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I. Summary 

Tumors are heterogeneous organ-like tissues including not only tumor cells themselves but also 

auxiliary cells such as, endothelial cells, fibroblasts, inflammatory cells, and bone marrow 

derived stem or stromal cells (BMSCs), which collectively create the surrounding 

microenvironment also referred to as stromal compartment. By now the active role of the tumor-

stroma in driving the dissemination phase and the following engraftment of tumor cells in 

secondary organs is widely accepted. Indeed, the perpetual activation of stromal cells is 

extended beyond the local primary tumors and they can take part in preparing a permissive 

environment at distant anatomic sites by providing oxygen and nutrients essential for tumor 

growth and invasion. 

Tenascin-W (TNW) is a matricellular protein with a dynamically changing pattern of expression 

during development and disease. Its pronounced presence in developing bones implies a 

function in osteogenesis. In adults, tenascin-W is mostly restricted to stem cell niches, and is 

also expressed in the microenvironment of solid cancers. These distinct expression patterns 

imply a complex regulation of tenascin-W gene expression at the transcriptional level. Here we 

analyzed tenascin-W expression in a xenograft model of breast cancer metastasis to the bone. 

Quantitative mRNA analysis revealed an upregulation of tenascin-W in mouse osteoblast 

populations sorted from bones harboring human breast cancer metastases. Long bone sections 

containing metastases exhibit expression of mouse tenascin-W protein proving that tenascin-W 

is supplied by the metastatic niche and not by the tumor cells. Transwell and co-culture studies 

show that bone marrow stem cells (BMSCs) express tenascin-W protein after exposure to 

factors secreted by MDA-MB231-1833 breast cancer cells. These findings prompted us to 

investigate the cis and trans-acting elements that drive tenascin-W                   . 5’RAC  

analysis of mRNA from human breast cancer, glioblastoma, and bone tissue showed a single 

tenascin-W transcript with a transcription start site (TSS) at a non-coding first exon upstream of 

exon2, which contains the translation start codon (ATG). The promoter region between -957bp 

and -79bp influences transcription and the minimal promoter sequence is contained within 79bp 

from the TSS. Computational analysis shows the presence of Smad4 nuclear transcription factor 

binding site at -61bp from the TSS in proximity of a TATA box sequence. Site-directed 

mutagenesis of the Smad4-binding site strongly impaired the SEAP reporter gene expression 

driven by the basal promoter. Furthermore, we found three evolutionary conserved regions in 

the first intron harboring glucocorticoid response elements (GRE), which negatively affect 
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transcription initiation from the basal promoter (-79bp). Therefore, we assessed whether TGF1 

and glucocorticoids (GCs) act on tenascin-W gene expression in the tumor context. We 

identified TGF1 as an important factor inducing human tenascin-W gene transcription in 

BMSCs through activation of ALK5. Preincubation of BMSCs with the ALK5 inhibitor, SB431542, 

abolished tenascin-W induction by TGF1. Moreover, GCs impaired tenascin-W mRNA 

expression in BMSCs. Finally, recombinant tenascin-W protein stimulated MDA-MB231-1833 

cell proliferation and migration in vitro assays. Our experiments suggest that tenascin-W acts as 

a niche component for breast cancer metastasis to the bone by supporting cell migration and 

cell proliferation of the breast cancer cells. 

The analysis of the tumor bed contribution to cancer progression is a new frontier to unravel. It 

will lead to novel approaches to interfere with mechanism implicated in drug resistance, tumor 

relapse and metastatic spread.   
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II. Introduction  

Cellular pathways are controlled by a multitude of diverse intercellular communication 

processes. In multicellular organisms, the exchange of signals often depends on the 

compartment outside of cells, which provides a behavioral code to cells that interact with it. 

Indeed, different cell types such as fibroblasts, endothelial cells and immune cells within the 

tissue microenvironment are embedded in a complex meshwork of non-cellular components 

called extracellular matrix (ECM) made up from glycosaminoglycans (GAGs), collagens, 

glycoproteins, and proteoglycans (PGs). The ECM defines the fundamental spatial organization 

of the cell, contributing for instance to the apical-basal configuration of epithelial cells. Among 

several functions, the apico-basal orientation is pivotal for the asymmetric division of epithelial 

stem cells and lack of polarity contributes to the switch into symmetric divisions, resulting in 

stem cell-derived tumors (1). Cell-cell adhesion occurs through the lateral cell domain, which 

presents intercellular junctions, whereas hemidesmosomes anchor the cell to the extracellular 

matrix of the basal lamina. The latter is attached to the external, fibrillar reticular layer, together 

making up the basement membrane (BM), which includes several macromolecules such as type 

IV collagen, laminin, fibronectin, nidogen, agrin, perlecan and heparin sulfate proteoglycans (2-

4). All these ECM ligands ensure a highly controlled communication with cells through the 

interaction with cell surface receptors such as integrins, a family of heterodimeric 

transmembrane glycoproteins (5, 6). The integrins are linked to the cytoskeleton by a large 

complex of different proteins including i.e. integrin-linked kinase (ILK), an adaptor protein that 

binds the cytoplasmatic tail of integrins, allowing transduction of signals from outside into the 

cell (7). Intracellular signal transduction is coupled with actin cytoskeleton remodeling leading to 

a variety of processes that control cell shape change, gene expression, proliferation, migration, 

differentiation, and survival. In addition to the common ECM integrin-binding motif, Arg-Gly-Asp 

(RGD) present in many ECM proteins, other sites are used for tethering to other cell surface-

adhesion receptors, such as discoidin, syndecan, cadherin, Ig-CAM and selectin (8, 9). Yet 

other domains present in ECM proteins are necessary for binding growth factors. Binding sites 

for cytokines and growth factors have been found on glycosaminoglycans or small leucine-rich 

repeat proteoglycans (SLRPs) (10, 11). Additional proteoglycans, such as decorin, allow the 

access of TGF ligand to its receptor (12). A synergism has been shown between integrins and 

syndecan (13) and integrin occupation with growth factor signaling (14). For instance, receptor 

synergy between syndecan-4 and integrin is essential for the spreading of cells on fibronectin 
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(15). Different integrin receptor combinations in association with a multitude of ECM ligands can 

modulate adhesive events, thus, contributing to tissue properties during different developmental 

phases including the embryonic stage, or the inflammatory response and wound healing in adult 

tissue. Finally, the highly distinctive organization of ECM in tumors as compared to normal 

tissue reflects specific functions in disease. Therefore, it is of fundamental importance to explore 

not only the passive, space-filling contribution of ECM proteins but also their major active role in 

regulating tissue homeostasis.  

II.1 The bright side of ECM during cellular processes and tissue repair 

II. 1.1 Extracellular matrix: Platform of signal exchange with cells 

Beyond the parameters which define ECM proteins as a physical scaffolding for cells and being 

in charge of attenuating external forces, such as hydrostatic pressure or tensional stress, more 

recently a more active ECM role in different cellular processes was proposed. The coexistence 

of several domains and motifs in the ECM proteins is important for the potential interaction with 

many factors (Fig.II.1) (16).  

 

Figure II. 1: Multidomain interaction of ECM proteins with cells  

Domains present on ECM proteins, such as fibronectin (green structure) are essential for the binding of integrins such 

as RGD (*) or LDV (#) as showed for 51 and 41. Growth factor VEGF binds two receptors: heparan sulfate 

chains of syndecan (purple/blue) and VEGRF2 (yellow). Integrin 56 interacts with LAP protein, thus activating 

TGF. Through the N-terminal region of fibronectin the inactive TGF form can simultaneously interact with fibrillin. 

HGF binds the transmembrane HGF- receptor (MET, pink) and the integrin receptor linked to fibronectin (16).  

 

Furthermore, such interactions can depend on alternative splicing mechanisms occurring in 

ECM protein domains or adhesion receptors leading to the inclusion or omission of specific 

binding motifs, thus influencing the association with certain molecules. An example of this is 
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fibronectin where the aberrant inclusion of the EDA domain was linked to fibrosis and 

thrombosis (17). Other mechanisms of creating ECM protein variants with different functions are 

the incomplete processing shown for type II procollagen. Two isoforms were shown to be 

differentially expressed during formation of the endochondral skeleton, with the isoform type IIA 

retaining the N-terminal propeptide displaying the specific capability to bind TGF and BMP2, 

two factors known to regulate chondrogenesis (18, 19). Diversity is further increased by multiple 

genes encoding different protein family members. This is the case for TGF, where many cells 

secrete precursors of different TGF isoforms in a latent form, associated with LAP (latency-

associated peptide). This latent complex is in turn bound to latent binding protein (LTBP) (20). 

The cleavage of fibrillin or other ECM proteins from the LTBP complex by metalloproteases 

leads to the release and the subsequent activation of TGF. The interaction of integrin with LAP 

also leads to the activation of TGF (Fig.II.1). Sometimes juxtaposition of two receptors bound 

to the same ECM molecule is required for the activity of growth factors (Fig.II.1). For instance, 

the binding of vascular endothelial growth factor (VEGF) to the two receptors integrin 51 and 

VEGRF2 bound to the same fibronectin protein is essential in promoting endothelial cell 

proliferation and migration (21). In contrast, hepatocyte growth factor (HGF) requires the binding 

to two different ECM molecules, fibronectin and vitronectin, to exert its pro-angiogenic function 

(22). Therefore, ECM acts as a multidomain platform on which many factors converge to trigger 

a highly regulated response.  

II. 1.2 Bidirectional communication between ECM and the stem cell niche 

The hematopoietic niche in the adult bone marrow includes cells of different lineages, such as 

osteoblasts, vascular endothelial cells, neural cells and immune cells (Fig.II.2). Significant 

influences on the stem cell niche arise also from non-cellular elements, such as ECM 

components and secreted factors (23). In 1978, Schofield discovered the relevance of the 

surrounding environment in determining hematopoietic stem cell behavior (24). ECM proteins 

can act as a reservoir of growth factors (Fig.II.3). Therefore, they can influence the balance of 

stem cells between self-renewal and differentiation by modifying the biochemical composition of 

the cellular microenvironment (25). Furthermore, ECM can influence the localization of stem 

cells through cell-matrix interactions mediated by integrins (Fig.II.3) (26). In addition, mechanical 

tension can induce the release of specific factors by the ECM or the exposure of biologically 

active cryptic sites within ECM proteins following structural changes (27).  
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Figure II. 2: Stem cell niche  

The stem cell niche includes structural components, such as ECM matrix and different types of cells: immune cells, 

endothelial cells and neurons. Secreted factors  are involved in the regulation of the stem cell niche fate (23).  

 

In turn, secreted factors can mediate the indirect communication between stem cells and the 

niche, thereby affecting the ECM composition. For instance, during the granulation stage in 

wound healing, various cytokines and growth factors act on the different fibroblastic cell 

subpopulations in the connective tissue. Besides local fibroblasts, this also includes 

mesenchymal stem cells (MSCs).  Fibroblasts produce a large amount of ECM proteins during 

scar formation. However, other cell sources such as myofibroblasts can further sustain matrix 

deposition. One of the main fibrogenic mediators is TGF a potent inducer of myofibroblastic 

differentiation (28). Myofibroblasts originate from either local fibroblasts through the epithelial-

mesenchymal transition (EMT) or from local stem cells (29). Therefore, secreted factors are able 

to induce significant changes within the niche thereby indirectly targeting the stem cells.  
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Figure II. 3: Cross-talk between stem cell niche and ECM 

Stem cell niche includes structural components, such as ECM matrix. ECM proteins are a sink of growth factors, 

influencing stem cells behavior. ECM-integrin complex allows the anchorage of stem cells. ECM-physical properties 

contribute to changes in stem cells activity (27).  

 

II. 1.3 Epithelial-mesenchymal transition and the role of TGF  

Epithelial-mesenchymal transition (EMT) is a process which does not only affect differentiated 

adult cells but is also an important step required for the germ layer formation and the cellular 

motility and invasiveness during embryonic development (Fig.II.4) (30).  

EMT transition consists in the acquisition of mesenchymal features with a migratory phenotype. 

Many EMT factors, such as Snail or Twist, are induced by different growth factors. Especially, 

Snail is a transcription factor that represses epithelial markers such as E-cadherin and its 

transcription is induced by TGF(31). Loss of this marker is associated with the disruption of 

adherens junction. Secretion of metalloproteases helps the degradation of the basement 

membrane and the compromised ECM structure leads to the loss of cell polarity (32). The 
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recruitment of MSCs at injury sites or, in a worse scenario, at tumor sites is initiated by the EMT 

process (Fig.II.4). Therefore, since EMT promotes cell invasion and migration, it is obvious to 

imagine how frequently this cell transition plays a crucial role in the development or tissue repair 

and in the onset of metastases. 

Once that cells have migrated towards their destinations, due to their plasticity, they can revert 

back into an epithelial phenotype through a process named MET, for mesenchymal-epithelial 

transition (33).  

 
 

Figure II. 4: Epithelial-mesenchymal transition  

Acquisition of a mesenchymal phenotype occurs during embryonic development and in adult stage, at injury sites and 

in metastatic tumors (34). 

 

II. 1.4 Differential transcriptional regulation of growth factors involved in the EMT 

process 

TGF is the prototypical EMT inducer. Members of the TGF superfamily include TGF itself, 

activins and bone morphogenetic proteins (BMPs). Like many other ubiquitous growth factors, 

TGF shows versatile functions that differ according to the physiological context or the degree 

of injury. Although TGF can act as a potent inhibitor of cell proliferation (35), in a pathological 
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scenario, the loss of important components of the TGF-mediated cell cycle arrest program, 

such as c-myc in cancer cells (36) or the genetic inactivation of specific TGFreceptors (37) 

lead to the defective inhibition of cancer cell growth by TGF (38). BMPs are involved in 

regulating vascular cell proliferation and differentiation but, similarly to the dual role of TGF, 

defects in BMP signaling pathway generate hereditary vascular diseases (39). 

BMP2 and TGF signaling pathways are mediated by transmembrane serine/threonine kinase 

type I and type II receptors. TGF-1 binds to type I TGF receptor /ALK-5, whereas BMP to type 

I /Alk3. Once that type I receptors get phosphorylated by the type II receptors, Smad family 

intracellular proteins are activated. Smad2 and Smad3 mediate TGFand activin signalling, 

whereas Smad1, Smad5 and Smad8 act downstream of BMP receptors. The final common 

mediator is Smad4, which following its translocation to the nucleus regulates gene transcription 

by directly binding DNA or by interacting with other transcription factors, co-activators and co-

repressor (Fig.II.5) (40-42). Non-canonical TGF-Smad signaling pathways are mediated by 

JNK and p38 MAPK.  

 

 

 

 

 

 

 

 

Figure II. 5: The canonical TGF superfamily Smad signaling pathway (42) 

The importance of TGFubiquity and versatility becomes evident in the recovery from liver 

injury. Through TGF stimulation, hepatic stellate cells (HSCs) undergo a mesenchymal-

epithelial transition to transdifferentiate into liver progenitor cells to ensure liver regeneration 

following partial hepatectomy (PH) or chemical insults (43). Furthermore, TGF is also a major 
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inhibitor of hepatocyte proliferation (44). This explains why the conditioned medium collected 

from HSCs early after PH injury contains low levels of TGF, while it is enriched in hepatocyte 

growth factor (HGF) and platelet-derived growth factor (PDGF) to promote hepatocyte 

proliferation. On the contrary, during terminal phases of liver regeneration HSCs produce high 

levels of TGF(45). This transient role of TGF in sustaining EMT and hence ECM deposition is 

regulated by differential phosphorylation of specific sites within Smad proteins. More precisely, 

TGFsignaling through Smad2/Smad3 elicits cytostatic and EMT downstream signals, thus 

leading to the inhibition of HSCs proliferation and the enhancement of collagen synthesis. In 

turn, Smad7 induced by Smad3 interrupts the Smad phosphorylation cascade. In doing so, 

Smad7 induces a negative feedback mechanism in the fibrogenic activity of TGF(46). 

II. 1.5 The physiological action of ECM proteins during the inflammation process 

All sources of physiological insults such as infectious agents, tissue injuries or tumors cause a 

rearrangement of the ECM. ECM components represent the first barrier for the infiltration of 

inflammatory cells of the organism (47). During the process of extravasation, integrin-ECM 

interactions allow the adhesion of neutrophils to the vascular wall. Neutrophils constitute the first 

line of defense during infection, and contribute to the destruction of invading pathogens (48, 49). 

Importantly, removal of bacteria or oxidative burst by phagocytes is mediated by their adhesion 

to various ECM components (50). During the infection processes, Toll-like receptors (TLRs) do 

not only recognize exogenous danger signals such as bacterial lipopolysaccharide (LPS) but 

also endogenous factors (Fig.II.6). Interestingly, it has been shown that specific ECM domains, 

such as the fibrinogen-like globe of tenascin-C, are capable of inducing TLR4 activity in arthritic 

joint disease (51).  

II. 1.6 The ECM and the control of wound healing 

The hierarchical organization of fibrillar matrix arises from collagen crosslinking catalyzed by 

different enzymes, such as lysyl oxidase (LOX). This assembly of collagen molecules into fibrils 

results in a compact tissue important in preventing skin injury (10). In wound closure two 

physiological processes are essential: regeneration and tissue repair. In addition to the 

secretion of inflammatory mediators already mentioned above, several cell types participate in 

the granulation phase. Adjacent to the injury, healthy cells undergo mitosis to replace the lost 

cells. Repair of damaged tissue is provided by fibroblasts, endothelial cells and keratinocytes. 
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Fibroblasts secrete growth factors and induce new matrix deposition, which is responsible for 

the patching of harmed sites (Fig.II.6).  

 
 

Figure II. 6: ECM proteins and activation of immune cells  

Cleaved ECM proteins generate bioactive fragments which are responsible for the immune response mediated by 

Toll-like receptors. ECM deposition in tissue repair is controlled by resident fibroblasts and remodeling of the matrix is 

regulated by several metalloproteases (MMPs). Integrin-ECM axis mediates neutrophil infiltration in inflammation 

(47).    

During wound healing, in order to balance the excessive matrix deposition by fibroblasts, which 

is the main cause of fibrosis, the extracellular matrix protein CCN1 promotes fibroblast 

senescence by inducing Nox1 and subsequently leading to an increased amount of ROS (56). 

For this, CCN1 requires the association with integrin 61 and heparan sulphate proteoglycans 

(52). The deposition of ECM proteins, which occurs during fibrous scar formation, is also 

balanced through the activity of metalloproteases, which are tightly regulated by ROS in 

conditions of hypoxia following microvascular injury (53). Collagenase is an interstitial enzyme 
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expressed by keratinocytes. Its activity is important to remove the large amount of matrix 

proteins present during scar formation to allow cell migration (54). The ECM is also important for 

wound re-epithelialization. Keratinocyte migration into the wound bed is facilitated by focal 

adhesions dependent, integrin-mediated cell-ECM interactions (55). A number of external 

factors can affect this processes and lead to a delayed wound healing. Several conditions, such 

as obesity, nutrition, alcohol consumption, smoking, diabetes, administration of sex hormones, 

age and stress can alter the formation of the wound matrix, affect the availability of oxygen in 

the wound, or lead to decreased levels of pro-inflammatory factors (56). Moreover, it is well 

known that anti-inflammatory agents in therapeutic use, such as glucocorticoids (GCs), are 

associated with decreased proteoglycan synthesis (57).   

II. 2 The dark side of ECM in unhealed wounds 

II.2.1 Tumor stroma orchestrates the onset of cancer  

The inflammatory response is the physiological reaction of the body which occurs following 

tissue damage. However, persistence of acute injury leads to a chronic inflammation which 

predisposes to cancer development. Cancer tissue is a heterocellular system consisting of 

cancer cells themselves and of non-transformed cells with non-cellular ECM components which 

are collectively referred to as stroma (Fig.II.7).  

