
A second order convergent trial method for a free
boundary problem in three dimensions

Monica Bugeanu
Department for Mathematics and Computer Science

Spiegelgasse 1, 4051 Basel, Switzerland
monica.bugeanu@unibas.ch

Helmut Harbrecht
Department for Mathematics and Computer Science

Spiegelgasse 1, 4051 Basel, Switzerland
helmut.harbrecht@unibas.ch

December 18, 2015

Abstract

The present article is concerned with the solution of a generalized Bernoulli free boundary
problem in three spatial dimensions. We parametrize the free boundary under consideration
over the sphere and apply a trial method which updates the free boundary into the normal di-
rection. At the free boundary, we prescribe the Neumann boundary condition and update the
free boundary with the help of the remaining Dirichlet boundary condition. An inexact Newton
update is employed which leads to a novel second order convergent trial method. Numerical
examples show the feasibility of the present approach. In particular, a parametric representation
is utilized which imposes no restriction to the free boundary under consideration except for its
genus.
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1 Introduction
The present article is devoted to the numerical solution of a free boundary problem of Bernoulli type
by a second order convergent trial method. Let S ⊂ R3 denote a bounded and simply connected
domain with boundary Σ := ∂S. Moreover, assume a second simply connected domain T ⊂ R3

with free boundary Γ := ∂T which contains the first domain, i.e. S ⊂ T . The resulting annular
domain is denoted by Ω := T \ S, see also Figure 1.1 for an illustration.
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Γk Σ

Figure 1.1: The interior boundary Σ and different approximations Γk to the sought free boundary Γ.

The free boundary problem now consists in finding a domain Ω and an associated function
u = u(Ω) ∈ H1(Ω) such that the following overdetermined problem is satisfied:

−∆u = f in Ω,

u = g on Σ, (1.1)

−∂u
∂n

= h, u = 0 on Γ.

Throughout this article, we will assume that g, h > 0 and f ≥ 0 are sufficiently smooth functions
on R3 such that u ∈ C2(Ω ∩ U) with U being a tubular neighbourhood of the free boundary Γ.
We like to stress that the positivity of the Dirichlet data at the interior boundary implies (due to the
maximum principle and the unique continuation property [23]) that u is positive on Ω and thus in
fact ∂u/∂n < 0.

The trial method is a fixed point iteration for the sought free boundary. For the current free
boundary, the solution of (1.1) is computed with one boundary condition at the free boundary and
the other boundary condition is used for updating the free boundary. Trial methods for Bernoulli’s
free boundary problem based on a parametrization of the free boundary have been proposed in
e.g. [1, 12, 35, 36]. Whereas, the level set method for representing the free boundary has been used
in [4, 5, 26], enjoying the property of allowing topology changes.

An alternative approach for solving free boundary problems is shape optimization, see e.g. [8, 9,
20, 21, 24, 32] and the references therein. In particular, in [15] a Newton method has been proposed
for three dimensional free boundary problems. The different reformulations of Bernoulli type free
boundary problems as shape optimization problems have been compared in [11]. We should finally
also mention the pseudo-solid approach as a further solution technique for computing the solution
of free boundary problems, see [22, 30, 37] for example.

The basic idea of the trial method which we propose in this article has been introduced and
analyzed in [16]. There, a trial method has been proposed whose convergence towards the optimal
solution is locally quadratic. Nevertheless, for sake of simplicity, we restricted ourselves to two-
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dimensional domains which are starlike and updated the free boundary only in the radial direction.
Contrary to this, we consider now arbitrary three-dimensional domains of genus zero which are
updated in the normal direction. This makes the trial method and the analysis different. In addition,
the algorithmic treatment is much more complicated in three spatial dimensions.

The proposed trial method imposes the Neumann boundary condition at the free boundary and
updates the free boundary according to the Dirichlet boundary condition. The particular update
corresponds to an inexact Newton update and involves the so-called local shape derivative. The
latter is a measure for the sensitivity when deforming the current computational domain by a given
perturbation field. It is a well known quantity in shape calculus, see e.g. [8, 27, 31, 32] and the
references therein.

We like to mention that a second order convergent trial method has already been proposed many
years ago in [12, 36]. It is based on a Robin boundary value problem which involves the mean cur-
vature of the free boundary. Unfortunately, if the free boundary becomes non-convex, this boundary
value problem is not elliptic any more and the trial method might diverge. This serious drawback is
avoided by the trial method used in this article.

Throughout this article, we will not consider the interesting question of existence of optimal so-
lutions. Instead, we will tacitly assume the existence of optimal domains, being sufficiently regular
to apply shape calculus. For the existence of solutions to the generalized exterior Bernoulli free
boundary problem (1.1), we refer the reader to e.g. [3], see also [12] for the related interior free
boundary problem. Results concerning the geometric form of the solutions can be found in [2] and
the references therein.

