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Preface

The interaction of light with matter is at the heart of quantum optics, which itself enables

insight into the fundamental aspects of quantum mechanics. First experimental access

to this research field has been realized by coupling atoms to light. Here, the transition

between discrete energy states of the atom is associated with the absorption and emission

of a photon, a single quantum of the electromagnetic field. As a central aspect of

quantum optics, the light–emitter interaction can be significantly enhanced by placing

the emitter in optical cavity that is on resonance with the emitter. In recent years, this

has led to a rapidly evolving research field known as cavity quantum electrodynamics

(CQED). In CQED two different regimes are distinguished: the strong and the weak

coupling regimes. In the strong coupling regime, the emitted photon is reflected from

the cavity mirrors and eventually reabsorbed by the emitter. In contrast, the weak

coupling regime describes the irreversible emission, where the photon leaks out of the

cavity before it can be reabsorbed. Both the weak and strong coupling regimes enabled

fundamental experiments for a better understanding of quantum optical phenomena.

CQED grants access to the quantum world and hence offers potentially revolutioniz-

ing applications, particularly in the field of quantum information processing. A central

aspect for the successful implementation of quantum applications is the system’s scala-

bility. Unfortunately, placing atoms deterministically inside a cavity remains technolog-

ically elaborate and hence minimizes the prospect of scaling a atom–CQED system.

A possibility to address this issue is to implement CQED in the solid state, where

sophisticated fabrication strategies allow miniaturization and scalability of the system.

Particularly the development of self–assembled quantum dots (QD) in semiconductors

represent a promising route. QDs can be considered as artificial atoms that mimic the

atomic two–level system. These structures interact strongly with light and therefore have

the potential for replacing atoms in CQED. As a central advantage, QDs are naturally

trapped, which greatly simplifies the deterministic incorporation into the cavity.

In recent years, many efforts have been made to couple self–assembled QDs to mi-

crocavities. Generally, the successful implementation of CQED requires a cavity with a
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high quality factor Q and a low mode volume. In a majority of the approaches, the high

Q/small mode volume cavities were monolithically defined around the QD, embedding

the QD at a fixed position inside the cavity. Both the weak and strong coupling regimes

have been reached with these systems. However, for future applications they suffer from

several disadvantages. The fixed position of the QD inside the cavity minimizes the

prospects for spectral tunability and spatial positioning the QD inside the cavity. Fur-

thermore, prospects for further increasing of the cavity Q–factor and minimization of

the mode volume remain limited in these systems.

In this thesis the mentioned disadvantages are addressed by developing a fully tunable

miniaturized Fabry–Pérot microcavity with low mode volume. The design enables both

spatial positioning of the emitter inside the cavity and spectral tunability. Successful

coupling of a single QD to the microcavity is demonstrated including the strong coupling

regime. Further a new approach to decrease the cavity mode volume is presented, where

we demonstrate weak coupling is achieved.

The thesis is outlined as follows:

• Chapter 1 gives an introduction to the field of CQED and elaborates the relevant

aspects of a tunable microcavity.

• Chapter 2 explains the fabrication of concave mirrors in order to achieve a small

mode volume in the Fabry–Pérot cavity.

• Chapter 3 describes and characterizes the microcavity setup.

• Chapter 4 demonstrates the strong coupling regime, achieved with an InGaAs

QD coupled to the microcavity. Here, the strong coupling regime is probed by a

cross–polarized detection technique, which allowed the spectral broadening of the

QD to be elucidated

• Chapter 5 shows additional measurements in the strong coupling regime. Besides

lifetime measurements, strong coupling is analyzed in a magnetic field.

• Chapter 6 presents an approach to minimize the mode volume. Thereby an

epitaxial lift–off technique has been established, which allows the transfer of a

thin semiconductor layer onto a cavity mirror. A successful bonding of a layer

that containing QDs is achieved resulting in a demonstration of QD weak coupling

via the Purcell effect.
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2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 The CO2 laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Characterization of the CO2 laser setup . . . . . . . . . . . . . . . 24

2.3 Fabrication and analysis of the ablated structures . . . . . . . . . . . . . 26

2.3.1 Effect of high power fabrication . . . . . . . . . . . . . . . . . . . 27

2.3.2 Additional smoothing pulse . . . . . . . . . . . . . . . . . . . . . 28

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ix



3 Development and characterization of a small mode volume tunable micro-

cavity 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Cavity design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Top mirror fabrication . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Optical performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Finesse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Radius of curvature . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Beam waist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.4 Microcavity microscopy . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Strong coupling of a quantum dot in a tunable microcavity 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Excitation and Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Additional investigation of the strong coupling regime 61

5.1 Strong coupling in the magnetic field . . . . . . . . . . . . . . . . . . . . 61

5.2 Dynamics of the strong coupling regime . . . . . . . . . . . . . . . . . . . 65

5.2.1 Interaction of the QD with the cavity in the time domain . . . . . 65

5.2.2 Lifetime measurements . . . . . . . . . . . . . . . . . . . . . . . . 66

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Epitaxial lift–off for solid–state cavity quantum electrodynamics 71

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.1 Epitaxial lif–off . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.2 Van der Waals bonding . . . . . . . . . . . . . . . . . . . . . . . . 75

x



6.3 Cavity characterization and performance . . . . . . . . . . . . . . . . . . 76

6.3.1 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.2 Cavity properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.3 Cavity mode splitting . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 Coupling quantum dots to the cavity . . . . . . . . . . . . . . . . . . . . 80

6.4.1 Photoluminescence measurements . . . . . . . . . . . . . . . . . . 80

6.4.2 Lifetime measurements . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4.3 Estimation of the coupling strengh . . . . . . . . . . . . . . . . . 82

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Conclusion and outlook 89

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2.1 Cavity Q–factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2.2 Coupling strength g . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2.3 Emitter decay γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

APPENDIX 95

A Towards high cooperativity strong coupling of a quantum dot in a tunable

microcavity, supplementary information 97

A.1 Sample structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.2 Model calculation (M1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.3 Model calculation (M2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.4 Contribution to signal from exciton decay . . . . . . . . . . . . . . . . . 103

A.5 Bare emitter optical properties . . . . . . . . . . . . . . . . . . . . . . . . 103

Acknowledgments 109

Curriculum Vitae 111

List of Publications 112

xi





Chapter 1

Background

This chapter gives an introduction into the field of cavity quantum electrodynamics

(CQED), where a single two level emitter is coupled to an optical resonator. We first

discuss the relevant rates of the cavity–emitter coupling dynamics before we distinguish

between the weak and the strong coupling regimes. Initial CQED experiments were

performed with atoms coupled to Fabry–Pérot optical resonators. However, a lot of

effort has been made in recent years to implement CQED in the solid state by coupling

for example self assembled quantum dots (QDs) to photonic crystals or micropillars.

These systems enabled the accomplishment of various CQED experiments, but they

suffer from severe disadvantages such as limited spectral tuning and limitations in the

performance of the optical cavity. We motivate a possibility that incorporates quantum

dots coupled to tunable miniaturized Fabry–Pérot microcavities, in order to circumvent

these drawbacks in future CQED experiments.



Chapter 1. Background

g k

g

e

gs

Figure 1.1. A two level emitter coupled to an optical resonator, where |gs〉 (|e〉) denotes the ground

(excited) state. The relevant CQED rates are indicated as g for the cavity–emitter coupling, κ the

cavity decay rate and γ the emitter decay rate.

1.1 Introduction to cavity quantum electrodynamics

Cavity quantum electrodynamics (CQED) studies the interaction of an emitter coupled

to an optical resonator as illustrated in figure 1.1. When the transition of the emitter

is on resonance with the cavity, the interaction is determined by following rates: the

photon loss rate of the cavity κ, the nonresonant decay rate of the emitter γ and the

emitter–cavity coupling rate g. In the case where g � κ, γ a photon can be reabsorbed

by the emitter before it is lost. Here, the photon emission is a reversible process and

the system is in the strong coupling regime giving rise to new eigenstates. If g � κ, γ

the system is in the weak coupling regime, where the photon is lost before it can be

reabsorbed. Photon emission is therefore irreversible but nevertheless affected by the

cavity.

A figure of merit to characterize the emitter–cavity interaction is the cooperativ-

ity value defined as C = 2g2/κγ which was introduced for CQED experiments with

atoms [1]. Here, C corresponds to the inverse of the critical atom number, correspond-

ing to the number of atoms required in a cavity to observe a switching of the optical

response [2]. Current CQED approaches aim at maximizing C in order to achieve a

pronounced strong coupling effect, which is particularly interesting in the application of

quantum information science.

1.1.1 Discussion of the CQED rates

In the following we consider the dependence of g, κ and γ on the cavity and emitter

properties. The zero point energy in an optical cavity (resonant to the cavity frequency

2



1.1. Introduction to cavity quantum electrodynamics

ω) originates from the randomly fluctuating vacuum electric field which scales inversely

with the mode volume V0 of the cavity [3]:

Evac =

√
~ω

2ε0V0

. (1.1)

The interaction of the cavity with the emitter ∆E = µ12Evac is given by the interaction

of the emitter’s dipole µ12 with the vacuum field. The emitter–cavity coupling rate g

can then be determined by setting ~g = µ12Evac:

g =

√
µ2

12ω

2ε0~V0

. (1.2)

The dipole moment µ12 is related to the radiative lifetime τ of the emitter via:

1

τ
=

ω3

3πε0~c3
µ2

12. (1.3)

Here the spontaneous radiative lifetime τ defines the decay rate of an ideal two level

emitter, γ = 1
τ
. However, we note that the actual γ can also be affected by non–

radiative decay (breaking the two level approximation) or by scattering events that

cause dephasing. Finally, the cavity photon loss rate is governed by the quality factor

(Q–factor) defined as:

Q =
ω

κ
, (1.4)

i.e. Q−1 is the fractional loss of energy per optical period. The loss rate is limited by

the finite transmission and absorption of the mirrors that build up the optical resonator.

From equations 1.1–1.4 we summarize the essential properties for the construction of

a high cooperativity CQED system: a high Q cavity with low mode volume combined

with a narrow linewidth emitter that exhibits a strong dipole transition µ12.

1.1.2 The weak coupling regime – Purcell enhancement

As mentioned above, the weak coupling corresponds to the case where g � κ, γ. If

κ is the dominant loss mechanism, the emitted photon from the emitter leaks out of

the cavity before it can be reabsorbed. However, the coupling to cavity modifies the

spontaneous emission rate, which is known as Purcell enhancement [4]. This effect is

3



Chapter 1. Background

understood from Fermi’s golden rule that describes the spontaneous emission rate W :

W =
2π

~2
M2

12p(ω), (1.5)

where p(ω) is the photon density of states and M12 = µ12Evac is the transition matrix

element. In a cavity with resonance linewidth ∆ωc = ω/Q = κ the density of states is

described by a Lorentzian lineshape:

p(ω) =
2

π∆ωc

∆ω2
c

4 (ω − ωc)2 + ∆ω2
c

(1.6)

that satisfies
∫∞

0
p(ω)dω = 1. In contrast, the free space density of states within a

volume V0 is p(ω) = ω2V0
π2c3

. We compare the spontaneous emission rate of an emitter

coupled to the cavity (W cav) with the uncoupled emitter rate (W free) and introduce the

Purcell factor Fp:

Fp =
W cav

W free
=

3Qλ3
0

4π2V0

, (1.7)

where c
ω

= λ0
2π

, λ0 being the free space wavelength. Equation 1.7 indicates that the

spontaneous emission is most enhanced, when the cavity resonance overlaps with the

emitter transition, i.e. when ω − ωc = 0. We emphasize that the Purcell enhancement

is maximized by optimizing Q/V0. Purcell factors greater than one imply that the

spontaneous emission is enhanced by the cavity, where Fp < 1 indicates an inhibition of

the emission.

1.1.3 Strong coupling

In the strong coupling regime, g is the dominant rate which results in a reversible

emission of the photon. To understand the features that arise in the strong coupling

regime, we introduce the Jaynes–Cummings Hamiltonian to describe the cavity–emitter

system [5, 6]:

HJC = ~ωca†a+ ~ωeb†b+ ~g(a†b+ b†a). (1.8)

Here, Hc = ~ωca†a defines the cavity field, He = ~ωeb†b the emitter and HI = ~g(b†a+

a†b) is the interaction between cavity and emitter at rate g. a†(a) and b†(b) denote

the creation (annihilation) operator of the photon and the emitter excitation respec-

tively. For further analysis we assume a CQED system without dissipation, which will

be introduced further below.

4



1.1. Introduction to cavity quantum electrodynamics

Uncoupled

ħwc

ħwc

ħwc

0

1

2

n

3

0

1

e

ħwe

gs

Cavity mode Emitter

Coupled

Strongly coupled emitter-cavity
Dressed states

2g

0

1,-
1,+

2,+

2,-

3,-

3,+

ħwc

2ħwc

3ħwc 2g√3

2g√2

0

Figure 1.2. Jaynes–Cummings ladder. The ladder describes the eigenenergies when an emitter is

strongly coupled to the cavity mode with coupling rate g. The energy splitting of the new eigenstates

depends on the number of photons n in the cavity and is given by 2g
√
n+ 1.

If the interaction is turned off (i.e g = 0) we can define a set of eigenstates: |gs, n+ 1〉
is the state when the emitter is in its ground state, with n + 1 photons in the cavity

and |e, n〉 represents a state of the emitter being in the excited state with n photons in

the cavity. If we turn on the interaction between the cavity and the emitter the total

Hamiltonian in the |e, n〉 , |gs, n+ 1〉 basis is represented as:

HJC =

(
(n+ 1)ωc g

√
n+ 1

g
√
n+ 1 nωc + ωe

)
. (1.9)

The corresponding eigenenergies of this Hamiltonian are:

E± =
~ωe
2

+ ~ωc
(
n+

1

2

)
±

√
~2g2(n+ 1) +

(
~δ
2

)2

, (1.10)

where δ = ωc − ωe is the cavity–emitter detuning. At zero detuning δ = 0,

E± =
~ωe
2

+ ~ωc
(
n+

1

2

)
± ~g

√
n+ 1 (1.11)

5



Chapter 1. Background

with the corresponding normalized eigenstates:

|n,+〉 =
|e, n〉+ |gs, n+ 1〉√

2
, (1.12a)

|n,−〉 =
|e, n〉 − |gs, n+ 1〉√

2
. (1.12b)

The |n,+〉 and |n,−〉 are the dressed states, namely the upper (|n,+〉) and lower (|n,−〉)
polariton that arise in the strong coupling regime and are admixtures of the bare cavity–

emitter states, |gs, n+ 1〉 and |e, n〉. An important consequence of equation 1.11 is

illustrated in the Jaynes–Cummings ladder (figure 1.2). The strong coupling results in

a splitting between |n,+〉 and |n,−〉 which increases with the photon number n in the

system, thereby inducing a nonlinearity in CQED. The splitting for n = 0 is Evac = 2~g
and is commonly denoted as the vacuum Rabi energy splitting.

As mentioned above the dissipation rates have been neglected so far. To include the

CQED loss rates in epression 1.10 we introduce ad hoc the complex cavity and emitter

frequencies: ωc → ωc + iκ
2

and ωe → ωe + iγ
2
. From equation 1.10 we then arrive at the

complex eigenfrequencies (for n = 0):

ω± =
ωc + ωe

2
+ i

κ+ γ

4
±

√
g2 +

(
δ

2
+ i

κ− γ
4

)2

. (1.13)

We note that the same expression is obtained when solving the optical Bloch equations

that are obtained by the Lindblad operator description (see chapter A). The decay rates

of the dressed states are now described by twice the imaginary part of the eigenfrequen-

cies, which yields κ+γ
2

at zero detuning. Furthermore, the condition to achieve strong

coupling can now be extracted from equation 1.13: for δ = 0, the expression under the

square root must be positive in order to obtain a normal mode splitting, which applies

only for 4g ≥ |κ− γ|.

1.1.4 Collective interaction

We next consider N emitters at a fixed position in the cavity that all couple to the single

mode of the cavity for the case of n = 0. The overall ground state of the ensemble is

defined when all emitters are in the ground state: |Ψ0〉 = |gs . . . gs〉. If the system is

6



1.2. Quantum Dots for CQED

(a) (b)
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Figure 1.3. (a) TEM image of an InAs QD embedded in a GaAs semiconductor structure (courtesy

of Jean–Michel Chauveau and Arne Ludwig). (b) Schematic level structure of an InAs QD embedded

in GaAs. Due to the bandgap difference of InAs compared to GaAs a nanoscale confinement in three

dimensions is obtained, resulting in the formation of discrete energy levels.

weakly excited the first collective excited state is given by [7]:

|Ψ1〉 =
1√
N

(|e, gs . . . gs〉+ |gs, e . . . gs〉+ . . .+ |g . . . g, e〉) . (1.14)

If the cavity–emitter coupling g is similar for each emitter the interaction Hamiltonian

becomes

HI = ~g
N∑
i

(
a†bi + b†ia

)
(1.15)

The collective coupling strength gN is then determined by the off diagonal matrix ele-

ments of the Jaynes–Cummings Hamiltonian within the basis |Ψ0, 1〉 , |Ψ1, 0〉:

gN = 〈Ψ1, 0|HI |Ψ0, 1〉 =
√
Ng. (1.16)

As an essential result of equation 1.16 we note that the interaction of an ensemble of

N emitters with a single cavity mode of the radiation field is enhanced by the factor√
N , which manifests itself by an increased vacuum Rabi energy splitting. This effect is

known as the Dicke effect [7].

1.2 Quantum Dots for CQED

The strong coupling regime was first reached with atoms [8] and enabled various pioneer-

ing experiments that allowed for fundamental studies of CQED [9]. However, trapping

single atoms remains technologically elaborate and therefore minimizes the prospects

7



Chapter 1. Background

for scaling the CQED technologies. A promising route is to replace the atoms with

self assembled semiconductor quantum dots (QD) that mimic two level emitters. QDs

are based on indium arsenide (InAs) grown on gallium arsenide (GaAs) by molecular

beam epitaxy (MBE) [10]. Due to the lattice mismatch of InAs compared to GaAs,

QDs are formed after 1.5 monolayers of InAs [11]. The QDs, accompanied by an InAs

wetting layer, are then capped with GaAs and thereby embedded in a semiconductor

heterostructure as shown in the transmission electron microscopy (TEM) image in fig-

ure 1.3a. The QDs have a typical diameter of 20 nm and a height of approximately 5 nm,

where the exact shape depends on the growth details. Figure 1.3b shows the discrete

conduction and valence levels that arise within the QD due to the nanoscale confinement

in three dimensions. Typically, the conduction levels are separated by ∼ 20 − 50 meV

and the valence levels by ∼ 10−25 meV [12]. The optical transition in the quantum dot

is associated with the excitation/recombination of an electron hole pair. The optically

excited state consisting of one electron and one hole is referred to as a neutral exciton.

By incorporating the InGaAs QDs into a field effect structure, the QD can be selec-

tively charged by a single electron or hole such that a negatively or positively charged

exciton can be formed [13]. Considering the corresponding spin of the additional charge

carrier has enabled a great variety of quantum dot spin–physics experiments [12]. The

transition wavelength of the QD can be engineered to lie around the experimentally

convenient wavelength of ∼ 950 nm by thermal annealing during [14] and after [15] the

growth process. The radiative lifetime of InGaAs QDs was shown to be as short as

∼ 0.8 ns [16] corresponding to a relatively large electric dipole of 0.6 nm/e, where e is

the electronic charge [17]. Moreover, the photons emitted by these dots exhibit narrow

linewidths approaching the transform limit [18].