 

Figure II. 7: Tumor heterogeneity 

Distinct cell types: stromal cells and cancer cells in a reciprocal interaction (58).  
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Cancer initiation is in most cases driven by genetic lesions such as point mutations, gene 

deletion/inactivation, chromosomal rearrangements and amplification, but the role of epigenetic 

modifications is also relevant in causing genetic alterations (59). Epigenetic regulation 

mechanisms are well known to control cellular differentiation. For instance, methylation of CpG 

islands within the genomic sequence leads to transcriptional silencing. Inactivation of the -

Smooth muscle actin (-SMA) gene or of TGF by methylation was shown to impair 

myofibroblast differentiation (60). In turn, lack of epigenetic inactivation of these genes might be 

responsible of a constant myofibroblasts activity, leading to an increased ECM deposition in the 

stroma. Additional studies focusing on the importance of the tumor microenvironment in 

supporting the growth of cancer cells showed loss of tumor-suppressor p53 within the stroma 

(61). Furthermore, irradiated mammary stroma, which is hence affected by mutagenic events, 

was shown to drive the neoplastic behavior of normal, non-irradiated, injected mammary 

epithelial cells resulting in an increased tumor incidence (62).  

 

II.2.2 Role of activated stromal components   

Cancer stroma per se can be the bearer of genetic alterations that may cause spontaneous 

activation of normal fibroblasts in cancer associated fibroblasts (CAFs) (63). The already 

mentioned, the EMT process can occur in presence of growth factors, cytokines and other tumor 

secreted factors (41, 64) and as a consequence local fibroblast or cancer cells (65) can 

transdifferentiate in CAFs with the subsequent acquisition of markers such as -SMA or 

vimentin and the loss of adhesion marker E-cadherin (66). Bone marrow derived progenitor cells 

can also contribute to the formation of CAFs (67). In addition, it was also shown that endothelial 

cells can assume a fibroblasts-like phenotype through endothelial to mesenchymal transition 

(EndMT) (68). The feature that most importantly distinguishes normal fibroblasts from the 

activated ones is the enhanced secretion of ECM proteins, growth factors and proteases 

(Fig.II.8).  
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Figure II. 8: Activated fibroblasts 

Physical and biochemical changes occur during the activation of local fibroblasts in a tumor microenvironment. 

Tenascin-C, SPARC, -SMA and a wide range of others molecules are secreted during this transition (69).  

An imbalance of any of these elements triggers irreversible cascades of events. Following a 

feedback mechanism, CAF derived factors can negatively influence adjacent cells within the 

stroma. Esophageal squamous cell carcinoma (ESCC) acquire enhanced invasive properties 

following the exposure to hepatocyte growth factors secreted by CAF cells (70). On the other 

hand, the injection of B16M melanoma cells in mice was shown to create a pre-metastatic niche 

by activating hepatic stellate cells (HSCs), which represent the liver-specific mesenchymal cells 

(71). After exposure to the B16M tumor cell conditioned medium, HSCs secrete matrix 

metalloproteinase-2 (MMP2), known to enhance B16M cell migration in vitro (72).  

II.2.3 Recruitment of mesenchymal stromal cells 

Thus far we have discussed the highly compromised tumor stromal microenvironment with an 

unbalanced secretion of several factors. Stromal or mesenchymal stem cell niches are affected 

in terms of impaired equilibrium between quiescence and proliferation/differentiation. Indeed, in 

primary tumors the features of the niche induces a shift of the mesenchymal stem cells (MSCs) 

from a quiescent to an activated state. In doing so, they represent one of the main regulators of 

cancer stem cells (73) with myofibroblast properties (74). Such MSCs are also actively involved 

in metastatic processes.  

Indeed MSCs provide a permissive microenvironment for the engraftment of tumor cells arriving 

from distant primary sites. In response to several signals released into the circulation from the 

primary tumor, MSCs can generate a pre-metastatic niche already before the arrival of the 
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metastatic tumor cells. For instance, vitronectin and osteonectin produced by osteoblasts within 

the bone metastatic microenvironment have been shown to be strong chemoattractants for 

prostate and breast cancer cell lines (75, 76). Also, higher levels of TGF secreted by breast 

tumor cells contribute to tumor dissemination (77, 78). The use of neutralizing antibodies against 

TNF-, TGF, and VEGF-A in mice injected with Lewis lung carcinoma cells (LLC) was able to 

impair the expression of the two specific pro-inflammatory mediators S100A8 and S100A9 in 

pre-metastatic lungs (79). On the other hand, MSCs can also be recruited from the circulation or 

from the surrounding normal tissue to the tumor-damaged tissue to support the primary tumor 

microenvironment (Fig.II.9) (80). The unique composition of a tumor stromal compartment and 

specific cytokines or growth factors secreted by tumor cells drive the metastatic tropism and the 

ability of cancer cells to spread to other organs. 

  

Figure II. 9: Recruitment of bone marrow stem cells to the primary tumor 

Heterogeneity of a primary tumor microenvironment with many cell types arising from adjacent tissues (80). 
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II.2.4 Cancer: A chronic inflammatory state 

The most prominent indicator for the presence of CAFs is the increase of ECM proteins in the 

stroma. For instance, the non-physiological continuous emergence of cells with a myofibroblast 

phenotype is associated with fibrosis in the liver, where the terminal phase of this process is 

cirrhosis. The increased amount of ECM proteins leads to the collapse of the hepatic 

parenchyma, which is replaced with an enriched collagen tissue (81). The distorted hepatic 

architecture impairs normal liver function. Downstream signaling in response to matrix stiffness 

precedes a functional linkage through which external stimuli are transduced in intracellular 

signals by the cytoskeleton axis. Matrix rigidity transmits forces which regulate signaling 

pathways involved for instance in the control of stem cell differentiation (82),  cell migration (83) 

or also EMT-like processes (84). Among all factors that contribute to tissue stiffness hypoxia 

plays an important role. Indeed, previous reports have shown the association of low oxygen 

tension with an enhanced ECM production in dermal or in rat cardiac fibroblasts (85, 86). On the 

other hand, hypoxia-inducible factors (HIFs) can regulate the expression of matrix 

metalloproteinases, which regulate ECM degradation (87-89). New subfamilies of MMPs are the 

ADAMTS enzymes that unlike MMPs degrade aggrecan at different cleavage sites (90). MMPs 

control the equilibrium between ECM deposition and degradation. However their unbalanced 

expression leads to a continuous degradation of matrix barriers facilitating the invasive behavior 

of cells (89). Furthermore, MMPs are also involved in enhancing neovascularization. In 

particular, the membrane type I metalloprotease MT1-MMP was shown to induce VEGF 

expression (91). As was already mentioned, the ECM fragments released in the stroma after 

MMP-dependent ECM degradation can induce the expression of inflammatory mediators or act 

as chemoattractants for the recruitment of inflammatory cells. For instance specific cryptic sites 

exposed during the fragmentation of fibronectin increase secretion of cytokines such as IL-1, IL-

6 or the tumor necrosis factor (TNF-) (92). TNF- and interleukins IL-1 or IL-6 normally 

suppress cell death, promote epithelial proliferation and activate stem cells during wound 

healing. However, in pathological conditions, the same cytokines have an anti-apoptotic effect 

on premalignant cells, and promote cancer cell proliferation (93). Also, elastin fragments from 

bovine ligaments induce the recruitment of monocytes in lungs of mice (94). ROS originating 

from the inflammatory response have a potential role in causing structural alterations to DNA 

(95) or deregulating methylation patterns (96). A supporting role of fibronectin, laminin, and 

collagen I in stimulating ROS production in human pancreatic adenocarcinoma through the 
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NADPH oxidative activity and the 5-lipoxygenase (5-LO) was also shown (97). ECM and ROS 

cooperation sustain pancreatic cancer cell survival. Collectively, following tissue damage, 

inflammatory mediators act on adjacent cells, which acquire a myofibroblastic phenotype. ECM 

remodeling supports the early stage of tissue repair. However, the incessant activity of all 

stromal components leads to onset of tumor formation (Fig.II.10).  

As mentioned above, HIF not only controls ECM deposition but also processes such as 

angiogenesis, secretion of MMPs and cell survival in general. Therefore, the use of specific 

molecules, such as the topoisomerase I inhibitor topotecan (98) or cardiac glycoside digoxin 

(99) could impair processes triggered in the digoxin was shown to reduce tumor fibrosis by 

inhibiting the activation of the collagen cross-linking enzyme lysyl oxidase (LOX) mediated by 

HIF (99). 

 
Figure II. 10: Tumorigenesis as result of chronic inflammation  

Persistent acute inflammation leads to a failure of the physiological response. In such context, ECM proteins have 

shown an active role during the initiation and progression of cancer (93).   
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II.3 The tenascin family of ECM proteins 

II.3.1 Tenascin proteins in cancer stroma 

Tenascin family proteins are expressed in different types of connective tissues, and are 

composed of four members: tenascin-X, tenascin-C, tenascin-R and the last discovered 

member tenascin-W (100). All tenascin glycoproteins are characterized by a modular structure 

(Fig.II.11) which includes an N-terminal oligomerization region including heptad repeats, 

followed by epidermal growth factor (EGF)-like repeats, a variable number of fibronectin (FN) 

type III domains prone to alternative splicing mechanisms, and a C-terminal fibrinogen-related 

domain (FReD) (101). Via their N-terminal oligomerization domain, tenascin subunits form 

disulfide-linked homo-trimers (tenascin-R and -X) or -hexamers ("hexabrachions"; tenascin-C 

and -W), (Fig.II.11) (102, 103).  

  

Figure II. 11: Graphical representation of the structure of tenascin proteins 

The different tenascin domains were indicated as follows:  heptad repeats (wavy line), EGF-like repeats (diamonds), 

fibronectin type III repeats (squares), and fibrinogen globe (circle). Site of splicing of fibronectin domains is 

highlighted by a black triangle. In addition, electronmicrographs shown on the left, display the hexameric structure of 

tenascin-C and tenascin-W (102).      

Although in general the tissue distribution of tenascins is mutually exclusive, a significant 

overlapping expression pattern of tenascin-C and tenascin-W during embryonic development as 

well as in the adult stage has been observed (Fig.II.12). 
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In 2004, Scherberich and collaborators observed a co-expression of tenascin-C and tenascin-W 

in mouse embryos in smooth muscle cells in the stomach, in the periosteum of the ribs, 

mandible, palate and in teeth while tenascin-C alone was detected in lung, cartilage, liver, and 

brain at the embryonic stages analyzed. (104).  

 
Figure II. 12: Co-expression of Tenascin-C and Tenascin-W in the connective tissue  

Tenascin-C and tenascin-W in connective tissues. (A) Anti-tenascin-C (red) stains cartilage in the neurocranium (c) 

and a salivary gland (sg) in a coronal section through an embryonic mouse head (Day 16.5). Anti-tenascin-W (green) 

stains the connective tissue of a developing muscle of mastication (m). (B) Both tenascin-C (red) and tenascin-W 

(green, with co-localization appearing yellow) are found in the bony matrix of the embryonic mandible (Day 16.5). (C) 

In the adult mouse tenascin-C (red) and tenascin-W (co-localization with tenascin-C is yellow) are found in the 

periosteum (po) of the ribs. Only tenascin-C is detectable in intercostal tendon (t). (100).  

 

The co-localization of tenascin-C and tenascin-W proteins during the embryonic development as 

well as in the adult may reflect overlapping functions. This could be related to their species-

specific presence of the integrin binding site RGD in either tenascin-C or tenascin-W, but never 

in both proteins which could lead to a compensatory effect between them (101).  

The Co-expression of tenascin-C and tenascin-W proteins has been thoroughly investigated 

also in pathological conditions, such as cancer. Both proteins were detected in breast and colon 

cancers. For tumors originating in epithelial organs, it was shown that the cellular sources of 

tenascin-C and tenascin-W were not the tumor cells themselves but cancer associated 

fibroblasts within the stromal cell compartment (Fig.II.13) (105, 106). Moreover, a more 

consistently elevated expression of tenascin-W rather than tenascin-C was detected in the sera 

of patients with colorectal and breast cancers (107). The presence of tenascin-W in the 



28  II. Introduction 

 

 

bloodstream of cancer patients and its potential link with blood vessel structures was further 

investigated in 2010 by Martina and co-workers. They were able to observe co-staining of 

tenascin-W with von Willebrand factor in blood vessels of glioblastoma (108). Staining of 

tenascin-C was shown as well; however its localization was more uniformly distributed in the 

tumor tissue (Fig.II.14).   

 
Figure II. 13: Tenascin-C and Tenascin-W in cancer stroma  

Immunostaining of tenascin-C and tenascin-W in colon and breast cancers. H&E staining is shown on the left. In the 

adjacent panels, the brown stain reveals tenascin-C and tenascin-W localization in the tumor stroma (106).   

 
In vitro studies showed an effect of tenascin-C and tenascin-W on endothelial cell behavior. 

Human umbilical vein endothelial cells (HUVECs) seeded on collagen substrata in presence of 

tenascin-W or tenascin-C showed an elongated cell shape, with thin protrusions, typical of 

migratory cells. Additional sprouting of HUVECs was observed when cells were embedded in 

collagen gels containing tenascin-W or tenascin-C (108).  

Tenascin-W and tenascin-C proteins were also detected in many other human solid tumors: 

pancreas, kidney, lung and melanoma (109). Figure II.14 (B) shows the immunohistochemical 

analysis of tenascin-C and tenascin-W in lung tumor sections. Tenascin-C also appeared in 

normal lung tissue highlighting the fact that tenascin-W is a better tumor biomarker since it was 

exclusively expressed in the stroma of lung tumor sections and not in the healthy parts of the 



II. Introduction  29 

 

 

lungs of the same patients. In addition, a wide number of other tumor types, such as kidney, 

colon, breast, ovary, prostate, and lung (Fig.II.14) showed a co-localization of tenascin-W with 

the endothelial marker CD31.  

 

 
 

 

 

Figure II. 14: Tenascin-W involved in angiogenesis  

(A) Immunofluorescence of tenascin-C and tenascin-W in glioblastoma (108); white stars mark desmin-positive 

pericytes. (B) Panel B shows the immunohistochemical analysis of tenascin-C and tenascin-W in normal and tumor 

lung sections. (C) Panel C shows cryosections of a lung tumor co-stained for tenascin-W (first panel; red) and for the 

endothelial marker CD31 (second panel; green) and nuclei (third panel). The merged picture is shown on the right 

(109).  
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Despite the existence of a considerable similarity between tenascin-C and tenascin-W, in 

general, the expression of tenascin proteins is tissue-specific and each of the tenascin family 

members is distinctly regulated by specific signaling pathways.  
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Abstract 
 
Extracellular matrix proteins of the tenascin family resemble each other in their domain 

structure, and also share functions in modulating cell adhesion and cellular responses to growth 

factors. Despite of these common features, the four vertebrate tenascins exhibit vastly different 

expression patterns. Tenascin-R is specific to the central nervous system. Tenascin- C is an 

"oncofetal" protein controlled by many stimuli (growth factors, cytokines, mechanical stress), but 

with restricted occurrence in space and time. In contrast, tenascin-X is a constitutive component 

of connective tissues, and its level is barely affected by external factors. Finally, the expression 

of tenascin-W is similar to that of tenascin-C but even more limited. In accordance with their 

highly regulated expression, the promoters of the tenascin-C and -W genes contain TATA 

boxes, whereas those of the other two tenascins do not. This article summarizes what is 

currently known about the complex transcriptional regulation of the four tenascin genes. 
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1. Introduction: The tenascin gene family 

Tenascins are a family of large, oligomeric, multi-domain extracellular matrix proteins (1). Four 

genes encoding tenascin-C, -R, -X, and -W proteins exist in higher vertebrates, and a single 

tenascin gene is found in cephalochordates whereas similar genes and proteins do not seem to 

exist in lower animals (2) (3, 4). Tenascins are characterized by their unique domain structure. 

Each monomeric unit comprises an N-terminus with heptad repeats flanked by cysteine 

residues. This N-terminal oligomerization region is followed by EGF-like repeats, and a variable 

number of fibronectin (FN) type III repeats as a result of alternative mRNA splicing. At the C-

terminus, each subunit ends with a large C-terminal fibrinogen related domain (1). Via their N-

terminal oligomerization domain, tenascin subunits form disulfide-linked homo-trimers (tenascin-

R and -X) or -hexamers ("hexabrachions"; tenascin-C and -W). Rather than representing bona 

fide structural components of the extracellular matrix, three of the four tenascins are 

"matricellular" proteins (4) involved in modifying the interaction of cells with extracellular matrix 

and growth factors, and hence regulating cell adhesion, migration, growth and differentiation in a 

context-dependent manner (5); see other articles in this issue). The exception is tenascin-X, 

which helps to bridge collagen fibrils (6) and thereby organizes the fibers, as evidenced by 

human mutations in this gene that cause Ehlers-Danlos syndrome (7). 

 Except for tenascin-X, which has a widespread distribution like many ECM proteins, the 

other three tenascins show a very restricted pattern of expression during embryogenesis, tissue 

remodeling and tumor formation (8-11). Their specific patterns of localization, which are specific 

for each of the four family members, point to tightly controlled spatial and temporal expression, 

and are likely to reflect a complex gene regulation. This brief article reviews the expression 

patterns of the four tenascins in development, regeneration and disease, with a particular focus 

on the transcriptional regulation of the respective genes by growth factors, cytokines and 

mechanical stimuli. 
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2. Tenascin-C: Expression in organogenesis, inflammation and cancer 

2.1. Expression patterns of tenascin-C in development and disease 

Tenascin-C, the founding member of the protein family, received much attention after its 

discovery because of its highly specific and restricted expression patterns during vertebrate 

embryogenesis (12, 13). Whereas many other ECM proteins exhibit a ubiquitous distribution in 

the mesenchyme with only gradual differences, tenascin-C is often expressed in an all-or-none 

fashion both in space and time. Specifically, this protein is found in the mesenchyme around 

primordia of most epithelial organs right at the time of early morphogenesis (13). In addition, 

tenascin-C is associated primarily with development of the musculo-skeletal system, where it is 

an early marker of tendon, ligament and bone formation (12). Other prominent sources of the 

protein are neural crest cells in early embryos (14), neural crest derived Schwann cell 

precursors in developing peripheral nerves (15, 16) and vascular smooth muscle cells around 

developing arteries (17). 

 In the adult, tenascin-C is restricted to few tissues bearing high tensile stress (tendons, 

ligaments, periosteum, arterial walls) (18, 19), and interestingly to certain stem cell niches (20). 

However, the protein becomes prominently expressed de novo in practically every tissue upon 

chemical or mechanical injury, as well as in other pathological processes associated with 

inflammation and/or mechanical stress, not the least tumor and metastasis formation (1). 

 These findings indicate that the tenascin-C gene must undergo complex regulation 

encompassing 1. patterning genes in early morphogenesis, 2. paracrine growth factors 

regulating the communication between different cell types in organogenesis, 3. inflammatory 

mediators, and 4. mechanical stress. Published evidence is summarized in the following 

paragraphs. 

2.2. Structure of the tenascin-C (TNC) gene 

The human tenascin-C gene (gene ID: 3371) is found on chromosome 9q33; it contains 29 

exons of which 9 (each coding for a FN3 domain) can be alternatively spliced (21-23). The 

transcript starts with a non-coding exon, separated by an intron >20 kb long, and followed by 

exon 2, which contains the ATG start codon for translation initiation. Tenascin-C mRNA from 

human fibroblasts and human melanoma cells analyzed by primer extension and S1 nuclease 

showed a single transcription start site (TSS) localized to the first exon. Sequencing of 
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approximatively 2300 bp of the tenascin-C      5’-flanking region has revealed several 

potential binding sites for transcription factors (see below) (21). The sequence of 220 bp 

upstream to the TSS was identified as region with high promoter activity; it contains a classical 

TATA box at -20 to -26 bp. A putative silencer sequence was localized to the fragment between 

-220 and -2300 bp (21). Similarly, primer extension analysis of mRNA isolated from brain tissue 

of mouse embryos showed a single TSS that lays 27 bp downstream of the TATA box (24). 

Moreover, the 230 bp proximal promoter sequence, which is conserved between species, was 

found to be highly active in driving reporter gene expression when transfected into both mouse 

and human fibroblasts (24). The chicken TNC (cytotactin) gene features a TATA box at a similar 

position as the mammalian counterparts (25) A comparison between the human, mouse and 

chicken TNC promoters has been summarized by Jones and Jones (2000) (19). 