The outline of this article is as follows. Section 2 is dedicated to the trial method under consid-
eration. The discretization of the free boundary is the topic of Section 3. Then, in Section 4, we
discuss the efficient computation of the state by means of a fast wavelet based boundary element
method. In Section 5, we perform numerical experiments to demonstrate the feasibility of the trial
method. Finally, in Section 6, we state concluding remarks.

2 Trial method

2.1 Background and motivation
Throughout this article, we shall assume that the free boundary is of genus zero. Then, we can
identify the domain Ω with a parametrization γ : S → Γ of its free boundary Γ. Here, S = {x ∈
R3 : ‖x‖ = 1} denotes the three-dimensional unit sphere.

The trial method for the solution of the free boundary problem (1.1) is a fixed point method for
the unknown parametrization γ which reads as follows:

(1) Choose an initial guess Γ0 of the free boundary and set k = 0.

(2a) Solve the boundary value problem

−∆uk = f in Ωk,

uk = g on Σ,

−∂uk
∂nk

= h on Γk.

(2.1)
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(2b) Update the free boundary Γk by moving the old boundary into the normal direction nk:

γk+1 = γk + δknk. (2.2)

(3) Increase k 7→ k + 1 and repeat step (2) until the process becomes stationary up to a specified
accuracy.

The most common update rule δ(std)
k = Ψ(γk) ∈ C2(S) for calculating the update in (2.2) is deter-

mined in such a way that the desired homogeneous Dirichlet boundary condition is satisfied at the
new boundary Γk+1. This means that, given uk which satisfies (2.1), one makes the ansatz

uk ◦ γk+1
!

= 0 on S, (2.3)

where uk is assumed to be smoothly extended into the exterior of Ωk. The desired update is found
by linearizing uk ◦ γk+1 = uk ◦ (γk + δknk) with respect to the update function δk. This yields the
equation

0 = uk ◦ γk+1 ≈ uk ◦ γk +

(
∂uk
∂nk

◦ γk

)
δk. (2.4)

Inserting the Neumann boundary condition −∂uk/∂nk = h and solving for δk, we arrive at the
following condition for the standard update:

δ
(std)
k = Ψ(γk) :=

uk ◦ γk

h ◦ γk

: S→ R (2.5)

This update rule has been used in e.g. [12, 26, 36] and yields a first order convergent trial method
(see [36]). Notice that (2.5) is well defined since we assumed h > 0 to ensure the solvability of the
free boundary problem.

Remark 2.1. The update δ(std)
k from (2.5) is derived from the first order Taylor expansion (2.4).

Instead, a second order Taylor expansion can also be used which would lead to a more stable trial
method that, however, is also only first order convergent, cf. [16] for the details.

2.2 Shape sensitivity analysis
For sake of convenience, we skip the iteration index k and denote the free boundary just by Γ. The
associated annular domain is denoted by Ω. Given a sufficiently smooth boundary perturbation field
V : Γ→ R3, we can define the perturbed boundary Γε = Γε[V] by

Γε :=
{(

I + εV
)
(x) : x ∈ Γ

}
.

This boundary defines the perturbed domain Ωε.
Let u and uε denote the solutions of (2.1) with respect to the domains Ω and Ωε, i.e.,

−∆u = f in Ω, −∆uε = f in Ωε,

u = g on Σ, uε = g on Σ,

−∂u
∂n

= h on Γ, −∂uε
∂n

= h on Γε.

(2.6)



A second order convergent trial method 5

Then, the local shape derivative du = du[V] of u at Ω in the direction V is formally (see [27, 32]
for a rigorous derivation) obtained by the pointwise limit

du(x) = lim
ε→0

uε(x)− u(x)

ε
, x ∈ Ω ∩ Ωε.

The local shape derivative measures the sensitivity of the solution to (2.1) when changing the domain
Ω in the direction V.

In accordance with [8, 32], the local shape derivative can be characterized by a boundary value
problem.

Lemma 2.2. Given a sufficiently smooth boundary perturbation field V : Γ→ R3. Then, the local
shape derivative du = du[V] of the boundary value problem (2.1) is given as the solution of the
problem

∆ du = 0 in Ω

du = 0 on Σ

∂du

∂n
=

[
f − 2Hh− ∂h

∂n

]
〈V,n〉+ divΓ

(
〈V,n〉∇Γu

)
on Γ.