The fact that the QDs are embedded at a fixed location in the semiconductor greatly

simplifies trapping them in an optical microcavity as compared to experiments with

atoms. Furthermore, the relatively large dipole moment that is associated with the

InGaAs QDs, makes them a suitable candidate as the interaction of the cavity field

and the QD is expected to be strong. Several types of semiconductor microcavities for

coupling QDs have been implemented, in each case monolithically fabricated around the

QDs [19–21]. An interesting approach are QDs embedded in semiconductor microdisks,

where the light is confined in a whispering gallery mode [22, 23]. The Q–factor of

these devices is potentially high but comes at the cost of a large mode volume. The

more prominent examples however are micropillars and photonic crystal nanocavities,

discussed briefly in the following.
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1.2. Quantum Dots for CQED

1.2.1 Micropillars

Micropillar cavities are typically established following MBE growth of alternating layers

of GaAs and AlGaAs. The layers have a thickness of λ/4nGaAs and λ/4nAlGaAs respec-

tively, where nGaAs (nAlGaAs) is the refractive index of GaAs (AlGaAs) and thus build

a distributed Bragg reflector (DBR). In between the two DBRs a λ thick GaAs layer

is included, with the optically active InGaAs at the centre, i.e at the antinode of the

fundamental cavity mode [24]. The micropillars are then subsequently etched with a

diameter of typically a few micrometers to reach a low mode volume. Q–factors of up to

65,000 [25] and mode volumes as small as 2.3 (λ/n)3 [26] have been demonstrated with

micropillars. However, there are several disadvantages for the application in CQED. It

has been shown that the Q–factor is limited by scattering from the sidewalls, which be-

comes more pronounced for small pillar diameters [27]. Ultimately, this sets a constraint

for reducing the micropillar mode volume. Furthermore, the QDs form at a random

position during MBE growth, there is only a statistical chance that they are optimally

located at the micropillar centre after etching. Spectral tuning can be achieved by vary-

ing the temperature [28] or electro–optical tuning of the exciton via the Stark effect [29].

Temperature tuning is only optimal for small tuning ranges since the exciton linewidth

is homogenously broadened by an increased temperature [30]. Electro–optical tuning

circumvents this but involves a complex fabrication procedure. Furthermore, the tuning

range is only in the range of a few micro–electronvolts since the exciton charge state can

switch unintentionally upon application of a high bias voltage. An attempt to address

these drawbacks is a very complex fabrication procedure, where the QD is selected in

situ prior to the etching of the micropillars [31].

1.2.2 Photonic crystals

In photonic crystals the dielectric properties are periodically modulated on the length–

scale of the wavelength of the light. The light then undergoes Bragg scattering, which

induces a photonic band gap, in which the light is unable to propagate. For CQED

experiments, InGaAs QDs are incorporated in GaAs photonic crystals. The periodic

modulation of the refractive index is achieved by etching a series of holes in the struc-

ture. By leaving out three holes in the periodic structure [32], a localized cavity mode

with a frequency in the photonic band gap is created. The mode volume of these so called

L3 nanocavities is less than ∼ (λ/n)3. The Q–factors were shown to be increased by

displacing the holes at the end of the cavity [33]. Hence Q–factors of 2.5× 104 are regu-
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Chapter 1. Background

larly achieved for L3 nanocavities containing single QDs [34, 35]. Similar to micropillars

the spatial in situ positioning of the QDs within the photonic crystal cavity remains

impossible. Therefore, techniques have been established were the QDs are first located

by scanning electron microscopy (SEM) [36] or atomic force microscopy (AFM) [34]

before the nanocavity is fabricated around the dot. Tunability can be achieved electro–

optically [37] or by temperature [38] with the same drawbacks as in micropillars. In

addition, a digital wet etching technique [39] or the deposition of nitrogen gas [40] was

established for tuning the cavity. However, these two methods are irreversible and there-

fore unsuitable for CQED applications.

1.3 Observations and applications of CQED

The successful coupling of QDs and atoms to optical resonators entails a large variety

of possible applications both in the weak and strong coupling regimes.

Strong coupling with single atoms coupled to high Q Fabry–Pérot cavities has been

observed for example with rubidium atoms [41] and with cesium atoms [42]. The strong

coupling regime offers a possibility to manipulate the atom–cavity entanglement [43] and

hence build a resource for the processing and distribution of quantum information [44].

Experiments in this context include the reversible transfer of quantum states [45] and

photon–photon entanglement [46]. Furthermore, the strong coupling regime has the

potential for deterministic atom–atom entanglement [47]. The collective interaction of

many atoms with a single cavity mode was shown to exhibit the predicted
√
N [48, 49]

dependence, with possible application as a quantum memory [50].

An interesting aspect of the strong coupling regime is the nonlinearity induced by

the Jaynes–Cummings ladder as shown in figure 1.2. This is the basis for the so–

called photon blockade effect [51]. When an excitation laser is resonant with the |0〉 ↔
|1,−〉 transition, the second manifold |2,−〉 cannot be accessed since the excitation

laser is not resonant with the |1,−〉 ↔ |2,−〉 transition. The photon blockade regime

represents a strong photon–photon interaction and enables the realization of a single

photon transistor [52].

In the solid state, strong coupling of quantum wells in micropillar structures was

first observed in 1992 [53] and allowed for the formation of Bose–Einstein–condensates

(BECs) in some ways analogous to BECs of ultracold atoms [54, 55]. Coupling of single

QDs is desirable, since electron spins interacting via a common high Q–cavity mode

are a promising component for quantum information processing [56]. Strong coupling
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of single self–assembled InGaAs QDs has been observed in micropillars [28], photonic

crystal nanocavities [34, 57, 58] and microdisks [23]. This facilitated an investigation

of the Jaynes–Cummings ladder [59] with the observation of photon blockade [35, 60],

subsequently leading to the implementation of a two colour single photon switch [61].

In addition to the optical experiments, dressed states in the Gigahertz domain could be

achieved by coupling a Cooper pair box to a superconducting microwave cavity [62].

The Purcell enhancement in the solid state the has been experimentally observed

for an ensemble of QDs coupled to micropillars [63]. The coupling of single quan-

tum dots [64] was also demonstrated in photonic crystals [65] and recently in tunable

Fabry–Pérot like microcavities [66, 67]. Generally, the weak coupling regime enhances

greatly the quantum efficiency of a single photon source [68], important in the creation

of indistinguishable single photons [69] for optical quantum communication [70]. In ad-

dition a Raman spin–flip transition induced by a cavity [71] can be used as a source

for indistinguishable single photons [72]. Beyond the possible applications for quantum

information science, the enhancement of spontaneous emission enables the realization of

low–threshold lasers based on a few quantum dots [73].

1.4 Coupling quantum dots to a tunable Fabry–Pérot

microcavity

Generally all CQED applications profit from a high cooperativity value, since only in

the high–C regime effects such as the photon blockade become pronounced. This thesis

aims at the realization of a high C CQED system using QDs coupled to a tunable plane–

concave Fabry–Pérot microcavity with low mode volume [66]. Here, our microcavity

exhibits the possibility of large range spectral tuning and spatial positioning of the QD

within the cavity mode. In this approach the advantageous emission properties of the QD

(narrow linewidth and short radiative recombination time) are combined with external

high reflectivity mirrors in order to achieve a high cooperativity of the system.

1.4.1 A plane–concave tunable Fabry–Pérot microcavities

We summarize the main properties of a tunable plane–concave Fabry–Pérot microcavity.

Figure 1.4a shows a plane concave cavity with an effective length L and a radius of

curvature of the top mirror of R. From a transfer matrix analysis, a stability criterion

for the plane–concave cavity can be formulated which sets the constraint for a stable
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Figure 1.4. (a) Schematic view of a plane–concave microcavity with radius of curvature R and

length L which defines beam waists w0 and w1 and hence the volume V0 of the cavity mode. (b) Beam

waist at the planar mirror w0 and beam waist at the curved mirror w1 as a function of cavity length L.

For small L, w0 ≈ w1, so that a cylindrical mode can be assumed.

mode [74]:

0 ≤ g ≤ 1. (1.17)

Here g = 1− L
R is a dimensionless confocal parameter that accounts for the cavity geom-

etry. In a plane–concave Fabry–Pérot cavity the stability criterion effectively becomes

L ≤ R.

The geometry of the plane–concave cavity defines the Gaussian mode which is stable

in the resonator and hence also the beam waist at the plane mirror w0 and at the curved

mirror w1 are according to Gaussian optics [75]:

w1 =

√
λ0R
π

(
R
L
− 1

)− 1
4

, (1.18a)

w0 =

√
λ0

π

(
LR− L2

) 1
4 . (1.18b)

Figure 1.4b shows the length dependence of the beam waist w0 and w1 for a cavity with

R = 20 µm and λ0 = 950 nm. We notice that for small cavity length w0 ≈ w1, from

which the cavity mode volume can be estimated according to:

V0 =
πw2

0

2
L. (1.19)

The stability criterion in equation 1.17 sets the geometric constraint for a stable

Gaussian mode in the cavity. For a fixed geometry the eigenfrequencies of the cavity

modes νnmq are evaluated under the constraint that the phase round trip is equal to an
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1.4. Coupling quantum dots to a tunable Fabry–Pérot microcavity

integer multiple of 2π, in which case the field constructively interferes with itself:

νnmq =

(
q + (n+m+ 1)

cos−1±√g1g2

π

)
c

2L
. (1.20)

Here, n and m are the transverse Gaussian mode indices, while q is the longitudinal

mode index. The term c
2L

represents the free spectral range (FSR) of the cavity, i.e the

longitudinal mode splitting. A measure of the performance of a cavity is the finesse,

which relates the FSR to the resonance linewidth ∆ν of the cavity and is linked to the

Q–factor:

F =
FSR

∆ν
=
λ0Q

L
(1.21)

where the frequency resolution definition of Q = ν
∆ν

= ω
κ

is used and c = λ0ν. The

finesse is determined essentially by the reflectivity of the two mirrors R1 and R2:

F =
π (R1R2)(1/4)

1−
√
R1R2

(1.22)

High reflectivity mirrors for CQED typically consist of alternating quarter wave dielec-

tric layers (e.g. Ta2O5/SiO2) that form a DBR. The reflectivity of the DBRs is given by

the number of pairs used. A high refractive index contrast is desired for two reasons:

the frequency range, where the light is reflected is larger and the penetration is reduced,

important for short cavity length [76]. The DBR films are commonly produced by ion

beam sputtering, which allowed for the demonstration of cavity finesses up to 106 [77]. In

addition, DBRs can also be epitaxially grown using for example pairs of GaAs/AlGaAs

which have a similar lattice constant but a different refractive index. These DBRs are

nowadays widely used for vertical–cavity surface–emitting lasers (VCSELs) [78]. Fur-

thermore, GaAs/AlGaAs alternating layers can be conveniently combined with InGaAs

QD as shown for instance in micropillar CQED.

We motivate the use of a miniaturized plane–concave Fabry–Pérot microcavity for

CQED applications. Here, the two mirrors can be individually prepared and then

combined which enhances greatly the flexibility compared to monolithic cavities. We

note that not only QDs but also nitrogen–vacancy centres in diamond [79] or quantum

wells [80] can be incorporated in such a microcavity. The mode volume is reduced by

choosing a small radius of curvature for the concave top mirror as indicated by equa-

tion 6.5. Spectral tunability and spatial positioning of the emitter within the cavity

mode can be conveniently achieved by moving the two mirrors with respect to each

other. The advantages associated with a tunable microcavity combined with the bene-
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ficial properties of InGaAs QDs emphasize the potential for realizing high cooperativity

CQED in the solid state.
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Chapter 2

CO2 Laser ablation of miniaturized

concave Fabry–Pérot mirrors

This chapter describes the development of miniaturized concave mirrors before they

are coated with a distributed Bragg reflector consisting either of alternating layers of

Ta2O5/SiO2 or TiO2/SiO2. The concave structures are fabricated by laser ablation

of fused silica using a CO2 laser with wavelength of 10.6 µm. The laser radiation is

efficiently absorbed and locally melts the silica, resulting in an imprint of the CO2

laser’s intensity profile. Owing to the surface tension of the molten silica, the surface

roughness of the ablated spots is smoothened. The fabrication geometries are determined

by adjusting the fabrication power and pulse width with an acousto optical modulator

(AOM). It is possible to fabricate a large range of radii of curvature from below 10 µm

to up to 1 mm. Atomic force microscopy measurements reveal a surface roughness in

the ablated crater of 0.2 nm.



Chapter 2. CO2 Laser ablation of miniaturized concave Fabry–Pérot mirrors

2.1 Introduction

Our approach to developping a small mode volume Fabry–Pérot–like microcavity consists

of fabricating a concave top mirror with a small radius of curvature. A candidate for

the fabrication of such a top mirror is CO2 laser–ablation of fused silica. The CO2 laser

wavelength of 10.6 µm is efficiently absorbed by the silica resulting in a local melting of

the irradiated silica. Due to the surface tension in the molten silica layer, the surface

roughness of the irradiated area is smoothened, a key advantage of this technique. This

was shown to be an effective technique to polish silica substrates [1, 2] and local repair of

damaged silica optics [3]. Furthermore, CO2 laser machining allowed for the fabrication

of convex microlenses [4], microtoroidal resonators [5] and microlenses on one end of

single–mode optical fibers [6].

Here, we present the fabrication of concave silica structures by means of CO2 laser

ablation. These concave structures are later coated with a distributed Bragg reflector

(DBR) and build one end mirror of our miniaturized Fabry–Pérot–like cavity design. By

adjusting the laser power and exposure time incident on the fused silica substrate, we

were able to produce a wide range of craters with radii of curvature from 1 mm down

to less than 10 µm. An additional smoothing pulse flattens out possible silica residuals

in the crater that may emerge during the ablation process. Atomic force microscopy

(AFM) measurements reveal root mean square roughnesses (rms) down to 0.2 nm in the

crater. Throughout the ablation process we use moderate power, since high power was

shown to eject silica during the process and contaminates the vicinity of the crater as

also shown in [7].

2.2 The CO2 laser

2.2.1 Setup

The setup accompanying with the CO2 laser (Synrad Inc., Firestar v30) is shown in

figure 2.1. We use an acousto optical modulator (AOM) (Brimrose Corporation, GEM–

40–1–10.6) to control the power and exposure time incident on the silica substrate:

where the first order of the deflection is guided towards the silica sample. The zeroth

order is collected by a thermopile detector (Thorlabs Inc., S314C) with a slow risetime

(≈ 1 s) and a high damage threshold (2kW/cm2) to monitor the long term stability

of the CO2 laser power. A combination of a linear polarizer (Thorlabs Inc., PHB–7)

and a λ/4 waveplate (II–VI infrared, WPM–10.6–.35–90–U) minimizes back reflection
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AOM
Si Mirror
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Firestar v30

Sample
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Telescope lenses
to expand beam
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F=25.4mm
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F=25.4mm

xyz 
posi�oning stage

Figure 2.1. CO2–laser setup for the fabrication of low radii of curvature Fabry–Pérot top mirrors

for the tunable microcavity. The CO2 laser is typically operated at a PWM of 8% at a repetition rate

of 20 kHz. We adjust the length and power of the fabrication pulse with an acousto optical modulator

(AOM), that deflects the first order onto the silica substrate. A combination of a linear polarizer and

a λ/4 waveplate minimized back reflection into the laser. Focussing and positioning of the sample is

achieved by analyzing the reflected power with a fast MCT photodiode.

into the laser. The linear polarizer consists of two ZnSe–plates incorporated at the

Brewster angle such that horizontal polarized radiation is transmitted, while vertically

polarized light is reflected. The incident laser output is initially horizontally polarized

and a quarter waveplate translates the polarization to σ−, which upon reflection is

converted into σ+ and translated by the λ/4 waveplate into horizontally polarized light.

The Brewster plates in the polarizer then reflect the vertically polarized light, which

is then collected by a nitrogen cooled mercury–cadmium–telluride (MCT or HgCdTe)

photodetector with a risetime of 150 ns (Hamamatsu Photonics K.K., P9697–01). Two

aspheric ZnSe lenses (ULO Optics Ltd.) incorporated after the λ/4 waveplate with

focal length of 25.4 and 95.3 mm act as telescope lenses to expand the beam diameter

such that the laser beam is efficiently focused by the focusing lens (f = 25.4 mm). We

use a 5 × 5 mm2 square silica substrate, which is clamped to an xyz stepper motor

positioner stage (Physik Instrumente GmbH, M–112.12S). The focusing and positioning

of the sample is controlled by analyzing the reflected radiation with the MCT detector

as a function of the stage positions.
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Chapter 2. CO2 Laser ablation of miniaturized concave Fabry–Pérot mirrors

2.2.2 Characterization of the CO2 laser setup

The active medium of the laser consists of a CO2–He–N2 gas mixture filled into a dis-

charge tube [8]. A radiofrequency (RF) signal (frequency: 83.5 MHz) pumps the N2

molecules to the first vibrational level. The nitrogen molecules can collide with the

CO2–molecules and excite them into the first symmetric stretch vibrational mode (001)

that acts as the upper lasing level. A decay from this state into the asymmetric stretch

vibrational mode (100) occurs under the emission of a photon at wavelength 10.6 µm and

is the prerequisite for lasing. Via collision with He–atoms the CO2 molecules efficiently

decay into their ground state before they are reexcited by the N2 molecules.

The RF–pumping is gated by a 20 kHz transistor–transistor logic (TTL) signal and the

mean laser power is controlled by adjusting the pulse width modulation (PWM)–duty

cycle. Figure 2.2a illustrates the control of the laser pulse on the silica sample. The top

row shows the TTL–pulses with a certain duty cycle that gates the RF–pumping signal.

The effective laser output is illustrated on the second line and measured in figure 2.2b

for three different PWM–duty cycles of the TTL signal. For this measurement the laser

is only weakly diffracted by the AOM and the light was recorded with the MCT after

reflection from a glass plate. The MCT detector is fast enough to record the pulse shapes

of the CO2 laser. However, we further treat the pulses incident on the silica substrate as

cw–like, as we assume that the pulses timescale is much shorter than the heat transfer

rate within the silica.

The AOM is driven at 40 MHz by a modulator driver, which in turn is modulated by

an external voltage between 0 and 1 V. The modulation voltage height V defines the

applied power to the AOM and thus determines the diffraction efficiency. By applying

a certain voltage V for a time τ , we therefore define the length of the pulse and power

incident on the silica sample as illustrated in figure 2.2a. Figure 2.2c shows the deflected

mean laser power at the sample position relative to the mean laser power in the zeroth

order as a function of AOM modulation voltage. We fit the curve to a parabola and

describe the AOMs diffraction efficiency D as a function of the modulation voltage U [V ]

as:

D(U) = a+ bU + cU2 (2.1)

where we obtain the calibration parameters a = 0.459± 0.186, b = −7.573± 0.691 V −1

and c = 29.312± 0.566 V −2. These parameters are used for setting the desired power of

the fabrication pulse.

To characterize the dimensions of the CO2–laser focal spot we use a partially gold–
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Figure 2.2. Performance of the CO2 laser. (a) Generation of the fabrication pulse. The CO2 laser is

gated with a TTL–signal (top), resulting in the CO2 laser pulse shapes shown by the blue curves. The

AOM pulse height V and the pulse length τ determine the fabrication power and pulse width. The red

curve shows the actual pulse that is applied to the silica substrate. The pulse shapes for different PWM

are recorded in (b) using an AOM modulation voltage of 20 mV.(c) AOM calibration. The parabola

fit is used for controlling the power during CO2 ablation. (d) Reflection measurements across a sharp

gold edge reveal a symmetrical focalspot.

coated glass plate with a defined sharp edge. The edge is moved across the focal spot,

were we used an AOM voltage of 20 mV and a PWM of 2.5 %. Figure 2.2d shows the

mean reflected power recorded with the MCT detector as a function of sample position.

