs and IL-Rs are exclusively involved 

in immunity but with much broader spectrum than in Drosophila (Valanne et al., 2011). 

In mammals thirteen TLRs have been identified that, in contrast to Toll, directly bind 

MAMPs and therefore serve as PRRs directly. IL-Rs, in contrast, only bind endogenous 

cytokines such as the interleukins (Dinarello, 2011). Tolls, IL-Rs and TLRs share 

intracellular TIR domains that interact with the conserved downstream signaling 

component MyD88 (Valanne et al., 2011; O'Neill et al., 2013). A similar observation 

has been made in plants as it has been shown that developmental regulators like the 

hormone receptor BRI1 as well as several PRRs interact with BAK1 for downstream 

signaling (Chinchilla et al., 2009). 

In mammals the Interleukins describe a comparably large class of mostly pro-

inflammatory signaling peptides (Akdis et al., 2011). Since the specific immune cells in 

mammals are very diverse different Interleukins have been found to ultimately stimulate 

different cells via specific receptors (Akdis et al., 2011). But already the initiation of IL 

signaling can be very diverse even within one family. In the IL-1 family (IL-1F) the 

individual peptides can have very different effects and become activated in different 

ways. IL-1 and IL-1 have been found to be like the initial activation machinery of 

pro-inflammatory reactions (Garlanda et al., 2013). Both bind to the same receptor (IL-

1R1) but have different expression and activation patterns. Il-1 is expressed constantly 

in various epithelial and endothelial cells, gets released upon cell death and is directly 

active in its full-length form (Kim et al., 2013). IL-1α can be processed by the 

extracellular cysteine protease calpain in a calcium-dependent way but the cleavage does 

not affect its activity (Watanabe and Kobayashi, 1994; Gross et al., 2012). Since IL-1 

serves as a primary inducer of immune responses in a DAMP like fashion, the character 

of its upregulation by various immune responses was discussed. As a conclusion IL-1 

upregulation is seen as an enhancer for subsequent wounding by increased IL-1 release 

(Carta et al., 2013).  In contrast, IL-1 is only expressed in hematopoietic cells after a 
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stimulus, for example from IL-1 perception, or after TLR mediated activation of the 

innate immune system (Dinarello, 2011). IL-1 is inactive in its full length and requires 

processing by the endogenous cysteine protease caspase-1 or by external proteases to 

release the active IL-1β peptide (Netea et al., 2010). Caspase 1 processing of IL-1 can 

occur in the cytoplasm and peaks around 20 minutes after a stimulus (Brough and 

Rothwell, 2007). IL-1α, and IL-1β both induce the expression of further interleukins and 

thereby trigger enhanced immune responses (Ben-Sasson et al., 2013). IL-1 and IL-1 

lack a known secretion signal, but their secretion has been shown to depend on caspase-

1 activity (Keller et al., 2008; Sollberger et al., 2014). The underlying mechanism 

remains unclear so far but might be dependent on increased permeability of the plasma 

membrane through activation of the cell death protease caspase-1. A strong link can be 

drawn here to the plant PROPEPs. Just like IL-1, Arabidopsis PROPEP1 serves as a 

rapid and primary inducer of further defense responses via the perception of wounding. 

IL-1, just like PROPEP3, gets upregulated as a second layer of defense and has to be 

induced by a previous stimulus (Garlanda et al., 2013).  We recently described the role 

of the PROPEP-PEP-PEPR system in autophagy and especially the strong upregulation 

of AtPROPEP3 that was observed during autophagy (Gully et al., 2015). Autophagy is a 

catabolic recycling process which leads to the turnover of proteins and cellular 

organelles in a way similar to apoptosis (Wu et al., 2014). Autophagy has been shown to 

be also a positive mediator of IL-1, but in contrast to TLR mediated IL-1 

upregulation, IL-1 does not get secreted but accumulates in vesicles during autophagy 

and leads to the formation of lysosomes (Carta et al., 2013). So called autophagosomes 

can also be observed during autophagy in plants. It would be interesting to investigate a 

potential accumulation of PROPEP3 therein (Bassham, 2015; Michaeli et al., 2016).  

Interestingly different caspases and also calpain have been shown to be strongly 

involved in the initiation and regulation of autophagy, for example via the cleavage of 

Autophagy-related Gene 5 (Atg5) by calpain (Yousefi et al., 2006; Wu et al., 2014). In 

this tightly regulated process, caspases can also serve like a switch and convert pro-

autophagy factors into pro-apoptotic mediators (Cho et al., 2009). Again also for plant 

metacaspase an important regulatory role in the induction and modulation of autophagy 
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has been described (Minina et al., 2013; Minina et al., 2014a). Metacaspase 9 for 

example has been shown to be crucial for the conversion of an autophagy to an 

apoptotic state in a way that involved the upregulation of ATG2 (Escamez et al., 2016). 

When we investigated the effect of PEP-mediated darkness-induced senescence we 

surprisingly made the observation that the effect was lost in the metacaspase 9 (atmc9) 

and in the metacaspase 4 and 8 (atmc4 atmc8) double mutant but not in the metacaspe 4 

single mutant (Kay Gully personal communication, Gully et al., 2015). Since 

exclusively PROPEP3 was upregulated during darkness-induced senescence it might be 

speculated that PROPEP3 gets processed by metacaspase 8 or 9 during autophagy to 

have a so far unknown signaling function. 