(2.7)

Note that the operator divΓ denotes the surface divergence, the operator ∇Γ denotes the surface
gradient, and H denotes the mean curvature of the surface Γ. For more details concerning shape
sensitivity analysis, we address the reader to [8, 27, 28, 32].

2.3 Speeding up the convergence
We shall go back to the trial method (2.2) and the update rule (2.5). Clearly, this trial method
converges if δ(std)

k = Ψ(γk)→ 0 as k →∞. Hence, in order to arrive at a second order convergent
trial method, we intend to directly solve the equation

Ψ(γk)
!

= 0 on S (2.8)

by a Newton-type method. To that end, we prove first the following theorem.

Theorem 2.3. The shape derivative of the update function

Ψ(γ) :=
u ◦ γ
h ◦ γ .

in the direction V = δn is given by

∂Ψ

∂(δn)
(γ) = −δ − δ u ◦ γ

(h ◦ γ)2

(
∂h

∂n
◦ γ
)

+
du[δn] ◦ γ
h ◦ γ , (2.9)

where du = du[δn] is the local shape derivative (2.7) in the direction V = δn.

Proof. Let the actual boundary Γ be described by γ and let the perturbed boundary be described by
γε = γ + εδn. Let u and uε denote the solutions to the underlying boundary value problems (2.6)
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relative to the domains Ω and Ωε. Then, we have

∂Ψ

∂(δn)
(γ) = lim

ε→0

Ψ(γε)−Ψ(γ)

ε

= lim
ε→0

1

ε

(
uε ◦ γε

h ◦ γε

− u ◦ γ
h ◦ γ

)
= lim

ε→0

1

ε

([
uε ◦ γε

h ◦ γε

− uε ◦ γ
h ◦ γε

]
+

[
uε ◦ γ
h ◦ γε

− uε ◦ γ
h ◦ γ

]
+

[
uε ◦ γ
h ◦ γ −

u ◦ γ
h ◦ γ

])
= A+B + C.

Computing the limit of the first term on the right hand side gives

A = lim
ε→0

1

ε

uε ◦ γε − uε ◦ γ
h ◦ γε

=
〈∇u, δn〉
h ◦ γ = δ

∂u
∂n
◦ γ

h ◦ γ .

By inserting the Neumann boundary condition −∂u/∂n = h, we arrive at A = −δ. Next, we
compute the limit of the second term on the right hand side:

B = lim
ε→0

1

ε

(
uε ◦ γ
h ◦ γε

− uε ◦ γ
h ◦ γ

)
= − u ◦ γ

(h ◦ γ)2
〈∇h, δn〉 = −δ u ◦ γ

(h ◦ γ)2

(
∂h

∂n
◦ γ
)
.

Finally, with the help of the local shape derivative, the limit of the last term on the right hand side
is given by

C = lim
ε→0

1

ε

uε ◦ γ − u ◦ γ
h ◦ γ = lim

ε→0

1

ε

(uε − u) ◦ γ
h ◦ γ =

du[δn] ◦ γ
h ◦ γ ,

see e.g. [8, 32] for the details. By putting all together, we arrive at the desired derivative (2.9).

As a consequence of this theorem, the Newton method can be applied to solve the equation (2.8).
Nevertheless, in view of the Dirichlet boundary condition u = 0 at the sought free boundary, the
second term in the shape derivative (2.9) of the update function vanishes at the optimum boundary.
Hence, we can simplify the Newton method by determining the inexact Newton update δ(scd)

k which
is implicitly given by

δ
(scd)
k − duk[δ

(scd)
k nk] ◦ γk

h ◦ γk

!
= Ψ(γk). (2.10)

Since the neglected term is of second order in the size of the desired update, the resulting inexact
Newton method will also converge (locally) quadratically to the sought free boundary, see, e.g.,
[13]. Nevertheless, we emphasize that the update (2.10) coincides with the Newton update if the
field h is constant. This holds for example in case of Bernoulli’s original free boundary problem.

3 Discretization of the free boundary

3.1 Finite dimensional surface representation
We shall first introduce the spherical harmonics. For n ∈ N0 and |m| ≤ n, consider the Legendre
polynomials

Pn(t) :=
1

2nn!

( d

dt

)n
(t2 − 1)n, t ∈ R,
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and the associated Legendre functions

P |m|n (t) := (1− t2)|m|/2
( d

dt

)|m|
Pn(t), t ∈ R.

Then, the spherical harmonics Y m
n : S→ R are given by

Y m
n (x̂) :=

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)!P

|m|
n (x̂3)

{
Re
(
(x̂1 + ix̂2)m

)
, m ≥ 0,

Im
(
(x̂1 + ix̂2)m

)
, m < 0.