2.3. Tenascin-C gene regulation by patterning genes 

During vertebrate embryogenesis, tenascin-C is often expressed in distinct spatial and temporal 

patterns associated with morphogenetic events, e.g. during somatogenesis, segmental nerve 

formation (16), mammary gland (26), tooth (27), kidney (28) and lung (29) development. It was 

therefore an obvious possibility that the TNC gene could be controlled by transcription factors 

encoded by segmentation and patterning genes. Indeed, some of the early publications on 

tenascin-C promoters from different species investigated their regulation by homeobox 

transcription factors. For example, the chick promoter was found to be strongly activated by co-

transfection of fibroblasts with even-skipped homeobox 1 (Evx1), and by mutational analysis, an 

AP-1 element at -275 bp was identified that was essential for this response (30). The same AP-

1 site was required for induction of the promoter by serum; Evx1 overexpression potentiated the 

effect of serum. Thus, Evx1 appears to activate the tenascin-C gene indirectly by synergizing 

with jun/fos transcription factors, which target the AP-1 site.  

 On the other hand, a homeobox transcription factor involved in anterior head formation, 

orthodenticle homolog 2 (Otx2), was shown to bind directly and with high affinity to a target 

sequence in the human tenascin-C promoter and to suppress its transcriptional activity (31, 32); 

the Otx2 target sequence is conserved at -550 bp in the mouse (but not chick) gene. Similarly, 

the POU-homeodomain transcription factor Pou3f2 (also called Brn2 or Oct-7) was 

demonstrated to interact directly with a reverse octamer sequence (ATGCAAAT) present at -200 

bp in the mouse tenascin-C promoter, which is conserved in the human and also the chick gene. 
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Transfection with Pou3f2 (Brn2) expression vector stimulated transcription from the tenascin-C 

promoter in a neuroblastoma cell line, but had no effect in glioma cells (33). 

 In addition, the proximal promoter of the chick, mouse and human tenascin-C gene 

contains another conserved homeodomain binding sequence (HBS) at -45/-60 bp (19). 

Transcription factor paired-related homeobox 1 (Prrx1; formerly called Prx1 or Mhox) is often co-

expressed with tenascin C, and overexpression of Prrx1 strongly induced a full-length mouse 

tenascin-C promoter construct in a vascular smooth muscle cell line (34). Later, Prrx1 was 

demonstrated to transactivate tenascin-C gene transcription in mouse pulmonary endothelial 

cells through direct interaction with the HBS located within the proximal promoter (35). 

Increased deposition of tenascin-C expression along the arterial wall in pulmonary vascular 

lesions of patients with mutated BMP type II receptors was highly associated with the 

expression of Prx1 (36).Tenascin-C is a prominent early marker for developing tendons, which 

form according to intricate patterns during trunk and limb morphogenesis (12). The basic helix-

loop-helix transcription factor scleraxis (Scx) is also expressed specifically in all embryonic 

tendons, and was shown to be essential for development and differentiation primarily of long 

load-bearing tendons (37). Tenascin-C was therefore assumed to be a target gene of this 

tendon-specific transcription factor. Indeed, myocyte enhancer factor 2C (mef2c) and scleraxis 

were reported to synergize in inducing tenascin-C expression during tendon development in 

Xenopus, although the exact mechanism on the gene promoter level was not examined (38). 

However, scleraxis is not strictly required for tenascin-C production in developing tendons: In 

scleraxis null embryos, tenascin-C was still found to accumulate in condensing mesenchyme at 

positions where tendons normally develop (37). Therefore, although scleraxis might boost its 

expression, the tenascin-C gene appears to be controlled by additional factors that act even 

upstream of scleraxis during early tendon morphogenesis.  

2.4. Tenascin-C gene regulation by growth factors and inflammatory mediators 

TGF-β    y      m                            x            m    x          x                

development and in pathologies (39, 40). Stimulation of tenascin-C synthesis has been detected 

after treatment of chick embryo fibroblasts with TGF-β1 (41), and this growth factor is also 

associated with the enrichment of tenascin-C in the stroma of malignant breast tumors (42, 43). 

SOX4 is a transcription factor overexpressed in many human tumors and tenascin-C was 

identified as a direct SOX4 target gene (44). Through gene set enrichment analysis it was found 
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that direct target genes of TGFβ–induced SMAD3 are also enriched in the list of the SOX4 

target genes. In the context of malignancies, this would suggest a cooperation between SOX4 

and TGF-β1                        -C expression. A direct role of TGF-β       m              -C 

expression was observed in mammary epithelial cells (HC11) and in mouse embryo fibroblasts 

(45). For astrocytes, it was shown that the expression of tenascin-C is controlled by the 

canonical Smad-mediated TGF-β                 y     by   b  b                   ( GF) (46). 

S         5’-deletions of the human tenascin-C    m                                5’-CAGA-3’ 

motif capable of binding Smad2/Smad3 in the region between -248bp and +75 bp (47). In 

addition, it was shown that Smads interact with co-factors such as Sp1 or Ets1 and CBP/p300, 

which possess binding sites located within the same promoter region, in order to achieve proper 

tenascin-C gene transcription induced by TGF-β      m      m     b  b      (47). 

 In the same cells, platelet-derived growth factor (PDGF) regulates tenascin-C gene 

expression via PI3K/Akt signaling, which triggers the interaction of transcription factors Sp1 and 

Ets1/Ets2 in an active complex that recognizes Ets binding sites (EBS) in the promoter (48). Ets 

binding sites within the tenascin-C promoter were also shown to be the targets of EWS-ETS 

transcription factor. EWS-ETS is a chimeric gene found in several tumor types such as Ewing 

sarcoma and peripheral primitive neuroectodermal tumors (PNETs) (49). In a similar setting, 

oncogenic transformation of primary rat embryonic fibroblasts can be the consequence of the 

activity of transcription factor c-Jun in cooperation with an activated ras gene (50). The transitory 

expression of tenascin-C induced by c-Jun could facilitate the de-adhesion of fibroblasts from 

the extracellular matrix, thus promoting their transformation. The c-Jun transcription factor 

contains a bipartite DNA binding domain which recognizes GCN4/AP1 and NF-κ  b       

sequences, located in the tenascin-C promoter region from -220 to +79 (50). 

  Notch is a large transmembrane protein that acts as receptor for cell-bound 

ligands Delta and Jagged; upon activation, its intracellular domain is cleaved and translocates to 

the nucleus where it acts as transcriptional regulator through binding to RBPJk/CSL (51). A 102-

b    q      5’    m                                       m           -C gene includes an 

RBPJk/CSL binding sequence (GTGGGAA) responsible for Notch2-mediated transactivation in 

glioblastomas (52). Conversely, in lung metastases of breast cancer, tenascin-C expression has 

been implicated in supporting the Notch signaling pathway. Indeed, the enrichment in the 

metastastic stroma of musashi homolog 1 (MSl1), an adult stem cell marker induced by 

tenascin-C, acts as positive regulator of Notch (53). In addition to MSl1 expression, high levels 
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of JAG1 ligands mediate Notch signaling in human breast cancer (Michael Reedijk, et al.) 

Taking the two findings together, there may be a positive feedback between Notch and 

tenascin-C expression, which in turn will further amplify the Notch signaling pathway.  

 A number of cytokines has been shown to induce tenascin-C expression in various cell 

types; among them are both pro-inflammatory such as IL-1α (54) and IL-1β (55), as well as anti-

inflammatory e.g. IL-4 (56) and IL-13 (57). Cytokines signal via various intracellular pathways, 

most notably Jak/Stat, MAPK, and NF-κ  (58, 59). Pro-inflammatory cytokines such as IL-1 and 

TNF-α    m    j                                                   m                (RA) (60), and 

high levels of these mediators are correlated with the upregulation of tenascin-C protein in RA 

synovium (61). Transcriptional regulation of the tenascin-C gene by interleukins has not been 

analyzed in detail yet, but it is reasonable to assume that some of the previously mentioned cis-

acting elements (NFkB, AP1, Ets, AP1) in its promoter are involved. Along these lines, a high 

level of tenascin-C protein expression has also been shown in immune myeloid cells upon 

exposure to the bacterial cell wall component LPS, which in turn stimulates the pathogen-

associated molecular pattern (PAMP) receptor, toll-like receptor-4 (TLR4) (62). TLR4 can also 

be activated by auto-antigens in the course of RA, and AKT/PI3K and NF-κ        y  

triggered by TLR4 were demonstrated to induce transcription of tenascin-C in synovial 

fibroblasts and myeloid cells in this case (63). In addition to the known element in the proximal 

promoter, many additional potential binding sites for NF-κ                                   

               5’        m   q                                             -C gene (63), but their 

exact role in the response to inflammatory mediators needs to be established.  

 Interestingly, based on a positive feedback mechanism, tenascin-C can in turn bind to 

and activate TLR4 through its fibrinogen-like globe (64). Therefore, tenascin-C can act directly 

as inflammatory stimulus, facilitating also inflammatory cell infiltration. Tenascin-C was also 

detected in the synovial fluid of osteoarthritic (OA) cartilage and its expression is correlated with 

proteoglycan loss from the articular cartilage (65). Following the activation of TLR4 by tenascin-

C, a series of inflammatory mediators and proteases such as ADAMST4 promote matrix 

degradation in OA joints. Secreted tenascin-C protein was found in conditioned media of 

cartilage in culture upon IL-1a treatment (65). Tenascin-C is also involved in hepatic ischemia 

/reperfusion injury (IRI). In mice deficient for TLR4 and tenascin-C, a downregulation of MMP-9 

and cytokines IL-6, IL-1b and CXCL2 was observed. Mice deficient in TLR4 and tenascin-C 
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were characterized by low liver damage and a significantly higher liver regeneration in this 

model (66). 

Glucocorticoids are potent anti-inflammatory steroid hormones. They function by binding to 

nuclear receptors that act as transcription factors, but can also negatively regulate gene 

expression by inhibiting the activity of other factors like AP1 and NFkB (67). Glucocorticoids 

have also been described as important hormones involved in myelopoiesis, and they can 

directly act at the progenitor cell level or by modifying the expression of ECM components. 

Down-regulation of tenascin-C expression by glucocorticoids was shown in bone marrow 

stromal cells (68). These authors suggested that the different tenascin-C distribution between 

bone marrow of newborn and adult mice controlled by glucocorticoids might in part influence the 

hematopoiesis process. A putative binding site for glucocorticoid receptors is located at position 

-985 of the chicken tenascin-C promoter sequence (69), but its function in the hormone 

response has not been explored. 

 A further repressor motif was mapped to position -467 to 460 of the human tenascin-C 

promoter that was demonstrated to bind GATA6, a zinc finger transcription factor known to 

regulate the synthetic phenotype of vascular smooth muscle cells. Exogenous expression of 

GATA6 in dermal fibroblasts negatively modulated the level of tenascin-C protein, and inhibited 

its induction by IL-4 and TGF- (70). 

2.5. tenascin-C gene regulation by mechanical stress 

Whereas tenascin-C is expressed transiently in many developing organs, it persists in the adult 

mainly in a few structures bearing high tensile stress, such as tendons, ligaments, and the 

smooth muscle walls of arteries (18, 19). It was therefore speculated early on that its gene might 

be regulated by mechanical forces. Indeed, tenascin-C expression was found to be induced in 

vivo e.g. by hypertension in the arterial walls of rats (71), or upon supra-physiological loading in 

skeletal muscle connective tissue of chick (72), rat (73) and human (74). Transduction of 

external mechanical stimuli requires integrins as bridges between ECM and the cytoskeleton 

(75). Depending on the precise nature of the stimulus, various integrin-dependent signaling 

pathways can then be triggered, such as Ca influx, activation of Erk1/2, NFkB, and RhoA/ROCK 

(76). An extensively studied mechanotransduction pathway concerns the rapid activation of the 

tenascin-C gene by cyclic strain (10%, 0.3 Hz for 1-6 h) in fibroblasts attached to elastic 

substrates, which depends on Rho/Rock signaling (77). Pericellular fibronectin, integrin α5β1 
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(78) and integrin-linked kinase (ILK) (79) were shown to be required for RhoA activation and 

tenascin-C induction in response to cyclic stretch in mouse fibroblasts. Strain-mediated Rho A 

activation triggered an increase in cellular actin assembly (80), which in turn lead to 

translocation of megakaryoblastic leukemia-1 (MKL1; also called MAL or MRTF-A) from the 

cytoplasm to the nucleus (79), where it is known to act as a trancriptional regulator (81). 

Accordingly, tenascin-C induction by cyclic strain was abolished by MKL1 knockdown in NIH3T3 

fibroblasts (82). MKL1 regulates the transcriptional activity of serum response factor (SRF) (83). 

Indeed, the mouse tenascin-C promoter contains a serum response element (SRE; CArG-box) 

located 1414bp upstream from the transcription start site, which is in part involved in its 

activation. However, tenascin-C induction by cyclic strain was found to be independent of SRF 

but strictly dependent on the interaction of the SAP domain of MKL1, a putative DNA-binding 

domain, with the proximal tenascin-C promoter (82).  

 Among vascular diseases, hypertension is correlated with elevated tenascin-C 

abundance around vessels, concomitantly with an increase in wall stress. In human arterial 

smooth muscle cells, cyclic strain (13%, 0.5 Hz for 24 h) was found to control the expression 

and activity of nuclear factor of activated T cells 5 (NFAT5) in a JNK-dependent manner (84). 

Once translocated into the nucleus in response to strain, NFAT5 was able to induce tenascin-C 

gene expression. Five NFAT consensus sequences were found in the first 3512 bp of the 

human tenascin-C promoter sequence upstream of the transcription start site, and for the first of 

them (at -820 bp), cyclic strain-induced binding was demonstrated by ChIP analysis (84). Note 

that the Rho/MKL1 pathway described above directly activates the tenascin-C gene within 1-3 

hours in response to strain, whereas the JNK/NFAT5 pathway requires prior synthesis of a 

transcription factor and takes 24 h for tenascin-C induction. 

 Yet a different mechanotransduction pathway was found to be responsible for tenascin-C 

induction by cyclic strain in rat cardiomyocytes. It is noteworthy that a similar strain amplitude 

(9-14%) but a higher frequency (1 Hz) was used (85). In this case, the response depended on 

release of reactive oxygen species and activation of NFkB. A consensus sequence for this 

transcription factor at -210 bp was required for mechanical activation of the tenascin-C 

promoter, and shown to bind the p50 subunit of NFkB in response to strain (85). Moreover, 

tenascin-C expression is not only regulated by dynamic (cyclic) strain, but also by static tensile 

stress. For example, tenascin-C expression by fibroblasts is high when they are embedded in 

an attached (stressed) collagen matrix, but diminished when the matrix is released from its 
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anchors (relaxed). A conserved DNA motif (GAGACC) at -550 bp in the the tenascin-C promoter 

was required for this response (69). This motif is present in the control regions of other 

mechanoresponsive genes where it is recognized by NFkB (86), but the factors binding to it in 

the tenascin-C promoter have not been identified. In any case, these examples show that 

depending on the cell type and on the exact mode and doses of mechanical stress, the 

tenascin-C gene appears to be regulated via distinct mechanotransduction pathways. 

 In chick embryo fibroblasts, PDGF and TGF growth factors were shown to act in an 

additive manner with tensile strain in promoting tenascin-C mRNA expression (77), and thus an 

increase in these factors might indirectly stimulate tenascin-C production in response to 

mechanical load. For example, tenascin-C accumulates in angiotensin II- induced perivascular 

fibrotic lesions in hypertensive mice. Angiotensin II was shown to trigger aldosterone-induced 

inflammation, which indirectly stimulated tenascin-C expression by upregulating PDGF-A/B, 

PDGF receptor a, and TGF1 in this model (87). 

2.6. Posttranscriptional regulation of tenascin-C gene by microRNAs 

Although this article focuses on transcriptional control of tenascin genes, it is important to note 

that other regulatory mechanisms are important as well. The role of microRNAs as regulators of 

post-transcriptional gene silencing is well documented (88, 89), and recent studies have shown 

that the repression of certain microRNAs corresponds to a more pronounced tumorigenesis 

(90). For example, downregulation of SOX4 and tenascin-C is controlled by miR-335, and loss 

of this microRNA in breast cancer was shown to induce metastasis in part by increased 

tenascin-C levels (91). Other findings show how tenascin-C promotes oncosphere formation by 

a metastasis-initiating breast cancer cell population for lung colonization, and in this context, 

GATA3 and miR-335 were downregulated (53). Conversely, the ectopic expression of some 

microRNAs turns out in a decreased metastatic potential. For instance, the rescued expression 

of miR-126 suppresses lung and bone metastasis by human breast cancer cells through 

targeting tenascin-C. Bioinformatic analysis has yielded target sequences for microRNAs 

b              3’  TR             -C gene, explaining how the interaction can occur (91). 

 

 



42  II. Introduction 

 

 

3. Tenascin-R: An ECM protein mainly restricted to the central nervous system 

3.1. Expression patterns of tenascin-R (TNR) in CNS development, injury and cancer 

Tenascin-R, originally designated as janusin in rodents and restrictin in chicken, is almost 

exclusively located to the central nervous system (92-95), but transiently appears also in 

Schwann cells during peripheral nerve development (96). Previous work has shown two 

tenascin-R molecular isoforms (splice variants) of 160 and 180 kDa expressed in the CNS by 

oligodendrocytes and a few neuronal cell types, but not by astrocytes or fibroblasts (97). In the 

developing human cortex, the spatiotemporal distribution of tenascin-R parallels neuronal 

migration (98). In vitro experiments have demonstrated that tenascin-R promotes adhesion and 

differentiation of oligodendrocytes and astrocytes by binding to sulfatides on cell surfaces (95, 

99). Conversely, tenascin-R can inhibit neurite outgrowth either by interacting with adhesion 

molecule contactin 1 (F3/F11) or by interfering with integrin-dependent adhesion to fibronectin 

(reviewed in (100).  

 In a pathological context, activation of microglial cells after facial nerve axotomy in rats 

has been shown to downregulate tenascin-R protein expression with the subsequent loss of its 

anti-adhesive properties (101). On the other hand, tenascin-R is up-regulated in the injured 

visual pathway of the lizard that has the capacity to regenerate (102). In brain cancer, tenascin-

R was reported to be overexpressed in pilocytic astrocytoma, oligodendroglioma and 

ganglioglioma, but not glioblastoma (103). 

3.2. Structure of the tenascin-R (TNR) gene 

The human TNR gene (gene ID: 7143) is located on chromosome 1q24 and has 23 exons. The 

human, rat and mouse genes show homologous sequences of exons 1, 2 and 3 of which the 

first two are noncoding and the latter contains the ATG start codon (104, 105). Exon 1 and 

167 bp upstream of this exon were sufficient for full and cell type-specific activity of the tenascin-

R promoter in cell culture (Leprini, Gherzi et al. 1998; Gherzi, Leprini et al. 1998; Putthoff, Akyuz 

et al. 2003). The TATA-less tenascin-R promoter displays canonical binding sites for potential 

regulators such as GATA-1, GATA-2, CREB, AP1 and p53 transcription factors as well as 

glucocorticoid receptors (105, 106). However, their functional relevance has not been 

addressed.  
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3.3. Tenascin-R gene regulation by growth factors 

In mice, oligodendrocyte precursor cells synthesize most tenascin-R, whereas expression 

decreases with differentiation. In more mature oligodendrocytes, expression of TNR was 

stimulated by coculture with astrocytes or neurons, and was also induced by adding platelet-

derived growth factor (PDGF) but not basic fibroblast growth factor (107). Rat 

pheochromocytoma cells (PC12) express high levels of TNR mRNA after nerve growth factor 

(NGF) treatment (92, 107). In contrast, oligodendrocytes treated with conditioned medium from 

activated microglia show a reduced TNR mRNA expression due to the release of injury factors 

such as TNF-α (101). Unfortunately, there are no studies yet how these growth factors and 

cytokines regulate the TNR gene on the promoter level. 