High power corresponds to gold and low power to the glass plate. We assume a Gaussian

focal spot with intensity I:

I(r) = I0e
−2 r

2

w2 , (2.2)

with r2 = x2 + y2 and fit the position dependent reflection R(x) as:

R(x) = erf(
√

2x/w), (2.3)

where erf(x) =
∫ x

0
e−u

2
du is the error function. From this fit we obtain a symmetrical

focal spot width w of 16.74 ± 0.3 µm in x direction and 16.75 ± 0.2 µm in y direction.
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Figure 2.3. Ablated crater fabricated with a power of 250 mW and pulse length of τ = 58 ms.(a)

Height image obtained by a confocal scanning laser microscope. (b) AFM amplitude deflection image of

the crater qualitatively shows a low surface roughness. (c) AFM height profile. The red line represents

a circular fit in the vicinity of the center of the crater. Figure (d) shows the the measured height data

subtracted by the fit and we deduce a rms surface roughness of 0.2 nm.

2.3 Fabrication and analysis of the ablated structures

Having full control over the focus and the fabrication pulse incident on the silica sub-

strate, we proceed to produce a large set of cavity geometries for different parameters.

A typical ablated structure results from an exposure with 250 mW and a pulse length of

58 ms. We analyze the craters with a 3D confocal laser scanning microscope (Keyence,

VK–x200) with a height resolution of 1 nm and lateral resolution of 5 nm. A 3D im-

age from the laser scanning microscope is shown in figure 2.3a from which we deduce a

crater depth of 432 ± 3 nm and a radius of curvature of 17.44 ± 0.5 µm. The radius of

curvature is obtained by a circular fit 2 µm around the center of the crater.

For roughness measurements of the ablated craters we use an atomic force microscope

(AFM) (Veeco Instruments, Veeco Dimensions 3100). The AFM is operated in the

tapping mode in order to gain resolution [9]. Thereby the cantilever is driven slightly

below its resonance frequency (typically around 290 kHz) at a fixed driving amplitude

to maintain a constant force between tip and surface. Topological features of the surface
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2.3. Fabrication and analysis of the ablated structures

under study change the tip–surface interaction and alternate the oscillation amplitude.

This error signal is fed to a feedback loop to keep the tip–surface height constant.

Figure 2.3b shows the amplitude deflection image as the tip is scanned across a crater.

This image allows for a qualitative statement regarding the smoothness of the surface in

the ablated craters. The simultaneously recorded height image is shown in figure 2.3c

and reveals a crater depth of 400 nm. The red line shows a circular fit ± 1 µm around

the crater center and we deduce a radius of curvature of 18.12 ± 0.06 µm in agreement

with the measurements from the 3D confocal laser scanning image. Subtracting the

curvature fit from the recorded data shows the surface roughness in figure 2.3d and we

obtain a rms surface roughness of 0.2 nm, which is close to the height resolution of the

AFM (≈ 0.1 nm).

A general dependence of crater depth and radius of curvature is indicated in figure 2.4a

and b. Here, the depths and radii are determined with the confocal laser scanning

microscope for a set of three different fabrication powers (250, 255 and 260 mW). For

each power, we observe a sublinear dependence of the depth on the exposure time, which

is in contrast to the model assumed in [10], where an exponential increase of the crater

depth is predicted for a prolonged laser pulse.

We use a wide range of fabrication parameters with powers ranging from 240 mW up

to 900 mW and exposure times between 50 µs and 120 ms. The characterization of the

created geometries is carried out by a phase interference microscope (Zygo Maxim–NT),

the AFM and the confocal laser scanning microscope. We observe a wide range of radii

of curvature of 1 mm down to less than 10 µm as indicated in figure 2.4a. Furthermore,

the radius of curvature and the depth of the crater show a strong correlation, where we

find deeper craters for low radii of curvature. We note that this correlation is relatively

stable and independent of the power used. This behaviour represents a limitation to

our current fabrication procedure: for a small cavity mode volume a small radius of

curvature is desired but it comes at the cost of deep craters that result in a longer cavity

length.

2.3.1 Effect of high power fabrication

We observe silica ejection in the AFM measurements shown in figure 2.5. Here, a crater

using a power of 900 mW and an exposure time of 65 µs is fabricated, resulting in a

radius of curvature of 33.08 ± 0.24 µm with a corresponding depth of 298 ± 3 nm.

The AFM profile in figure 2.5a shows an enhanced surface roughness (rms 3.1 nm) in

the vicinity of the crater compared to the vicinity of the crater fabricated with lower
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Figure 2.4. (a) Depth of the ablated craters vs exposure time for different powers. We observe a

sublinear dependence on the exposure time. (b) Radius of curvature as a function of exposure time.

(c) Overview of fabricated cavity geometries. We observe a strong correlation of between radius of

curvature and depth. The craters are analyzed by a phase interference microscope, a scanning confocal

microscope and atomic force microscopy (AFM).

laser power in figure 2.3 (rms surface roughness 0.8 nm). The melt ejection is also

revealed by the amplitude deflection image in figure 2.5b. This finding suggests that

the ablation dynamics of fused silica is significantly different for high laser powers. To

gain a certain redundancy during the cavity experiment we fabricate several craters

on the same silica substrate. It is therefore important to avoid melt ejection during

the ablation process that may pollute previously processed craters. Consequently, we

choose fabrication powers according to a regime where mass loss is dominated by either

evaporation and/or dissociation [7]. For later cavity experiments, we focus on radii of

curvatures between 10 and 20 µm with corresponding depths of 500 nm to 1.0 µm that

are fabricated with moderate powers around 250 mW.

2.3.2 Additional smoothing pulse

As a last step in the fabrication protocol, we apply an additional short smoothing on the

craters in order to quickly melt and flatten the surface. This smoothing pulse is chosen
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Figure 2.5. AFM profile (a) and amplitude deflection (b) image of an crater fabricated at high

power (900 mW) and short exposure time (65 µs). The area around the ablated crater is significantly

roughened due to silica ejection during the ablation process.
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Figure 2.6. Influence of the smoothing pulse. A previously fabricated crater is polluted by sil-

ica ejection of a crater fabricated nearby with high power before subsequent treatment with a short

smoothing pulse that is slightly misaligned with the initial crater. The smoothing pulse parameters are

chosen such that the geometry of the crater is not significantly influenced as shown by the AFM profile

in (a). The amplitude deflection image in (b) indicates the flattening effect of the smoothing pulse.

such that the geometry of the crater is not disturbed, while there is still a polishing

effect.

A successful smoothing is shown in figure 2.6. Here, we first fabricate a crater with

250 mW and 58 ms. This crater is then purposely polluted by silica ejection of a crater

shot at high power (500 mW; 198 µs) with the center at a distance of 20 µm from the

initial crater. A subsequent smoothing pulse of 5 ms at 250 mW slightly misaligned

with respect to the initial crater then flattens out the pollution from the high power

pulse. This smoothing pulse is chosen such that the silica is locally melted and the

surface tension in the molten silica layer smoothens out the surface roughness without a

significant loss of mass. The AFM profile in figure 2.6a shows that this smoothing pulse
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Chapter 2. CO2 Laser ablation of miniaturized concave Fabry–Pérot mirrors

does not alternate the overall geometry and we also observe a flattening of the roughness

in the amplitude image.

2.4 Conclusion

In conclusion we demonstrate the fabrication of concave structures by CO2 laser ablation

of a fused silica substrate. The silica substrate is then coated with a DBR consisting of

either TiO2/SiO2 or Ta2O5/SiO2 to build one end mirror of the miniaturized Fabry–Pérot

cavity. By adjusting incident power and exposure times we can reproducibly control the

desired concave mirror geometry. A large range of radii of curvature with very low surface

roughness are produced with this technique. The possibility of fabricating craters with

very low radii of curvature demonstrates the potential of these technique to lay the basis

for the development of low mode volume tunable microcavities.
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Chapter 3

Development and characterization of a

small mode volume tunable microcavity

Adapted from:

Lukas Greuter, Sebastian Starosielec, Daniel Najer, Arne Ludwig, Luc Duempelmann,

Dominik Rohner and Richard J. Warburton,

“A small mode volume tunable microcavity: development and characterization”,

Applied Physics Letters 105, 121105 (2014).

We report the realization of a spatial and spectrally tunable air–gap Fabry–Pérot type

microcavity of high finesse and cubic–wavelength–scale mode volume. These properties

are attractive in the fields of opto–mechanics, quantum sensing and foremost cavity

quantum electrodymanics. The major design feature is a miniaturized concave mirror

with atomically smooth surface and radius of curvature as low as 10µm produced by CO2

laser ablation of fused silica. We demonstrate excellent mode–matching of a focussed

laser beam to the microcavity mode and confirm from the frequencies of the resonator

modes that the effective optical radius matches the physical radius. With these small

radii, we demonstrate wavelength–size beam waists. We also show that the microcavity

is sufficiently rigid for practical applications: in a cryostat at 4 K, the root–mean–square

microcavity length fluctuations are below 5 pm.

http://dx.doi.org/10.1063/1.4896415


Chapter 3. Development and characterization of a small mode volume tunable
microcavity

3.1 Introduction

An enhanced interaction between photons and quantum emitters offers a rich field of

quantum applications, including single photon transistors and emitter–emitter coupling.

Tailoring the vacuum properties of high–Q optical resonators facilitates this enhanced

interaction, and ultimately allows a coherent and reversal exchange of energy quanta,

the strong coupling regime, challenging to achieve at optical frequencies. [1] In solid state

systems, successful frameworks for cavity quantum electrodynamics (CQED) have been

demonstrated with photonic crystal cavities [2, 3] and micropillars. [4] Both approaches

allow only very limited in situ tuning.

Upcoming air–gap type resonators such as fiber–based microcavities [5–8] offer intrin-

sic tunability both in the spectral and spatial domains, and continual advancements in

thin–film mirror techniques potentially enable ultra–high Q–factors. In this approach,

the fiber terminus is fabricated into a concave mirror, where the radius of curvature

R ≈ O(100µm) defines the resulting cavity mode volume. Such systems however lack

precise control over the fiber–to–cavity mode–matching and polarization. In fact, mode–

matching is likely to be poor once R is strongly reduced at which point the beam waist

of the cavity mode is substantially smaller than the beam waist of the propagating mode

in a typical optical fiber.

We present an open–geometry realization of a miniaturized high–Q Fabry–Pérot mi-

crocavity which allows both spectral and spatial tuning yet overcomes the disadvantages

of a fiber–cavity related to mode–matching and polarization. The microcavity is optically

accessed by free beam coupling allowing good mode–matching and offers full polariza-

tion control in excitation and detection. We present here significant improvements on

an earlier approach [9–11]: radii of curvatures down to 10µm have been achieved and

the microcavity finesse has been significantly enhanced. We demonstrate wavelength–

size beam waists. We measure the frequencies of the microcavity modes in order to

determine an effective “optical” R and demonstrate that the physical and optical Rs

match closely. The microcavity has a non–monolithic design and therefore is sensitive

to acoustic noise. We quantify the acoustic noise under hostile cryostat conditions.

Finally, we estimate relevant CQED parameters for a prototype solid–state emitter, a

semiconductor quantum dot, and speculate that large cooperativities can be achieved.
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Figure 3.1. (a) The mechanical setup of the concave–planar Fabry–Pérot air–gap microcavity.

A top mirror is produced by CO2 laser ablation on fused silica and subsequent coating with a high–

reflectivity DBR mirror. An opposing bottom mirror with similar reflectivity is mounted on a 3–axis

nano–positioner for spectral and spatial tuning. Optical access is through the transparent top mirror

substrate; the design of the bottom mirror remains application–dependent. (b) Profile following ablation

of a top mirror template measured with atomic force microscopy. Defect–less near–parabolic craters

are achieved with low roughness of 2 Å. (c) Radius of curvature versus crater depth following ablation.

Control of the ablation process parameters gives a wide range of radii of curvatures down to 10µm,

with a linear correlation between radius and depth.

3.2 Experimental setup

3.2.1 Cavity design

A highly reflective planar–concave mirror pair on fused silica, separated by a wavelength–

sized air–gap, forms the high–finesse resonator and is shown in figure 6.2a. Spectral and

spatial tunability is achieved by mounting the planar bottom mirror on a 3–axis piezo

stack (attocube ANPx/z51, Germany) allowing for sub–nm precise positioning relative

to the top mirror. The whole microcavity setup is mounted on an additional 3–axis piezo

stack (attocube ANPx/z101) allowing for free positioning with respect to an aspherical

lens with NA = 0.55 (not shown). The transmitted intensity is measured with a Si

photodiode mounted below the bottom substrate.

This scheme offers control of mode–matching to the microcavity mode [12] and full
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polarization control both in excitation and detection. In stark contrast, mode–matching

in fiber–microcavities is inherently difficult to achieve: In the regime of high radius

of curvature, for perfect axis alignment, the spatial overlap mismatch of the fiber and

cavity mode dominates the coupling efficiency. With fiber beam waist wfib ≈ 3.5µm

and cavity beam waist wcav ≈ 2.3µm (these are typical parameters for a single mode

fiber and a cavity with radius of curvature R ≈ 100µm and a length of 3µm), the

coupling efficiency is ε = [2wfibwcav/(w
2
fib + w2

cav)]2 ≈ 82 % [6], a reasonable result in

the high–R regime. However, if the radius is reduced to R ≈ 10µm (corresponding

to wcav = 1.4µm), the mode overlap drops to ε ≈ 47 %. In addition, for small radii

the effect of wavefront mismatch becomes equally prominent [6], reducing the coupling

efficiency further towards ε ≈ 23 %.

For optical characterization we employ different sets of mirror coatings. In a high–

reflectivity configuration (HRC), both top and bottom mirror are coated with a Ta2O5/

SiO2 distributed Bragg reflector (DBR) by ion beam sputtering (Evaporated Coatings

Inc., USA) with reflectivity reaching R ≈ 99.980 %. The low–reflectivity configuration

(LRC) consists of a TiO2/SiO2 DBR top mirror coating of proprietary fabrication (OIB

GmbH, Germany) with R > 99.8 % paired with a low reflective bottom mirror consisting

of a polished GaAs substrate coated with a structured 80 nm Au film (R ≈ 98 %) defined

by lift–off electron beam lithography. In both configurations the DBR stopband is

centered at 940 nm.

The compact microcavity setup operates both under ambient conditions and also at

low temperature. The entire microcavity setup fits into a 50 mm diameter stainless

steel tube containing He exchange gas, the tube is then inserted into a liquid He bath

cryostat. The 4 K conditions favor the mechanical properties of the nano–positioners,

reduce photocurrent noise, and demonstrates the low–temperature conformance required

for nanostructure systems. The cryostat itself is mounted on an optical table with passive

vibrational isolation from the building floor and is situated in a steel chamber damped

with acoustic foam.

3.2.2 Top mirror fabrication

Prior to coating, the top mirror template is fabricated by laser ablation of fused silica. [13,

14] We use an RF–pumped CO2–laser with wavelength 10.6µm operating at a repetition

rate of 20 kHz. A typical duty cycle of 8 % results in an average output power of 7.8 W.

The light is diffracted by an acousto optical modulator, which allows sufficient control

over the incident power and pulse train length in the first order diffracted beam. We
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3.3. Optical performance

reject back–reflection by a linear polarizer and quarter–wave plate. The laser intensity

fluctuation in the entire system is less than 1 %. The laser is then focused by an aspherical

ZnSe lens (NA = 0.45) onto the silica surface. The silica substrate is mounted on a 3–

axis stepper motor stage. In contrast to Hunger et al.[6], a nitrogen–cooled HgCdTe

detector monitors the focal point reflectance as a function of substrate displacement

achieving micrometer control over the substrate alignment with respect to the incident

laser light. After ablation, the resulting craters are characterized by confocal scanning

microscopy and atomic force microscopy. We observe rotationally symmetric micro–

craters with a root–mean–square (RMS) surface roughness as low as 2 Å (figure 6.2b).

Incident powers of 250 mW with pulse length between 10− 100 ms result in a controlled

range of craters with a depth of a few hundred nanometers to 1.5µm and corresponding

radii of curvature down to less than 10µm (figure 6.2c). These geometries result from

the strong absorption of the CO2–laser radiation by vibrational modes of the silica,

where the melting and evaporation of the material within the first few micrometers of

the substrate’s surface is roughly proportional to the local intensity. Significantly, the

surface tension of the molten silica smooths the ablation craters.

As a central result of this work, craters with radii of curvature down to less than

10µm are consistently achieved by ablation, reducing the previous reported minimum

value (20µm[13]) by more than a factor of two. We attribute the superior production

scheme to an enhanced alignment precision. We observe a strong link between the

crater radius and depth in this one–shot fabrication process (figure 6.2c), independent

of the experimental parameters (power and pulse train length). For microcavities with

R ' 10µm, the corresponding depth is ' 1µm, ideally suited to stable low mode volume

cavities. The link extends to the very smallest radius, R = 5.2µm, where the depth is

5.0µm, unsuitable for a stable cavity, and additional fabrication steps become necessary,

the focus of future work.

3.3 Optical performance

Performance characterization of the microcavity is carried out using transmission detec-

tion at a fixed probing wavelength λ = 950 nm. Coarse tuning of the microcavity length

is achieved by the friction–based inertial driving mode of the nano–positioner (attocube

ANPz51), adjusting the air–gap in ≈ 10 nm steps over a 2.5 mm traveling range. For fine

tuning over several micrometers, a DC piezo voltage Vz is applied. Figure 3.2a shows the

resonance associated with the fundamental microcavity mode (degenerate with respect

37



Chapter 3. Development and characterization of a small mode volume tunable
microcavity

(b)

g = 1 - q λ / 2 R

R = (13.5 ± 0.2) µm

q  = 5.1 ± 0.2

T
ra

n
sm

is
si

o
n
 s

ig
n
a
l [

V
]

R
e
so

n
a
n
ce

 s
h
ift

 [
μ

m
]

1.6

1.2

0.8

0.4

0.0
-0.1860 -0.1865-0.1855 -1.0 -2.00.0

Cavity length tuning [µm]

0.8

0.4

0.2

0.0

0.6

T
ra

n
sm

is
si

o
n
 s

ig
n
a
l [

V
]

FWHM =
(70 ± 3) pm

Finesse =
6900 ± 290

(a) λ = 950 nm     T = 300 K     LRCλ = 950 nm     T = 300 K     HRC

0 5 10 15 20 
Relativ longitudinal mode index q-q0

1.0

0.0

0.2

0.4

0.6

0.8

(c) λ = 950 nm     T = 300 K     LRC (d)

940 945 950 955 960
Probing wavelength λ [nm]

1.0

2.0

0.0

λ = 950 nm     T = 300 K     LRC

7.30 ± 0.02

6.26 ± 0.06

5.54 ± 0.02

dq

dnmq

λ/2

Cavity length tuning [µm]

q = 2 ∂d/∂λ = 9.08 ± 0.15

8.36 ± 0.04

C
o
n
fo

ca
l p

a
ra

m
e
te

r 
g

Figure 3.2. Cavity transmission with relative length tuning scans in high–reflectivity configuration

(HRC) and low–reflectivity configuration (LRC). (a) An exemplary resonance in HRC. The full–width–

at–half–maximum (FWHM) detuning length of (70 ± 3) pm is measured, corresponding to a finesse of

6,700±290. (b) Intentionally poor mode–matching in LRC reveals the transverse modes giving a handle

on the confocal parameter g. (c) The linear relation between g and longitudinal mode index q follows

the Gaussian optics model and reveals the top mirror radius of curvature R = (13.5 ± 0.2)µm. The

intercept at g = 1 reveals the longitudinal mode index offset to be q0 = 5.1 ± 0.2. (d) Independent

measurements of the longitudinal mode index for the first five resonances are in very good agreement

with q0.

to both possible polarizations). There is very good mode–matching: the integrated sig-

nal of the fundamental mode is 85 % of the signal integrated over the fundamental and

higher order transverse microcavity modes. To reveal the exact location of the higher

order modes, the mode–matching can be made poor intentionally by displacing the en-

tire microcavity setup vertically with respect to the objective lens: Figure 3.2b shows

the transmitted signal as a function of microcavity length tuning, where each peak arises

from a particular transverse microcavity mode.
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3.3.1 Finesse

In cavity performance, a representative figure of merit is the finesse usually defined as

F = ∆νFSR/δν, [15] where δν is the resonance linewidth and ∆νFSR is the free spectral

range (FSR), i.e. the frequency spacing between subsequent longitudinal modes. This

definition is ill–defined for DBR–based microcavities as the FSR may become comparable

(or even larger) than the DBR stopband. Instead we identify 2π/F as the fractional

energy loss per round–trip at resonance, or F = c/(2dδν), where we introduce the

microcavity length d. On tuning d experimentally, the FWHM resonance width δd is

immediately accessible. Neglecting the effects of the Gaussian optics (discussed below),

we identify δν/ν = δd/d and measure F = λ/(2δd) in the distance domain for fixed

vacuum wavelength λ. Exemplary data in figure 3.2a show resonance widths of δd =

(70 ± 3) pm and thus F = 6,700 ± 290 with good lorentzian lineshape (recorded here

under ambient conditions). Resonances with FWHM below 30 pm have been resolved

under the same conditions (thus F ≈ 15,000), but their non–lorentzian lineshapes imply

a low–frequency broadening as quantified by acoustic noise measurements (also discussed

below). In the absence of other cavity losses, reflectivities R1,2 ' 99.980 % as specified

for the DBR in HRC, the expected finesse is F = π 4
√
R1R2/(1 −

√
R1R2) ' 15,700, in

very good agreement with the largest observed values.