Since the spherical harmonics form an orthonormal basis of the Hilbert space of square-integrable
functions defined on the unit sphere, each coordinate of the parametrization can be represented by
a Fourier series which leads to the representation

γ(x̂) =
∞∑
n=0

n∑
m=−n

am,nY
m
n (x̂), x̂ ∈ S, (3.1)

with certain vector valued coefficients am,n ∈ R3. Hence, it is reasonable to take the truncated
series

γN(x̂) =
N∑

n=0

n∑
m=−n

am,nY
m
n (x̂), x̂ ∈ S, (3.2)

as an approximation of γ.
Notice that the representations (3.1) and (3.2), respectively, are not unique. Indeed, if Ξ :

S→ S denotes any smooth diffeomorphism, then the composed function γN ◦ Ξ describes another
parametrization of Γ. For the purpose of numerical computations, some parametrizations are prefer-
able to others. In order to discretize functions on the free boundary, we will use in Subsection 3.4
the parametrization (3.2) to map a subdivision of the parameter space S to the actual boundary Γ.
From this point of view it is obvious that, for numerical computations, a “nice” parametrization
maps a uniform and regularly shaped mesh of the reference surface S to a uniform and regularly
shaped mesh on Γ. Therefore, we will introduce in Subsection 3.5 a suitable mesh functional M(Γ)
to monitor the quality of the mesh and apply from time to time a remeshing step to construct an
appropriate re-parametrization of the free boundary, if necessary.

3.2 Computing the updates
Let

γ
(k)
N (x̂) =

N∑
n=0

n∑
m=−n

a(k)
m,nY

m
n (x̂), x̂ ∈ S,

be the parametrization of the current free boundary Γk. To compute the new parametrization, we
have to project the update δknk computed by either (2.5) or (2.10) into the finite representation (3.2).
Since the spherical harmonics are orthonormal, we find for the update

γ
(k+1)
N (x̂) =

N∑
n=0

n∑
m=−n

a(k+1)
m,n Y m

n (x̂)

=
N∑

n=0

n∑
m=−n

[
a(k)
m,n + (δknk, Y

m
n )L2(S)

]
Y m
n (x̂), x̂ ∈ S.
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γ−→

Figure 3.2: Parametric representation of Γ with quadrangular mesh on refinement level 4.

This means that the new coefficients {a(k+1)
m,n } are obtained as the componentwise best approxima-

tion of γ(k)
N + δknk with respect to the inner product in L2(S).

3.3 Solving the second order update equation

The second order update δ(scd)
k is given implicitly by the linear equation (2.10). To efficiently com-

pute the sought update, we perform a Galerkin discretization of (2.10) by means of spherical har-
monics: Seek δk =

∑N
n=0

∑m
n=−m b

m
n Y

m
n such that

(I−A)b = f ,

A =

[(
duk[Y m

n ]◦γk

h◦γk
, Y m′

n′ ]
)
L2(S)

]
(n,m),(n′,m′)

, f =
[
(Ψ(γk), Y m

n ])L2(S)

]
(n,m)

,
(3.3)

where the vector b = [bmn ](n,m) contains the unknown coefficients. This system of linear equations
is solved by the GMRES method, introduced in [29]. In particular, in our numerical realization, we
never assemble the system matrix but implement the matrix-vector product.

3.4 Surface parametrization by quadrangular patches
We shall assume that the boundary manifolds Γ and Σ are given as parametric surfaces consisting
of smooth patches. More precisely, let � := [0, 1]2 denote the unit square. The manifold Γ ∪ Σ is
partitioned into a finite number of patches

Γ ∪ Σ =
M⋃
i=1

Γi, Γi = κi(�), i = 1, 2, . . . ,M,

where each κi : � → Γi defines a diffeomorphism of � onto Γi. The intersection Γi ∩ Γi′ , i 6= i′,
of two patches Γi and Γi′ is assumed to be either ∅, or a common edge, or a common vertex. A
quadrangular mesh on the surface Γ ∪ Σ is then obtained by mapping a quadrangulation of � to
Γ ∪ Σ via parametrization.
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The construction of the parametric representation of the moving boundary Γ should be presented
in more detail. To that end, it suffices to construct such a parametrization for the reference manifold
S which is then mapped to Γ by γ: The surface of the cube [−0.5, 0.5]3 consists of six patches. Each
point x ∈ ∂([−0.5, 0.5]3) can be lifted onto the boundary Γ via the operation

y(x) = γ

(
x

‖x‖

)
∈ Γ. (3.4)

In this manner, the surface Γ is subdivided into M = 6 patches. The parametric representations
κi : �→ Γi can easily be derived from (3.4). We refer to Fig. 3.2 for an illustration of the proposed
parametric representation and mesh generation.