4. Tenascin-X: A regulatory component of collagen fibers 

4.1. Expression patterns of tenascin-X in collagen-rich tissues 

Tenascin-X was discovered as a gene of the MHCIII locus overlapping with the CYP21A2 gene, 

which encodes steroid 21-hydroxylase (7, 108). CYP21A2 mutations cause congenital adrenal 

hyperplasia, but a fraction of cases with deletions in this genomic region is also deficient for 

tenascin-X; these patients suffer in addition from hyperextensible skin and joint laxity typical of 

Ehlers Danlos syndrome (109). Deletion of the tenascin-X (Tnxb) gene in mice was 

subsequently shown to phenocopy the connective tissue defects observed in affected human 

patients (110). Thus, in apparent contrast to the other tenascins, the tenascin-X protein has a 

clear structural role in connective tissue integrity by binding (indirectly) to collagen fibers and 

regulating collagen deposition in vivo (6, 111, 112). During embryonic development, TNXB 

mRNA is especially prominent in the epicardium, skeletal muscle connective tissue, and tendon 

primordia (113). In the adult, TNXB mRNA becomes widely and constitutively expressed in most 

connective tissues, but is present at higher levels in tendons, ligaments, and perineural sheaths 

(Geffrotin 1995). Despite of considerable overlap on the tissue level especially in the embryo, on 

a smaller scale the distribution of tenascin-X mRNA and protein was found to be distinct and 

often reciprocal to that of tenascin-C (9). Interestingly, also in the context of malignancy 

tenascin-X and tenascin-C appear to be regulated in opposite ways. For example, tenascin-X 

expression is prominent in normal skin but strongly suppressed in cutaneous melanoma, where 

tenascin-C is highly up-regulated (114). In contrast to tenascin-C, tenascin-X is not induced in 

breast and ovarian carcinomas, but has been reported to be a marker for malignant 
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mesothelioma (115). Also strikingly different from tenascin-C, there are no reports indicating an 

induction of tenascin-X expression in inflammation or wound healing. 

4.2. Structure of the tenascin-X (TNXB) gene 

In humans as well as rodents, there are two tenascin-X genes of which TNXA is a pseudogene. 

In the human genome TNXB (gene ID: 7148), the gene coding for TNX protein, is located on 

chromosome 6p21.3 in the neighborhood of TNXA. The TNXB gene counts 44 exons, and its 

structure appears to be unique among all tenascins since transcription can take place from three 

different promoters which lack TATA or CAAT boxes. In human fetal adrenal gland and muscle, 

the major transcript starts with the first untranslated exon located more than 10 kb upstream 

from the second exon containing the translation start codon (116). In contrast, in human NCI-

H295 adrenocortical carcinoma cells TNXB expression is controlled by two additional promoters. 

TNXB transcripts can be initiated either from the same promoter as for an upstream gene, the 

Creb-related protein (CREB-RP; gene name ATF6B),       m                 3’        ATF6B. 

Both events produce transcripts with alternative first untranslated exons that are differentially 

spliced (116). Further analysis of 375 bp upstream of the noncoding first exon of the major 

transcript identified several putative binding sites for Sp1/Sp3 transcription factors, of which two 

were proven to be functional and required for driving TNXB expression in fibroblasts (117). 

Similarly, an Sp1 site 140 bp upstream of the major transcription start site of the mouse 

tenascin-X promoter was shown to play a critical role in expression of this gene (118). 

4.3. Tenascin-X gene regulation by growth factors 

Unlike for the other proteins belonging to the tenascin family, there are so far no reports 

indicating that tenascin-X is regulated by growth factors or cytokines. Thus, the signaling 

pathways that act on the Sp1/Sp3 sites described above in the tenascin-X promoter are at 

present unknown. Like tenascin-C and tenascin-W, however, tenascin-X is subjected to 

negative regulation by glucocorticoids (119), but again the mechanism has not been elucidated 

yet on the gene promoter level. 
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5. Tenascin-W: Expression in osteogenesis and tumorigenesis 

5.1. Expression patterns of tenascin-W (TNW) in bone formation and cancer 

Tenascin-C and tenascin-W proteins show a partially overlapping expression pattern in the 

developing and adult skeleton (120). Most of the research based on the regulation of TNW 

expression in a physiological context indicates its significant role in osteogenesis (10). In the 

adult organisms, TNW is predominantly expressed in cancer stroma of most solid tumors 

(Scherberich, Tucker et al. 2005; Degen, Brellier et al. 2007; Degen, Brellier et al. 2008; 

Martina, Chiquet-Ehrismann et al. 2010) and represents an even more specific tumor marker 

than tenascin-C (10, 11, 45, 121, 122). 

5.2. Structure of the tenascin-W (TNN) gene 

Tenascin-W was first discovered and cloned from zebrafish (123). Unfortunately, its mouse 

ortholog (124) was subsequently called tenascin-N (Tnn) (125), and this is now the official gene 

name in the NCBI data bank. The complete characterization of the human tenascin-W gene 

(TNN; gene ID: 63923) was carried out in 2007 (121). The human TN-W gene consists of a total 

of 19 exons spanning 80 kb of genomic DNA. The transcript starts with a non-coding exon. The 

transcription start site (TSS) is 79bp upstream the exon2, which contains the start codon ATG 

(126) The region comprised within -957 and -79bp from the transcription start site as well as a 

conserved region within the first intron are involved in transcription regulation, and specifically, 

the minimal basal promoter sequence is contained in the last 79bp fragment (126). 

5.3. TNN gene regulation by growth factors 

BMP2 is able to induce tenascin-W expression in periosteum during the endochondral bone 

formation in mice (127). An in vitro system of Kusa-A1 cells shows an increase of TNN 

transcript starting with the differentiation in osteoblasts (128). Mouse myoblasts (C2C12) 

differentiate into osteoblastic cells upon treatment with bone morphogenetic protein 2 (BMP2) 

and concomitantly they express tenascin-W (124). The induction of tenascin-W synthesis by 

BMP2 in MEF as well as in HC11 cells occurs via non-canonical p38 MAPK signaling pathway 

(45). Tenascin-W was also strongly induced by Bmp7 in embryonic cranial fibroblasts in vitro 

(129). Among other regulators of bone formation, Wnt5a signaling is indirectly involved in 

promoting TNW expression through p38 activation of an unknown TNW inducer, thus controlling 

bone density (130).  
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TGF1 and its receptor ALK5 were identified as important factors for human TNW gene 

transcription in human bone marrow stem cells (BMSCs) (126). Computational analysis shows 

the presence of a SMAD4 nuclear transcription factor binding site at -61bp from the TSS, in 

proximity of a TATA box sequence and site-directed mutagenesis of the SMAD4 binding site 

strongly impaired the SEAP reporter gene expression driven by the minimal basal promoter 

(126). Finally, similar to tenascin-C and tenascin-X, the expression of tenascin-W is also 

inhibited by glucocorticoids. In this case a negative glucocorticoid response element was 

identified in a conserved region of the first intron, displaying a glucocorticoid-dependent 

repressive action on the proximal tenascin-W promoter (126).  

6. Conclusions and outlook 

The four members of the vertebrate tenascin family are quite similar not only in their overall 

domain organization, but as typical "matricellular" proteins also appear to fulfill similar functions: 

There is increasing evidence that they all modulate cell adhesion and cellular responses to 

growth factors and cytokines in a context-dependent manner (1). In view of these structural and 

functional similarities, it is surprising that the four tenascins exhibit vastly different expression 

pattern in space and time. Tenascin-R is almost exclusively found in the central nervous system 

and its expression level is affected by just a few known growth factors. In contrast, tenascin-C is 

an "oncofetal" or "stress" protein that is controlled by many stimuli, can appear in almost any 

tissue and cell type in the embryo and the adult, however just at certain times and in specific 

locations. Tenascin-X is a constitutive component of most connective tissues and its level is 

barely influenced by growth factors, whereas the expression of tenascin-W is again more similar 

to that of tenascin-C, although it is even more restricted to developing/remodeling bone, certain 

stem cell niches (20), and to a subset of tumors. These observations point to very distinct 

mechanisms of regulation for the various family members. Fitting with a highly regulated versus 

a more constitutive expression, respectively, the gene promoters of tenascin-C and TNW have 

classical TATA boxes ca. 20-40 bp upstream of their transcription start sites, whereas the 

promoters of TNR and TNX are TATA-less. Tenascin-C and TNR genes have a first 

untranslated exon separated from the second ATG-containing exon by a very large intron, which 

is likely to be involved in gene regulation. TNR has two untranslated exons and the ATG 

translation start site is found in the third, whereas TNX even possesses three alternative 

promoters and non-coding first exons that are subjected to alternative splicing (see above). 
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Because the tenascin-C gene was the first of the family to be characterized, most is known 

about its regulation, although it turns out to be overwhelmingly complex. The responsiveness of 

the tenascin-C gene to segmentation genes, growth factors/cytokines and mechanical stress 

appears to be very similar in different vertebrate species, which is reflected in the high sequence 

similarity in parts of the promoter regions. Nevertheless, although many of the same cis-acting 

regulatory elements have been identified in the chick, mouse and human tenascin-C promoter, 

there appear to be differences in their arrangement and activity (19). Although TNW is quite 

distantly related to tenascin-C within this protein family, its expression pattern and the regulation 

of its gene appears to be most similar to that of tenascin-C, especially also in stem cell niches 

(131) and in cancer. Future research is likely to reveal more about similarities and differences in 

the control of these two genes e.g. by TGF-βs versus BMPs, or by various cytokines. 

Conversely, TNR is the closest family member of tenascin-C on the protein level, but it is 

regulated completely differently. It is remarkable that only about 200 bp of the proximal promoter 

and sequences in the first exon of the TNR gene are necessary and sufficient for its expression 

exclusively in neuronal cells (105). Thus, this gene appears to represent a relatively simple case 

of tissue-specific regulation, and it will be interesting to work out the exact mechanism. As for 

TNX, it exhibits a constitutive expression more like TNR, but in a reciprocal fashion since it is 

found in most tissues except the CNS. Nothing is known yet about the mechanism for tissue-

specific expression of this gene, and the lack of regulation by growth factors and the relative 

scarcity of putative cis-acting elements in its promoter are noteworthy (117). For more 

meaningful comparisons between the genes of this family, it would be important learn more 

about the regulation of TNR, TNX and TNW genes in the future. In the case of tenascin-C, 

systems biology and computational approaches will probably be required to fully understand 

how a dozen or more signaling pathways converge to control its very complex gene promoter. 

 Why is it relevant to study the regulation of tenascins in even more detail? TNR and 

TNX, because of their largely constitutive expression, might perhaps be less interesting in this 

respect. Of course, TNX will remain in focus because of its important function in tissue integrity 

and its association with human disease, and TNR might be further investigated as a prime 

example for highly tissue and cell type-specific gene regulation. In case of the highly regulated 

tenascin-C and TNW, however, more and more evidence suggests that these two proteins are 

important regulators of cell division, migration and differentiation in adult stem cell niches (20) as 

well as in cancer (132). Moreover, because of their very localized and high expression in the 
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extracellular matrix, both tenascin-C and TNR are very well suited for targeting antibodies and 

drugs to certain types of tumors (133). For this therapeutic approach to work effectively, it is 

important to know how tenascin-C or TNW gene expression is affected e.g. by cytotoxic drugs in 

combined therapy, and what signaling pathways are involved. From a basic research point of 

view, the tenascin family provides an intriguing example for a vertebrate protein family of 

paralogues with similar structure and function, but with distinct expression patterns in space and 

time that are generated by different mechanisms of regulation of the respective genes. 

 



II. Introduction  49 

 

 

 

Figure Legend 

 

Figure 1: Schematic representation of the transcription start sites and the first exons of the four 

human tenascin genes. TNC, tenascin-C, TNN, tenascin-W; TNR, tenascin-R; TNXB; tenascin-

X. Note that the very large first introns are not drawn to scale (indicated by dotted lines); their 

length differs in the four genes. Note also that the TNC and TNN genes possess TATA boxes 

whereas the TNR and the TNXB genes do not. In contrast to TNC, TNN and TNR that have a 

single transcription start site (TSS1), the TNXB gene has three (TSS1, TSS2, TSS3), and it 

features several noncoding exons that are differentially spliced. 
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Table 1: External signals, signaling pathways and transcription factors involved in the regulation 

of the four tenascin genes. TNC, tenascin-C; TNR, tenascin-R, TNXB, tenascin-X; TNN, 

tenascin-W. Numbers in superscript correspond to references according to the list. N.D., not 

determined. 
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II.4  Aim of the work 

It is well known that two of the four tenascin family members are significantly regulated by the 

tissue microenvironment: tenascin-C and tenascin-W (110). While a lot is known about tenascin-

C, its regulation and gene structure, no information about these aspects of tenascin-W have 

been reported. In this work, the primary goals were to investigate the gene structure of tenascin-

W and to explore its role and regulation in the bone metastatic niche of breast cancer. As 

catalyst for the exploration of the so far undefined tenascin-W gene structure and regulation, we 

performed computational as well as experimental analysis of the tenascin-W gene locus to 

identify the transcription start site(s), the promoter and its transcription factor binding sites as 

well as potential regulatory regions in the first intron. Since tenascin-W is known to be 

expressed in breast cancer stroma (105) and 80% of women with advanced breast cancer have 

bone metastases (111) we decided to investigate a potential role of tenascin-W in the metastatic 

spreading of breast cancer cells to bone.  
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What`s new? 

This is the first report describing a function for tenascin-W in metastasis as well as the first 

report on tenascin-W gene structure and transcriptional regulation by TGF-beta and 

glucocorticoids in human bone marrow stromal cells. Our results support a role for TNW as a 

niche component for breast cancer metastasis to bone by supporting cell migration and cell  

proliferation of the cancer cells.
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Abstract  

 

Tenascin-W is a matricellular protein with a dynamically changing expression pattern in 

development and disease. In adults, tenascin-W is mostly restricted to stem cell niches, and is 

also expressed in the stroma of solid cancers. Here we analyzed tenascin-W expression in the 

bone microenvironment of breast cancer metastasis. Osteoblasts were isolated from tumor-free or 

tumor-bearing bones of mice injected with MDA-MB231-1833 breast cancer cells. We found a 

4-fold upregulation of tenascin-W in the osteoblast population of tumor-bearing mice compared 

to healthy mice, indicating that tenascin-W is supplied by the bone metastatic niche. Transwell 

and co-culture studies showed that human bone marrow stromal cells express tenascin-W protein 

after exposure to factors secreted by MDA-MB231-1833 breast cancer cells. To study tenascin-

W gene regulation, we identified and analyzed the tenascin-W promoter as well as three 

evolutionary conserved regions in the first intron. 5’RACE analysis of mRNA from human 

breast cancer, glioblastoma, and bone tissue showed a single tenascin-W transcript with a 

transcription start site at a non-coding first exon followed by exon 2 containing the ATG 

translation start. Site-directed mutagenesis of a SMAD4 binding element in proximity of the 

TATA box strongly impaired promoter activity. TGFβ1 induces tenascin-W expression in human 

bone marrow stromal cells through activation of the TGFβ1 receptor ALK5, while 

glucocorticoids are inhibitory. Our experiments show that tenascin-W acts as a niche component 

for breast cancer metastasis to bone by supporting cell migration and cell proliferation of the 

cancer cells. 

 

 

. 
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Introduction 

 

Despite great progress in the treatment of breast cancer, metastatic disease is not curable and the 

treatment options remain palliative. Bone is the most frequent site of metastatic lesions and 

occurs in 80% of women with advanced breast cancer.
1,2

 Therefore, it is important to investigate 

the mechanism for this osteotropism as well as the interactions of the cancer cells with the bone 

microenvironment with the ultimate aim being to define new treatment options. The 

microenvironment, including the extracellular matrix (ECM) surrounding primary tumors as well 

as metastases, has been found to be an important factor determining tumor cell behavior.
3-6 

Tenascin-C (TNC) and tenascin-W (TNW) are two ECM proteins that are highly expressed in 

the stroma of most solid tumors 
7,8

 and a crucial role for TNC in breast cancer metastasis to the 

lung has been demonstrated.
9,10

 Currently there is no information on TNW expression or a 

potential role in breast cancer metastasis, the goal of the work described here. 

Prominent expression of TNW has been reported in developing bone where it was shown to be 

particularly abundant in the stem cell niche of the cambium, the location of osteoblast 

progenitors 
11

. Therefore, we decided to investigate TNW expression in the bone environment in 

the MDA-MB231 xenograft model of breast cancer metastasis.
12

  We used MDA-MB231-1833 

cells which have bone tropism following intracardial injection.
12

 We found that MDA-MB231-

1833 tumors induced TNW in situ in the bone stroma. Moreover, in a coculture model of MDA-

MB231-1833 cells with human bone marrow derived stromal cells (BMSCs), we also observed 

increased levels of TNW. To provide mechanistic insight to this observation, we investigated the 

signaling pathways inducing TNW in BMSCs and characterized the gene structure of the human 

TNW gene. We identified a crucial effect of TGF-beta signaling in the regulation of TNW 

expression in human BMSCs which in turn will provide a congenial microenvironment for tumor  

cell growth.
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Material and Methods 

 

Bone metastasis model 

The breast cancer cell line MDA-MB231-SCP1833 was kindly provided by Prof. J. Massagué 

(Memorial Sloan Kettering Cancer Center, New York). These cells were transduced with a 

lentiviral vector encoding Luc-2eGFP genes (L2G) as described in.
13

 MDA-MB231-SCP1833 

L2G cells were harvested from subconfluent cell culture plates, washed in PBS and injected into 

the left ventricle (0.5x10
6
 in 100ul PBS) of 8-week old female NOD SCID mice. Successful 

injections were verified by the pumping of arterial blood into the syringe and imaging with a 

bioluminescence imager (Berthold technologies, NightOwl). Bone marrow metastases were 

monitored by in vivo imaging over 20 days after which long bones were excised for cell sorting 

or immunostaining. 

Bone marrow cell suspensions from tumor free or tumor bearing mice (n=6-10 samples) were 

obtained by grinding the bone with mortar and pestle and digestion of the bone powder for 1h at 

37ºC with 1mg/ml collagenase (Roche), 1mg/ml dispase (Roche) and 50KU/ml DNAse (Sigma) 

into a single cell suspension. Stromal cells and hematopoietic fractions were enriched via a 

discontinuous percoll density gradient separation using 1.065g/L and 1.115g/L (GE Healthcare). 

Remaining red blood cells were lysed (140mM NH4Cl and 17mM Tris-base, pH7.4) and cells 

were stained and sorted directly into RNA extraction buffer (Qiagen) using a MoFlo cell sorter 

(Beckman Coulter). The osteoblast population was defined as GFP
-
TR119

-
CD45

-
SCA1

-
CD51

+ 

cells. RNA was extracted with Pico Pure RNA Isolation Kit (Arcturus cat.KIT0204) and cDNA 

prepared with the Ovation Pico Kit (NuGen cat.3302) following standard procedures and used 

for Real-Time Quantitative PCR (qRT-PCR, see below). 

  

Cell Culture 

Fibrosarcoma HT1080 cells (CCL-121, ATCC) and MDA-MB231-SCP1833 cells were cultured 

in Dulbecco’s modified Eagle’s medium (DMEM) and 10% fetal bovine serum (FBS). Human 

bone marrow stromal cells (BMSCs) immortalized with the hTERT/GFP system were kindly 

provided by Dr. A. Scherberich (University Hospital of Basel).
14

 BMSCs were cultured in 

Eagle’s Minimal Essential Medium Alpha (α-MEM) with 2mM L-glutamine and 10% FBS. To 
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strip glucocorticoids from serum, 2.5g of dextran-coated charcoal (DCC; Sigma-Aldrich) was 

added to 125ml of serum and mixed gently overnight at 4
o
C. DCC was removed by 

centrifugation followed by sterile filtration.  

 For co-culture assays 3x10
3
 BMSCs and 6x10

 3
 MDA-MB231-SCP1833 cells were 

seeded per 1cm
2
 into poly-L-lysine coated 8-well chamber slides (BD Falcon). In parallel each 

cell lines was cultured individually at a density of 3x10
3
 cells/cm

2
. For transwell co-culture 

assays, cells were cultured in wells containing inserts separated by a polycarbonate membrane 

with 0.4 µm pores (Costar). MDA-MB231-SCP1833 or BMSCs cells were plated in the upper 

chamber (5x10
3 

cells in 0.5ml medium)  and BMSCs or MDA-MB231-SCP1833 (5x10
4 

cells in 

1.5ml) were cultured on 10mm round glass coverslips coated with fibronectin (5ug/ml, for 1h) 

placed in the bottom chamber. Cells were cultured in α-MEM/10% FBS and maintained for 7 

days with medium changes every 2 days.  