3.3.2 Radius of curvature

We model the mode structure of the microcavity with Gaussian optics, a similar approach

to Muller et al.[8] Under the paraxial approximation of optical wavefront normals making

only a small angle to the direction of propagation, the propagating electromagnetic field

are described by Hermite–Gaussian TEMnm modes. Imposing two reflective boundaries,

the standing wave field is at resonance at mirror separations

dqnm =

[
q +

n+m+ 1

π
cos−1√g

]
λ

2
, (3.1)

where q (n,m) is the longitudinal (transverse) resonator mode index and |g| < 1 is

the geometry–dependent confocal parameter. [15] In a planar–concave configuration g =

1 − d/R depends itself on the mirror separation d and on the concave mirror’s radius

of curvature R. The focal point is located at the planar mirror with beam waist w0 =√
λ/π × 4

√
dR− d2.

The above analysis holds for idealized mirrors of unity reflection amplitude coeffi-
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Figure 3.3. Cavity mode beam waist measurements using a Au knife–edge structured bottom

mirror. (a) A knife edge with 10µm periodicity for in–situ calibration. A spatial scan of the finesse

over knife–edge fits to the model with a beam waist of w0 = (0.90 ± 0.01)µm. (b) Demonstration

of two–dimensional microcavity scanning microscopy with a finesse scan over a Au on GaAs panel

structure.

cient. This is not realized in the experiment: the DBR thin–film structures show

significant group delay τ even at the stopband center wavelength. [16] A correspond-

ing effective phase penetration depth dDBR = c/(2τ) of the intracavity field into the

DBR affects the resonances by a renormalization of the microcavity length drenorm =

dair-gap + dDBR,bottom + dDBR,top and radii Rrenorm. The resonance analysis is sensitive

to the renormalized microcavity parameters, which in turn are the relevant parame-

ters for CQED applications. We therefore drop the renormalized index in notation and

differentiate to the geometrical parameters when needed.

According to eq. (3.1), the splitting of the higher order transverse modes depends

on the confocal parameter g = 1 − d/R and gives a handle on the effective radius of

curvature R. An explicit solution of d is cumbersome owing to the implicit nature of

eq. (3.1) through g(d). We instead exploit the algebraic structure of the splitting and

extrapolate gq at unphysical resonances m + n + 1 → 0 for each longitudinal mode q

with dq = qλ/2. Figure 3.2c shows the extracted confocal parameter gq as a function of

integer q with a free offset parameter q0. The Gaussian model relation g = 1−qλ/(2R) is

reproduced for renormalized mirror radius R = (13.5±0.2)µm and offset q0 = 5.1±0.2.

An independent measurement of the absolute longitudinal mode index q = 2∂d/∂λ is

performed by changing the probe wavelength (figure 3.2d) for the first five modes. With

the exception of the lowest mode close to the mechanical contact of the mirrors, both the

integer spacing as well the offset q0 ≈ 5.3 are in very good agreement with the Gaussian

optics treatment. In comparison, confocal laser scanning microscopy reveals a geometric

radius Rgeom = 11.2µm.
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3.3.3 Beam waist

For measurement of the Gaussian beam waist parameter w0 in LRC, the Au bot-

tom mirror is structured with electron beam lift–off lithography into a periodic knife–

edge with segment dimensions of 5µm and periodicity of 10µm. A finesse scan for

each position is performed as the edge is moved in the lateral x direction through

the microcavity mode. We model the effective reflectivity of the bottom mirror as

Reff
2 = αRAu + (1− α)RGaAs, namely the average reflectivity of the GaAs substrate and

Au, where α(x) = 1
2
[1 + erf(

√
2x/w0)] is the spatial overlap of the Gaussian mode

intensity with the Au segments. This simplistic model describes well the observed

finesse as a function of bottom mirror position as shown in figure 3.3a. We deter-

mine the beam waist parameter to be w0 ≈ (0.90 ± 0.01)µm, equivalently w0/λ ≈
0.95 ± 0.01: w0 is smaller than the wavelength. For quantitative comparison of a

planar–concave microcavity in Gaussian optics, the beam waist at the focus evaluates

to w0 =
√
λ/π × 4

√
dR− d2 ≈ 1.2µm for d ≈ 2.5µm and R ≈ 13µm, in good agree-

ment with the experimental result. We use a one dimensional transfer matrix method

to calculate the intracavity electric field distribution and estimate an effective energy

distribution length Le =
∫
εr(z)E2(z) dz/(εr(z0)E2(z0)) ≈ 1.34µm with respect to the

field’s antinode z = z0 inside the airgap, the prospective location of an emitter. The

corresponding effective mode volume is then V = πw2
0/2 × Le ≈ 2.0λ3, i.e. close to a

cubic–wavelength in size.

3.3.4 Microcavity microscopy

The above scheme is readily extended to two–dimensional microcavity scanning mi-

croscopy, sensitive to the local reflection amplitude coefficient (both in magnitude and

phase) with wavelength–scale spatial resolution. A proof of principle is demonstrated in

figure 3.3b for a finesse scan over a Au on GaAs panel structure allowing imperfections

in the shape and Au coverage to be detected.

We use the strong dependence of the resonance location to the microcavity length as

a highly sensitive acoustic noise microphone. Tuning the microcavity to the maximum

slope at the resonance edge (working point A in figure 3.4a) gives a linear response in

transmission intensity to small air–gap length fluctuations, and hence direct access to the

acoustic noise power spectrum affecting the microcavity. Parasitic noise sources such

as laser intensity fluctuations and electrical noise are probed at maximum resonance

(B) and at significant detuning (C), respectively. The laser intensity is adjusted at
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Figure 3.4. Acoustic noise measurements in the low reflectivity configuration: a fluctuating micro-

cavity length results in a fluctuating resonance position for a constant wavelength. (a) Three working

points with sensitivity to different noise sources. Calibration to acoustic amplitudes is given by the

resonance slope at working point A. (b) Acoustic noise power spectral density at each working point.

Red line at A reveals the acoustic noise contribution superimposed on detection noise such as laser

intensity noise (blue line, B) and electric noise (black line, C). Noise power is below 1 pm/
√

Hz with

the exception of a small band at about 70 Hz. The integrated RMS noise amplitude is 4.3 pm.

each working point to give the same transmitted intensity. The resonance slope in A

determines the calibration to acoustic amplitudes and is used in B and C for direct

comparison (figure 3.4b).

Electrical noise (C) sets the detectable equivalent noise floor to ≈ 8 × 10−4 pm2/Hz.

Mains pick–up noise (50 Hz and odd–multiples) is present in the detection channel. From

the observed spectral shape in B, laser intensity fluctuations are at most the same order of

magnitude as the electrical noise. The acoustic noise spectrum (A) shows rich resonance–

like features. However, the acoustic noise amplitudes are still below 10 pm2/Hz, and

with the exception of the two major contributions at 62− 74 Hz and 150 Hz well below

1 pm2/Hz. Above 200 Hz no further significant acoustic noise contribution is detected

(not shown). The acoustic noise RMS amplitude is δdacoustic = 4.3 pm which must be

compared to the FWHM resonance microcavity length δdresonance = λ/(2F ) = 71 pm

in the HRC setup. If a tolerance of δdacoustic/δdresonance ≤ 10−1 is acceptable, a finesse

of F . 11,000 is unaffected by acoustic noise. Indeed in the experiment, resonances

of δdresonance = 30 pm corresponding F ≈ 15,000 consistently feature non–lorentzian

lineshapes and in the light of this analysis, this arises most likely from the acoustic

noise.
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3.4 Conclusion

In conclusion, we have demonstrated the experimental realization of a fully tunable

open–gap Fabry–Pérot microcavity. The microcavity modes have small volume and

are well described with Gaussian optics. We achieve excellent mode–matching to the

microcavity mode from a propagating Gaussian beam. The major facilitators are, first,

the successful fabrication of atomically smooth, small radius of curvature top mirrors by

CO2 laser ablation and second, a rigid piezo–driven nano–positioning system.

We speculate further on the cooperativity that can be reached with our setup when

operated with an InGaAs self–assembled quantum dot in a GaAs host matrix grown on a

GaAs/AlGaAs DBR. For this configuration, due to the high phase penetration depth into

the DBR, the renormalized microcavity length is estimated to be 8.5µm. A Gaussian

optics estimate yields an average beam waist of 2.0µm. The energy distribution length

is 0.37µm with respect to the GaAs host, corresponding to an effective mode volume

of V = 2.4µm3 or 120 (λ/n)3. The vacuum electric field amplitude is estimated to be

Evac = 2.0× 104 V/m at the location of the quantum dot. A typical free space radiative

lifetime of 0.8 ns corresponds to an optical dipole moment of µ12 = 1.2 nm× e resulting

in an emitter–cavity interaction energy of ~g = µ12Evac = 24µeV. The demonstrated

finesse of 6,700 translates into a photon decay of ~κ = 22µeV. Quantum dot linewidths

as low as ~γ = 2µeV are routinely achieved, resulting in an upper limit cooperativity

as high as C = 2g2/(κγ) ≈ 26. Active acoustic shielding and a further reduction in

κ� g by supermirror DBR coatings (R > 99.995%) may even enhance the cooperativity

towards 100.

The authors thank M. Montinaro who performed the electron–beam lithography of the

checkerboard calibration sample. The authors gratefully acknowledge financial support

by SNF and NCCR QSIT.
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and J. Reichel, Applied Physics Letters 89, 111110 (2006).

[6] D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel,
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Chapter 4

Strong coupling of a quantum dot in a

tunable microcavity

Adapted from:

Lukas Greuter, Sebastian Starosielec, Andreas V. Kuhlmann, and Richard J.

Warburton,

“Towards high cooperativity coupling of a quantum dot in a tunable microcavity”,

Submitted, arXiv:1504.06223 (2015).

We investigate the strong coupling regime of a self–assembled quantum dot in a

tunable microcavity with dark–field laser spectroscopy. The high quality of the spectra

allows the lineshapes to be analyzed revealing subtle quantum interferences. Agreement

with a model calculation is achieved only by including exciton dephasing which reduces

the cooperativity from a bare value of 9.0 to the time–averaged value 5.5. In the pursuit

of high cooperativity, besides a high–Q and low mode–volume cavity, we demonstrate

that equal efforts need to be taken towards lifetime–limited emitter linewidths.

http://arxiv.org/abs/1504.06223


Chapter 4. Strong coupling of a quantum dot in a tunable microcavity

4.1 Introduction

Cavity quantum electrodynamics (QED) involves an exchange of energy quanta between

a single emitter and a cavity photon. The coupling rate ~g = µ12Evac, depending on the

emitter’s dipole moment µ12 and the vacuum electric field at the location of the emitter

Evac, sets the relevant timescale of the coupled dynamics. If g is considerably smaller

than the emitter relaxation rate γ or the cavity photon decay rate κ, on resonance

the cavity mode acts as an additional decay channel to the emitter giving rise to an

enhanced spontaneous emission rate (the Purcell effect of the weak coupling regime). If

g is much larger than the energy loss rates, a coherent exchange of energy quanta takes

place giving rise to new eigenstates, “polaritons”, split in energy by 2~g (the strong

coupling regime). The efficacy of the coherent coupling is commonly denoted by the

cooperativity parameter C = 2g2/(κγ), the figure of merit for this work. The coherent

exchange was first realized with single Cs atoms in a high finesse cavity [1].

The strong coupling regime is a potentially powerful tool in quantum information

processing [2], notably in quantum networks [3], since it enables for instance atom–

atom entanglement [4] or the distribution of quantum states [5]. Furthermore, strong

coupling enables a nonlinear photon–photon interaction and hence the observation of

photon blockade [6, 7], a prerequisite for the creation of a single photon transistor [8, 9].

It is clearly desirable to implement cavity–QED in the solid–state as the solid–state

host acts as a natural trap for the emitter. Furthermore, on–chip integration of multiple

elements is feasible. As emitter, self–assembled quantum dots have desirable properties:

high oscillator strength, narrow linewidths and weak phonon coupling [10]. As host, a

semiconductor such as GaAs is very versatile: heterostructures can be realized; there is

a wide array of post–growth processing techniques. Photoluminescence experiments on

single InGaAs SAQD coupled to a photonic crystal cavity or a micropillar cavity revealed

an anticrossing, the signature of the strong coupling regime [11–13]. For micropillars,

recent experiments exhibit cooperativity values of around C ' 3 [14]. For photonic

crystal cavities, a much higher C is achieved [15] but C is skewed by the fact that g � γ

yet g & κ. The photon decay rate κ at the emitter wavelength is relatively high in both

geometries, limiting the cooperativity. In addition, micropillars and photonic crystals

offer only limited spectral tuning to the emitter transition, and spatial positioning of

the emitter relative to the cavity antinode is achieved either by good fortune or by

fabricating the cavity around a particular emitter [16, 17]. These are challenging issues

resulting in a low yield.
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4.2. Setup

In this work we demonstrate a strong coupling of a single self–assembled InGaAs

quantum dot to a fully tunable, miniaturized Fabry–Pérot cavity [18, 19]. The coupled

emitter–cavity system is investigated by dark–field laser spectroscopy, yielding extremely

high spectral resolution, high sensitivity, a high contrast and good mode–matching. The

strong coupling regime is accessed definitively: we reach a cooperativity of C = 5.5,

significantly larger than that achieved with micropillars [14] or a fibre–cavity [20]. The

high quality of the data allows for a quantitative lineshape analysis. We demonstrate

an interference in the polariton gap. However, the interference is less pronounced than

expected from the “standard model”, the Jaynes–Cummings Hamiltonian. We show

that the missing interference arises as a consequence of an additional emitter broadening.

Including the emitter broadening allows us to reproduce both the exact lineshapes and

polariton eigenenergies with a single parameter set for all cavity–emitter detunings.

A key point emerges. Achieving a high cooperativity requires more than a focus on

the cavity properties (small mode volume and high Q–factor): this has to be matched

with an equal effort on improving the linewidth of the emitter. Here, we show that

suppressing the emitter broadening would yield a cooperativity as high as C = 9.0

even with the present microcavity. Characterization of the quantum dots shows that

here the main emitter broadening arises from a spectral fluctuation (rather than a true

dephasing process): the fluctuations can be circumvented in lower–noise devices. Our

system therefore represents an extremely promising route to implementing cavity–QED

in the solid–state.

4.2 Setup

The emitter is a self–assembled InGaAs quantum dot grown by MBE at UCSB California.

The background doping is small and p–type. The details of the heterostructure are

depicted in figure 6.2b: a 32.5 pair λ/4 AlGaAs/GaAs distributed Bragg reflector (DBR)

is terminated by a λ layer of GaAs which incorporates the InGaAs quantum dots in the

center. Further details of the sample are given in Appendix A.1. The bottom DBR

with reflectivity Rbot = 99.99 % forms the planar end mirror of the cavity. The concave

top mirror consists of a fused silica substrate with a depression formed by CO2 laser

ablation [21], and is coated with a Ta2O5/SiO2 DBR of reflectivity Rtop = 99.95 %.

The radius of curvature is approximately 13µm. The bottom semiconductor sample is

mounted on an xyz piezo stack that allows for sub–nm positioning with respect to the

top mirror enabling both spectral and spatial tuning. The whole microcavity is then
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Figure 4.1. (a) Experimental setup to probe the cavity–quantum dot system. The microscope

head is at room temperature and consists of two polarizing beam splitters (PBS), a linear polarizer and

a λ/4 waveplate. (b) Microcavity setup with a GaAs/AlGaAs bottom mirror and a curved top mirror

with radius of 13 µm coated with Ta2O5/SiO2 DBR. The InGaAs quantum dots are embedded in a

semiconductor heterostructure, at distance λ/2 from the surface and λ/2 from the bottom mirror.

mounted on another xyz piezo stack that allows the microcavity to be positioned with

respect to an aspherical coupling lens (NA = 0.55), facilitating efficient mode matching

with the excitation beam. A Si–photodiode mounted underneath the bottom mirror is

used for transmission measurements to characterize and optimize the mode matching.

By determining the longitudinal mode index q0 = 2∂L/∂λ = 18, we estimate an effective

cavity length of L = q0λ/2 = 8.5µm. From these parameters, a Gaussian optics estimate

results in a beam waist of w0 = 1.4µm at the sample. The cavity finesse is 4,000; the

quality factor is Q = 6× 104.

4.3 Excitation and Detection

We measure the coupled cavity–quantum dot dynamics with confocal cross–polarized

dark–field laser spectroscopy [22], sketched in figure 6.2a. The polarizing beam splitters

(PBS) define two orthogonal linearly–polarized arms (excitation and detection) each

coupled to the microcavity via the same objective lens. A linear polarizer and a quarter–

wave plate mounted on piezo–driven rotational stages compensate for small imperfections

in the optics and enable a suppression of the excitation laser of 10−7 to be reached, stable
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Figure 4.2. Dark–field resonant laser spectroscopy on a coupled quantum dot–cavity system for

varying cavity detuning. (a) A triplet is observed at resonances ωR = ω±, ωC. We interpret the spurious

(bare) cavity resonance ωC as a consequence of an unstable emitter state resulting in telegraph–like

dynamics. (b) The data in (a) after subtracting the bare cavity resonance revealing the normal mode

splitting characteristic of the strong coupling regime.

over several days. The cavity exhibits non–degenerate linearly–polarized longitudinal

modes with a splitting of about 200µeV, conveniently larger than the bandwidth required

to probe fully the dynamics of the strong coupling. The cavity modes are aligned with

respect to the polarization axis of the microscope at an angle φ ≈ π/4 allowing a good

coupling of the cavity mode to both detection and excitation channels. We measure the

wavelength of the tunable excitation laser with a wavemeter and use this information to

calibrate the cavity detuning on applying a voltage to the microcavity z–piezo. While

the polarization optics are all at room temperature, the microcavity setup is inserted

into a stainless steel tube containing He exchange gas and cooled to 4 K in a He bath

cryostat.