3.5 Improvement of the mesh quality
We shall specify the remeshing procedure as already used in [18]. A “nice” parametrization maps
orthonormal tangents with respect to the unit cube onto orthogonal tangents of length ≈ |Γ|/6 with
respect to the boundary Γ. This means, that the first fundamental tensor of differential geometry,
given by

Ki(s) =

[〈∂κi

∂xj
(s),

∂κi

∂xk
(s)
〉]

j,k=1,2

, s = [s1, s2]T ∈ �,

satisfies Ki ≈ |Γ|/6 · I. Hence, the remeshing procedure will be based on the mesh functional

M(Γ) =
6∑

i=1

∫
�

∥∥∥∥Ki(s)−
|Γ|
6
· I
∥∥∥∥2

F

ds. (3.5)

Based on the observation that the gradient of M(Γ) with respect to the variable s is tangential, we
may perform several gradient steps to minimize this mesh functional to increase the quality of the
mesh.

4 Solving the state equation

4.1 Boundary integral equations
We will next discuss the numerical solution of (2.1) by means of a boundary element method. To
that end, for sake of convenience, we skip the iteration index k in the present section. We first
introduce a Newton potential Nf satisfying

−∆Nf = f in Ω. (4.1)

The Newton potential is assumed to be explicitly known or to be computed with sufficiently high
accuracy. The latter one has to be done only once in advance of the optimization process. The
underlying domain needs to be large enough to ensure that Ω stays within it. However, it can be
chosen fairly simple such that fast solvers are available.

The ansatz
u = Nf + v (4.2)
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reduces the state equation (2.1) to a mixed problem for the Laplacian

∆v = 0 in Ω,

v = g −Nf on Σ,

− ∂v
∂n

= h+
∂Nf

∂n
on Γ.

(4.3)

We shall next introduce the single layer operator and the double layer operator with respect to
the boundaries Φ,Λ ∈ {Γ,Σ} by

(VΦΛu)(x) :=
1

4π

∫
Λ

1

‖x− y‖u(y) dσy, x ∈ Φ,

(KΦΛu)(x) :=
1

4π

∫
Λ

〈x− y,ny〉
‖x− y‖3

u(y) dσy, x ∈ Φ.

Note that VΦΛ denotes an operator of order −1 if Φ = Λ, i.e. VΦΦ : H−1/2(Φ) → H1/2(Φ), while
it is an arbitrarily smoothing compact operator if Φ 6= Λ since dist(Γ,Σ) > 0. Likewise, if Σ,Γ
are C2-smooth, the double layer operator KΦΦ : L2(Φ) → L2(Φ) is compact while it is arbitrarily
smoothing if Φ 6= Λ. We refer the reader to [14, 25, 33] for a detailed description of boundary
integral equations.

The unknown boundary data of v are determined by[
−VΣΣ KΣΓ

−VΓΣ
1
2

+KΓΓ

] [
∂v
∂n

∣∣
Σ

v|Γ

]
=

[
−(1

2
+KΣΣ) VΣΓ

−KΓΣ VΓΓ

] [
(g −Nf )

∣∣
Σ

−(h+
∂Nf

∂n
)
∣∣
Γ

]
. (4.4)

The boundary integral operator on the left hand side of this coupled system of boundary integral
equations is continuous and satisfies a Gårding inequality with respect to H−1/2(Σ)×L2(Γ). Since
its injectivity follows from potential theory, this system of integral equations is uniquely solvable
according to the Riesz-Schauder theory.

Likewise to (4.4), the unknown boundary data of the local shape derivative du = du[δ], defined
in (2.7), are derived by the boundary integral equation[

−VΣΣ KΣΓ

−VΓΣ
1
2

+KΓΓ

] [
∂ du
∂n

∣∣
Σ

du|Γ

]
=

[
−(1

2
+KΣΣ) VΣΓ

−KΓΣ VΓΓ

] [
0{

δ
[
f − 2Hh− ∂h

∂n

]
+ divΓ(δ∇Γu)

} ∣∣
Γ

]
.

(4.5)

We would like to point out that the boundary integral operators are identical to those in (4.4) but the
input data are different.

4.2 Wavelet based boundary element methods
We shall introduce the wavelet Galerkin method to solve the boundary integral equations (4.4) and
(4.5). As a crucial ingredient, we need a hierarchy of trial spaces Vj ⊂ Vj+1 ⊂ L2(∂Ω). Such
spaces can be constructed employing the parametric representation of the boundary.

