edoc

Effect of acute acidosis and alkalosis on leucine kinetics in man

Straumann, E. and Keller, U. and Kury, D. and Bloesch, D. and Thelin, A. and Arnaud, M. J. and Stauffacher, W.. (1992) Effect of acute acidosis and alkalosis on leucine kinetics in man. Clinical physiology, Vol. 12, H. 1. pp. 1-7.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A6419933

Downloads: Statistics Overview

Abstract

The effects of acute pH changes on whole body leucine kinetics (1-13C-leucine infusion technique) were determined in normal subjects. Plasma insulin, glucagon, and growth hormone concentrations were kept constant by somatostatin and replacement infusions of the three hormones. When acidosis was produced by ingestion of NH4Cl (4 mmol kg-1 p.os; n = 8) arterialized pH decreased within 3 h from 7.39 +/- 0.01 to 7.31 +/- 0.01 (P less than 0.001) and leucine plasma appearance increased by 0.13 +/- 0.04 mumol kg-1 min-1 (P less than 0.02); in contrast, when alkalosis was produced by intravenous infusion of 4 mmol kg-1 NaHCO3 (n = 7, pH 7.47 +/- 0.01), leucine plasma appearance decreased by -0.09 +/- 0.04 mumol kg-1 min-1 (P less than 0.01 vs. acidosis). Whole body leucine flux also increased during acidosis compared to alkalosis (P less than 0.05), suggesting an increase in whole body protein breakdown during acidosis. Apparent leucine oxidation increased during acidosis compared to alkalosis (P = 0.05). Net forearm leucine exchange remained unaffected by acute pH changes. Plasma FFA concentrations decreased during acidosis by -107 +/- 67 mumol l-1 (P less than 0.05) and plasma glucose increased by 1.90 +/- 0.25 mmol l-1 (P less than 0.02); in contrast, alkalosis resulted in an increase in plasma FFA by 83 +/- 40 mumol l-1 (P less than 0.02; P less than 0.01 vs. acidosis), suggesting an increase in lipolysis; plasma glucose decreased compared to acidosis (P less than 0.01). The data demonstrate that acute metabolic acidosis and alkalosis, as they occur in clinical conditions, influence protein breakdown, and in the opposite direction, lipolysis.
Faculties and Departments:03 Faculty of Medicine > Departement Biomedizin > Former Units at DBM > Metabolism (Keller/Müller)
03 Faculty of Medicine > Bereich Medizinische Fächer (Klinik) > Ehemalige Einheiten Medizinische Fächer (Klinik) > Klinische Endokrinologie (Keller)
03 Faculty of Medicine > Departement Klinische Forschung > Bereich Medizinische Fächer (Klinik) > Ehemalige Einheiten Medizinische Fächer (Klinik) > Klinische Endokrinologie (Keller)
UniBasel Contributors:Keller, Ulrich O.
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Blackwell
ISSN:0144-5979
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:04 Sep 2015 14:32
Deposited On:04 Sep 2015 14:32

Repository Staff Only: item control page