Functional and structural characterization of rhodopsin oligomers

Jastrzebska, B. and Fotiadis, D. and Jang, G. F. and Stenkamp, R. E. and Engel, A. and Palczewski, K.. (2006) Functional and structural characterization of rhodopsin oligomers. Journal of biological chemistry, Vol. 281, H. 17. pp. 11917-11922.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5262427

Downloads: Statistics Overview


A major question in G protein-coupled receptor signaling concerns the quaternary structure required for signal transduction. Do these transmembrane receptors function as monomers, dimers, or larger oligomers? We have investigated the oligomeric state of the model G protein-coupled receptor rhodopsin (Rho), which absorbs light and initiates a phototransduction-signaling cascade that forms the basis of vision. In this study, different forms of Rho were isolated using gel filtration techniques in mild detergents, including n-dodecyl-beta-D-maltoside, n-tetradecyl-beta-D-maltoside, and n-hexadecyl-beta-D-maltoside. The quaternary structure of isolated Rho was determined by transmission electron microscopy, demonstrating that in micelles containing n-dodecyl-beta-D-maltoside, Rho exists as a mixture of monomers and dimers whereas in n-tetradecyl-beta-D-maltoside and n-hexadecyl-beta-D-maltoside Rho forms higher ordered structures. Especially in n-hexadecyl-beta-D-maltoside, most of the particles are present in tightly packed rows of dimers. The oligomerization of Rho seems to be important for interaction with its cognate G protein, transducin. Although the activated Rho (Meta II) monomer or dimers are capable of activating the G protein, transducin, the activation process is much faster when Rho exists as organized dimers. Our studies provide direct comparisons between signaling properties of Meta II in different quaternary complexes.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Structural Biology (Engel)
UniBasel Contributors:Engel, Andreas H
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Society of Biological Chemists
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:21
Deposited On:22 Mar 2012 13:24

Repository Staff Only: item control page