We introduce a mesh of level j on the unit square by dyadic subdivisions of depth j into 4j

squares. On this mesh we consider piecewise bilinear nodal basis functions {ϕ�
j,k : k ∈ 4�

j }, where
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4�
j denotes a suitable index set satisfying |4�

j | = (2j + 1)2. We define a set of basis functions on
the surface Γ via parametrization

ϕΓi
j,k(x) :=

{
ϕ�
j,k

(
s), x = γi(s) ∈ Γi,

0, elsewhere,

where i = 1, 2, . . . ,M . Glueing along the interfaces of the patches yields continuous bilinear ansatz
functions {ϕ∂Ω

j,k : k ∈ 4j}, where |4j| ∼M · 4j . Obviously, the trial spaces

Vj := span{ϕ∂Ω
j,k : k ∈ 4j} ⊂ H1(∂Ω)

are nested with respect to j.
To obtain the Galerkin formulation of (4.4), we introduce for Φ,Λ ∈ {Σ,Γ} the system matrices

VΦΛ =
[
(VΦΛϕ

Λ
j,k′ , ϕ

Φ
j,k)L2(Φ)

]
k,k′
, KΦΛ =

[
(KΦΛϕ

Λ
j,k′ , ϕ

Φ
j,k)L2(Φ)

]
k,k′
,

the mass matrices
GΦ =

[
(ϕΦ

j,k′ , ϕ
Φ
j,k)L2(Φ)

]
k,k′
,

and the load vectors

fΣ =
[
(g −Nf , ϕ

Σ
j,k)L2(Σ)

]
k
, fΓ =

[
−
(
h+

∂Nf

∂n
, ϕΓ

j,k

)
L2(Γ)

]
k

.

This leads to the boundary element method[
−VΣΣ KΣΓ

−VΓΣ
1
2
GΓ + KΓΓ

] [
vΣ

vΓ

]
=

[
−(1

2
GΣ + KΣΣ) VΣΓ

−KΓΣ VΓΓ

] [
G−1

Σ fΣ
G−1

Γ fΓ

]
(4.6)

which approximates the Dirichlet data v|Γ ≈
∑

k[vΓ]k ϕ
Γ
j,k at the free boundary Γ and the Neumann

data (∂v/∂n)|Γ ≈
∑

k[vΣ]k ϕ
Σ
j,k at the interior boundary Σ. The sought Dirichlet and Neumann

boundary data of the local shape derivative are computed in complete analogy where, by applying
integration by parts, the load vector is given by

fΣ = 0, fΓ =

[(
δ
[
f − 2Hh− ∂h

∂n

]
, ϕΓ

j,k

)
L2(Γ)

−
(
δ∇Γu,∇Γϕ

Γ
j,k

)
L2(Γ)

]
k

.

Unfortunately, the system matrices VΦΛ and KΦΛ in (4.6) are densely populated. Moreover, the
system matrix VΦΦ becomes more and more ill-conditioned when the level j of resolution increases.
Thus, we end up with an at least quadratic complexity for computing the approximate solution of
(4.3), i.e., the computational work scales at least like O(|4j|2).

Instead of the single-scale basis {ϕ∂Ω
j,k : k ∈ 4j}, we will employ appropriate biorthogonal

spline wavelets for the discretization of the boundary integral operators. Then, we obtain quasi-
sparse system matrices having only O(|4j|) relevant matrix coefficients. Moreover, due to the
norm equivalences of wavelet bases, an appropriate scaling of the bases yields a well-conditioned
system of linear equations (cf. [7]). Applying the matrix compression strategy developed in [6] com-
bined with an exponentially convergent hp-quadrature method [17], the wavelet Galerkin method
produces the approximate solution of (4.3) within underlying discretization error accuracy in linear
complexity.
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5 Numerical results

5.1 First example
We will present numerical results which demonstrate the feasibility and efficiency of the second or-
der convergent trial method that has been introduced in the previous sections. For our first example,
let the interior domain S be the L-shape

S = ([−0.5, 0.5]× [−1, 1]2) \ ([−0.5, 0.5]× [0, 1]2)

and consider the following free boundary problem: Find the free boundary Γ with associated solu-
tion u = u(Γ) such that it holds

−∆u = 1 in Ω,

u = 1 on Σ,

−∂u
∂n

= h, u = 0 on Γ.

The constant field h will vary in the example according to h ≡ 1, 2, 3, 4, 5. Notice that this example
coincides with that from [10, 15], where first and second order shape optimization algorithms have
been used for its solution.

For the problem under consideration, the inexact Newton update (2.10) coincides with the New-
ton update (2.9) since h is constant and thus ∂h/∂n ≡ 0. Hence, the second order convergent trial
method constitutes the Newton method. In addition to the results of the second order convergent trial
method, we shall also present results of the first order convergent trial method which uses the update
(2.5), multiplied by the damping factor 0.1 to enforce convergence. It corresponds to the standard
method, cf. [12, 36] and the references therein, and has been applied for sake of comparison.