Furthermore, just like some cytokines lead to the expression of further cytokines in 

nearby or distal cells, a positive feedback loop has been shown for the PROPEPs, and 

also the role in the induction of other defense pathways like the systemic resistance has 

been shown (Ross et al., 2014; Bartels and Boller, 2015). 

A very interesting pathway has been described for the release of IL-1α. First, the 

secretion of IL-1α and other leaderless cytokines does not happen via conventional 

pathway. But IL-1α has been shown to interact with caspase-1 (although it does not get 

processed by it) and is then secreted via an unknown pathway that requires caspase-1 

activity (Keller et al., 2008). Just like caspase-1, metacaspase 4 has been associated with 

cell death in various cases, and since caspase-1 dependent secretion is believed to be 

mediated by increased cell permeability during cell death, metacaspase 4 might also not 

only be required for PROPEP1 processing but also for its subsequent release from the 

cell interior (Keller et al., 2008; Bergsbaken et al., 2011; Watanabe and Lam, 2011a).    

Second and most interesting, motif analysis of the PROPEP amino acid sequences 

predicts nuclear localization motifs in AtPROPEPs 5 and 7 (http://myhits.isb-sib.ch/cgi-

bin/motif_scan). We indeed observed fluorescence in the nucleus in transgenic seedlings 

expressing AtPROPEP4 and/or 5 fused to YFP (data by Hendrik Schatowitz 

unpublished). IL-1F interleukins have been shown to localize to the nucleus during 

inflammation and directly influence transcription thereby (Sharma et al., 2008; Luheshi 

et al., 2009). Most strikingly the mechanism of nuclear localisation of IL-1α does not 
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only alter transcription but also prevents it from getting released into the extracellular 

space (Cohen et al., 2010). During necrotic cell death IL-1α gets released as described 

above and serves as a pro-inflammatory factor. But upon apoptosis IL-1α localizes to the 

nucleus and is not released for the induction of downstream responses. Such a possible 

function in Arabidopsis PROPEPs remains to be investigated, but the nuclear 

localization of PROPEP4 and its role in chromatin remodeling and regulation of 

developmental processes, as yielded by the Biclustering analysis, might point to 

completely novel roles of the PROPEPs independent of PEPR signaling, again in 

analogy to cytokines Figure 5.7 presents an overview of the signaling pathways within 

the IL-1 family side by side with that of PROPEPs.  
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Figure 5.7. Overview of the IL-1F and PROPEP signaling principles and their downstream 

responses. Both systems get induced by innate immune responses (top). IL-1s influence gene expression 
either directly by nuclear localization or by binding to the extracellular domain of the IL-1 receptor, whilst 
some IL-1s require proteolytic cleavage to be activated. A similar mechanism with dual-function remains 
to be observed in PROPEPs/PEPs. Activation of the individual receptors triggers other cells to induce 
further defense and cell death-associated responses (bottom). 
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6. CONCLUSION AND OUTLOOK

The PROPEP-PEP-PEPR system seems to play multiple roles in plant innate immunity 

and likely also in plant development, which might explain the need for numerous 

PROPEPs present in several of the plant genomes. Clearly, there is a striking analogy to 

the mammalian cytokines although mammalian cytokines are a very large group with 

plenty of functions that do not easily allow a foreign peptide with signaling function to 

be classified as a cytokine (Zhang and An, 2007).  

The mode of action of cytokines as well as of many other developmental processes in 

plants happens in a dose-dependent manner (Grienenberger and Fletcher, 2015; Guo et 

al., 2015). Currently this has not been well addressed within PEP research but could be 

crucial to further understand PEPR signaling. Moreover, two approaches might be 

needed to shed some light behind the regulatory role of the PROPEP-PEP-PEPR system. 

(1) Ross and colleagues used a PROPEP3 antibody to show that there is no protein 

present in untreated tissue but a stimulus like bacterial infection is needed to boost 

PROPEP3 abundance (Ross et al., 2014). In contrast, our promoter-GUS studies and 

qPCR data suggested a constitutive transcription of PROPEP3. Thus specific antibodies 

are needed to investigate the abundance of PROPEPs. This could be coupled to in situ 

hybridization approaches to generate a tissue-specific map of PROPEP presence. 

Potential cross-reactivity could be overcome by low sequence similarity between the 

individual PROPEPs, and iTRAQ-based labelling of N-termini coupled to mass 

spectrometry would not only enable distinguishing PROPEPs but also detection of 

PEPs.  

(2) Besides the Solanum PROPEP, that is an orphan PROPEP in its genome, mutants of 

the precursor proteins did not receive any attention so far (Trivilin et al., 2014). Initially 

PROPEPs/PEPs were assumed to act redundantly and therefore pepr1 pepr2 mutants 

were used to indirectly study the lack of PROPEPs and PEPs (Bartels and Boller, 2015). 

Furthermore mutants in multiple PROPEPs would be rather impossible to generate due 

to the clustering of several PROPEP genes on the chromosomes. Nevertheless it might 
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be interesting to study the impact of a lack of the potential PTI amplifier PROPEP3, or a 

lack of PROPEP4 and/or 5 due to their potential nuclear localization, which might 

indicate their impact on transcriptional regulation. This could lead to the discovery of so 

far unidentified roles of individual PROPEPs. 
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