4.4 Experimental results

Tuning the microcavity resonance with respect to the emitter transition, and sweeping

the excitation frequency with respect to the microcavity resonance, reveals the exact

lineshape of the coupled emitter–cavity system for various detunings, as shown in fig-

ure 4.2a. We observe a triplet structure featuring the bare cavity resonance ωC along
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Chapter 4. Strong coupling of a quantum dot in a tunable microcavity

with two detuning–depending resonances identified as the polariton states of the strong

coupling regime. The bare cavity contribution can be determined accurately from the

data in the polariton gap at zero detuning. A subtraction of the bare cavity resonance

from the raw data reveals the clear anticrossing of the polariton modes, figure 4.2b.

The anticrossing feature figure 4.2 is visible only if the sample is illuminated with an

additional ultraweak non–resonant excitation laser (λ = 830 nm). In free space laser

spectroscopy experiments on a sample from the same MBE, an “optical gating” by

weak non–resonant excitation is described [23]. However, it is only partially successful:

observation of the bare–cavity mode shows that the quantum dot detunes abruptly (and

out of resonance with the microcavity) in a telegraph fashion. A bare–cavity contribution

to resonance spectra has been observed also on photonic crystal cavities [13] and was

attributed to charge noise in the vicinity of the quantum dot, a mechanism which is

active here. The experiment integrates over a much longer timescale than is typical for

this telegraph noise, thus capturing photons from the scattering off the bare cavity a

significant fraction of time. We do not observe a fine structure splitting of the exciton

at zero magnetic field. A neutral exciton without fine structure is unlikely for these

quantum dots [24] so that we can safely assume that the studied exciton coupling to the

cavity in figure 4.2 is a charged exciton.

4.5 Model

We model the experiment with the Jaynes–Cummings Hamiltonian modified for coherent

excitation at frequency ωR

H = ~ωC a
†a+ ~ωX b

†b+ [~g a†b+ ~ε a†e−iωRt + h.c.] , (4.1)

Here, a (b) is the bosonic (fermionic) annihilation operator of the microcavity photon

(exciton transition) with energy ~ωC (~ωX); g denotes the coherent coupling rate between

photon and exciton; and ε is the effective coupling rate from the resonant excitation to

the cavity field. Losses in the system are described by the Lindblad formalism including

the photon energy loss rate κ and the exciton relaxation rate γ. The cavity emission is

modeled to be weakly coupled to a continuum of detection modes with overall collection

efficiency η: the detected count rate is thus Ṅ = ηκ〈a†a〉.
With model M1 we investigate the system’s response as a function of the resonant

probe frequency ωR, treating ε as a perturbative parameter. The linear coupling gives rise
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4.6. Analysis

to two polariton modes (±) at Rabi frequencies ω±. The steady–state cavity population

(proportional to the photon count rate) evaluates to

〈a†a〉(ωR) = AL
−L(ωR − ω−) + AL

+L(ωR − ω+)

+ ADD(ωR − ω+)− ADD(ωR − ω−) ,
(4.2)

where L(ω) = Im[(πω)−1] is the unit–area Lorentzian function, D(ω) = Re[(πω)−1] its

dispersive function counterpart, each with peak location Reω = 0 and FWHM parameter

2 |Imω|. The peak areas AL
±, AD and Rabi frequencies ω± are closed form functions of

the dynamical parameters (g, κ, γ, ε), see Appendix A.2.

4.6 Analysis

Figure 4.3 shows (black dots) two exemplary lineshapes, (a) for zero cavity–exciton

detuning ωC − ωX = 0µeV, and (b) for significant detuning ωC − ωX = −17µeV. The

purple solid line shows a best χ2 fit of the observed counts to the model M1, eq. (4.2),

where the fit results in a single set of dynamical parameters (g, κ, γ, ε), a set used for all

employed detunings (table 4.1). The green and blue solid lines show the Lorentzian and

dispersive constituents of the model, while the black dashed line represents the spurious

bare–cavity contribution. The dynamical parameters obtained from the fit result in a

cooperativity of C = 2g2/(κγ) = 5.5± 0.1.

Qualitatively, the model M1 agrees well with the observed polariton resonances in

terms of splitting, linewidths as well as their shift with caviy–exciton detuning. Quan-

titatively however, the count rates within the polariton gap are significantly underesti-

mated with respect to the experimental data for all detunings. In the polariton gap, the

model (neglecting of course the bare–cavity contribution) predicts a strong destructive

interference: the positive Lorentzian contributions are reduced considerably by the two

dispersive constituents, both of which turn negative. In the experiment, this interference

is observed to a lesser degree than that predicted by model M1. This lack of interfer-

ence is particularly prominent for large detunings at the exciton–like polariton resonance

(figure 4.3b) and points strongly to an emitter dynamic not considered by the model.

To investigate this missing dynamic, we performed independent linewidth measure-

ments on the same sample region but without the top mirror. The linewidths are mea-

sured under the same conditions, i.e. with resonant laser spectroscopy in the presence of

an ultraweak non–resonant excitation (see Appendix A.5). The results demonstrate a
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Figure 4.3. Dark–field laser spectroscopy: spectra for (a) zero and (b) −17µeV cavity–emitter

detuning. The experimental values (black dots) are globally fitted to model M1 (purple solid line), with

Lorentzian and dispersive constituents (green and blue solid line), and to model M2 (red solid line).

M2, which includes an additional broadening mechanism of the emitter, describes the experimental data

much better than M1. The improvement is partially masked by the bare cavity resonance background

(black dashed line).

significant contribution to the exciton linewidth beyond that determined by spontaneous

emission: typical linewidths are 3− 4µeV; the radiative–lifetime limited linewidth (the
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4.7. Discussion

“transform limit”) corresponds to 0.8µeV. There are two culprits for this additional

broadening: a spectral fluctuation (i.e. a wandering of the exciton central frequency on

timescales longer than the radiative decay time) and pure exciton dephasing. The anal-

ysis (Table A.1) suggests spectral fluctuations are dominant, but the exact conclusion is

quantum dot dependent. Linewidth broadening on this scale is commonly observed and

arises from electric charge noise [25].

As a refinement to the previous model, we incorporate an emitter broadening by

convoluting the emitter resonance ωX with a Lorentzian distribution of free FWHM

parameter Γ: this is model M2. The convolution gives an analytical result, eq. (A.15). A

fit to the complete experimental data determines the dynamical parameters (g, κ, γ, ε,Γ),

as shown in table 4.1. The model M2 results are shown in figure 4.3 as the red solid

line. The reduced χ2 is reduced by 25% but remains high (table 4.1) but nonetheless

M2 offers a strong improvement in the interpretation of the experimental data. This

is also demonstrated in figure 4.4: the parameters AL
±, AD and ω± from eq. (4.2) are

shown from both models M1 and M2 along with the experimental data. M2 significantly

improves the FWHM parameters 2 Imω± and Lorentzian areas AL
± at all cavity–exciton

detuning ranges. Also, M2 resolves the discrepancy in the polariton gap in figure 4.3:

M2 accounts perfectly for the experimental data both at zero detuning and at large

negative detuning. Only M2 is consistent with the experimental data. The microcavity

experiment is therefore sensitive to the emitter linewidth in a way that low–power laser

spectroscopy alone is not. (We note that the microcavity experiment cannot distinguish

easily between a spectral fluctuation and pure exciton dephasing: the M2 predictions

are very similar, see discussion in Appendix A.3). The increase in emitter linewidth has

a major effect on the cooperativity, table 4.1: M2 shows that emitter broadening alone

reduces C from 9.0, the “bare” value, to 5.5.

4.7 Discussion

The dynamical parameters of the experiment are summarized in table 4.1. The freespace

emitter lifetime of 800 ps corresponds to a transform–limited linewidth γ = 0.8µeV and

an dipole moment µ12 = 1.2 e × nm. The microcavity Q–factor Q = 6 × 104 results in

κ = 22µeV. From a simulation of the microcavity, a vacuum electric field maximum of

Evac ' 2 × 104 V/m is expected, yielding g = µ12Evac ' 24µeV. Experimentally, g is

smaller than this best–case estimate. From model M1 a cooperativity of C = 2g2/(κγ) =

5.5± 0.1, a result depending only weakly on the model assumptions.
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Figure 4.4. Comparison of model M1 and M2 with the experimental data over the whole cavity–

emiter tuning range. (a) The polariton FHWM parameter (2 Imω±) and (b) the Lorentzian/dispersive

areas AL
±, AD versus cavity detuning. M2 provides a much better fit than M1.

An obvious route to higher cooperativity for the presented microcavity system is to

improve the mirrors, i.e. to reduce the photon loss rate κ. Presently, the dielectric DBR

is the limiting factor and this can be readily improved with “supermirror” coatings [26].

The coupling g should also be improved: presently, slight errors in the microcavity

manufacture reduce g from its best–case value. Further, g would increase by a factor of
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4.7. Discussion

Table 4.1. Quantiative fit results of the dynamical parameters for models M1 (no emitter broadening)

and for model M2 (with emitter broadening Γ).

Quantity Unit M1 M2

g µeV/~ 11.05± 0.02 11.13± 0.02
κ µeV/~ 19.48± 0.09 19.84± 0.09
γ µeV/~ 2.28± 0.04 1.38± 0.04
Γ µeV/~ - 1.26± 0.05

ηκt |ε|2∗ Mcount, (µeV/~)2 6.15± 0.04 7.08± 0.04
C = 2g2/(κγ) 5.5± 0.1 9.0± 0.3

reduced χ2 123 94

∗ with integration time the overall collection efficiency of the cavity emission.

√
2 (the cooperativity by a factor of 2) if the mode splitting in the fundamental cavity

mode (presently ≈ 200 µeV) could be eliminated. However, the point we wish to stress in

this work is the equal importance of the emitter dynamics. If the additional broadening

can be eliminated by improved emitter quality, the cooperativity can be increased from

C = 5.5 to C = 9.0 even without an improvement in the microcavity. This is an entirely

realistic proposition: approaches exist by which the additional broadening is routinely

sub–µeV [27], in certain cases eliminated altogether [28], without telegraph–like noise

by embedding the quantum dots in a vertical tunneling structure. Such a scheme is

realistic in the cavity geometry by exploiting the good optical properties of epitaxial

gates. The present experiment demonstrates that the use of such emitters will easily

allow a cooperativity exceeding 10 to be achieved, a powerful route to the application

of cavity–QED to quantum control in the solid–state.
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L. Worschech, M. Kamp, and A. Forchel, Physical Review Letters 108, 057402

(2012).

58

http://dx.doi.org/ 10.1103/PhysRevLett.93.233603
http://dx.doi.org/ 10.1103/PhysRevLett.83.4204
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/ 10.1103/PhysRevA.59.2468
http://dx.doi.org/ 10.1103/PhysRevA.59.2468
http://dx.doi.org/ 10.1126/science.1143835
http://dx.doi.org/10.1038/nature03804
http://dx.doi.org/10.1038/nphoton.2011.321
http://dx.doi.org/10.1038/nphys708
http://dx.doi.org/10.1038/nphys708
http://dx.doi.org/10.1038/nphoton.2012.181
http://dx.doi.org/10.1038/nmat3585
http://dx.doi.org/10.1038/nature02969
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1038/nature05586
http://dx.doi.org/ 10.1103/PhysRevLett.108.057402
http://dx.doi.org/ 10.1103/PhysRevLett.108.057402


References

[15] D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, Nature

450, 857 (2007).
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Chapter 5

Additional investigation of the strong

coupling regime

5.1 Strong coupling in the magnetic field

We further study the QD–cavity coupling in a magnetic field of 3.00 T applied along

the growth direction of the semiconductor sample. As argued in chapter 4, we assume

here that we couple an X1− to the microcavity, since we do not observe a fine structure

splitting at zero magnetic field. In this case the ground state is split into the electronic

spin states |↑〉 and |↓〉 by the Zeeman effect. Consequently, the X1− trion, which consists

of two spin–paired electrons and a hole spin is split into |↑↓,⇑〉 and |↑↓,⇓〉 by the

hole Zeeman energy. Assuming a pure heavy–hole state, only the |↑〉 ↔ |↑↓,⇑〉 and

|↓〉 ↔ |↑↓,⇓〉 transitions are allowed due to angular momentum conservation, where they

couple to light with σ+ or σ− polarization respectively. Both transitions are coupled to

the cavity. The transisitons are separated by ∼ 300 µeV in energy corresponding to

the typical values for the electron (∼ −30 µeV/T) and hole (∼ 70 µeV/T) Zeeman

splitting [1].

As for the zero field, we measure the coupled QD–cavity system in a magnetic field with

a cross–polarized detection scheme, where the cavity is tuned for different laser excitation

frequencies. Figure 5.1a shows the higher energy |↑〉 ↔ |↑↓,⇑〉 transition coupled to the

microcavity while the lower energy transition |↓〉 ↔ |↑↓,⇓〉 is shown in figure 5.1c.

In both cases we observe a strong coupling signature. We note that, similar to zero

field, a weak nonresonant excitation is required to observe strong coupling. Figures 5.1b

and 5.1d show cross sections of the spectra at zero cavity–QD detuning and at a negative

detuning. The spectra are globally analyzed with the same models as described above.

The red curves correspond to fits of the model that includes a broadening of the emitter
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Figure 5.1. Strong coupling in a magnetic field of 3.00 T. Coupling of the |↑〉 ↔ |↑↓,⇑〉 transition

is shown in (a) and (b), where the |↓〉 ↔ |↑↓,⇓〉 transition is shown in (c) and (d). (a) and (c) illustrate

the dark–field resonant laser spectroscopy, where the microcavity is tuned for different laser–excitation

frequencies. (b) and (d): cross–sections of the spectra at zero detuning (top) and negatively detunend

(bottom). The red (blue dashed) curves show a fit of the JC model, which includes (neglects) a correction

for spectral diffusion. The fit parameters are listed in table 5.1 and 5.2.

due to spectral diffusion (Γ), which is neglected in the blue curves. The values obtained

from the fits are summarized in table 5.1 for the |↑〉 ↔ |↑↓,⇑〉 transition and in table 5.2

for the |↓〉 ↔ |↑↓,⇓〉 transition.

For both transitions the fits result in a higher coupling rate g for a broader cavity

decay rate κ. In the |↑〉 ↔ |↑↓,⇑〉 transition the emitter rate γ and diffusion Γ are

in accordance with the values obtained at zero magnetic field resulting in comparable

cooperativity values (compare table 5.1 with table 4.1). However, for the |↓〉 ↔ |↑↓,⇓〉
transition a lower cooperativity is achieved, due to the higher QD and cavity decay rate

obtained from the fit (table 5.2).

From this data we cannot identify a magnetic field dependence on the QD diffusion Γ.

We further note that for the measurements at a magnetic field of 3.00T , it is not evident
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Table 5.1. Quantiative fit results of the dynamical parameters for the |↑〉 ↔ |↑↓,⇑〉 transition at

3.00T .

M1: model with no emitter broadening; M2: model with emitter broadening (Γ).

Quantity Unit M1 M2

g µeV/~ 13.47± 0.03 13.57± 0.03
κ µeV/~ 23.22± 0.05 22.38± 0.07
γ µeV/~ 2.63± 0.06 1.68± 0.06
Γ µeV/~ - 1.31± 0.08

C = 2g2/(κγ) 5.9± 0.2 9.8± 0.4

Table 5.2. Quantiative fit results of the dynamical parameters for the |↓〉 ↔ |↑↓,⇓〉 transition at

3.00T .

M1: model with no emitter broadening; M2: model with emitter broadening (Γ).

Quantity Unit M1 M2

g µeV/~ 12.70± 0.05 12.76± 0.03
κ µeV/~ 23.61± 0.08 23.04± 0.11
γ µeV/~ 3.33± 0.09 2.71± 0.11
Γ µeV/~ - 0.86± 0.11

C = 2g2/(κγ) 4.1± 0.2 5.2± 0.3

that the model which includes the spectral diffusion represents the data more accurately

than a model withotu them. We argue that this is due to the fact that here the bare

cavity contribution dominates the spectra as illustrated in figure 5.2. Therefore, the

correction by the spectral diffusion in the model only has a limited effect, since it only

alters the signature of the coupled QD, whereas the signature of the bare cavity itself is

not affected by the broadening of the QD.

We speculate on the origin of the bare cavity contribution by comparing the relative

intensities of the bare cavity–mode (green curves in figure 5.2) to the intensity of the

polariton signatures (blue curves in figure 5.2) at zero (figure 5.2a) and at a magnetic

field of 3.00T (figure 5.2b and c). The two contributions make up the overall model (red

curves in figure 5.2), where spectral diffusion was taken into account.

Presumably, the bare cavity contribution arises due to a QD state which does not

couple to the cavity mode and hence the empty cavity is probed by the crosspolarized

detection. Generally, this might be due to the fact that the charge required for an X−1

tunnels in and out of the dot. We compare the area of the bare cavity contribution (green

curves) and the polariton signal (blue curves). At zero magnetic field (figure 5.2a) we
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Figure 5.2. Intensity for different laser–QD detuning, when the QD is in resonance with the micro-

cavity, normalized for the maximum signal. The data are fitted with the model M2 (red), which includes

spectral diffusion and is composed of a bare cavity contribution (green) and a polariton contribution

(blue). (a) At zero field, the polariton and bare cavity contribution are approximately the same. While

for both transitions at 3.00 T (|↑〉 ↔ |↑↓,⇑〉 in (b) and |↓〉 ↔ |↑↓,⇓〉 in (c)) the bare cavity intensity

exceeds the polariton intensity approximately by a factor of 3.

find a bare cavity : polariton signal ratio of 1 : 1.16 and argue that the dot spends

approximately the same amount of time in a charged and in an empty state. In a

magnetic field (figure 5.2b and c), the quantum dot is still in an uncharged state half

of the time. Furthermore, the electron spin states are split by the Zeeman energy,

where only one of the spin states can couple to the cavity mode for a certain detuning.

We assume that both spin states are equally likely to be occupied and overall the QD

spends in total 1/4 of the time in a state where it couples to the cavity. Therefore,

it is expected that in 3/4 of the time the bare cavity is probed by the laser. This

argumentation corresponds well with the observed intensities for the two transitions at

a magnetic field of 3.00 (figure 5.2b and c). We find a bare cavity : polariton ratio of

2.57 : 1 for the |↑〉 ↔ |↑↓,⇑〉 transition (figure 5.2b) and a ratio of 2.26 : 1 for the

|↓〉 ↔ |↑↓,⇓〉 transition (figure 5.2c).

At this point, we briefly discuss the possibility of spin pumping, which has already

been observed for electron [2] and hole spins [3]. Here, a spin state is shelved such
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that it is not accessible to the excitation any more. This spin–shelved state lives for a

relatively long time, when the tunneling rate in and out of the QD is suppressed by an

applied electric field [2]. Following the above argumentation with the observed intensity

ratios, we note that here the QD is in a regime where its charge state fluctuates and

spin shelving is inefficient.

5.2 Dynamics of the strong coupling regime

In addition to the spectral experiments, we attempt to describe the strong coupling

regime in the time domain at zero magnetic field. Here, the dynamics are governed by

the back action of the cavity on the QD, where an emitted photon can be reabsorbed

before it is lost. We first derive the probability of the photon being in the cavity at a time

t after excitation, which corresponds directly to the probability of detecting a photon

since we couple to the cavity mode in the measurement. For simplicity, we assume that

the system is deep in the strong coupling regime and neglect QD dephasing and spectral

diffusion in the derivation. Cavity–QD detuning lifetime measurements then aim to

reveal the time dependent nature of the strongly coupled system.