The surface of the L-shape is parametrized via 10 patches which yields, together with the 6
patches for the representation of the free boundary, 16 surface patches in all. The state equation
is then discretized on refinement level 4 which yields about 4 500 piecewise bilinear boundary ele-
ments, cf. Section 4. The particular Newton potential we use is analytically given by Nf (x, y, z) =
−(x2 + y2 + z2)/6. To approximate the free boundary, we use the first 100 spherical harmonics
per coordinate of the parametrization, that is, harmonic polynomials up to order N = 10 can be
represented exactly. In accordance with (3.2), this yields 300 design parameters in all. Furthermore,
we apply 400 spherical harmonics for the Galerkin scheme (3.3) to compute the inexact Newton
update.

In all calculations, the sphere of radius 4 has been used as an initial guess for the free boundary.
The computed free boundaries and the underlying mesh are presented in Figure 5.3 for h = 2 and in
Figure 5.4 for h = 4. The results are in good agreement with those presented in [10, 15]. Figure 5.5
shows in addition all the converged boundaries for h = 1, 2, 3, 4, 5. Here, it is clearly seen that
the free boundary approaches the interior L-shape as h increases. Note that the mesh quality was
always good during the iterative solution procedure for both trial methods such that remeshing has
never been necessary.

As seen in Figure 5.6, the first order convergent trial method converges very slowly while the
second order convergent trial method needs at most 8 iterations to produce updates of the free
boundary whose norm is always less than 10−3. For the latter one, there are required in addition
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8–10 iterations of the GMRES method per step to solve the update equation (2.10). This means that
at most 10 times the local shape derivative (2.7) has to be determined. Nevertheless, its determina-
tion is cheap compared to the assembling of the system (4.6) of linear equations which has to be
performed once per iteration step of both trial methods. In that sense, the speed-up of the second
order convergent trial method is essentially proportional to the reduction of the number of iterations
of the trial method.

Figure 5.3: The free boundary of the first example in case of h = 2.

Figure 5.4: The free boundary of the first example in case of h = 4.

All computations have been carried out on a single processor of a computing server with 12
Intel(R) Xeon(R) E5-2643 CPUs with a clock rate of 2.6 GHz and 256 GB main memory. The
algorithm needs about 40 seconds per iteration step. Hence, the free surface computation by the
second order convergent trial method consumes about five minutes computing time in all.



14 M. Bugeanu and H. Harbrecht

Figure 5.5: The boundaries of the first example in case of h = 1, 2, 3, 4, 5 (from outside to inside).
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Figure 5.6: Histories of the norm of the update (left) and of the mismatch of the desired Dirichlet
datum (right) in case of the first example.

5.2 Second example
For our second example, let the interior domain S be the U-shape

S = ([−0.5, 0.5]× [−1.5, 1.5]× [−1, 1]) \ ([−0.5, 0.5]× [−0.5, 0.5]2),

whose surface is represented via 14 patches. We consider Bernoulli’s original free boundary prob-
lem, i.e., we seek the free boundary Γ with associated solution u = u(Γ) such that it holds

∆u = 0 in Ω,

u = 1 on Σ,

−∂u
∂n

= h, u = 0 on Γ.

The field h is again constant and varies according to h ≡ 1, 2, 3. Consequently, the inexact Newton
update used in the second order convergent trial method coincides again with the Newton update.
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To resolve the free boundary sufficiently accurate, we need to use Fourier series of length 400
for the representation of each coordinate of the parametrization, that is, harmonic polynomials up
to order 20 can be represented exactly. Hence, we have 1 200 design parameters in all. When using
only Fourier series of length 100 in each coordinate like in the first example, we have not been
able to resolve the geometric details of the free boundary in case of h = 3, see also Figure 5.8.
The increase of accuracy in the boundary representation requires also an increase in the level of
resolution in the discretization of the boundary integral equation. Thus, on level 5, we have about
22 000 piecewise bilinear boundary elements to discretize the domain’s surface. For the Galerkin
scheme (3.3), we apply 1 600 spherical harmonics. These settings result in a computing time of
about 10 minutes per iteration of the first or second order convergent trial method on a node with
Intel(R) Xeon(R) E5-2670 CPU at a clock rate of 2.6 GHz and 256 GB main memory.

Figure 5.7: The free boundary of the second example in case of h = 1.

