edoc

Conformational analysis of self-organized monolayers with scanning tunneling microscopy at near-atomic resolution

Scherer, L. J. and Merz, L. and Constable, Edwin C. and Housecroft, Catherine E. and Neuburger, M. and Hermann, B. A.. (2005) Conformational analysis of self-organized monolayers with scanning tunneling microscopy at near-atomic resolution. Journal of the American Chemical Society, 127 (11). pp. 4033-4041.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/39193/

Downloads: Statistics Overview

Abstract

We describe the synthesis and a novel approach to the conformational analysis of 2,2`-bipyridines (bpy) bearing aromatic rich Frechet-type dendritic wedges of the first and second generation as substituents. The evaporation of solutions of these new ligands on graphite surfaces under ambient conditions results in the formation of self-organized monolayers. Scanning tunneling microscopy (STM) investigations of the monolayers under ambient conditions (air, 298 K) gave images at submolecular and near-atomic resolution. The analysis of the STM images includes the following processes: (i) identification and reproduction of potential homoconformational domains, (ii) exclusion of improper data using quality criteria for drift and feedback artifacts, (iii) compilation of running averages and checking for averaging artifacts, (iv) analysis of three-dimensional and contour plots, (v) calculation of the HOMO properties of the free molecules, and (vi) final conformational assignment based on all accessible information. Following this procedure, two different conformations could be assigned to domains observed in the monolayers of the first-gene ration (G1) and second-generation (G2) dendritic compounds. Homoconformational domains are observed side-by-side. The different conformations arise from syn or anti arrangements at the ether substituents. An additional conformational effect is found upon treating the G1 domains with HCl gas, when a partial rearrangement of the bpy from trans to cis occurs, concomitant with protonation.
Faculties and Departments:05 Faculty of Science > Departement Chemie > Former Organization Units Chemistry > Anorganische Chemie (Constable)
05 Faculty of Science > Departement Chemie > Former Organization Units Chemistry > Anorganische Chemie (Housecroft)
UniBasel Contributors:Constable, Edwin Charles
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Chemical Society
ISSN:0002-7863
e-ISSN:1520-5126
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
Last Modified:12 Apr 2017 08:36
Deposited On:03 Feb 2016 09:09

Repository Staff Only: item control page