5.2.1 Interaction of the QD with the cavity in the time domain

The Jaynes–Cummings (JC) Hamiltonian in the absence of a weak external excitation

reads:

H = ~ωC a
†a+ ~ωX b

†b+ ~g (a†b+ b†a) (5.1)

where a and b denote the annihilation operators of the cavity (C) and the exciton

(X) respectively. In the strong coupling regime, the coupled cavity–QD state can be

described as a superposition of the QD in the excited state and cavity in the empty

state |e, 0〉 with the QD in the ground state and a photon in the cavity mode |gs, 1〉:

|Ψ(t)〉 = ce,0(t) |e, 0〉+ cgs,1(t) |gs, 1〉 . (5.2)

Solving the time dependent Schrödinger equation i~ d
dt
|Ψ(t)〉 = H |Ψ(t)〉, we obtain the

time dependent coefficients ce,0(t) and cgs,1(t):

ce,0(t) = ce,0(0) cos gt− icg,1(0) sin gt, (5.3a)

cgs,1(t) = cgs,1(0) cos gt− ice,0(0) sin gt. (5.3b)
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Here the QD is initially in the excited state (i.e.: ce,0(0) = 1 and cgs,(0) = 0). The

probability of finding the photon in the cavity after a time t is then given by [4]:

pe(t) = |〈gs, 1| |Ψ(t)〉|2 =
1

2
(1− cos 2gt) . (5.4)

From equation 5.4 it is evident that the system coherently oscillates back and forth

between the cavity and the exciton at a frequency corresponding to twice the coupling

rate 2g. So far the incoherent decay, stemming from the cavity (κ) and from the QD (γ)

is not considered. For g � κ, γ, the oscillations derived in equation 5.4 are damped with

an averaged rate since the system oscillates between QD and cavity [5]. The probability

to detect a photon is then given by:

p′e(t) =
1

2
(1− 2 cos gt) e−

κ+γ
2
t. (5.5)

This equation exposes the difference in the dynamics of the strong coupling regime

compared to the weak coupling regime. In the weak coupling regime, the coupled QD

decays exponentially [6] with a rate that is enhanced by the Purcell factor Fp compared

to the free space decay rate. However, in the strong coupling regime, the QD population

undergoes coherent oscillations that are damped exponentially with a rate (κ + γ)/2.

This backaction of the cavity on the QD leads to non–Markovian dynamics as has already

been observed for QDs coupled to micropillars [7].

Furthermore, in the case of weak coupling, the Purcell factor is proportional to the

enhanced photon density of states in the cavity. Therefore the detuning dependent decay

rate exhibits a Lorentzian lineshape according to the cavity mode. We note that the

decay rates can also be described by evaluating the imaginary part of the eigenvalues of

the JC–model (equation 1.13). As a consequence a non Lorentzian lineshape is obtained

in the strong coupling regime, where the maximum decay rate is (κ + γ)/2 at zero

detuning.

5.2.2 Lifetime measurements

Here, we study the dynamics of the strongly coupled cavity–QD system by performing

lifetime measurements for different cavity–QD detunings. We excite the QD nonreso-

nantly with a Q–switched pulsed laser diode emitting at λ = 830 nm with a repetition

rate of 80 MHz and a pulse width of 50 ps. The excitation pulse defines the start signal

and the stop signal is provided by an avalanche photodiode (APD) with a 340 ps timing
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Figure 5.3. Lifetime measurements in the strong coupling regime. (a) The decay rates obtained

by a single exponential fit are plotted as a function of detuning. The corresponding reduced χ2, which

quantify the quality of the fits are shown in blue. A strong deviation from the ideal value of 1 is obtained

for zero cavity–QD detuning. The red curve shows the expected decay rates from the JC–model with

~κ = 19.84 µeV, ~γ = 1.38 µeV and ~g = 11.13 µeV. (b) Decay curve measured when the microcavity is

−153 µeV detuned from the resonance. A single exponential lifetime of 523 ps is obtained accompanied

by a χ2 of 0.918. (c) For zero detuning the decay follows almost the IRF, which indicates that the

underlying cavity–QD dynamics are too fast to be observed.

resolution and a darkcount rate of 20 counts per second.

Figure 5.3b shows a normalized decay curve in black where the cavity is −153 µeV

detuned from the QD transition. A single exponential fit (red) that takes the internal

response function (IRF) (shown in blue) into account yields a lifetime of 523 ps with a

reduced χ2 of 0.918. When the cavity is tuned into resonance with the QD (figure 5.3c),

the lifetime is reduced but we do not resolve any oscillatory behavior as expected from

equation 5.5. This is because the involved timescales are too fast to be observed: the

rates obtained by the fit at zero field in chapter 4 (~κ = 19.84 µeV, ~γ = 1.38 µeV

and ~g = 11.13 µeV) translate into an oscillation and decay timescale of ∼ 60 ps, which

is significantly smaller than the temporal width of the IRF (∼ 600 ps). Moreover, we

measure a decay that coincides closely with the IRF in figure 5.3c. A single exponential
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fit reveals a lifetime of 39 ps accompanied by a relatively high reduced χ2 of 2.265,

which indicates that here the fit routine fails to describe the cavity–QD dynamics. This

is consistent with the model as a single exponential decay is not expected.

The decay rates obtained from the single exponential fits are plotted in figure 5.3a as

a function of cavity–QD detuning (black) accompanied by the reduced χ2 values (blue).

For comparison, the decay rates expected from the JC model (two times the imaginary

part of equation 1.13) are plotted in red using the rates obtained from the model fit:

~κ = 19.84 µeV, ~γ = 1.38 µeV and ~g = 11.13 µeV. The decay qualitatively follows

the JC model. However, for small detuning our broad IRF does not allow us to resolve

the dynamics of the strongly coupled QD–cavity system and the single exponential fit

routine overestimates the decay. We note generally that the direct observation of the

coherent oscillations described by equation 5.5 in cavity–QD systems is very demand-

ing with the available infrastrucure due mainly to the limited time resolution of the

APDs. A possibility to circumvent this limit is the use of a pump–probe measurement,

demonstrated for e.g. quantum wells coupled to a semiconductor microcavity [8].
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“Epitaxial lift–off for solid–state cavity quantum electrodynamics”,
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We demonstrate an approach to incorporate self–assembled quantum dots into a

Fabry–Pérot–like microcavity. Thereby a 3λ/4 GaAs layer containing quantum dots

is epitaxially removed and attached by van der Waals bonding to one of the microcav-

ity mirrors. We reach a finesse as high as 4,100 with this configuration limited by the

reflectivity of the dielectric mirrors and not by scattering at the semiconductor–mirror

interface, demonstrating that the epitaxial lift–off procedure is a promising procedure for

cavity quantum electrodynamics in the solid state. As a first step in this direction, we

demonstrate a clear cavity–quantum dot interaction in the weak coupling regime with

a Purcell factor in the order of 3. Estimations of the coupling strength via the Purcell

factor suggests that we are close to the strong coupling regime.
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Chapter 6. Epitaxial lift–off for solid–state cavity quantum electrodynamics

6.1 Introduction

The interaction of optically active semiconducting nanostructures such as quantum dots

(QDs) with light can be massively increased by placing the emitter into a microcavity,

thereby allowing a study of cavity quantum electrodynamics (CQED) in the solid state.

A measure of the cavity–emitter interaction is the cooperativity parameter, C = 2g2/κγ,

which puts all involved rates in context: the emitter–cavity coupling rate g, the cavity

photon decay rate κ and the effective total emitter dephasing rate γ/2. If g � κ, γ,

the system is in the weak coupling regime and an emitted photon is irreversibly lost

before it can be reabsorbed. However, the increased photon density of states associated

with the cavity mode results in an accelerated spontaneous emission when the QD and

cavity are in resonance [1]. This enhancement of the spontaneous emission increases

the quantum efficiency of single photon sources [2, 3], an important feature for many

applications in quantum information [4]. If g � κ, γ, the system is in the strong coupling

regime and an energy quantum is coherently and reversibly exchanged between emitter

and cavity mode resulting in new eigenstates, polartions i.e. superpositions of cavity

photon and emitter excitation. Strong coupling is the prerequisite for the realization of

a single photon transistor [5] and enables QD–QD coupling with potential applications

in quantum information [6]. Both regimes were already observed with self–assembled

QDs in micropillars [7–9] and photonic crystals [10–13]. Alternative experiments with

QDs coupled to fully tunable microcavities showed a clear Purcell enhancement [14–16]

and even allowed the observation of strong coupling [17].

The threshold to observe a finite splitting in polariton energy is given by 4g > |κ− γ|
from the Jaynes–Cummings Hamiltonian that describes the coupled system [18]. For

high quality material at low temperature, γ is typically much smaller than κ: the main

goal is to increase g and decrease κ by choosing an appropriate cavity design. The cavity

decay rate κ is limited by the reflectivity of the mirrors and characterized by the quality

factor Q = ω/κ, where ω is the resonance angular frequency of the cavity. The coupling

strength g is given by ~g = µ12Evac, where µ12 is the emitter’s dipole moment and the

vacuum field Evac ∝ 1/
√
V0 scales inversely with the square root of the cavity mode

volume V0. Thus, efforts to achieve a strong QD–cavity coupling seek to decrease the

mode volume at high cavity Q–factors.

Generally, for QDs coupled to micropillars or photonic crystal cavity modes, the ben-

efit of a small mode volume comes at the cost of the Q–factor. Furthermore, spectral

and spatial tunability remains limited in these cavities. An alternative is to employ a
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tunable cavity design [19–22]. So far, experiments in a tunable cavity incorporate the

InGaAs QDs in a heterostructure which also contains a semiconductor distributed Bragg

reflector (DBR) consisting of several pairs of AlGaAs/GaAs [14–17]. These two mate-

rials have the same lattice constant but a different refractive index (nAlGaAs = 3.009,

nGaAs = 3.54). There are three issues here. First, this material combination (equal

lattice constant but significantly different refractive index) is unique to GaAs, unfor-

tunately limiting DBR–based CQED applications with QDs to self–assembled InGaAs

QDs. Second, the relatively low refractive index contrast results in a high penetration

depth of the cavity field into the mirror thus enlarging the mode volume. Finally, semi-

conductor ’supermirrors’ are essentially impossible to fabricate: growth of more than,

say, 40 pairs is extremely time consuming.

We present here a best–of–both–worlds approach for CQED: it combines the benefits

of a solid state emitter with a low–loss high–reflectivity dielectric DBR. The tanta-

lizing possibility is to embed a fast, robust solid–state emitter in a low mode volume

microcavity formed using dielectric supermirrors. We remove epitaxially a thin GaAs

layer containing InGaAs QDs and bond the layer via van der Waals (VdW) forces to

a dielectric DBR. This forms one of the end mirrors in the Fabry–Pérot–like tunable

microcavity. The InGaAs QD is a suitable candidate, partly due to its relative short

recombination time (i.e. large oscillator strength [23]). Dielectric mirrors enable an

ultrahigh finesse (up to 106 [24]) with also a small penetration depth. We note that

the approach shown here enhances greatly the flexibility of cavity experiments: each

part of the cavity (bottom mirror, top mirror, optically active layer) can be individually

designed and processed and then combined to create an optimized CQED system.

We demonstrate a successful epitaxial lift–off (ELO) and subsequent attachment to

a dielectric DBR by van der Waals bonding. The mirror is then integrated into the

tunable cavity design and we show that the finesse of the cavity remains high despite

the presence of the new GaAs–DBR interface. Furthermore, we show a weak coupling

of a single QD to the microcavity mode as revealed by a reduction of the lifetime when

the QD is in resonance with the cavity. In fact an estimation of the coupling g implies

that our system is close to the strong coupling regime and we state that by minor

improvements the observation of the typical anticrossing is within reach in this system.
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Figure 6.1. Epitaxial lift–off (ELO) procedure for cavity QED with QDs. (a) Sample structure

before (top) and after (bottom) the ELO process. (b) 1D transfer matrix method simulation of the

microcavity design with the bonded ELO layer. The design is chosen such that a field node is located

at the bonding interface. (c) The fabrication consists mainly of the following steps: 1. Mesa–etching

and attachment to an acid–resistant teflon stamp; 2. etching of the sacrificial AlAs layer in 10% HF

until the GaAs substrate falls away; and 3. and bonding to a dielectric DBR. (d) Optical microscope

image of a 3λ/4 thick GaAs layer bonded to a dielectric DBR after ultrasonic bath cleaning.

6.2 Sample

In the present proof of concept experiment, we bond a 3λ/4 epitaxial layer that embeds

the QDs onto a Ta2O5/SiO2 DBR ending with the high refractive index material (Ta2O5).

This serves as one mirror in the tunable cavity, while the other consists of a DBR ending

with a Ta2O5 layer as well. A 1D transfer matrix method simulation of the vacuum field

for this particular cavity design is shown in figure 6.1b. By design, an electric field

node is located at the GaAs epilayer–mirror interface with the hope that fabrication

imperfections may have only a limited effect on the finesse. This is a conservative
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approach: the penetration depth into the bottom mirror could be further reduced by

bonding a λ layer on a DBR ending with SiO2, but with the drawback of a field antinode

at the interface.

6.2.1 Epitaxial lif–off

The sample before (after) the epitaxial lift–off is shown in figure 6.1a, top (bottom). The

heterostructure is grown by molecular beam epitaxy (MBE) on a GaAs substrate followed

by a 225 nm thick GaAs layer that includes a 120 nm thick short period superlattice

(SPS1) with composition GaAs(2 nm)/ Al0.33Ga0.67As(2 nm) for stress relief. On top of

the SPS1 a 100 nm thick AlAs layer is grown as sacrificial layer followed by the ELO

layer with a total thickness of 3λ/4 for a design wavelength of λ = 940 nm. The ELO

layer contains the InGaAs QDs grown at a distance λ/2 from the surface such that they

are located at an antinode of the vacuum field in order to maximize the coupling to the

cavity (figure 6.1b). The QDs are surrounded by SPS2 and SPS3 each of composition

GaAs(1 nm)/Al0.33Ga0.67As(3 nm). SPS2 also serves as a stress relief for the following

QD wetting layer, while SPS3 enhances carrier recombination within the QDs. Both

SPS show a lower average refractive index of the complete ELO layer n = 3.332.

Figure 6.1c shows the process of the epitaxial lift–off procedure and the subsequent

van der Waals bonding. For the separation of the ELO–film, we first deposit a small

piece of Apiezon wax on the sample and heat it to 125 ◦C for 1 hour. The melted

wax defines a round structure with diameter of ≈ 700 µm for etching a mesa with a

solution consisting of sulfuric acid (H2SO4), hydrogen peroxide (H2O2) and deionized

water (H2O) with a volume ratio of 1:8:120, commonly known as piranha–solution. We

first etch ≈ 1.5 µm with the piranha solution such that the AlAs sacrificial layer is

exposed for the subsequent etching with hydrofluoric acid (HF). The piranha–etched

sample with the wax is then reheated to 70− 80 ◦C and attached to a homemade teflon

stamp before immersed into the 10 % HF solution ( step 1. and 2. in figure 6.1c). The

epitaxial lift–off is based on the high selectivity (108 : 1) on etching AlAs in GaAs in a

10 % HF–solution. During the etching process with HF, the stress induced by the surface

tension of the wax bows the epitaxial layer and ensures an open etching channel [25, 26].

6.2.2 Van der Waals bonding

After the AlAs sacrificial layer is completely etched, the substrate falls away and the

ELO–film stays attached to the teflon stamp (3. in figure 6.1c). The HF–solution is then
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highly diluted (� 0.001%) by rinsing with deionized water before the new host substrate

is immersed into the liquid. The host substrate consists of silica coated with a distributed

Bragg reflector (DBR) (design reflectivity 99.98%) consisting of alternating λ/4 layers

Ta2O5 (n = 2.06) and SiO2 (n = 1.46) ending with Ta2O5. The ELO–film remains

immersed in the solution throughout the exchange of the substrates and the subsequent

bonding is conducted completely in DI–water. This provides a very clean environment

and hence minimizes contamination with particles between the two surfaces [25]. The

weight of the stamp results in pressure on the order of a few N/mm2 on the sample

during the bonding process (step 4. in figure 6.1c). After the highly diluted HF solution

is poured away, the sample is dried for 24 h. Ideally, any remaining water film at the

bonding interfaces evaporates and the ELO–film is pulled down by surface tension such

that close range (VdW) forces bond the layer to the substrate. Experimentally however,

a small gap between the interfaces can emerge during the bonding process as shown

below. The bonded sample is then detached from the stamp by removing the wax with

trichloroethylene (TCE). The resulting bottom mirror structure after bonding is shown

in figure 6.1c. The bonding strength of VdW–bonding is sufficient high. Evidence for

this is the optical microscope image in figure 6.1d, which shows an intact ELO–film

bonded to a DBR mirror even after the immersion in an ultrasonic bath.

6.3 Cavity characterization and performance

6.3.1 Measurement setup

The DBR with the bonded ELO–film serves as an end mirror in the fully tunable plane–

concave microcavity setup shown in figure 6.2a and described in detail in [22]. Here, the

top mirror consists of a concave mirror with radius of curvature R of 13 µm, fabricated

by CO2–laser ablation and subsequent coating with a Ta2O5/SiO2 DBR, exactly the

same DBR as the substrate for ELO bonding. Spectral and spatial tunability is realized

by mounting the bottom mirror on an xyz–piezo positioner such that it can be displaced

in three dimensions with respect to the top mirror. We study the performance of the

microcavity including the ELO–bonded bottom mirror at 4 K in a He bath cryostat.

For cavity excitation and detection, we interrogate the system with a coherent cw

laser (linewidth 1 MHz) with a cross–polarized detection scheme realized by incorporat-

ing two polarizing beam splitters (PBS) in the microscope head at room temperature

(figure 6.2b) [27]. The cavity is excited with a fixed linear polarization, while only light
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Figure 6.2. (a) Tunable microcavity setup. The ELO–layer is bonded on the dielectric DBR and

the entire sample is mounted on an xyz–positioner stage that can be positioned with respect to the

concave top mirror. (b) Cross–polarized darkfield detection scheme realized by two polarizing beam

splitters. The polarization axes of the cavity mode are only slightly misaligned with respect to the axes

of the microscope head.

orthogonally polarized to the excitation is detected. An additional Si–photodetector

mounted directly underneath the bottom mirror facilitates cavity transmission measure-

ments.

6.3.2 Cavity properties

Figure 6.3a shows a measurement of the cavity transmission signal as a function of

cavity–length detuning for a fixed probe laser beam wavelength λ = 940 nm. We identify

two fundamental cavity modes at physical distance of λ/2, accompanied by higher order

modes. The structure of the cavity mode is described by Hermite–Gaussian TEMqnm

modes, where the transversal mode splitting is determined by the radius of curvature of

the top mirror. Figure 6.3b shows one cavity resonance with Lorentzian lineshape and

a full width at half maximum linewidth (FWHM) of δd = 115 ± 3 pm. We identify the

finesse in the spatial domain to be F = λ/(2δd) = 4, 100 ± 100. The absolute mode index

q = 2δd/δλ is determined by varying the probe wavelength for the first 3 available cavity

modes (figure: 6.3c). We reach a minimum mode index of 7.26 ± 0.48 which translates

to an effective cavity length of l = 3.4 ± 0.2 µm. This length together with the measured

finesse yields a quality factor of Q = 2lF/λ = 30, 000 corresponding to a cavity linewidth
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Figure 6.3. Performance of the cavity with an embedded ELO layer without QDs coupled to

the cavity mode. (a) Transmission measurement revealing the fundamental and higher order cavity

resonances. (b) A single transmission peak with full width half maximum (FWHM) of δd = 115 ± 3 pm

results in a Finesse of 4, 100 ± 100. (c) Determination of the smallest accessible mode index by varying

the excitation wavelength. (d) A cross–polarized detection of the cavity mode in reflection reveals a

mode splitting not observed in transmission (see text).

of 44 µeV. When measuring in reflection (figure 6.3d), we observe a fundamental mode

splitting of 57.65 µeV. The two modes reveal linewidths of 38.53 µeV and 40.29 µeV

respectively (Q–factors: 34, 200 and 32, 700), agreeing well with the linewidths expected

from finesse and cavity length measurements in transmission.