 

Immunostaining 

Long bones were fixed for 48h in 10% formalin, decalcified in 0.5M  EDTA (pH7.5) for 3 days 

at 4°C, dehydrated in 30% sucrose in PBS overnight and embedded in OCT. Antigen retrieval of 

8µm sections was performed in citrate buffer 10mM pH6, 0.5% Tween20 (2 hours) followed by 

blocking with 3%BSA/0.2%Triton in PBS. Cultured cells were fixed with 4% formaldehyde in 

PBS for 15min at RT, permeabilized in cold 100% methanol for 2min at -20
o
, washed twice with 

PBS and blocked with 0.01% Tween/1% BSA in PBS. Slides with bone sections or cells were 

stained with rabbit-anti-mTNW 
11

 and the mouse monoclonal anti-hTNW56O 
15

 followed by 

secondary antibodies Alexa Fluor 568 (Invitrogen). Slides were mounted with ProLong Gold 

containing DAPI (Invitrogen) and images acquired using an Axio Imager Z2 LSM700 confocal 

microscope (Zeiss). 

  

RNA Isolation and Real-Time Quantitative PCR  

Total RNA was isolated from BMSCs treated with 5ng/ml TGFβ1 (R&D Systems), in α-

MEM/0% FBS for 24h, with or without 10µM SB-431542 inhibitor (Sigma) added to the cell 

cultures 1h before the addition of TGFβ1. Total RNA was extracted from BMSCs using RNeasy 

Mini Kits and QIAshredder (Qiagen). RNA was transcribed into cDNA using the High Capacity 

cDNA Reverse Transcription Kit (Life Technologies/Applied Biosystems) and qRT-PCR 
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analysis was performed with SYBR green PCR SuperMix-UDG/ROX (Invitrogen). The level of 

expressed genes was measured by Relative quantification (Ct method) or Relative Standard 

Curve quantification. Human TBP and mouse GAPDH genes were used as internal reference. 

Primers used are listed in additional supporting information file 1. 

 

Cell proliferation and migration assays 

TNW protein was purified as described.
11

 For proliferation assays the 5-bromo-2-deoxyuridine 

(BrdU) chemiluminescent enzyme incorporation kit was used (Roche). Tumor cells were seeded 

in a 96-well black plate at a density of 1x10
4
 per well and incubated overnight. After the addition 

of different concentrations of TNW protein (0-10µg/ml) in serum-free DMEM cell proliferation 

was quantified 48h after plating and the addition of 10µM BrdU for 2h at 37
o
C. Cells were fixed 

and stained and the incorporated BrdU detected in a chemiluminescence microplate reader 

(Perkin Elmer). 

 Cell migration assays were performed using 24 transwell chambers (8 µm pore size; 

Costar). The underside of the polycarbonate membrane was pre-coated with different 

concentrations of TNW recombinant protein (0-10µg/ml) for 2h at 37
o
C and subsequently 

blocked for 30min at 37
o
C with 1% BSA/PBS. MDA-MB231-SCP1833 cells were cultured in 

the upper chamber in serum-free DMEM (1x10
5
 cells in 1ml). Serum-free medium was added to 

the bottom chamber (0.6ml) and cells were allowed to migrate for 24h. Cells were scraped off 

the top of the membrane using cotton swabs. Cells that had migrated across the membrane were 

fixed in 4% formaldehyde and stained with 1% crystal violet and total cell-covered areas were 

quantified using ImageJ software as described before.
16

  

 

Transcription Start Site Identification and cloning of the reporter constructs 

5’RACE was performed using total RNA from normal bone (OriGene), breast cancer tissue 

(Clontech) and glioblastoma (OriGene) using the 5’/3’ RACE Kit, (2
nd

 Generation, Roche). 

Briefly, 1µg of total RNA was reverse-transcribed into first-strand cDNA using the human 

tenascin-W specific primer hSP1. To identify the 5’ end of the TNW mRNA two gene specific 

primers hSP2 and hSP3 were used (primers are listed in additional supporting information file 1). 

DNA products were cloned and sequenced.   
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Different promoter constructs, all containing exon 1 (77bp) preceded by different lengths of 

human tenascin-W promoter sequences were amplified from human genomic DNA isolated from 

HEK293 cells resulting in the following constructs: pSEAP-TNW (-1800bp), pSEAP-TNW (-

957bp), pSEAP-TNW (-512bp), pSEAP-TNW (-320bp), pSEAP-TNW (-252bp), pSEAP-TNW 

(-148bp), pSEAP-TNW (-79bp), pSEAP-TNW (-59bp), pSEAP-TNW (-35bp), and pSEAP-

TNW (+77bp). See additional supporting information file 1 for the list of primers used. The 

primers included NheI and XhoI restriction sites for directional cloning into the MCS of 

pSEAP2-basic (Clontech). The three conserved intronic DNA fragments were amplified from 

HEK293 genomic DNA as template and inserted into NheI/HindIII sites of the pSEAP-basic 

vector. Further deletions of the second conserved region were created. All primers used and their 

intronic locations are listed in additional supporting information file 1. The three intronic regions 

were also cloned into the NheI and MluI sites 5´ of pSEAP-TNW (-79bp) creating the plasmids 

pSEAPI/-79, pSEAPII/-79 and pSEAPIII/-79.  

 Site-directed mutagenesis of the SMAD4 binding site (gcctAGACagg) was performed 

using a scrambled sequence (AGAGTGATCA), which does not display any known cis-acting 

sequence. Overlapping primers used for PCR including the scrambled sequences underlined are 

listed in additional supporting information file 1. Following transformation of the DpnI-digested 

PCR, plasmid DNA was isolated and the mutations confirmed by sequencing. 

 

Cell transfection and reporter gene assays 

HT1080 cells were cultured in DMEM/10% FCS. For reporter assays cells were plated at 5x10
4
 

cells/well in 12-well plates overnight to reach 60-70% confluence. Cells were transfected by 

jetPEI (Polyplus) with 0.6µg/well of total DNA (pSEAP reporter construct and pMetLuc for 

normalization mixed at 1:20 molar ratio) in DMEM/0.3% FCS. Reporter activity was measured 

24h after transfection. Alternatively, cells were transiently transfected in 3% FBS or 3% DCC 

treated FBS for 24h. Secreted alkaline phosphatase (SEAP) activity in the culture medium was 

determined using the SEAP Reporter Gene Assay Kit (Roche) and for normalization the Ready-

To-Glow secreted luciferase reporter system (Clontech) and measured in a luminometer (Mithras 

LB940; Berthold technologies). SEAP values were normalized to Luciferase values to control for 

transfection efficiency. The normalized luminescence values were then standardized by the 

background activity (empty vector). The pSEAP-TNW-79bp construct was included in all 
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experiments and was used to calibrate different experiments. Error bars represent the standard 

error of the mean (SEM) between all replicates of each experiment.   

 

Statistical Analyses 

Data are represented as means and SD or SEM as stated in the figure legends. Statistical analysis 

using a two-tailed t-test was carried out with SigmaPlot for Windows version 12.0. All the 

experiments shown are the means of 3 replicates. The difference between two groups was 

statistically significant when P<0.05. 

In silico analyses  

The genomic location of the human tenascin-W gene and its evolutionary conservation was 

examined using the UCSC genome browser (http://genome.ucsc.edu/). MatInspector 

(http://www.genomatix.de) was used to identify predicted transcription factor binding sites in the 

genomic sequences. 

http://genome.ucsc.edu/
http://www.genomatix.de/
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Results 

Tenascin-W is induced in bone metastases of MDA-MB231-1833 breast cancer cells 

We investigated the expression of TNW in the bone stroma of MDA-MB-231-SCP1883 tumor-

bearing mice. Osteoblasts were isolated from tumor-free or tumor-bearing bones as described in 

Materials and Methods and RNA was extracted from this host cell population. Using quantitative 

real time PCR (qRT-PCR) mouse TNW mRNA levels were up-regulated 4-5 fold in osteoblasts 

isolated from bones harboring metastases compared with osteoblasts from non-tumor-bearing 

control bone (Fig.1A). Immunostaining of the long bones shows that TNW is expressed in the 

region surrounding the GFP-expressing tumor cells (Fig.1B). Using species-specific monoclonal 

antibodies, we verified that TNW is specifically unregulated in the host tissue since no human 

TNW was detectable. Thus, the MDA-MB231-1833 cells are not a source of TNW, but are 

surrounded by a host-derived TNW-rich extracellular matrix in the bone metastatic niche. 

 

Breast cancer cells release factors that induce tenascin-W expression in human bone 

marrow stromal cells  

Prompted by the striking correlation of TNW expression with breast cancer metastases, co-

culture assays were established to investigate whether paracrine interaction between MDA-

MB231-1833 and immortalized human BMSCs can induce TNW expression. Indeed, BMSCs 

are targets of homing signals and they represent a significant cellular source not only of 

osteoblasts but also of myofibroblasts within the tumor stroma supporting tumor cells.
17 

Monocultures and co-cultures of the two cell lines were subjected to immunofluorescence 

staining to detect TNW protein expression. Interestingly, TNW was exclusively detectable in co-

culture conditions and neither the tumor cells nor the BMSCs alone yielded any TNW staining 

(Fig.1C).  

 In order to examine whether the expression of TNW in co-cultures depends on direct cell-

cell contacts, transwell co-culture assays were performed (Fig.2). Each cell type was cultured in 

the bottom well of transwell culture dishes (Fig.2A), either alone or with the other cell type 

cultured in an upper well (Fig.2B). Upper and lower compartments were separated by a 

polycarbonate membrane with 0.4 µm pores, to allow the diffusion of soluble factors, but not the 

transmigration of cells (Fig.2B). For each condition, the cells in the bottom well were analyzed 
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by immunostaining for TNW expression after 7days in culture. This confirmed that neither cell 

type alone produced TNW, but TNW was induced in BMSCs in the presence of tumor cells in 

the upper chamber and not vice versa. Thus, in this in vitro system, tumor cells can induce the 

expression of TNW in the bone-derived BMSCs and this depends on the release of a soluble 

factor (or factors) secreted by the tumor cells.   

 

Transcriptional regulation of tenascin-W gene expression 

To get a hint on the possible factor and signaling pathway inducing TNW expression in BMSCs, 

we decided to isolate and study the TNW gene promoter and to identify regulatory sequences 

present in the TNW gene. In the case of human TNW, the gene name in the databases is TNN. 

The 5`part of the TNN gene, as it is annotated in the UCSC browser, is shown in Fig.3A. It 

shows a first non-coding exon separated by a large intron from exon 2, which contains the ATG 

translation start. Underneath the sequence tracks, the evolutionary conservation reveals high 

conservation of the exon sequences and the putative promoter region as well as of three 

conserved regions in the first intron (Fig.3A). To experimentally confirm the predicted 

transcription start site (TSS) we performed 5’RACE experiments (Fig.3C). To assess potential 

transcript variants in different tissues that are known to express TNW, we used total RNA 

isolated from glioblastoma and breast cancer tissues which have high TNW expression levels 

15,18
 as well as RNA from healthy bone tissue, since TNW is known to be associated with the 

osteogenesis process.
19 

PCR products were cloned and sequenced. From all RNA sources tested, 

we found a single TNW transcript with a TSS at the non-coding first exon. Thus, normal and 

cancer tissues tested here are using a common single TSS to initiate TNW transcription.  

 In order to identify regulatory regions present in the TNW promoter, promoterless SEAP 

(secreted embryonic alkaline phosphatase) reporter constructs containing exon 1 (+77) and 

different parts of the 5' flanking region up to a length of 2kb were cloned (Fig.3B). Reporter gene 

activity was examined using the human fibrosarcoma cell line HT1080. Transfection of the 

promoter constructs revealed that the main control region was contained within -512bp of the 

TSS since longer constructs gave similar results. Thus, the promoter region coincides with the 

UCSC Genome browser tracks ESPERR Regulatory Potential (Fig.3B; light blue) and the 

Vertebrate Multiple sequence Alignment & Conservation tracks (Fig.3B; dark blue). However, 

further shortening of the promoter constructs to -320, -252 and -148bp revealed a gradual loss of 
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reporter activity. This could be related to the loss of binding sites for factors that enhance the 

promoter activity in a cooperative manner. One such factor could be SMAD1/5, since by 

MatInspector analysis a GC-rich Smad-binding element (SBE) was detected at position -230. An 

increase of reporter activity was observed by the deletion of the sequence from -148 to -79, 

pointing to the presence of a negative regulatory site in this region. Using MatInspector, a 

GATA-binding element was detected in this region and may be responsible for the repression in 

a similar way as it was described for TNC.
20

  Interestingly, the short -79bp minimal promoter 

exhibited the highest activity after transient transfection which was lost by the deletion of -79 to -

59bp, indicating important transcription factor binding sites within these 20bp. Indeed, 

MatInspector analysis revealed a SMAD4 site at this location. The sequence of the TNW 

promoter and the first exon as well as potential transcription factor binding sites are given in 

additional supporting information file 2. 

 

Analysis of the evolutionary conserved regions within the first intron. 

 Further inspection of the TNN genomic locus using the UCSC genome browser revealed 

striking patterns of histone modifications within the first intron of the TNN gene, namely an 

H3K4me1 enhancer chromatin signature, as well as H3K27 acetylation that defines nucleosome 

exclusion regions (Fig.4A). These epigenetic marks overlap with three evolutionarily conserved 

regions which we tested for a potential involvement in the regulation of TNW transcription 

(Fig.4B). We cloned the three intronic conserved modules I, II and III upstream of the SEAP 

reporter gene and tested their effects on reporter gene activity. While the first conserved region 

(+1178/+1909) appeared to act as a silencer, the second conserved region (+2920/+3447) 

strongly enhanced transcription when compared to the pSEAP basic vector. The third region did 

not seem to influence the reporter gene activity when tested on its own, but in conjunction with 

the active region II, both, region I as well as III seemed to silence the activity of region II 

(Fig.4B). Further dissection of the second conserved region showed that the sequence between 

+3299 and +3447 was mainly responsible for the strong activation (Fig.4B). Although we did not 

find any alternative TSS in the tissues analyzed, the possibility remains that this region might be 

an alternative promoter of the TNN gene. 
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Identification of negative and positive trans-acting elements in the TNW gene 

After the experimental determination of the most important regions of the TNW gene affecting 

promoter activity, we experimentally tested the identified putative transcription factor binding 

sites within the promoter and first intron regions. Computational predictions showed the 

presence of a SMAD4 nuclear transcription factor binding site at -61bp from the TSS, next to a 

TATA box sequence located at -54bp upstream of exon 1. This SMAD4 binding site 

(gcctAGACagg) is located within the 20bp region found to be crucial for the high activity of the 

proximal TNW promoter. To test whether this binding site is responsible for the promoter 

activity, site-directed mutagenesis of the SMAD4 element was performed (Fig.5A). Indeed, the 

presence of the scrambled sequence (AGAGTGATCA) strongly impaired the SEAP reporter 

gene expression driven by the minimal basal promoter (-79bp). SMAD4 is an intracellular 

mediator of the TGF-β signaling pathway.
21

 Therefore, we assessed whether TGF-β1 acts on 

endogenous TNW gene expression in BMSCs (Fig.5B). To examine the specificity of action of 

TGF-β1 on TNW gene transcription we evaluated the efficiency of SB-431542, a selective 

inhibitor of the TGF-β1 receptor/ALK5, to inhibit TNW induction (Fig.5B). Preincubation of 

BMSCs with the ALK5 inhibitor abolished induction of TNW transcripts as assessed by qRT-

PCR. Thus, we identified TGF-β1 as a factor inducing human TNW gene expression in BMSCs 

through activation of ALK5. A similar result was obtained using conditioned medium of MDA-

MB231-1833 instead of TGF-β1, which also led to an ALK5-dependent incease of TNW 

transcripts in BMSCs, confirming that TGF-β1 is one of the MDA-MB231-1833 secreted factors 

inducing TNW (Additional supporting information file 3). 

 Further sequence analysis of the intron showed a negative glucocorticoid response 

element (nGRE: tttttccaGGAGaga) located in the first conserved region. This prompted us to 

investigate whether or not glucocorticoids have an inhibitory effect on TNW transcription. For 

this purpose, we stripped endogenous steroids from the serum by using dextran-coated charcoal 

(DCC-FBS). Conserved intronic regions were cloned upstream of the  -79bp proximal promoter 

construct and transfected into HT1080 cells in the presence of 3% untreated FBS or DCC-FBS 

for 24h (Fig.5C). Indeed the first intronic module (I./-79bp) containing the nGRE exerted 

transcriptional repression of the TNW promoter measured by a 2-fold lower activity in the cells 

grown in untreated versus steroid-stripped FBS. This was confirmed in BMSCs. In the presence 

of glucocorticoid-depleted FBS, BMSCs showed higher TNW transcript levels than in normal 
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FBS (Fig.5D). A model representing the main regulatory elements of the promoter and first 

intron of the TNW gene analyzed here is shown in Fig.5E. 

 

Tenascin-W promotes breast cancer cell migration and proliferation in vitro 

Since the metastatic tumor cells in vivo are surrounded by TNW we investigated a potential 

functional role of TNW in tumor progression, MDA-MB231-1833 cells were treated with 

different concentrations of human TNW recombinant protein (5-10µg/ml) and analyzed for 

proliferation and migration. There was a 3.5-fold increase in BrdU incorporation in MDA-

MB231-1833 cells measured in the presence of TNW 48h after starting the cultures (Fig.6A). 

Cell migration was assessed using transwell chamber assays. The underside of the filters was 

coated with TNW to investigate its role as chemoattractant. There was a 3.5-fold increase in 

MDA-MB231-1833 cell migration towards TNW compared to control filters indicating a pro-

migratory function of TNW for the MDA-MB231-1833 cells (Fig.6B). 
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Discussion 

 

It is well known that paracrine signals released by breast cancer cells orchestrate the fate of 

stromal cells residing in the tumor microenvironment and vice versa.
4,22,23

 Stromal cells are 

targeted by tumor-released factors and in response undergo myofibroblast-like differentiation to 

a so-called cancer associated fibroblast.
24

 We propose that breast cancer cells, after homing to 

the bone marrow via blood circulation, secrete TGFβ1 which induces changes in the bone 

marrow niche, including the deposition of TNW in the extracellular matrix. Exposure of MDA-

MB231-1833 cells to TNW supports their migration and proliferation establishing a “vicious 

cycle” for cancer progression by promoting the growth and further invasive behavior of the 

breast cancer metastases (Fig.6C). We showed that a crucial signaling pathway for the induction 

of TNW is the TGFβ1 secreted by the tumor cells which induces Smad4-dependent transcription 

of the TNW gene in the bone marrow stromal cells. Indeed, TGFβ1 has been found to be a major 

osteolytic factor secreted by MDA-MB231 cells.
25

 Furthermore, downregulation of Smad4 in 

MDA-MB-231 cells strongly inhibited bone metastasis formation. 
26

 In contrast to the induction 

of TNW expression by TGFβ1, we found that glucocorticoids have a negative impact on TNW 

expression. A similar antagonistic effect has also been described for the regulation of the TNW 

family member TNC and TNX.
27,28

 Interestingly, anti-inflammatory agents, including 

corticosteroids, are in use as cancer therapy.
29

 It is likely that such treatments also affect the 

ECM composition of the cancer microenvironment.  

The actual situation in vivo is of course more complicated and it is clear that also osteoclasts are 

involved in the metastatic process.
30,31

 It is known that upon stimulation of osteoblasts by 

cytokines released by the tumor cells, osteoblasts release RANKL which in turn promotes 

differentiation and activation of osteoclasts. Activated osteoclasts resorb the bone matrix with 

the consequent release of cytokines including TGFβ.
32 

These cytokines will act back on the 

osteoblasts as well as the tumor cells and in a vicious cycle keep the osteolytic lesions growing. 

Because of these findings, inhibition of osteoclasts by bisphosphonates as well as RANKL and 

TGFβ-targeting agents are presently tested as adjuvant therapy for the treatment of breast cancer 

patients with bone metastases.
32-36

 The benefit of such treatments may include reduced TNW 

expression in the microenvironment of the metastatic cells and alleviate the tumor-promoting 



76  III. Results 

 

 

effects exerted by TNW. Tumor-promoting effects of TNW may include promotion of growth 

and migration as well as pro-angiogenic effects, since TNW was found to be expressed around 

tumor blood vessels in several types of cancers and to stimulate endothelial sprouting in 

culture.
8,18

 Furthermore, with its tumor and metastasis-specific expression, TNW may itself be a 

target for antibody-mediated drug targeting of the bone metastatic niche. 
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Figure Legends: 

Figure 1. TNW is upregulated in bone metastasis of breast cancer.  

