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1. Introduction

This talk is concerned with elliptic second order boundary value problems with
random diffusion. In parametrized form, such problems are of the form

(1)
find u ∈ L2

ρ

(
�;H1

0 (D)
)
such that

− div
(
α(y)∇u(y)

)
= f in D for all y ∈ �,

where D ⊂ Rd is the physical domain, ρ : � → R≥0 is the joint density function,
and � = (−1, 1)m (in the uniformly elliptic case) or � = Rm (in the log-normal
case) is the parameter domain of the stochastic variable. The quantities of interest
are the solution’s expectation

(2) Eu(x) =

∫

�

u(x,y)ρ(y) dy,

its variance, or even higher order moments.
A principal approach to compute (2) is the Monte Carlo method. However, it

is extremely expensive to generate a large number of suitable samples and to solve
the deterministic boundary value problem (1) on each sample. To overcome this
obstruction, the multilevel Monte Carlo method (MLMC) has been developed in
[1]. From the stochastic point of view, it is a variance reduction technique which
considerably decreases the complexity. The idea is to combine the Monte Carlo
quadrature of the stochastic variable with a multilevel splitting of the Bochner
space which contains the random solution. Then, to compute (2), most samples
can be performed on coarse spatial discretizations while only a few samples must
be performed on fine spatial discretizations. This proceeding is a sparse grid
approximation of the expectation. If we replace the Monte Carlo quadrature by
another quadrature rule for high-dimensional integrals, we obtain for example
the multilevel quasi Monte Carlo method (MLQMC) or the multilevel Gaussian
quadrature method (MLGQ).
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2. Quadrature in the stochastic variable

To compute the integral (2), we have to provide a sequence of quadrature for-
mulae {Qℓ} for the Bochner integral

I : L2
ρ(�;X) → X, Iv =

∫

�

v(·,y)ρ(y) dy

where X ⊂ L2(D) denotes a Banach space. The quadrature formula

(3) Qℓ : L
2
ρ(�;X) → X, Qℓv =

Nℓ∑

i=1

ωℓ,iv(·, ξℓ,i)ρ(ξℓ,i)

is supposed to fulfill the error bound

‖(I −Qℓ)v‖X . 2−ℓ‖v‖H(�;X)

uniformly in ℓ ∈ N, where H(�;X) ⊂ L2
ρ(�, X) is a suitable Bochner space.

3. Finite element approximation in the spatial variable

In order to apply the quadrature formula (3), we shall calculate the solution
u(y) ∈ H1

0 (D) of the diffusion problem (1) in certain points y ∈ �. To this end,
consider a coarse grid triangulation/tetrahedralization T0 = {τ0,k} of the domain
D. Then, for ℓ ≥ 1, a uniform and shape regular triangulation/tetrahedralization
Tℓ = {τℓ,k} is recursively obtained by uniformly refining each triangle/tetrahedron
τℓ−1,k into 2n triangles/tetrahedrons with diameter hℓ ∼ 2−ℓ. Then, define the
finite element spaces

Sℓ(D) := {v ∈ C(D) : v|∂D = 0 and v|τ is linear for all τ ∈ Tℓ} ⊂ H1
0 (D)

and let

Gℓ(y) : H
1
0 (D) → Sℓ(D), v 7→ vℓ

denote the Galerkin projection related with (1), given by Galerkin orthogonality

∫

D

α(x,y)∇
(
v(x)− vℓ(x)

)
∇wℓ(x) dx = 0 for all wj ∈ Sℓ(D).

Then, the approximate solution Gℓ(y)u(y) ∈ Sℓ(D) to (1) of a finite element
method in the space Sℓ(D) satisfies the error estimate

‖u(y)−Gℓ(y)uℓ(y)‖H1(D) . 2−ℓ

√
αmax(y)

αmin(y)
‖u(y)‖H2(D)

provided that the domain D is convex and f ∈ L2(D).
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4. Multilevel quadrature

We now have to combine the quadrature method with the multilevel finite
element discretization. To this end, we define the ansatz spaces

V
(1)
j :=

{
Gj(y)v(x,y) : v ∈ C

(
�;H1

0 (D)
)
and y ∈ �

}
⊂ L2

ρ

(
�;Sj(D)

)
.