6.3.3 Cavity mode splitting

The fundamental mode splitting of the microcavity is indicated as c1 and c2 in figure 6.2b.

The two modes are linearly polarized and we speculate that the splitting arises in the

ELO–layer. We note that the linear polarization axes of the c1, c2 modes coincide

with the crystallographic axes of the epitaxial lift–off layer. The birefringence may be

due to strain–induced anisotropy [28] and was also shown to determine the polarization

properties of semiconductor vertical–cavity surface–emitting lasers (VCELs) [29].

Figure 6.2b shows the alignment of our cross–polarized detection scheme with respect
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to the linear polarized cavity modes with an angle φ close to π/2. The two cavity modes

can be characterized by the detuning dependent reflection (transmission) coefficients

r1, r2 (t1, t2) that obey the relation r2 + t2 = 1. We excite the cavity with an electric

field amplitude E0 along the excitation axis and detect orthogonally to it. The total

signal that is projected on the detection axis is composed of the two electric amplitudes

E1 and E2 that originate from the two cavity modes c1 and c2:

E1 =
r1

2
E0 sin 2φ, (6.1a)

E2 = −r2

2
E0 sin 2φ. (6.1b)

We detect an intensity in reflection Ir = |E1 + E2|2:

Ir =
I0

4
|r1 − r2|2 sin2 2φ. (6.2)

For the transmission intensity It the signal depends solely on the alignment of the exci-

tation with the cavity axis and we can derive:

It = t21 cos2 φ+ t22 sin2 φ. (6.3)

These two equations suggest that for an angle φ close to 90◦ only the c1 mode is efficiently

detected in transmission, while in reflection the signal is proportional to the contrast of

the detuning–dependent reflection coefficients r1 and r2.

In the present design, the refractive indices satisfy n2
Ta2O5

≈ nELOnSiO2 , close to the

condition for an anti–reflection (AR) coating which results in a penetration depth of

6.70 µm into the bottom mirror and a minimal total cavity length of 7.32 µm when sim-

ulated with a 1D transfer matrix method. This is significantly larger than the 3.4 µm

estimated from the absolute mode index in figure 6.3c. We explain this discrepancy be-

tween theory and experiment by an imperfect bonding of the ELO layer to the bottom

mirror. A simulation of a 22 nm thick gap with refractive index n = 1 (equivalently

a 17 nm thick H2O–film) between the ELO layer and the bottom mirror supports this

assumption. Such a configuration breaks the condition of the AR coating and the pen-

etration depth is reduced to 2.06 µm. Together with an air gap of ≈ 0.5 µm (due to

imperfect parallelism of the two mirrors) we calculate a total cavity length of 3.00 µm,

in accordance with the measurement.
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Figure 6.4. Quantum dot in a tunable microcavity. (a) PL spectrum as a function of cavity tuning.

Distinct bright points signify the emission from single QDs. (b) Lifetime measurements (black dots)

of the QD with λQD = 933.18 nm as a function of cavity–dot detuning. A clear reduction of the

lifetime is observed on resonance owing to the Purcell effect. The blue dots show the simultaneously

recorded total counts. The red curve is a fit to equation 6.4, where the green dashed lines indicate

the two Lorentzians of the fit. (c),(d) Lifetime measurement of the cavity 300 µeV detuned and on

resonance. Single exponential fits taking into account the internal response function reveal lifetimes of

665 ps detuned and 318 ps on resonance.

6.4 Coupling quantum dots to the cavity

6.4.1 Photoluminescence measurements

We demonstrate weak coupling of a single InGaAs QD to our tunable microcavity by

means of photoluminescence (PL). The cavity–QD system is nonresonantly excited in

the wetting layer (λ = 830 nm) and the emitted signal is analysed by a CCD–based

spectrometer with a spectral resolution of 40 µeV. The cavity resonance is tuned by

applying a voltage on the z–piezo, which acts on the cavity length. Figure 6.4a shows

the spectrum as a function of cavity detuning. We detect an emission into the cavity

mode for all values of z. Earlier crosscorrelation measurements [30, 31] interpreted this

background as a hybridization of the higher QD states with the neighboring wetting

layer [32]. The discrete bright spots at specific energies indicate the coupling of a single
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QD to the cavity mode. The QD transitions observed here do not show a fine–structure

splitting, a characterization feature of the neutral exciton X0. It is likely that the

transitions observed here are charged excitons X−1.

6.4.2 Lifetime measurements

To verify that the enhanced PL at the cavity resonance represents more than spectral

filtering of the QD, we study the cavity–QD dynamics in the time domain for a single

QD with λ = 933.14 nm. The cavity–QD system is excited by a Q–switched pulsed

nonresonant laserdiode with repetition rate of 80 MHz and a pulse width of 50 ps. The

excitation pulse defines the start signal. The stop signal is provided by the detection of

an emitted photon by an avalanche photodiode with a timing resolution of 340 ps and

a dark–count rate of 20 counts per second. Figure 6.4c shows a lifetime measurement of

the cavity–QD system at 300 µeV detuning. A single exponential fit taking into account

the internal response function (IRF) reveals a lifetime of 665 ± 10 ps (corresponding

1.00 ± 0.02 µeV). At zero detuning (figure 6.4d), the lifetime of the QD is reduced to

318 ±70 ps (corresponding 2.07±0.45 µeV) implying an increased spontaneous emission

rate.

Figure 6.4b shows lifetime measurements for different cavity–QD detunings. Due to

the cross–polarized detection, only one cavity mode is observed in PL (figure 6.4a).

However, the QD still couples to both orthogonally polarized modes and we expect a

lifetime reduction in both cases. Thus the simultanously recorded countrate (blue dots

in figure 6.4b) reduces at a detuning where the lifetime still remains low. Consequently,

we fit the lifetime data in figure 6.4b with a double–Lorentzian:

γcavity

γfree

=
FP1∆2

1

4δ2
1 + ∆2

1

+
FP2∆2

2

4δ2
2 + ∆2

2

+ α. (6.4)

The lifetime of five different QDs not coupled to the cavity mode were measured yielding

an average freespace lifetime of 805 ± 150 ps, or γfree = 0.82 ± 0.15 µeV. In contrast,

γcavity is the decay rate into the cavity mode. The first two terms in equation 6.4 describe

the cavity–QD detuning–dependent relative decay rate according to the density of states

in the two microcavity modes. The term α describes the relative decay rate into leaky

modes of the cavity. FP1 (FP2) is the Purcell factor corresponding to the first (second)

cavity mode, ∆1 and ∆2 are the two cavity mode linewidths and δ1 (δ2) is the cavity–QD

detuning with respect to the first (second) cavity mode.

From the fit, we determine Purcell factors of FP1 = 1.27 ± 0.04 , FP2 = 0.79 ± 0.04
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and α = 1.12 ± 0.01. The corresponding linewidths are ∆1 = 121.83 ± 5.8 µeV and

∆2 = 106.93 ± 10.71 µeV and the splitting between the modes is 100.14 ± 5.11 µeV.

The errors on the determination of the two Purcell factors FP1 and FP2 arise from the

statistical error of γfree, while the errors in the widths arise from the double–Lorentzian

fit. The linewidth values are significantly larger than those in figure 6.3d, where the

cavity was probed with a laser and a cross–polarized detection scheme. An explanation

for this would be a heating effect during nonresonant excitation that broadens the cavity

resonance. However, this would not affect an increase in the cavity mode splitting

as is observed in the experiment. Moreover, we attribute the broadening to the long

integration times (30 minutes) for each point in figure 6.4b in order to achieve low noise

decay curves. On these long timescales the cavity resonance drifts slightly since we do

not actively stabilize the cavity length during measurement. This drift of the cavity

increases the apparent mode–splitting by a factor of ≈ 2. Therefore we argue that the

estimated Purcell factors represents the lower limit that is reached in the present setup.

Correcting for the drift we evaluate F ′P1 ≈ 2.54 and F ′P2 ≈ 1.6. We note also that if the

c1, c2 splitting could be eliminated, Fp would rise to ∼ 4.14.

6.4.3 Estimation of the coupling strengh

Once the Purcell factor is known an effective mode volume can be estimated by:

V0 =
3Q (λ/n)3

4π2Fp

, (6.5)

with a Q–factor of 33, 000 and an averaged refractive index n of the ELO–layer of 3.332.

The free space decay rate γfree = 0.82 µeV translates into a dipole moment µ12 of

1.2 nm× e and we calculate the coupling g from

g =

√
µ2

12ω

2ε0n2~V0

. (6.6)

We find g = 10.7 µeV if the splitting would be eliminated (Fp = 4.14) and g1 = 8.37 µeV

for the first mode with F ′P1 = 2.54. We estimate a vacuum field Evac at the location of

the QDs via ~g = µ12Evac to be Evac = 0.9 × 104 V/m. From the radius of curvature

(13 µm) we estimate a beam waist of w0 = 1.74 µm by Gaussian optics. The transfer

matrix method yields then a field antinode at the emitter of Evac = 2.5× 104 V/m (see

figure 6.1b). The experimental result from the Purcell effect (0.9 × 104 V/m) is lower
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than the geometric estimate (2.5 × 104 V/m). Imperfections at the bonding interface

may shift the maximum of the vacuum field such that the location of the QD does not

coincide with the electric field antinode. However, simulations with an airgap of 22 nm

between the ELO layer and the bottom mirror suggest that this effect is negligible: the

shorter penetration depth results in an increased vacuum field compensating for the

vertical displacement of the antinode.

Since we do not have immediate access to the QD uncoupled to the cavity in our

setup, the free space decay rate γfree remains the uncertain factor for the Purcell factor

estimation. However, the estimation of the coupling strength g is stable with respect to

γfree. This is due to the fact that in our analysis the Purcell factor scales with 1/γfree

and hence g ∝ 1/
√
γfree, while simultaneously g is proportional to µ12 ∝

√
γfree and the

γfree – dependency of g cancels out.

We point out with an observed coupling rate g1 ≈ 8.4 µeV and cavity rate κ ≈
40 µeV � γ, the cavity–QD dynamics are already close to the strong coupling regime

4g > |κ− γ|. Moreover, our setup offers several possibilities to improve the cooperativity

factor. Notably κ can be significantly reduced by using ’supermirrors’ with an ultrahigh

reflectivity. Furthermore, as mentioned above, the current configuration at the interface

of 3λ/4 ELO/ λ/4 Ta2O5 / λ/4 SiO2 results in a relatively high penetration depth and

an unwanted reduction of the vacuum field strength. Now that a high quality ELO

layer–DBR mirror is established, a λ–layer ELO can be bonded to a SiO2–terminated

DBR. Simulations suggest a reduction of the penetration depth from 6.70 µm to 4.30 µm

and an increase of the vacuum field strength by factor 1.4 – already enough to observe

a clear strong–coupling signature. To reduce the mode volume further, one possibility

would be to use materials for the mirrors with a higher refractive index contrast.

6.5 Conclusion

In conclusion we have demonstrated a hybrid high–Q, low mode–volume tunable Fabry–

Pérot microcavity consisting of a thin GaAs epilayer and dielectric mirrors. The funda-

mental requirements for cavity QED are met in this system: the finesse was high despite

the new interface between dissimilar materials and the QDs remained optically active

with low linewidths. Furthermore, we verified that the QD–cavity system operates in

the weak coupling regime close to strong coupling. We argue that our epitaxial lift–off

approach opens new possibilities for cavity QED in the solid state.

We acknowledge financial support from SNF (project 200020–156637) and NCCR
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Chapter 7

Conclusion and outlook

7.1 Conclusion

This thesis describes the development of a fully tunable, miniaturized Fabry–Pérot mi-

crocavity and the coupling with single self assembled quantum dots. Generally, the open

access of the system enables various two level emitters to be coupled to the microcavity

and hence build a powerful tool for experiments in the field of cavity quantum electro-

dynamics (CQED). For applications in CQED the cooperativity, defined as C = 2g2/κγ,

is the figure of merit that includes all the relevant rates: γ describing the emitter decay,

κ the cavity decay and g the cavity–emitter interaction strength. A high cooperativity

is desirable.

The microcavity consists of a plane–concave mirror pair; a small radius of curvature of

the concave top mirror enables a reduction in the cavity mode volume. The small radius

of curvature is achieved by CO2 laser ablation of fused silica described in chapter 2.

Here, the exact power and exposure time incident on the silica substrate is controlled by

incorporating an acousto optical modulator into the CO2 laser setup. This allowed for

the reproducible production of craters with a large variety of different radii of curvature.

The surface tension of the molten silica layer smoothens the roughness in the ablated

craters, resulting in a root mean square surface roughness as low as 0.2 nm, as determined

by atomic force microscoppy. As a central result, concave structures have been produced

with radii of curvature less than 10 µm.

The concave top mirrors were then coated with a distributed Bragg reflector (DBR)

consisting of either pairs of TiO2/SiO2 or Ta2O5/SiO2 before they were implemented into

the fully tunable microcavity. The properties of the microcavity setup are described and

analyzed in Chapter 3. Here, the precise spectral and spatial tuning is achieved by

piezo–positioning of the two mirrors with respect to each other. By using a gold coated
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GaAs substrate, the spacing of the higher–order modes was analyzed. Hence, it was

verified that the small radii of curvature obtained by CO2 laser ablation coincide with

the optical radius inferred from the modes in the cavity. The corresponding cavity

beam waist was determined by using a sharp gold/GaAs edge defined by electron beam

lithography. By laterally moving the bottom mirror with respect to the top mirror, the

position–dependent cavity finesse is determined, where the beam waist could be deduced

from the edge. The possibility to record a position dependent finesse allows in principle

for the realization of a microcavity microscope.

By using a combination of mirrors, where both have a Ta2O5/SiO2–DBR coating, a

cavity finesse of ≈ 15, 000 could be measured. However, the measured resonances reveal

non–Lorentzian lineshapes due to acoustic noise broadening. The effect from the acoustic

noise has been quantified in our system at 4 K, where an acoustic noise amplitude of

4.3 pm was revealed. This allows to work with a finesse of up to 11,000 in the present

system.

Chapter 4 describes the coherent coupling of an InGaAs quantum dot (QD) grown

on a semiconductor DBR to the fully tunable microcavity. A great advantage of the

cavity design is that it is possible to position spatially the quantum dot inside the

cavity and spectrally match the QD transition to the cavity resonance. The strong

coupling regime was clearly reached, manifested as a clear anticrossing signature as the

cavity is tuned across the QD resonance. A naive analysis that models the system with

the well–known Jaynes–Cummings model results in a cooperativity value of 5.5, where

the obtained spectra are not well reproduced. However, the measurement data could

be explained by including a spectral diffusion that inhomogeneously broadens the QD

resonance. Additional power depending resonance fluorescence measurements of several

QDs from the same sample but uncoupled to the cavity, verified the presence of spectral

diffusion in the sample. It is argued that by minimizing spectral wandering an estimated

cooperativity value of 9.0 can be reached with this particular implementation.

The cooperativity can be further increased by reducing the mode volume and increas-

ing the Q–factor of the cavity. An approach is presented in chapter 6 to meet these

requirements. An epitaxially lift–off layer containing QDs is bonded to a high reflectiv-

ity mirror DBR, which is then incorporated into the tunable microcavity design. This

represents a best–of–both–worlds approach, where an ideal emitter can be combined

with a highly reflective mirror. Successful epitaxial lift–off and subsequent bonding of a

3λ/4 layer on top of a Ta5O2/SiO2 mirror is presented. This design is chosen such that

an electric field node lies exactly at the bonding interface. The weak coupling regime
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is demonstrated, which is manifested by a decreased lifetime of the QD when resonant

with the cavity mode: the and the Purcell factor is 3.3.

7.2 Outlook

Overall the development of the fully tunable microcavity allowed the strong coupling

regime using a single InGaAs QD. However, a clear goal is to improve the cooperativity

with this setup. This is realized by improving essentially the three aspects that define

the cooperativity: the cavity Q–factor (which determines κ), the coupling strength g

and the emitter γ.

7.2.1 Cavity Q–factor

Higher Q–factors can be achieved by improving the reflectivity of the involved mirrors,

realized by increasing the number of ion–beam sputtered DBR pairs. Here, finesses of

up to 106 are possible for CQED [1]. However, a very high finesse requires an improved

stability regarding acoustic noise in our setup. So far acoustic noise is reduced by putting

the cryostat with the microcavity setup inserted into an acoustic–shielding box. How-

ever, the issue could further be adressed by implementing an active cavity–length stabi-

lization protocol. Here, the idea is to use an additional laser with a different frequency,

ideally outside the DBR–stopband, for which the finesse is not as high. The frequency

of the stabilization laser is chosen such that the narrow cavity peak of the frequency

under study lies at the edge of the broader resonance emerging from the stabilization

laser light. Here, the stabilization signal is recorded in transmission and the cavity can

now be stabilized by a proportional–integral–derivative (PID) feedback scheme. The

microcavity system can be simultaneously studied in reflection, whereas distinguishing

the probe laser from the stabilization laser is achieved using common razor edge filters.

7.2.2 Coupling strength g

The coupling strength is enhanced by reducing the cavity mode volume. This can be

naturally achieved by decreasing the radius of curvature of the concave top mirror. Es-

sentially a radius of curvature well below 10 µm can be produced by CO2–laser ablation.

However, small radii of curvature are only achieved with correspondingly deep craters

that enlarges the cavity mode volume and render the cavity mode unstable. A possibility

is to etch the craters post ablation without disturbing the radius of curvature. However
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this is challenging to achieve in practice. A promising approach is to pre–etch a narrow

cylinder with a moderate depth into the silica substrate. The structure is then locally

melted by the CO2–laser which transforms the cylinder structure into a concave shape.

Here, the radius of curvature is determined by the dimensions of the etched cylinder.

In principle concave mirrors can also be produced by ion–beam milling [2]. With this

technique small radii of curvature for low crater depths can be fabricated but the sur-

face roughness is not as smooth as for CO2–laser ablation. A method here could be to

combine ion beam milling with CO2–laser ablation, where the small radii of curvature

are produced by ion beam milling before subsequent smoothing with a short CO2–laser

pulse.

The reduction of the cavity mode volume is mainly limited by the finite penetration

depths into the DBRs. The epitaxial lift–off approach presents here a possibility of

decreasing further the cavity mode volume. In the approach presented so far the epitaxial

lift–off layer had a thickness of 3λ/4 bonded on a DBR mirror ending on the high index

material (i.e Ta2O5). Here, the configuration was chosen such that an electric field

node is located at the bonding interface and that fabrication imperfections only have

limited influence on the cavity finesse. However, 1D transfer matrix simulation show that

the penetration depth can be reduced by bonding a λ–layer on the low index material

(SiO2) which results in an enhancement of the vacuum field strength at the location of

the dots by a factor of 1.4. We note here that generally the issue of a large penetration

depth into DBR mirrors is adressed by choosing layers that exhibit a large refractive

index contrast. A particularly interesting approach is to use a GaAs/air DBR [3]. Here,

already a few pairs result in an extremely high reflectivity (e.g. for 3 pairs R > 99.995%).