A, TNW transcript levels in RNA isolated from osteoblasts sorted from two individual tumor-

free (1, 2, black) or two tumor-bearing mice (3, 4, red). Averages ± s.d. of two independent 

experiments in triplicate are shown. B, tissue sections of tibia show GFP-MDA-MB231-1833 

metastases (green). Staining of TNW was detectable with anti-mouse TNW only (red, mTNW, 

left panel) but not with anti-human TNW (hTNW, right panel). Scale bar, 100µm. C, 

immunofluorescence staining for TNW of human bone marrow stromal cells (GFP-BMSCs) and 

human breast cancer cells (GFP-MDA-MB231- 1833) cultured alone, or in co-culture reveals 

TNW protein (red) expression after 7 days of co-culture. Nuclei were labeled with DAPI (blue). 

Scale bars, 50µm.  

 

Figure 2. Soluble factors secreted by MDA-MB231-1833 breast cancer cells stimulate TNW 

expression in BMSCs.  

A, monocultures of GFP-BMSCs (left panels) and GFP-MDA-MB231-1833 cells (right panels) 

maintained for 7 days in culture. Nuclei were stained with DAPI (blue). Staining with human 

anti-TNW monoclonal antibody does not detect any TNW expression. B, MDA-MB231-1833 

cells or BMSCs were seeded in the bottom well of transwell chambers (MDA-MB231-1833 

lower; BMSCs lower) and exposed to the other cell type in the upper chamber in an indirect co-

culture system. Under these conditions TNW protein expression (red) was detected exclusively 

in BMSCs and not in MDA-MB231-1833 cells Scale bars, 100µm for all panels except for the 

magnification shown in the right panels representing 20 µm.  

 

Figure 3. Experimental and computational analyses of the transcription start site and 

promoter activity of the TNW gene.   

A, graphical representation of the two first exons of the TNW gene (marked in blue rectangles) 

using the UCSC Genome Browser. In addition to sequence conservation of the exons and 

promoter region, three regions of conservation among the vertebrate genomes are observed 

within the first intron. B, to characterize the TNW promoter, exon-1 (+ 77bp) and different 

lengths of the 5’ flanking region as indicated were cloned upstream a promoterless SEAP vector. 
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The UCSC Genome browser tracks ESPERR Regulatory Potential (7 species; light blue) and 

Vertebrate Multiple sequence Alignment & Conservation (17 species; dark blue) of about 500bp 

upstream of the TSS are depicted above the promoter constructs. Plasmid DNA constructs were 

transiently transfected in HT1080 cells for 24 hours. SEAP activity is normalized to a co-

transfected secreted luciferase plasmid and plotted relative to the promoterless SEAP vector 

control. Values are the average and SEM of three independent experiments. c, agarose gel 

electrophoresis shows the products resulting from 5’RACE of total RNA from breast cancer, 

healthy bone and glioma tissues as indicated. Cloning of the DNA bands (400bp) and the 

subsequent sequencing revealed a single transcription start site adding a 79bp first exon to exon 

2 containing the ATG start codon. 

 

Figure 4.  Analysis of the evolutionary conserved regions within the first intron.  

A, Multiple alignment of conserved genomic sequences using the UCSC Genome Browser is 

visualized in green lines and shows the conservation to human TNW from top to bottom of  

Rhesus, Mouse, Dog, Horse, Armadillo, Opossum, Platypus, Lizard, Chicken, X_tropicalis, and 

Stickleback orthologs. Chromatin signatures shown on top (H3K4Me3, H3K4Me1 and, 

H3K27Ac) overlap with the intronic modules. B, in order to assess  potential transcriptional 

activities, each conserved region I, II and III, combinations thereof and truncated versions as 

indicated were cloned upstream of the SEAP reporter gene. Transient transfections of the 

constructs in HT1080 cells were analyzed for SEAP activity as described in Fig.3B. The 

experiment was performed in triplicates and repeated three times (error bars = SEM). 

 

Figure 5. Regulation of TNW transcription by TGFβ1 and glucocorticoids.  

A, The Smad4 binding site (gcctAGACagg) was mutated by site-directed mutagenesis and 

replaced with the scrambled sequence (Scr- AGAGTGAT). Construct -79/+77 containing the 

normal (SMAD4) or modified Smad4 sequence (Scr-control) was transfected in HT1080 cells 

and analyzed for SEAP activity in comparison to the empty pSEAP as described in Fig.3B. B, 

BMSCs were treated with SB-431542-DMSO (10µM) or DMSO only for 1h before the addition 

of TGFβ1 (5 ng/ml) for 24h. TNW transcript levels were then analyzed by qRT-PCR. C, 

Constructs with the three intronic regions (I./II./III.) cloned upstream the minimal TNW 

promoter (-79bp/+77) were transfected in HT1080 cells in medium containing 3% FBS (light 
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green bars) or glucocorticoid-depleted 3% DCC-FBS (dark green bars) for 24h. SEAP activity 

was analyzed as in Fig. 3 revealing that the intronic conserved region I inhibited the reporter 

activity in a glucocorticoid-dependent manner. D, BMSCs were cultured in untreated 3% FCS 

(light green bar) or in the presence of 3% charcoal/dextran treated FBS for 24h before measuring 

transcript levels of TNW by qRT-PCR. All experiments were repeated at least three times (error 

bars = SEM). E, Schematic model of the TNW gene regulation by a SMAD4 element preceding 

a TATA box in the proximal promoter region upstream of exon 1 (red box 1) and a negative 

glucocorticoid-response element (nGRE) in the first conserved region within the first intron 

(green oval I).  

 

Figure 6. Effect of TNW on breast cancer cell proliferation and migration.  

A, MDA-MB231-1833 cells were treated with different concentrations of recombinant human 

TNW protein (5-10 µg/ml) in serum-free medium. Proliferation was measured by BrdU 

incorporation 48h after exposure to TNW. B, MDA-MB231-1833 cells were seeded in the upper 

chambers of transwell migration dishes and allowed to migrate for 24 h towards TNW coated on 

the underside of the filters. Cells on the bottom side of the filters were stained and photographed 

(scale bar = 50 µm) and the cell-covered area was quantified (error bars = SD). Statistical 

analysis was assessed by paired Student’s t-test. P values <0.05 are considered statistically 

significant. C, Model for the role of TNW in breast cancer metastasis to bone: After extravasion 

and homing to the bone MDA-MBA231 cells are releasing TGFβ1 which triggers BMSCs to 

differentiate into TNW secreting cancer associated fibroblasts (CAFs). TNW in turn is able to 

influence the growth and further invasion of the metastatic cancer cells. 
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Supplemental Figure 1 

Promoter sequence and 5´end of the TNW gene. The start of each promoter construct is designated 

above the sequence with the first bp in bold. The TSS is marked with +1 followed by the sequence of the 

first non-coding exon and the sequence of the second exon up to the translation start codon ATG in 

italic. The main transcription factor binding sites addressed in this paper are underlined (core sequences 

double underlined) and labeled above the sequence when present on the + strand and below, when 

present on the – strand. 
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Supplemental Figure 2  

Induction of TNW by MDA-MB231-1833 conditioned medium. (A) BMSC cells were seeded at a density 

of 1 x 105 in 6 well plates overnight at 37oC to reach 70% confluence. After washing with PBS they were 

maintained in α-MEM serum free with or without the addition of 10 µM SB-431542 inhibitor for 1h 

(Sigma). Following SB-431542 treatment, cells were exposed to conditioned medium (conditioning time 

48h) from MDA-MB231-1833 cells mixed in a ratio of 1:1 with fresh serum-free medium plus 0.2% BSA. 

Total RNA was extracted from BMSCs after 24h using and transcribed into cDNA. Samples were 

subjected to real time PCR analysis with human TBP as internal reference. (B) MDA-MB231-1833 cells 

were maintained for 24h in DMEM supplemented with 10% FBS and total RNA was isolated. RT-PCR 

reactions were analyzed by agarose gel electrophoresis to reveal the presence of TGF1 (336bp), IL-8 

(160bp) and TNF-bp) transcripts in MDA-MB231-1833 cells. 
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III. 2 Unpublished Results 

III. 2. 1 An intronic positive transcription regulatory element 

The high gene expression achieved by transfecting HT1080 cells with pSEAP vector containing 

the second conserved (+3299/+3447) region within the first intron (cf. Fig.4 of the manuscript 

Chiovaro et al., submitted), prompted us to investigate more closely the identity of this 

sequence. It is well known that the activity of enhancers is generally insensitive to the 

orientation and location, whereas changes in promoter position and orientation greatly impair its 

function (112). Therefore, cloning of the fragment (+3299/+3447) in opposite direction was 

carried out (Fig.III.1). The alteration in orientation was found to cause a strong decrease in 

SEAP gene expression. This suggested to us the presence of a second promoter in this region.  

 

Figure III. 1: Graphical representation of the fragment (+3299/+3447) within the second conserved intronic region 

visualized by using the UCSC Genome Browser. Vertebrate Multiple sequence Alignment and Conservation for 

instance for human and mouse is indicated by green lines. The region (+3299/+3447) was cloned in opposite 

            (3’-5’)              m                  S A                (      ). S A        ty of the TNW intronic 

constructs in HT1080 cells was compared to the negative control (pSEAPbasic). Experiment was performed in 

triplicates and repeated three times (error bars = SEM). 
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Most promoters harbor control elements for expression across a wide range of cell and tissue 

samples leading to a precise pattern of gene expression (113). However, another mechanism 

for tissue-specific gene regulation is the acquisition of alternative promoters for a single gene 

each leading to distinct tissue-specific expression (114) Although findings from our studies 

showed only one single tenascin-W transcript form generated by a TSS located upstream of the 

non-coding exon 1 in breast cancer, glioblastoma and bone tissues (Chiovaro et al., 2014), we 

cannot exclude the potential existence of an alternative tenascin-W promoter used in a different 

context. Recent reports have shown how enhancer sequences can act as alternative promoters 

to contribute to divergent transcription in an orientation-dependent manner (115), supporting our 

indication of an enhancing region within the +3299/+3447 fragment.  

III. 2. 2 Functional dissection of the second conserved region 

In order to narrow down the active sequence(s) within the intronic fragment +3299/+3447 of the 

second conserved region, further truncation constructs were cloned. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III. 2: SEAP activity of different TNW truncated intronic constructs of the region (+3299/+3447) in HT1080 

cells compared to the entire fragment (+3299/+3447). The experiment was performed in triplicates and repeated three 

times (error bars = SEM). 
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The fragment of 148bp was subdivided into three shorter fragments of roughly 50bp each 

(+3299/+3349; +3344/+3394; +3394/+3447) as well as combinations of them as indicated in 

Fig.III.2.                   3’-end region (+3394/+3447) was responsible for the induction of the 

reporter gene expression. In order to identify the shortest nucleotide sequences with activity 

within this sequence, we performed site-directed mutagenesis (Fig.III.3). A scrambled sequence 

(AGAGTGATCA) that does not display any transcription factor binding sites was substituted for 

successive 10nt contained in the fragment of 53bp (+3394/+3447) as indicated in Fig. III.3. 

Constructs were transiently transfected in HT1080 cells for 24h. As shown in Fig. III.3, alteration 

of the central 20 bp in this sequence (segments III and IV) led to complete loss of SEAP 

expression, indicating that this region is essential for transcriptional activation.  

All primers used for all promoter reporter constructions and their intronic locations are listed in 

table III.1. The sequences were cloned into the HindIII and NheI sites of the pSEAP vector. For 

the procedures for cell transfection and reporter gene assays, see Chiovaro et al., 2014. 

 

Figure III. 3: SEAP activity of different scramble-mutant +3394/+3447 constructs, containing the mutation at different 

position. Basic vector and the unchanged +3394/+3447 region used as controls. The experiment was performed in 

triplicates and repeated three times (error bars = SEM). 

III. 2. 3 Computational analysis of the second conserved region 

After the experimental determination of the active nucleotide sequences within the 53bp 

construct, Matlnspector analysis revealed the presence of important transcription factor 

elements at this location (Table III.3). Binding sites for the transcription factors AP1, SP1 and a 

cAMP response element (CRE) well known to enhance gene expression, were found in region 
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IV (116, 117). Their replacement with the scrambled sequence showed a decreased SEAP 

reporter activity, proving their role as enhancer elements. In contrast to these positive 

regulators, in regions I and VI elements with potential transcriptional repression activity were 

identified. The proximal sequence element (PSE) of RNA polymerase III-transcribed genes is 

located in fragment I presenting a binding site for PSE-binding transcription factors (PTF), 

including co-activators as well as co-repressors (118). Moreover, a binding site for ETS1 is 

located in the last 10nt of the sequence. ETS1 belongs to the ETS-domain family of transcription 

factors and many co-regulatory partners, whether co-repressor or co-activator, can be recruited 

to ETS domain proteins (119).     

                                   Table III. 3: Matlnspector analysis of TFs 

Matrix Family Matrix Strand Sequence   

V$SNAP V$PSE.02 + cttggCGTAagtagtattt 

V$AP1R V$BACH2.01 - acacccTGGGtcaggaaaaaa 

V$SP1F V$TIEG.01 + acccAGGGtgtgtgtcc 

V$CREB V$TAXCREB.02 - aaagaaGGACacacaccctgg 

V$ETSF V$SPI1.03 + ttctttggGGAAtttaagctt 

 

III. 2. 4 Influence of the first intron on human tenascin-W promoter activity 

The region located 512bp upstream of exon 1 has been shown to be important for the regulation 

of transcription of the tenascin-W gene (Chiovaro et al., 2014). In the next set of experiments we 

aimed to investigate the influence of the three intronic conserved sequences on tenascin-W 

promoter activity. Therefore, intronic fragments were cloned upstream of the 512bp tenascin-W 

promoter preceding the TSS as well as upstream of the shorter  252bp and 79bp-long tenascin-

W promoter construct (Fig.III.4), as diagrammed in Fig. III.5.  

Figure III. 4: Schematic model of the three conserved regions within the first intron (oval shape; I.blue, II.red, 

III.green). TATA box sequence is located in the minimal promoter (-79), upstream the TSS of tenascin-W gene. 

Intronic fragments were cloned upstream different truncated forms of the promoter (-512, -252, -79). 
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We termed the three conserved intronic modules as I. (+1178/+1909), II. (+2920/+3447) and III. 

(+4561/+5539) (Chiovaro et al., 2014). Plasmid constructs were transiently transfected in 

HT1080 cells in media containing serum for 24h before SEAP activity was measured (Fig.III.5). 

 

 

Figure III. 5: SEAP activity of intronic constructs (I., II., III.) located upstream of the regions with promoter activity 

(512bp and the shorter 252bp fragment). Intronic activity is compared with expression from single promoter regions, 

512bp and 252bp (violet-control). The experiment was performed in triplicates and repeated three times (error bars = 

SEM). 

 

The result was different depending on the length of the tenascin-W promoter used. For the long 

tenascin-W promoter, all intronic regions appeared to inhibit its activity, while region II had no 

effect on the shorter tenascin-W promoter. After exclusion of some transcription regulator 

binding sites from the 512bp fragment by truncation to 252bp, the promoter activity arising from 

the truncated region is no longer inhibited and even slightly enhanced by the presence of the 

second intronic module. In contrast, the first and third intronic modules negatively regulated the 

promoter activity regardless of the length of the promoter used.  

 

Since we identified the minimal basal promoter of tenascin-W within 79bp upstream of the 

transcription start site (TSS) of the tenascin-W gene (Chiovaro et al., 2014) we also cloned the 

three conserved intronic regions upstream of this minimal promoter. To elaborate on possible 

differences between cell types and hence to assess how the cellular identity may influence the 

specificity of intronic activity on the promoter, we used human osteosarcoma cells (Krib), human 
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colon carcinoma cells (HCT116), human lung carcinoma cells (H1838) and HT1080 cells as 

model systems.  

 

Figure III. 6: SEAP activity of intronic constructs (I.blue, +1178/+1909; II.red, +2920/+3447; III.green, +4561/+5539) 

located upstream the minimal promoter 79bp (violet). Intronic activity is compared with expression from single 

promoter region in the 79bp (hTNW-79bp). Experiments were performed in triplicates (error bars = SEM). 

  

Tenascin-W mRNA expression was observed in HCT116 and H1838 cells (Hendaoui I., data 

unpublished), and given the association of tenascin-W with the osteogenesis process (120), 

Krib osteosarcoma cells were used. Results presented in Fig.III.6 show how the first conserved 

(blue) region exhibits a transcriptional repression of the minimal basal promoter (79bp) in all cell 

lines. The minimal promoter (79bp) by itself results in high levels of reporter expression in 

HT1080 and HCT116 cells and the presence of any of the three intronic regions upstream of the 

(79bp) minimal promoter leads to impaired induction of gene transcription. High induction of 

reporter activity by the third conserved region (green) is found in H1838 cells, whereas in Krib 

cells highest promoter activity is detected in presence of the second conserved region (red). 

Thus, the intronic regions seem to affect tenascin-W transcription in a cell type-specific manner 

and may thus contribute to the regulation of tissue-specific gene expression in vivo. 

III. 2. 5 Intronic regions evolutionary conserved between human and mouse 

tenascin-W gene 

Genomic sequences of tenascin-W orthologs share a common intron/exon organization with the 

same junction sites between different species (101).  

To find possible local alignments of mouse and human intronic regions sequences were 

  m                      m        ’  LALIG        m    m      ASTA         (121). 
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Furthermore, the GC content was measured at the website http://tubic.tju.edu.cn/GC-Profile/ 

(Table III.3). The observed average identity of conserved sequences was 61.5 % (Table III.3). 

Changes in GC content reflect molecular evolution, giving suitable estimates of the sequence 

divergence among species (122). In addition, the content of CpG-islands positively correlates 

with gene expression levels (123). Evolutionary conservation of noncoding sequences can be 

indicative of transcriptional regulatory elements (124).  

 

Table III.3. Features of human and mouse intron 

      Locus   Total Intron length     % GC content  
% 

Identity   

mTNW 5593 bp   45.38%   Sequence 

hTNW 9448 bp   46%   61.5% 

 

 

Interestingly, the sequence alignments produced by LALIGN program show a particularly high 

similarity (69.4%) between human and mouse loci in the intronic region +3290/+3450 (gray 

boxes) (Fig.III.7). This corresponds exactly to the second conserved region analyzed before and 

indicates a common regulatory function in mouse and man. 

 

             3290      3300      3310      3320      3330      3340 

Human  CAGTGGCTAGAAATTGGCTACCTCTCTTCTTTGGCGTAAGTAGTATTTTTTTTTTCCTGA 

       ::::::::::::  :::: ::  ::::  ::::  :::::::: :::::::    :::::  

Mouse  CAGTGGCTAGAAGCTGGCAACTGCTCTA-TTTGAAGTAAGTAGCATTTTTT----CCTGA 

           2600      2610      2620       2630      2640            

 

             3350      3360      3370      3380      3390      3400 

Human  CCCAGGGTGTGTGTCCTTCTTTGGGGAAAATGAGGTGACACAGAAACCATCCACCCCTGG 

       : :::  :::::::: :::::: : ::::::::::::::::: :  :::: :: : ::   

Mouse  CTCAG--TGTGTGTCTTTCTTTAGAGAAAATGAGGTGACACAAAGGCCATACAGCTCTAA 

      2650        2660      2670      2680      2690      2700      

 

             3410      3420      3430       3440      3450          

Human  GGTCCAAGAGGACCATCAGGATTCAGGGGCCATC-CTCCTCCCTTGGCCAAGGCTTGGAT 

        :    ::: : :: :  : : : ::   :  :: :::::::       ::::::::: : 

Mouse  TG----AGAAGTCCTTGTGAACTGAGAAACATTCTCTCCTCCT------AAGGCTTGGTT 

            2710      2720      2730      2740            2750      

 

 

 

Figure III. 7: Sequence alignment of the +3290/+3450 region 

Sequence alignment of the sequence (+3290/+3450) within the second intronic conserved region between human 

and mouse tenascin-W.  

http://tubic.tju.edu.cn/GC-Profile/
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Due to the similarities between the human and mouse intronic sequences, we investigated the 

activity of the human intronic regions in mouse HC11 cells. Single intronic sequences or 

combinations thereof were cloned upstream of the SEAP reporter gene and these constructs 

were transiently cotransfected with a luciferase expression vector as internal standard for 

transfection efficiency. All values were compared to the negative control (pSEAP Basic, empty 

vector) and similarly to the results obtained in HT1080 (Chiovaro et al., 2014), the highest SEAP 

expression was observed with the shortest fragment within the second intronic conserved region 

(+3299/+3447). Thus, we conclude that the human intronic fragments show equal functional 

activity in a mouse in vitro-environment (Fig.III.8).  