To compute the expectation (2), we shall apply the quadrature rule Qj to the
finite element solution in Sj(D) which yields

(4) Eu(x) ≈ Qj

(
Gj(y)u(x,y)

)
=

Nj∑

i=0

ωj,iGj(ξj,i)u(x, ξj,i)ρ(ξj,i).

This can be interpreted as the full tensor product approximation of the function

Eu in the product space V
(1)
j ⊗V (2)

j where the quadrature rule Qj serves as “space”

V
(2)
j . It produces the error estimate

∥∥∥Eu(x)−Qj

(
Gj(y)u(x,y)

)∥∥∥
H1(D)

. 2−jj‖u‖H(�;H1(D))∩L2
ρ(�;H2(D)).

In contrast to this, setting G−1(y) := 0 for all y ∈ �, the sparse tensor product

of the spaces V
(1)
j and V

(2)
j is built with the help of the complement spaces

W
(1)
ℓ :=

{(
Gℓ(y) −Gℓ−1(y)

)
v(x,y) : v ∈ C

(
�;H1

0 (D)
)
and y ∈ �

}
⊂ V

(1)
ℓ

in accordance with

̂
V

(1)
j ⊗ V

(2)
j =

j⊕

ℓ=0

W
(1)
ℓ ⊗

( j−ℓ⊕

ℓ′=0

W
(2)
ℓ′

)
=

j⊕

ℓ=0

W
(1)
ℓ ⊗ V

(2)
j−ℓ.

This means, we consider the sparse tensor product approximation

Eu(x) ≈
j∑

ℓ=0

Qj−ℓ

(
Gℓ(y)u(x,y) −Gℓ−1(y)u(x,y)

)

=

j∑

ℓ=0

Nj−ℓ∑

i=0

ωj−ℓ,i

(
Gℓ(ξj−ℓ,i)u(x, ξj−ℓ,i)−Gℓ−1(ξj−ℓ,i)u(x, ξj−ℓ,i)

)
ρ(ξj−ℓ,i).

Loosely speaking, the function u ∈ L2
ρ

(
�;H1

0 (D)
)
is divided into j slices which

are related to the modulus of its entity. Then, for every slice, the precision of the
quadrature is properly chosen. We refer to Figure 1 for a graphical illustration.

Under the assumption that the random solution provides mixed regularity in
terms of u ∈ H

(
�;H2(D)

)
, the multilevel quadrature produces essentially the

same accuracy as the standard tensor product quadrature (4):
∥∥∥∥Eu(x)−

j∑

ℓ=0

Qj−ℓ

(
Gℓ(y)u(x,y) −Gℓ−1(y)u(x,y)

)∥∥∥∥
H1(D)

. 2−jj‖u‖H(�;H2(D)).

Notice that the multilevel quadrature idea can be generalized also to higher order
moments or other output functionals, see [2, 3] for the details.
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Figure 1. Visualization of the multilevel quadrature.
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Analysis on convex subset of a Riemannian manifold and classical

polynomial approximation

Gerard Kerkyacharian

(joint work with P. Petrushev, Y. Xu)

It is a classical topic to look to orthonormal basis of polynomials on a compact
set X of Rd, with respect to some Radon measure µ. For exemple : the one
dimensional interval (Jacobi), the unit sphere (Spherical harmonics), the ball and
the simplex (work of Petrushev, Xu, ...) In this framework, one can be interested
in the best approximation of functions by polynomials of fixed degree, in Lp(µ),
and to built a suitable frame for characterization of function spaces related to
this approximation. This constructions have been carried using special functions
estimates.

We will be interested by spaces where the polynomials give the spectral spaces of
some positive selfadjoint operator. Under suitable conditions, a ”natural” metric
ρ could be defined on X such that (X, ρ, µ) is a homogeneous space, and if the
associated semi-group has a good ”Gaussian” behavior, then we could apply the
procedure developed in recent works by P. Petrushev, T. Coulhon and G.K., to
built such frames, and such function spaces.