Figure 5.8: The free boundary of the second example in case of h = 3.
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The results of our simulation are shown in Figure 5.7 for h = 1 and in Figure 5.8 for h = 3.
For comparison reasons, in Figure 5.9, the cross sections through the converged free boundaries
for h = 1, 2, 3 are presented. The mesh quality was always very good during the iteration steps of
the first and second order convergent trial method such that there was again no need for remeshing.
Also, same as before, the second order convergent trial method converges much faster than the first
order convergent trial method, as seen in Figure 5.10, where the histories of the norm of the update
and the mismatch to the desired homogeneous Dirichlet datum are plotted. We observe that the
second order convergent trial method requires only about 5 iterations of about 10 minutes to have
updates whose norms are always less than 10−3. Compared to this, the first order convergent trial
method requires about 10 times as many iterations. Hence, the use of the second order convergent
trial method results in a speed-up by a factor of at least ten, which means less than 1 hour computing
time versus more than 10 hours computing time.

Figure 5.9: The boundaries of the second example in case of h = 1, 2, 3 (from outside to inside).
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Figure 5.10: Histories of the norm of the update (left) and of the mismatch of the desired Dirichlet
datum (right) in case of the second example.
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5.3 Third example

By the last example presented here, we intend to demonstrate that the algorithm can also be applied
to the case of a multiply connected, interior domain. The domain is chosen as the union of four
single spheres as follows:

S = {(x, y, z)|(x− 0.5)2 + (y − 0.5)2 + z2 ≤ 0.52}
∪ {(x, y, z)|(x+ 0.5)2 + (y − 0.5)2 + z2 ≤ 0.52}
∪ {(x, y, z)|(x+ 0.5)2 + (y + 0.5)2 + z2 ≤ 0.52}
∪ {(x, y, z)|(x− 0.5)2 + (y + 0.5)2 + z2 ≤ 0.52}.

The problem that we are looking at is the following free boundary problem:

∆u = 0 in Ω,

u = 1 on Σ,

−∂u
∂n

= h
(
1.5− e−x

2/10
)
, u = 0 on Γ.

Similar to the first two examples, we will vary the intensity of the field by choosing the constant
according to h ≡ 1, 2, 3, 4, 6, 8, 9, 10, 12, 14. Since the field is not constant any more, the inexact
Newton update (2.10) is indeed different from the Newton update (2.9). Thus, the second order trial
method does not coincide with the Newton method in the present situation.

In the simulation, we will again use a Fourier series of length 400 as in the second example,
which means that we can represent polynomials up to degree 20 exactly. The surface of each sphere
is parametrized via 6 patches, which leads to 30 patches in all. The boundary integral equation
was discretized on refinement level 5, resulting in about 32 500 bilinear boundary element ansatz
functions. The initial guess for the free boundary is always the ball with radius 3 and the damping
factor for the standard update has been set to 0.05.

Figure 5.11: The free boundary of the third example in case of h = 3.
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Figure 5.12: The free boundary of the third example in case of h = 6.

Figure 5.13: The free boundary of the third example in case of h = 12.

The free boundaries in case of h = 3 can be seen in Figure 5.11, h = 6 in Figure 5.12, and
h = 12 in Figure 5.13, respectively. Additionally, Figure 5.14 contains the cross sections through
all the free boundaries for h = 1, 2, 3, 4, 6, 8, 9, 10, 12 and h = 14. There was again no need
for remeshing for both, the first and the second order convergent trial method. The second order
convergent trial method takes about 3–5 iterations until the norm of the update is smaller than 10−3,
while the first order convergent trial method takes more than 10 times more iterations. The norm of
the update and the error in the Dirichlet data at the free boundary can be seen in Figure 5.15. The
simulation was done on the same machine as in the first example and consumed computing times of
about 8 minutes per iteration for both, the first and the second order convergent trial method. Since
the iteration time is basically the same, the speed-up obtained by using the second order convergent
trial method is proportional to the number of iterations spared.
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Figure 5.14: The boundaries of the third example in case of h = 1, 2, 3, 4, 6, 8, 9, 10, 12 and h = 14
(from outside to inside).
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Figure 5.15: Histories of the norm of the update (left) and of the mismatch of the desired Dirichlet
datum (right) in case of the third example.

6 Conclusion
In this article, we presented a second order convergent trial method for the solution of free boundary
problems. The method coincides with the Newton method if the prescribed Neumann data are
constant. Otherwise, it coincides with an inexact Newton method. The method has been introduced
in [16] in case of starlike domains in two spatial dimensions and boundary updates in the radial
direction. Here, we provided its realization for arbitrary domains in three spatial dimensions and
boundary updates in the normal direction. Numerical experiments validated the feasibility and the
second order convergence of this trial method.
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