Figure III. 8: SEAP activity of different combination of human intronic regions transfected in HC11 cells. The second 

green line in the UCSC Genome Browser representation (indicated with a red cross, on the left) displays the 

evolutionary conservation track on the mouse. Basic vector is used as negative control. Experiment was performed in 

triplicates and repeated three times (error bars = SEM). 
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The in silico (Fig.III.7) and experimental (Fig.III.8) analysis of intronic regions show a very high 

functional similarity of the fragment +3299/+3447 in both mouse and human. Therefore, we 

performed transcriptional regulator binding site predictions using ConSite. Potential transcription 

factor binding sites, which are conserved between human and mouse tenascin-W gene, are 

shown in figure III.9. 

 

 

Figure III. 9: Potential transcription factor binding sites in the second intronic conserved region   

The potential transcription factor binding sites located in the region +3290/+3450, which are conserved between 

mouse tenascin-W (blue) and human tenascin-W (green) are shown. Their specific binding motif as well as their exact 

positions is indicated in the table (bottom). 
  

III. 2. 5. 1 Conserved transcription factor binding sites in human and mouse tenascin-W 

gene orthologs 

An overall profile of transcription factor binding sites displayed several elements associated with 

an enhancer-like activity. SOX binding sites are for instance found in the Nestin neural enhancer 

(125), and the            5’-flanking region of the PDGF promoter contains an enhancer 

harboring an ELK/E74A motif (126), while AGL-3 factor drives BMP7 gene expression in kidney, 

eye, and limb by binding an enhancer region within its first intron (127), and finally Snail 
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negatively modulates the expression of E-cadherin, Claudins, Occludin and Mucin-1 genes by 

binding to the E-box enhancer sequence (128-130).  

III. 2. 6 Transcription Start Site of the mouse tenascin-W gene  

Expression of mouse tenascin-W following BMP2 treatment in HC11 cells (131), prompted us to 

use these cells to detect the TSS of the mouse tenascin-W gene. Rapid amplification of cDNA 

     (RAC )           m             y     5’     of the mouse tenascin-W transcript. Bands of 

400bp were detected on the agarose gel after two rounds of PCR with the adapter specific inner 

primer (PCR anchor primer) and the nested gene specific reverse primers (Fig.III.10). 

Sequencing revealed that these fragments corresponded to the ATG-containing exon and a 

non-translated exon 1 consisting of 99bp. In the genomic DNA exon 1 is located 5593 bp 

upstream of exon 2.  

 

 
 

Figure III.10:  5’RACE PCR 

(A) One microliter aliquot of a 1/20 dilution of the amplification product of dA-tailed cDNA was used as template for 

the second PCR. Second PCR was performed using a combination of two gene specific reverse primers mSP3 and 

mSP4. (B) Sequence of the first non-        x               5’RAC          . I           99b . G  y b x           

the second exon containing.   
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III. 2. 6. 1 Characterization of the mouse tenascin-W promoter  

Our results allowed us to map the transcription start site upstream of the first non-coding exon of 

the tenascin-W gene in both human (Chiovaro et al., 2014) and mouse species. Prompted by 

the similarity between these two orthologous genes we decided to functionally characterize the 

mouse tenascin-W promoter region within 2kb upstream of the first exon as we already did for 

the human tenascin-W promoter (Fig.III.11). Various constructs containing this 2kb region and 

several truncated forms were transiently transfected in HC11 cells for 24h. The high SEAP 

reporter activity obtained from the construct including the 200bp upstream of the TSS implies 

that this fragment still contains the main sequence with promoter activity.  

 

Figure III.11: SEAP activity of mouse tenascin-W promoter constructs. Gene expression is compared with the 

negative control (SEAP-basic). Experiment was performed in triplicates (error bars = SEM). 

 

As expected, the sequence alignments generated by the LALIGN program between human and 

mouse promoter regions showed a high degree of conservation (76.7%) (Fig.III.12).In this 

figure, the sequences highlighted in gray show exon1. Comparison between human and mouse 

reveals the presence of a TATA box sequence in both species (dark blue). A conserved Smad 

binding site was observed 335bp (light green) upstream of the TSS in mouse, whereas, the 

human Smad motif (dark green) present in the minimal promoter (-79) (Chiovaro et al., 2014) 

did not show any alignment with the mouse sequence.  
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              10        20        30        40        50        60 

Human  ATTTTAAAAGCAGTAGGCAGGAAGTCCCAGAATGCCTGAAACAGGAAAAAGAGAAAGAAA 

       ::::::  :: :::: :::: :::: :::::::: ::: :::: ::::::::::       

Mouse  ATTTTAGGAGGAGTAAGCAGCAAGTTCCAGAATGTCTGGAACATGAAAAAGAGA------ 

               10        20        30        40        50           

 

               70        80        90       100       110       120 

Human  CTTTATAAATGCACTTTTGAACCCCGAGACCCAGCTCCTGGCCAGGAGACAGGCAAACTC 

       ::: :::::: ::::::  ::::: ::::: :::::::::::::::::::: ::::::   

Mouse  CTTAATAAATACACTTTCAAACCC-GAGACTCAGCTCCTGGCCAGGAGACATGCAAACG- 

           60        70         80        90       100       110    

 

              130       140       150       160       170       180 

Human  TTTTAATATCCTTATTCTGGATTCACTTAAATGGAAACAGCCTCCAGTATTTTTAGCTGC 

       ::::::::::::: ::::: ::: ::::::::::::::::::    :::::::::::::: 

Mouse  TTTTAATATCCTTGTTCTGCATTTACTTAAATGGAAACAGCCCGTGGTATTTTTAGCTGC 

            120       130       140       150       160       170   

 

              190       200       210        220         230        

Human  TGTGTAATCAAAGTGAAAAAGAAGAAGGAAATGTATA-TATTTTTCTTTC--CTAGTTAG 

       ::::::::::: :: :: ::: : : :: :::::::: : :::::: :::  :::::::: 

Mouse  TGTGTAATCAACGT-AAGAAGGAAAGGGGAATGTATACTTTTTTTCCTTCTCCTAGTTAG 

            180        190       200       210       220       230  

 

       240       250       260       270       280       290        

Human  AATAAGAGAAGGAATTGCTCATTATCTTTTAGCAGAGTCCCTGCTAGGAAGGGAGGAAAA 

       : :::::::: :::::::::: :   : : : ::::::::     ::::::::::::::: 

Mouse  AGTAAGAGAATGAATTGCTCAAT---TCTCAACAGAGTCC-----AGGAAGGGAGGAAAA 

             240       250          260            270       280    

 

       300       310          320       330       340       350     

Human  CACCAGGAGTCTCC---ATTTGCTCCTCCTCTGGCCTAGACAGGATTTAAACCCAGGAAG 

         :: :::::: :    ::: :::::::::::: : ::: :  :::::::::::::: :: 

Mouse  T-CCCGGAGTCCCATTGATTGGCTCCTCCTCTGTCATAGCCTTGATTTAAACCCAGGGAG 

            290       300       310       320       330       340   

 

          360       370       380        390       400       410    

Human  GGAAGCCAAGGAGAGACGAGAACCAGGGACG-ACCAGCAAGTACCAAGGTCTGCGGCAGG 

       ::::::  ::: :::: :: :   ::::::: : : ::::    : : :::: : : :   

Mouse  GGAAGCAGAGG-GAGAAGATATTGAGGGACGGATCGGCAA----CGAAGTCTCCAGTACC 

            350        360       370       380           390        

 

           420       430        440       450       460       470   

Human  AGGAGACCGGCTCACAGGAG-CAGCAGCATTGGAAGAGGCACCCAGCAGCCTCCCAGGTA 

       ::::  :: ::::::::::: :::  : :::::::: ::  ::::::::::::::::::: 

Mouse  AGGA--CCAGCTCACAGGAGGCAGGGGGATTGGAAGTGGTGCCCAGCAGCCTCCCAGGTA 

       400         410       420       430       440       450      

 

            480       490        500       510       520     

Human  AGAGTGCCAGTTGCCCAAG-CTTTACTTACTGGAGGGAGGGAGGTGGCCAATG 

       :::::::::: : :   :: :::::    :    ::::::: :   : :: :: 

Mouse  AGAGTGCCAGCTCCTTGAGGCTTTATCATCGATTGGGAGGGGGACAGTCAGTG 

                       460       470       480       490       500         

Figure III.12: Sequence alignment between human and mouse tenascin-W promoter regions (LALIGN program). 

Both human and mouse TNW gene are endowed by a TATA-box promoter (blue). In gray is underlined the exon 1. 

Conserved Smad motif (light green) in both species was detected 335bp from the mouse gene TSS (pink). The 

human Smad sequence for TGF signaling is indicated in dark green (Chiovaro et al., 2014). Bidirectional Hoxc-8 

gene was found 193bp upstream of TSS in mouse tenascin-W promoter (light blue).  
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Moreover, we were able to identify a binding site for the transcription factor Hoxc-8 (light blue), 

placed 193bp upstream of the TSS of the mouse tenascin-W promoter.  In this case the binding 

site is located on different DNA strands. In the mouse, the binding site for Hoxc-8 is located on 

the negative strand (TTGATTACAC), whereas, in human it is found on the positive strand 

(GTGTAATCAA). The different arrangement of binding sites could influence the binding 

preferences itself of transcription factor and in turn affect the gene regulation.  

III. 2. 7 Tenascin-W expression in cell cultures 

III. 2. 7. 1 Human osteosarcoma models 

Previous studies in our lab aimed to detect endogenous human tenascin-W expression in 

human cell lines. Previous reports published in 2004 and 2005, have shown the expression of 

tenascin-W in primary mouse embryonic fibroblasts (MEFs) upon treatment with the growth 

factor BMP2 and the cytokine TNF (104, 131). BMP2 also induced tenascin-W expression in 

mouse myoblast cells (C2C12), parallel to their differentiation into osteoblasts (104, 131). 

Although mouse embryo fibroblast cells were expressing tenascin-W, this was not the case for 

human fibroblast lines, such as Detroit (skin), MRC5 (lung) and IMR90 (lung), which did not 

show any detectable tenascin-W levels (Degen M., data unpublished). Given the well-known 

role of tenascin-W during embryonic bone development (120), we decided to investigate if 

human bone marrow stem cells (BMSCs) will express tenascin-W following their differentiation 

into osteoblasts. Indeed tenascin-W protein expression was detected in BMSCs treated with 

osteogenic medium (Martina E., data unpublished).  Prompted by these results, we investigated 

human osteoblast models for tenascin-W expression. We tested whether the same osteogenic 

medium (OM) previously used for BMSCs could also induce tenascin-W expression in human 

osteosarcoma cell lines Saos-2 and U2OS.  

 

 

Figure III. 13: Detection of human tenascin-W mRNA in human osteosarcoma cell lines U2OS 

The mRNA from untreated (first two columns) and OM-treated U2OS cells was isolated and tenascin-W expression 

was assessed by RT-PCR. TNW mRNA expression was shown by the bands at 149bp and 265bp.  
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The expression of tenascin-W in U2OS as well as in Saos-2 cell lines was assessed by RT-

PCR. We were able to observe tenascin-W mRNA expression exclusively in U2OS cells after 

treatment with osteogenic medium (Fig.III.13). For this assay, we used two distinct pairs of 

primers for tenascin-W mRNA listed in table III.2. Moreover, tenascin-W protein expression was 

revealed by immunofluorescence staining of U2OS and Saos-2 cells kept in osteogenic medium 

for one week. In the first panel, (Fig.III.14-A) strong tenascin-W staining is displayed on the cell 

surfaces and as reticular fibers assembled around U2OS cells, whereas in Saos-2 cells the 

tenascin-W staining is weak and given the fact that no mRNA could be detected may represent 

background staining only (Fig.III.14-B). 
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Figure III.14: Detection of human tenascin-W protein in human osteosarcoma cell lines    

U2OS (A) and Saos-2 (B) cells were cultured in osteogenic medium (first and third row) or growth medium (second 

and fourth row) for one week. Cells were immunostained with anti-tenascin W monoclonal antibody and Alexa-488 

secondary antibody for detection.  
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III. 2. 7. 2 Mouse and human mammary epithelial cells 

 

The investigation of the role of tenascin-W in migration and proliferation of metastatic (4T1) or 

normal (HC11) murine mammary cell lines showed a specific role of BMP2 in inducing tenascin-

W protein exclusively in HC11 cells (131). Therefore, we tested BMP2 as potential inducer of 

tenascin-W in mouse as well as human normal mammary epithelial cells.  

 

 

Figure III.15: Endogenous mouse tenascin-W protein expression in HC11 cells 

HC11 cells were treated (+) or not (-) with BMP2 (100ng/ml) for 48h. Supernatants (M) and cell lysate (Lys) were 

analyzed for mouse tenascin-W expression.   

  

 

We were able to detect tenascin-W protein both in cell extracts and conditioned medium of 

HC11 cells treated with BMP2 (Fig. II.15). In the case of the human mammary epithelial cells  

we analyzed the expression of tenascin-W in MCF10A cells treated or not with BMP2 by RT-

PCR using cDNA from BMSC-derived osteoblasts (Martina E., unpublished data) as positive 

control (Fig.III.16). Indeed, the specific 149bp band was detected in BMP treated MCF10A cells 

by using TNW primers listed in table III.2.  

 

 

Figure III.16: Endogenous human tenascin-W mRNA expression in MCF10A cells 

MCF10A cells were treated (+) or not (-) with BMP2 (100ng/ml) for 24h. cDNA from BMSCs differentiated in 

osteoblasts was used as positive control.    
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Although mRNA was detectable, we were not able to detect the endogenous protein in the 

corresponding cell line by immunoblotting. 

III. 2. 8 Immunohistochemistry of bone metastases of breast cancer 

Positive immunofluorescence stainings of mouse tenascin-W expression was performed on 

bone sections of mice harboring bone metastases of breast cancer (see Chiovaro et al., 2014). 

In addition, we investigated the distribution of tenascin-W protein in sections of metastatic bone 

by immunohistochemistry analysis using an antibody against mouse tenascin-W protein 

(Fig.III.17).  

 

 

Figure III.17: Immunohistochemistry of sections of bone metastases of breast cancer 

Immunohistochemical staining of mouse tenascin-W (brown). In the right panels a higher magnification (20X) of the 

section indicated by squares in the respective left panels is shown. Sections were counterstained with hematoxylin.  

 

The tumor cells of the metastatic foci appear as a dense mass of cells exhibiting blue oval and 

round shapes. Tenascin-W protein, stained brown, seems to wrap and infiltrate the tumor nests. 

Staining of tenascin-W surrounding circular structures embedded in the tumor could suggest a 

potential role of tenascin-W in promoting the generation new blood vessels.   
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IV. Discussion 

IV. 1 Tenascin-W as a component of adult stem cell niches in healthy and 

pathological conditions 

Tenascin-W is the fourth and last discovered member of the tenascin family. Several reports 

have attributed to tenascin-W an important role in osteogenesis (120) and in periodontal 

ligament differentiation (132). Tenascin-W was also found in the adult stem cell niche of the 

aortic valve and in the periosteum of ribs (104). These different sites of expression, besides 

indicating the physiological conditions in which tenascin-W plays an active role, also highlight 

tenascin-W as a stem cell niche component involved in mechanisms of cellular differentiation 

(133). Although so far we have mentioned the bright side of tenascin-W, it is mostly cited for 

being a cancer biomarker in human solid tumors (109). The persistent tenascin-W expression in 

the stroma of colon and breast tumors and in gliomas, as well as the expression in the proximity 

of blood vessels has prompted us to explore tenascin-W in breast cancer metastasis to bone.  

IV. 2 Tenascin-W expression in bone metastases of breast cancer: future 

directions of investigation    

In our studies, we were able to identify tenascin-W as a component of the stromal niche hosting 

bone metastases of breast cancer. Our in vitro model tried to mimic what may occur when 

cancer cells located at a primary site start to metastasize. More precisely, circulating cancer 

cells, or also cancer cells still residing within the primary tumor site, can induce the 

establishment of a special distant niche to favor their subsequent metastatic engraftment by 

releasing a wide range of cytokines and growth factors into the bloodstream (134). As a 

consequence, the stromal compartment adopts an engraftment-permissive state following the 

arrival of the tumor-secreted factors. In particular, we observed the expression of tenascin-W 

protein following TG β-induced myofibroblastic differentiation of bone marrow stem cells. 

Moreover, we showed increased proliferation and migration rates of MDA-MB231-1833 breast 

cancer cells in the presence of recombinant tenascin-W protein. In our experiments, the role of 

tenascin-W on cancer cells was assessed independently of the stage of metastatic 

development.  It would be interesting to investigate tenascin-W activity during each stage of 

breast cancer cell spreading in order to achieve a more refined framework of all different 

tenascin-W contributions in tumor and metastatic progression. Our experimental data may be 

oversimplified and in reality everything will be much more complicated, and a more holistic 
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observation would be needed to uncover specific cross-talks among several factors which are 

omitted in restricted in vitro systems.  

IV. 3 How could tenascin-W influence the different developmental stages of 

cancer? 

In our analysis of the transcriptional tenascin-W regulation, we have detected a promoter 

binding site for Smad4, which is a mediator of TGF signaling, as well as an intronic nGRE 

element. The roles of both of these regulatory sequences were experimentally investigated. 

Further analysis of the second intronic region (+3290/+3450) showed a binding site (E-box, 

GAGGTG) for the transcription factor Snail, which is conserved between human and mouse 

(Fig.III.9). Snail is transcriptionally controlled by signals including TGF, EGF, FGF, Wnt, TNF- 

and other factors such as hypoxia or estrogen (135). It has been shown that Snail itself can form 

a complex with Smad2/3, acting as a repressor of the expression of cell-adhesion molecules, 

such as E-cadherin, occludin and claudin-3 (136). Moreover, Snail promotes the sprouting of 

endothelial cells in vitro (137) and the proliferation of tumor cells, for instance of melanoma 

cells, by inhibiting tumor suppressor CYLD (138).  

In light of these data, it would be reasonable to speculate on one hand about an involvement of 

TGF in regulating the expression of both Snail and tenascin-W, and on the other hand about a 

potential enhancing/supportive role of Snail in the migration/proliferation-promoting activity of 

tenascin-W on breast cancer cells.  

Interestingly, further immunohistochemistry of bone metastases of breast cancer sections 

revealed a remarkable tenascin-W protein expression surrounding the tumor mass, suggesting 

a possible involvement in blood vessel formation for the infiltration of tumor cells. This 

hypothesis is supported by many other previous studies which have detected a correlation 

between immunofluorescence staining of tenascin-W with von Willebrand factor in glioblastoma 

(108) and also a co-staining with CD31 in proximity to blood vessels in lung and kidney tumors 

(109).  

Therefore, tenascin-W might sustain the dissemination and the subsequent engraftment of 

breast cancer cells to the bone by inducing angiogenesis. Following the initial promoting phase, 

TNW may regulate the proliferation of tumor cells during the metastatic process. This working 

model of tenascin-W activity, which follows a time-course of events in tumor development would 

need further investigation. It would be interesting to analyze whether the transcription factor 
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Snail acts synergistically with tenascin-W in the bone metastatic context by inducing tenascin-W 

transcription.  

Thorough analysis of a role of tenascin-W in bone metastases of breast cancer could be 

performed by omitting or increasing its expression in vivo. However, it is well known that one 

issue regarding the knockout of ECM proteins is the compensation through other well-

characterized matrix proteins. For instance, mice deficient for tenascin-C still present a normal 

skin wound healing and possibly tenascin-W has a compensatory role in inhibiting cell-

adhesion, which is essential for tissue repairing (139). Also, within the matrilin protein family, a 

temporary regulation of matrilin-4 to compensate for the lack of collagen fibrillogenesis activity 

caused by the double knockout of the genes matrilin-1/3 was observed (140). Therefore, in both 

cases, no striking phenotype was detected. The ectopic expression of tenascin-W in normal 

tissue of transgenic mice could give some hints on its contributions during the appearance of a 

tumor and its metastatic progression. Alternatively, conditional mutants lacking the tenascin-W 

gene in the bone only, through Cre recombinase-mediated ablation, or the use of inducible 

siRNA/shRNA in mice harboring tumors could allow us to better monitor significant changes in 

tumor regression depending on the presence or absence of tenascin-W.   

IV. 4 Targeting of TGF signaling pathway in bone metastases of breast 

cancer 

Statistically, 70% of patients with advanced breast cancer display metastases preferentially in 

bones, which leads to clinical complications collectively referred to skeletal-related events, 

including significant tissue morbidity associated to osteolytic lesions, bone infiltration and 

pathological fractures (141). Bone tropism is also shown for prostate cancer; in this case 

however, unlike breast cancer, the tumor is responsible for an excessive osteoblast activity, 

which leads to atypical new bone formation (142, 143). The local breast tumor 

microenvironment contains the support for the metastatic spreading and it was shown to be 

enriched in TGF together with other factors (144-146). In our experiments we have shown a 

regulation of tenascin-W expression in the bone marrow metastatic niche by MDA-MB231-1833 

cells through Smad4-mediated TGF signaling. Nevertheless, additional TGF can derive from 

osteoclastic bone resorption following the secretion of osteolytic factors from breast cancer cells 

(147). In turn, the release of TGF within the bone metastatic niche might indirectly support 

tumor cell proliferation through further induction of tenascin-W expression. Now the question to 
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address is how to keep this vicious cycle between breast cancer cells and osteoclasts under 

control.  

Currently, the use of bisphosphonates has aimed to achieve a reduction in bone turnover and 

consequently to control bone resorption (148). Further potential interventions with the metastatic 

development have aimed at the possibility of interfering with the early stages of tumor 

progression. BMP7, unlike TGF, is an inducer of MET during for instance embryonic 

development (149) and it has been shown to counteract the ability of TGFto induce EMT in 

MDA-231 cancer cells (150). Moreover, BMP7 inhibits the invasive phenotype of MDA-231 

cancer cells by interfering with TGF-induced integrin 53 expression (151). The direct 

targeting of TGF includes the use of the panTGF-neutralizing mouse monoclonal antibodies 

1D11 and 2G7, or TGF receptor inhibitors impairing the kinase catalytic activity of TRI/ALK5 

including SB-431542, Ki26894 or LY364947 (147). In order to increase the efficiency of these 

molecules, it is possible to apply a combination therapy approach by using in addition various 

cytotoxic agents.  

IV. 5 Counteracting the establishment of a stromal metastatic niche  

One of the major problems associated with metastatic development is the inability to monitor it 

during its early stages of growth. This leads to the inefficacy of many drugs, which at advanced 

stages can no longer counteract the spread of cancer. The survival of tumor cells in the 

circulatory system is low and only a tiny fraction of cancer cell clones within the primary tumor is 

capable of colonizing a secondary organ (152). In addition, the migration out of the primary 

tumor site in order to find a permissive distant environment is the most delicate stage wherein 

cancer cells show their weakness and can be more sensitive to certain drugs conjugated with 

specific nanoparticles (153, 154). However, once arrived at the distant destination, what is really 

essential for the tumor cells is the interaction with the surrounding local stromal 

microenvironment, through which they can manifest their malignant features. Therefore, it is 

extremely valuable to take into account all possible strategies to handle the metastasis-

promoting contributions arising from the metastatic niche. 

 

Infiltrating tumor cells require oxygen and nutrients, which are supplied from newly formed blood 

vessels. Neovascularization in secondary sites is independent of tumor size and it can be 

modulated by tumor-secreted factors (155). In our experiments, immunohistochemical analysis 
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of bone metastases of breast cancer indicated a perivascular tenascin-W deposition pattern. 

This could suggest a role of tenascin-W in promoting tumor vascularization, which in turn would 

make tenascin-W a potential candidate for anti-angiogenic therapy. Moreover, as already 

mentioned, the increased ECM deposition in an altered stroma is caused by activated 

fibroblasts (CAFs). All the external signals are then transduced to the nuclear level by the ECM-

integrin-cytoskeleton axis. In this regard, we have discussed the role of BMP7 in inhibiting 

TGF-induced integrin 53 expression (151) and, in addition, it has been shown that the 

blockade of 53 integrin receptors had a beneficial effect on breast cancer bone metastases 

by reducing the bone resorption (156). Treatment with the 53 integrin receptor inhibitor 

cilengitide showed a reduction in angiogenesis and in the localization of ECM proteins to blood 

vessels as well as an increased intratumoural vascular permeability, which collectively impaired 

osteoclast activity (156).  

Vascular permeability highly influences the clinical outcome of drug delivery. For instance, the 

increased ECM deposition along the vessel walls with the consequent increased stiffness 

causes a high fluid pressure, which can impair drug penetration through tumor vessels. All 

current strategies based on the combination of anti-angiogenic and vascular normalization 

agents with traditional therapies aim to overcome and improve all those limits associated to the 

failure of chemo-radiotherapy.  

IV. 6 Definition of human and mouse tenascin-W cellular sources 

In summary our studies identified the tenascin-W protein as a component of the activated stem 

cell niche in the bone (working model, Chiovaro et al., 2014). Moreover, we sought for tenascin-

W protein expression in human osteosarcoma cell lines Saos-2 and U2OS as well as in human 

mammary epithelial cells MCF10A. We were able to observe tenascin-W mRNA expression in 

U2OS and MCF10A cells (Fig. III, 13-16) and by immunofluorescence analysis tenascin-W was 

investigated in Saos-2 and U2OS cells (Fig. III.14). However, we did not take these cell lines 

into account as systems to explore tenascin-W regulation because of their low tenascin-W 

protein expression levels.  

 

Previous studies have detected mouse tenascin-W protein expression in 4T1 epithelial breast 

cancer cells by TNF, in MEFs and in HC11 mouse mammary epithelial cells by BMP2 (131). 

Therefore we used the HC11-expression system for the induction of tenascin-W by BMP2 for 

the isolation of mRNA to identify the transcription start site. This led to the identification of a TSS 
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at a first non-coding exon 147bp upstream from the ATG start codon present in exon2 (Fig. 

III.10). Promoter activity was located within 200bp upstream of the TSS (Fig. III.11), wherein, 

alignments produced by LALIGN program also showed a TATA box sequence (Fig. III.12). 

Further comparison analysis of mouse and human tenascin-W gene loci showed specific 

binding sites not only in the promoter but also in the first intron. Conserved repressive domains 

for glucocorticoid receptor (nGRE) located in the mouse intronic sequence could explain the 

similar negative modulation of gene expression driven by the first human conserved region 

transfected in HC11 cells (Fig.III.8). Many other transcription factor binding sites located in the 

region +3290/+3450 were conserved between mouse and human tenascin-W gene (Fig.III.9). 

Interestingly, the mouse promoter region was characterized by a unique exposure and 

rearrangements of binding sites for transcription factors. We observed a different placement 

(335bp upstream the TSS) for the mouse Smad motif (aatGTCTggaa) compared to the human 

one, which was located within the 79bp upstream the TSS. Moreover, in proximity of the mouse 

Smad motif we also observed a binding site for the homeobox gene Hoxc-8 

(tacgttgATTAcacagcag). The Hoxc-8 transcription factor plays an important role in the mouse 

embryonic development wherein it is highly expressed in the limbs, backbone and spinal cord 

(157). Xingming Shi et al., have shown the direct interaction between Smad1 and Hoxc-8 

detected by a yeast two-hybrid system and the direct control of the osteopontin gene 

transcription by BMP2 is mediated by a Hoxc-8 binding site (158). This could suggest a 

differential control of mouse tenascin-W by BMP2 signaling through Hoxc-8 and Smad1 

depending on the context. Moreover, Hoxc-8 gene has been shown to play important roles in 

tumorigenesis and precisely, its depletion was associated with the inhibition of cell migration, 

invasion and metastasis of breast cancer cells (159). Given the tenascin-W expression in tumor 

stroma of breast cancer (105), we may speculate that Hoxc-8 could act as transcription 

regulator for mouse tenascin-W also in pathological conditions. The differential tissue-specific 

regulation of mouse as well as human tenascin-W may lead to a divergence of binding sites 

between human and mouse. 

The differential tenascin-W gene transcription control can be dictated by species-specific 

physiology and behavior of human and mouse. It could be affected by the distribution and the 

different organization of transcription factor binding sites among orthologous promoters which in 

turn would imply the acquisition or loss of functional regulatory elements. Thereby, a thorough 

analysis of the evolutionary sequence conservation between species could have a significant 

impact for medical research.  
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V. Appendix 

V.1  Experimental procedures (unpublished data) 

Cell culture   

 

Mouse mammary epithelial cells (HC11) were grown in RPM1640 medium supplemented with 

10% FBS, 5ug/ml insulin and 10ng/ml EGF. Human mammary epithelial cells (MCF10A), kindly 

provided by Dr Mohamed Bentires-Alj (Basel, Switzerland) were cultured in DMEM/F12, 5% 

horse serum, 10ng/ml EGF, 0.5mg/ml Hydrocortisone, 100ng/ml cholera toxin and 10mg/ml 

insulin. Human osteosarcoma Saos-2, Krib and U2OS                        α-MEM containing 

10% FCS, 1% HEPES, 1% sodium pyruvate, 10 mM glutamine (control medium), supplemented 

with 5 ng/mL FGF2. Osteogenic differentiation medium consisted of control medium 

supplemented with 100 nM dexamethasone (cat #D-2915, S  m ), 10 mM β-glycerophosphate 

(cat #G-9891, S  m ),     100 μM      b        2-phosphate (cat #A-8960, Sigma). Colorectal 

       m        (HCT116)               M  C y’  5A m    m       m           10%   S. 

Human lung carcinoma cells (H1838) were cultured in RPMIB medium which was including 

RPMI 1640 with 1.5g/L sodium bicarbonate, 2mM glutamine, 1mM sodium pyruvate and 10mM 

HEPES.  

Cloning of intronic reporter constructs upstream the human tenascin-W promoter 

Intronic conserved regions were inserted into NheI/HindIII sites of the pSEAP-basic vector, 

whereas human tenascin-W promoter sequences had NheI/XhoI sites for directional cloning 

(Chiovaro et al., 2014). Promoter constructs pSEAP-TNW (-512bp), pSEAP-TNW (-252bp), and 

pSEAP-TNW (-79bp), were digested first with NheI enzyme and after 1h at 37oC to inactivate 

the enzyme function the product was incubated at 72oC for 15min. In order to convert the 

fragmented DNA into blunt-end, it was treated with DNA polymerase I, Klenow enzyme in the 

presence of dNTPs for 1h. Second digestion was performed with MluI restriction enzyme for 1h 

at 37oC. To obtain intronic inserts, digestion with MluI and NruI enzymes was carried out. The 

restriction fragments were gel purified.  

Immunofluorescence staining of human osteosarcoma cell lines 

Saos-2 and U2OS cells were cultured on 8-chambers slide (BD Falcon) either in control or in 

osteogenic medium for one week. Cells were then fixed for 15 min in 4% formaldehyde at RT, 

rinsed with PBS and additionally fixed for 10 min in methanol at -20°C. After 30 min blocking at 
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RT in blocking buffer (PBS/0.01%Tween, 1% BSA), cells were incubated over night at 4°C in 

blocking buffer containing the primary antibody. After three washes in PBS, cells were incubated 

for one hour at RT in PBS/0.01%Tween containing the Alexa-488-conjugated secondary 

antibody (1:200) and Hoechst (1:2000). Cells were then washed three times with PBS and 

mounted in ProLong Gold Antifade reagent (Invitrogen). Pictures were acquired using an Axio 

Imager Z2 LSM700 confocal microscope (Zeiss) and processed with ImageJ. 

Mouse tenascin-W protein detection  

HC11 cells were seeded at a density of 7x104 into 6 well with RPM1040 10% HS and incubated 

overnight. Subsequently, the medium was replaced with RPM1040 serum free, cointaing or not 

BMP2 (100ng/ml) for induction of mTNW. Following 48h from the treatment, supernatants and 

cell lysates were solubilized for 5min at 95°C in SDS-PAGE sample buffer, followed by 

electrophoresis on 6% gel polyacrilamide gels. Proteins were electro-transferred onto PVDF 

membranes (Millipore). After blocking for 1h at room temperature in TBS with 0.05% Tween and 

5% skim milk powder, membranes were incubated overnight with the polyclonal rabbit anti-

mouse TNW primary antibody, washed and then incubated for 1h with the appropriate 

secondary antibody coupled with HRP (1/10 000). Specific staining was revealed using ECL kits 

(Amersham). HC11 cells treated with BMP2 express mTNW.  

5’RACE for transcription start site determination of mouse tenascin-W gene 

 

T            z      5’        m   e tenascin-W mR A   q     ,     5’/3’ RAC     , 2nd 

G          (R    )                           m           ’              . mR A              

from HC11 cells previously treated with BMP2 (100ng/ml) for 48h by using Dynabeads mRNA 

Direct Kit (Invitrogen). cDNA was synthesized from 1g of mRNA using the mouse tenascin-W 

            m   mS 1. T         y     5’        T   mR A                  m             . 

The resulting PCR fragments were ligated into pBluescript KS vector (Stratagene) and 

sequenced.   

Table V. 1: Sequences of the primers used for the 5’ RACE 

 

5' RACE         

mSP1 5'-TGGCAGCAGCGGTTGGTATTGCAC-3' 

mSP2 5'-GCGGTGTCTGAAGACGGATGTTGTG-3' 

mSP3 5'-CCATCATCGCTGAGTGACTGTGGG-3' 

mSP4 5'-GGCACGTCAATCTTGTAGGTGTGG-3' 
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Immunohistochemistry 

Immunohistochemistry experiments were performed on Ventana DiscoveryXT instrument 

(Roche Diagnostics, Manheim) with the procedure Research IHC DAB Map XT. Frozen slides 

were thaw for 20 min on air and placed in the machine where they were covered with Reaction 

buffer (Roche Diagnostics) before starting the run. In the instrument, slides were fixed with 

Formal-Fixx 1:2 (Thermo scientific) for 12 minutes. Rabbit anti-mouseTNW was applied 

manually at a dilution of 1:100 and incubated for 1 hour at 37°C. For the detection we used 

ImmPRESS anti-rabbit Ig (peroxidase) polymer reagent (Vector laboratories MP-7401) which 

was manually applied and incubated for 32 minutes at 37°C. Sections were finally 

counterstained with Hematoxylin II and bluing reagent (Roche Diagnostics) for 4 min, 

dehydrated and mounted with Neo-Mount (Merck UN 1268). 
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Primer for +3299/+3447 deletion                       Position 

        
  

  

FW:             5’-CAGGATGAGATAATAAGGGA-3’                  (+3299/+3447) 

RV:              5’-TTCCCCAAAGAAGGACACAC-3’ 
  

  

  
  

  
  

  

FW:             5’-CAGGATGAGATAATAAGGGA-3’                  (+3299/+3349) 

RV:              5’-CTTTATACTTAAATTCAGGG-3’ 
  

  

  
  

  
  

  

FW:             5’-ATAAAGGTCTGTAACAGTGGCT-3’                                                    (+3344/+3394) 

RV:              5’-ACGCCAAAGAAGAGAGGTAG-3’ 
  

  

  
  

  
  

  

FW:             5’-TTGGCGTAAGTAGTATTTTT-3’                                                    (+3394/+3447) 

RV:              5’-TTCCCCAAAGAAGGACACAC-3’ 
  

  

        
  

  

Site-Directed Mutagenesis for  +3394/+3447     

I. FW:5’-GCGTGctagAGAGTGATCAGTAGTATTTTTTTTTTCCTG-3’   

  RV:5’-AAAATACTACTGATCACTCTctagCACGCGTAAGAGCTC-3’ 

  
     

  

II. FW:5’-gCTTGGCGTAAAGAGTGATCATTTTTTTCCTGACCCAGGG-3’ 

  RV:5’-CAGGAAAAAATGATCACTCTTTACGCCAAGctagCACGC-3’ 

  
     

  

III. FW:5’-GTAGTATTTTAGAGTGATCAACCCAGGGTGTGTGTCCTTC-3’ 

  RV:5’-CACCCTGGGTTGATCACTCTAAAATACTACTTACGCCAAGc-3’ 

  
     

  

IV. FW:5’-TTTTTTCCTGAGAGTGATCATGTGTCCTTCTTTGGGG-3’   

  RV:5’-GAAGGACACATGATCACTCTCAGGAAAAAAAAAATACTAC-3’ 

  
     

  

V. FW:5’-GACCCAGGGTGAGAGTGATCATTTGGGGAAAAGC-3’   

  RV:5’-CTTTTCCCCAAATGATCACTCTCACCCTGGGTCAGGAAAA-3’ 

  
     

  

VI. FW:5’-TGTGTCCTTCAGAGTGATCACTAagctTCGAATCGCGAATTCG-3’ 

  RV:5’-CGATTCGAagctTAGTGATCACTCTGAAGGACACACACCCTGGGTC-3’ 

                                 Table III.1: Sequences of the primers used for the 5’ RACE 
 

 

RT-PCR for human TNW       Size bp 

I. FW: 5’- AAGCCAGGAGAGGCATACAAGG-3’ 149 bp 

  RV: 5’CAGGAGATGGTGGCGGTATTCT-3’  
 

  
  

     
  

II. FW:5’- AATGCCCTCACAGAAATTGACAG-3’ 265 bp 

  RV:5’- GTGTCAGCCTTCTTGCTCTC-3’     

                                                    Table III.2: Sequences of the primers used for the RT-PCR 
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V.2  List of abbreviations 

 

5-LO 5-lipoxygenase 
  

PGs Proteoglycans 
  -SMA -Smooth muscle actin 

 
PH Partial hepatectomy 

 BMP Bone morphogenetic proteins  
 

Prrx1 Paired-related homeobox 1 
 BMSCs  Bone marrow derived stem cells  PSE Proximal sequence element  
 CAFs Cancer associated fibroblasts 

 
RACE Rapid amplification of cDNA ends 

DCC Dextran-coated charcoal  
 

RGD Arg-Gly-Asp 
  E-box Enhancer box sequence 

 
ROS Reactive oxygen species  

 EMT Epithelial-mesenchymal transition SBE Smad-binding element  
 EndMT Endothelial to mesenchymal transition  SLRPs Small leucine-rich repeat proteoglycans 

GAGs Glycosaminoglycans 
 

SRF Serum response factor 
 GCs Glucocorticoids 

  
TGF Transforming growth factor beta  

HA Hyaluronan 
  

TLRs Toll-like receptors  
  HGF Hepatocyte growth factor 

 
TNF- Tumor necrosis factor 

 HIFs Hypoxia-inducible factors 
 

TSS Transcription start site 
 HPSE Heparanase enzyme 

 
VEGF Vascular endothelial growth factor 

HS Heparan sulfate 
       HSCs Hepatic stellate cells 

      ILK Integrin-linked kinase  
      LOX Lysyl oxidase 

       LPS Lipopolysaccharide 
       mef2c Myocyte enhancer factor 2C 

      MET Mesenchymal-epithelial transition 
     MKL1 Megakaryoblastic leukemia-1 

      MMPs Matrix metalloproteases 
      MSCs Mesenchymal stem cells 
      MSl1 Musashi homolog 1 

       NADPH Nicotinamide adenine dinucleotide phosphate-oxidase 
   NFAT5 Nuclear factor of activated T cells 5 

     
  

NGF Nerve growth factor  
      

  
nGRE Negative glucocorticoid response element 

    Nox1 NADPH oxidase 1 
       

  
Otx2 Orthodenticle homolog 2 

      
  

PDGF Platelet-derived growth factor 
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