Furthermore, the penetration can be reduced to 3.70 µm compared to the 6.70 µm from

the 3λ/4 configuration, resulting in an enhancement of the vacuum field by a factor of

1.6.

7.2.3 Emitter decay γ

The prior suggestions for enhancement of the cooperativity factor mainly focused on

the improvement of the microcavity properties. However, this thesis demonstrates that

spectral diffusion is present in our device, which increases the linewidth of the emitter

and hence decreases the cooperativity value. To address this issue, the QDs can be

incorporated in a p–i–n field effect structure before being incorporated into the micro-

cavity [4]. Here, silicon–doped GaAs is used for the n–back contact, while a carbon

doped GaAs consitutes the p–layer [5]. In the presence of such an epitaxial gate, the
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charges that surround the QD can be electrostatically pulled away from the vicinity of

the QD, hence minimizing the impact of charge noise on the QD [6]. Therefore the pres-

ence of an epitaxial gate narrows the line of the QDs. Furthermore, using an epitaxial

gate allows the QD to be charged deterministically. In this case the bare cavity peak

disappears as the charge switching of the QD is suppressed. Finally, the charge control

inside a QD ultimately opens access to spin–physics inside the microcavity.
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Appendix A

Towards high cooperativity strong

coupling of a quantum dot in a tunable

microcavity, supplementary information

A.1 Sample structure

A self-assembled InGaAs quantum dot is positioned at cavity mode electric field antin-

ode, as depicted in figure A.1a. The heterostructure was grown by molecular beam

epitaxy by Pierre Petroff at UCSB California, and consists of a 100 nm GaAs smoothing

layer on a GaAs substrate, and a 32.5 pair λ/4 AlGaAs/GaAs distributed Bragg reflector

(DBR) as the bottom mirror of the microcavity, which is terminated by a λ-layer GaAs

host matrix. During growth, the InGaAs wetting layer is inserted at a λ/2 distance from

the sample surface (figure A.1b). The top mirror is produced by CO2 laser ablation from

a fused silica substrate, where a concave depression with radius of curvature ≈ 13µm is

created before a Ta2O5 DBR coating is applied by ion-beam sputtering. The nominal

reflectivities are Rbot = 99.99% and Rtop = 99.95%. The bottom mirror is mounted on

an xyz piezo-driven positioner for sub-nm positioning, allowing both spectral and spatial

tuning of the microcavity. Estimating from Gaussian optics a beam waist of w = 1.4µm

at the quantum dot position from the cavity geometry, with one-dimensional transfer

matrix method calculations we estimate a vacuum electric field of Evac ≈ 2 × 104V/m.

At 4 K, single quantum dots can be addressed in the wavelength range of 930 . . . 960 nm.
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Figure A.1. (a) Sample structure within cavity configuration and (b) estimated vacuum field

distribution for the design wavelength of λ = 940 nm. The field distribution is estimated from one-

dimensional transfer matrix methods, with a Gaussian beam waist of w0 = 1.4µm.

A.2 Model calculation (M1)

The model Hamiltonian of the article reads, in the rotating frame of the coherent exci-

tation at frequency ωR,

H = ~(ωC − ωR) a†a + ~(ωX − ωR) b†b + ~g (a†b + b†a) + ~ε (a† + a) , (A.1)

where a denotes the bosonic annihilation operator of the cavity (C) and b the fermionic

annihilation operator of the exciton transistion (X). Here, g is the coherent cavity-exciton

coupling rate, and ε is the coherent excitation rate driving the bare cavity resonance

from an external laser field whose linewidth is neglected. Treating ε as a perturbation

parameter, in the absence of other pumping mechanisms the resulting field amplitudes

will be of order a, b ∝ ε.
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The coherent and incoherent evolution of the density matrix ρ is given by the Lindblad

operator description

dρ

dt
=
i

~
[ρ,H] +

κ

2
(2aρa† − a†aρ− ρa†a)

+
γg

2
(2bρb† − b†bρ− ρb†b)

+
γpd

4
(bzρbz − ρ) ,

(A.2)

with the cavity photon loss rate κ of the single cavity mode under consideration; γg

denotes the exciton’s spontaneous emission rate into other guided modes of the cavity.

For completion, we also consider an exciton pure dephasing contribution γpd (where

bz = 1− 2b†b), whose effect on the dynamics is considered further below.

Observables O inherit a time-dependent expectation value 〈O〉(t) = Tr[ρ(t)O] from

the density matrix. The expectation values of the lowest orders of normal-ordered field

operators yield a set of optical Bloch equations

d

dt
〈a†〉 =

[
i(ωC − ωR)− κ

2

]
〈a†〉+ ig〈b†〉+ iε (A.3a)

d

dt
〈b†〉 =

[
i(ωX − ωR)− γg + γpd

2

]
〈b†〉+ ig〈a†〉

− 2ig〈a†b†b〉 (A.3b)

d

dt
〈a†a〉 = −κ〈a†a〉 −

[
ig〈a†b〉+ iε〈a†〉+ h.c.

]
(A.3c)

d

dt
〈b†b〉 = −γg〈b†b〉+

[
ig〈a†b〉+ h.c.

]
(A.3d)

d

dt
〈b†a〉 =

[
i(ωX − ωC)− γg + γpd + κ

2

]
〈b†a〉

+ ig(〈a†a〉 − 〈b†b〉)− iε〈b†〉 − 2ig〈a†b†ab〉 . (A.3e)

The higher-order terms 〈a†b†b〉 and 〈a†b†ab〉 originate from the fermionic nature of the

exciton after applying the commutator rule [b, b†] = 1 − 2b†b and thus represent all

saturation effects. At weak excitations ε ∝ b� 1 these contributions are suppressed and

are futher neglected. For vanishing pure dephasing rate γpd � γg, the set of optical Bloch

equations are solved by the ansatz 〈a†a〉 = 〈a†〉〈a〉, 〈b†b〉 = 〈b†〉〈b〉 and 〈b†a〉 = 〈b†〉〈a〉
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with 〈a†〉 and 〈b†〉 the solution to eq. (A.3a-b). The steady state (d/dt ≡ 0) yields

〈a†〉 =
ε(ωX − ωR + iγg

2
)

g2 − (ωX − ωR + iγg
2

)(ωC − ωR + iκ
2
)

(A.4a)

=
εa+

ωR − ω+

+
εa−

ωR − ω−
(A.4b)

〈b†〉 =
εg

g2 − (ωX − ωR + iγg
2

)(ωC − ωR + iκ
2
)

(A.4c)

=
εb+

ωR − ω+

+
εb−

ωR − ω−
. (A.4d)

As a function of the resonant probe ωR, a double pole structure arises at complex Rabi

frequencies

ω± =
ωC + ωX

2
+ i

κ+ γg

4
±

√
g2 +

(
ωC − ωX

2
+ i

κ− γg

4

)2

(A.5)

with projected excitation rates

εa± =
ε

2

1±
ωC−ωX

2
+ iκ−γg

4√
g2 +

(
ωC−ωX

2
+ iκ−γg

4

)2

 (A.6a)

εb± = ∓ ε
2

[
g√

g2 +
(
ωC−ωX

2
+ iκ−γg

4

)2

 . (A.6b)

So far, the detection channel has not been explicitly modelled. A weak coupling of

the cavity to a continuum of lossy detection modes contributes a photon flux of ηκ〈a†a〉
to the observed intensity, where the collection efficiency η has no dependence on the

cavity tuning. In the weak excitation regime, both the absolute value of 〈a†a〉 and the

excitation rate ε are difficult to determine experimentally. We note that the detected

intensity is proportional to 〈a†a〉, and limit our study to its dependence on ωR. A partial

fraction decomposition of the absolute square of 〈a†〉 from eq. (A.4a) yields

〈a†a〉 = [V+ + ReW ]L(ωR − ω+) + ImWD(ωR − ω+)

+ [V− + ReW ]L(ωR − ω−)− ImWD(ωR − ω−) ,
(A.7)
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i.e. a sum of unit-area Lorentzian and corresponding dispersive function lineshapes

L(ωR − ω±) =
Imω±/π

(ωR − Reω±)2 + (Imω±)2
(A.8a)

D(ωR − ω±) =
(ωR − Reω±)/π

(ωR − Reω±)2 + (Imω±)2
(A.8b)

with magnitudes

V± =
π|εa±|2

Imω±
and W = 2πi

εa+ε
a∗
−

ω+ − ω∗−
, (A.9)

where (∗) denotes complex conjugation. The lineshape resonances are located at Reω±

with FHWM parameter 2 |Imω±|. The result for 〈b†b〉 is analogous to eq.(A.7), with εb

substituted into the magnitudes eq. (A.9).

A.3 Model calculation (M2)

Model M1 assumes that the exciton behaves as a perfect two-level system. In Model M2

we introduce two major broadening mechanisms of the exciton and calculate their effects

on the resonance lineshapes. One mechanism is a pure dephasing, i.e. an additional loss

of exciton coherence in addition to radiative decay; the second mechanism is a spectral

wandering, i.e. a temporal fluctuation of the bare exciton transition frequency ωX. The

dynamics under pure dephasing are governed by the Lindblad operator contribtion pro-

portional to γpd, the last term in eq. (A.2). We implement the spectral wandering by

a convolution of the observable 〈a†a〉 with a distribution of ωX with FWHM parameter

γsw. As long as γsw is much smaller than the observed linewidths ≈ κ, the details of the

distribution shape are insignificant. For the sake of analytical simplicity, we choose a

Lorentzian distribution.

The optical Bloch equations eq. (A.3) can be solved analytically for a nonzero pure

dephasing rate γpd within the weak excitation regime. The ωR dependence of the result

is

〈a†a〉 = 〈a†a〉′ + Cpd

|ωR − ω′+|
2 |ωR − ω′−|

2 (A.10)

where the primed expressions correspond to the previous results when γg is renormalized
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by γg → γg + γpd. The correction amplitude Cpd is given by

Cpd = 4|ε|2g4γpd

γg

κ+ γg + γpd

κ

[
4g2 (κ+γg)(κ+γg+γdp)

κγg

+ (κ+ γg + γdp)2 + 4(ωC − ωX)2
]−1

.

(A.11)

In the experimental regime of the article (g ≈ 10µeV, κ ≈ 20µeV, γg ≈ 2µeV) we

expect only a weak dependence of Cpd on the experimental control parameters, namely

the cavity detuning ωC − ωX.

The Lorentzian convolution (∗) of 〈a†a〉, eq. (A.7), with respect to ωX with FWHM

parameter γsw is based on the algebraic form of eq.(A.4a). Observing the identity∣∣∣∣ωX − A
ωX −B

∣∣∣∣2 ∗ Lsw =

∣∣∣∣ωX − A′

ωX −B′

∣∣∣∣2 − πγsw

4

|A−B|2

ImB ImB′
LB′(ωX) (A.12)

valid in the regime ImA, ImB < 0, we identify A = ωR − iγg/2 and B = A+ g2/(ωC −
ωR + iκ/2). The primed expressions are renormalized according to γg → γg + γsw. Here,

LB′ is a Lorentzian located at ReB′ with FWHM parameter 2 ImB′. Similar to the

pure-dephasing case, we find a corresponding algebraic structure

〈a†a〉 = 〈a†a〉′ + Csw

|ωR − ω′+|
2 |ωR − ω′−|

2 (A.13)

with the correction amplitude from spectral wandering

Csw = 4|ε|2g4γsw

γg

[
4g2 κ

γg

+ κ2 + 4(ωR − ωC)2
]−1

. (A.14)

Different to the pure dephasing case, the correction amplitude for spectral wandering Csw

depends on ωR − ωC. However, as for Cpd, the dependence on experimental parameters

(ωR, ωC) is only weak as g ≈ κ� γg.

Treating both correction amplitudes Cpd, Csw as approximately constant, the emitter

broadening induces, along with the renormalization of γg, a correction to the Lorentzian

and dispersive lineshape constituents according to

〈a†a〉 = 〈a†a〉′

+ ReU+L(ωR − ω′+) + ImU+D(ωR − ω′+)

+ ReU−L(ωR − ω′−) + ImU−D(ωR − ω′−) ,

(A.15)
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with amplitudes

U± =
π

Imω′±

C
(ω′± − ω′∓)(ω′± − ω′∗∓)

. (A.16)

From symmetry we find ImU+ = − ImU−. In the strong coupling regime, and also

for large cavity-emitter detuning, U± is largely real valued. Hence we expect as the

main signature of emitter broadening a significant increase of the Lorentzian lineshape

contribution, while the dispersive lineshape constituent remains unaffected.

A.4 Contribution to signal from exciton decay

We address the role of the bare exciton population 〈b†b〉 whose contribution to the

detection signal is expected to be negligible as the experiment is performed in a confocal

detection scheme such that the coupling to the bare cavity mode only is efficient. From

the model M1 eq. (A.4) we find

〈b†b〉
〈a†a〉

=
g2

(ωX − ωR)2 + (γg/2)2
, (A.17)

i.e. a parasitic contribution from 〈b†b〉 to the detection signal must show the following

signatures: (i) be proportional to 〈a†a〉 and (ii) be strongly enhanced at ωR ≈ ωX. Sig-

nature (i) is clearly not observed in the experiment: 〈a†a〉 is small in the polariton gap

yet the deviation between M1 and the experimental data is largest here. Signature (ii)

is not observed for strong cavity-exciton detuning where model M1 perfectly reproduces

both cavity-like and exciton-like resonance amplitudes at ωR = ωC and ωR = ωC, re-

spectively. We thus conclude that the contribution of 〈b†b〉 cannot explain the most

dominant deviations between model M1 and the experimental results.

A.5 Bare emitter optical properties

The analysis in Appendix A.3 was limited to the weak excitation regime where a broad-

ening effect on the emitter can be quantified, while the underlying mechanism (pure

dephasing or spectral wandering) remained ambiguous. This limitation is lifted in the

strong excitation regime: when saturation effects become important a distinction can

be made. The full cavity-coupled emitter dynamics are difficult to solve, however the

bare emitter dynamics are readily accessible. The bare exciton emission under resonant
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excitation – commonly referred to as resonance fluorescence – follows the Hamiltonian

H = ~(ωX − ωR)b†b+
~Ω

2
(b† + b) , (A.18)

where Ω is the Rabi frequency of the resonant excitation of the emitter. As before, we

introduce the radiative decay rate γ in freespace and pure dephasing rate γpd by Lindblad

operators. The optical Bloch equations on the exciton population and coherence then

read

d

dt
〈b†b〉 = −γ〈b†b〉 − iΩ

2
〈b†〉+

iΩ

2
〈b〉 (A.19a)

d

dt
〈b†〉 =

[
i(ωX − ωR)− γ + γdp

2

]
〈b†〉+

iΩ

2
− iΩ〈b†b〉 . (A.19b)

The steady-state population results in a Lorentzian line

〈b†b〉 =
Ω2γ̄/γ

4(ωR − ωX)2 + γ̄2 + 2Ω2γ̄/γ
, (A.20)

with the combined rate γ̄ = γ + γpd. The observed experimental linewidth Γ, when the

emitter is subject to an additional broadening due to spectral wandering γsw, is after

Lorentzian convolution

Γ =
√
γ̄2 + 2Ω2γ̄/γ + γsw . (A.21)

The resonance fluorescence peak intensity I = β〈b†b〉 at resonance ωR = ωX is given by

I = β
Ω2

γ̄γ + 2Ω2
× Γ− γsw

Γ
(A.22a)

= Isat

(
1−

[
Γ0 − γsw

Γ− γsw

]2
)
, (A.22b)

where Isat is the peak intensity at saturation for Ω � γ, Γ0 = γ + γpd + γsw is the

linewidth for Ω → 0, and β is the overall instrumentation factor. Equation (A.22b)

expresses the power-dependent resonance fluorescence intensity I in terms of convenient

observables Isat and Γ, where β and the Rabi frequency Ω have been eliminated. In the

case γsw = 0, the intensity I yields a linear relation to Γ−2 with intersects at Isat and

T2-limited rate γ̄. A non-vanishing spectral wandering rate γsw 6= 0 violates the linear

relation, allowing γsw to be used as a robust fitting parameter.

We investigate the spectral wandering of single quantum dots in the same sample area
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Figure A.2. Resonance fluorescence peak intensity (left scale) and FWHM linewidth (right scale)

for three investigated quantum dots (symbols). The peak intensity dependence with resonant pump

power matches a three-level-description to a high degree, where the assumed third level is nonresonantly

pumped (solid lines). From the three-level description we extrapolate to the corresponding two-level dy-

namics (dashed lines) where the third level is eliminated from the dynamics. The linewidth dependence

with resonant pump power is already well reproduced by the two-level description.

and wavelength as in the microcavity experiment of the article. Although the very same

quantum dot cannot be conserved between configurations, we assume a close statistical

resemblance.

Figure A.2 shows as symbols the peak resonance fluorescence intensity I as a function

of the resonant excitation power P for three different quantum dots as well as their

corresponding resonance FWHM linewidths. Additional with the resonant excitation,

we require an ultraweak non-resonant excitation to observe the resonance fluorescence,

as was the case in the experiment in the article. Beyond saturation at about 10 nW of

monitored resonant excitation power, the resonance fluorescence peak intensity drops

with further increase in excitation power, in contrast to the two-level model. We at-

tribute this breakdown to a spurious coupling to a third level (e.g. a different charge

state, either of the quantum dot or the environment). Indeed from a simple rate equa-

tion model, where a third state is non-resonantly driven from either the upper or lower

level at smaller rate εP , the steady-state population of the upper level is

I3 = β
(1 + εη1)P

ξ0 + (2 + εξ1)P + εξ2P 2
, (A.23)
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Figure A.3. Measurement of the resonance fluorescence peak intensity versus the inverse squared

linewidth (symbols) for the three investigated quantum dots. A vanishing spectral wandering rate yields

a linear relation (dotted line), while the experimental data is consistent with a spectral wandering rate

of ≈ 1.5µeV for QD1 and QD3. On QD2 no consistent determination of the spectral wandering rate is

found. The open symbols at very low resonant excitation power have been disregarded from the fit, as

the collected intensity is dominated by photoluminescence from an ultraweak non-resonant excitation

scheme.

where the coefficients η1 < 1 and ξi depend on the details of the relaxation rates. The

power dependence of I3 in eq. (A.23) is quantitatively well reproduced in the exper-

imental data. Under the assumption εη1, εξ1 � 1 we determine ξ0 and (εξ2)−1 (see

Table A.1). Taking the limit εξ2 → 0, this allows us to extrapolate from the resonance

fluorescence intensity I3 of the three-level system the expected resonance fluorescence

intensity I2 = P/(ξ0 + 2P ) of an effective two-level system where the third level contri-

bution is eliminated. The extrapolated intensity is shown in figure A.2 as dashed line.

In terms of resonance linewidth, the experimental data show no significant deviation

from a two-level description.

Figure A.3 shows as symbols the resonance fluorescence intensity as a function of

the inverse squared linewidth Γ−2 for the three investigated quantum dots (filled sym-

bols). At very low resonant excitation powers, the collected intensity is dominated by

the photoluminescence intensity from the additional ultraweak non-resonant excitation

scheme. For this reason, we discard the data for very low collected intensities (open
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Table A.1. Experimental results on the bare emitter system for QD1−3.

Quantity Unit QD1 QD2 QD3

λ nm 941.79 937.41 939.04
ξ0 nW 7.0± 0.5 10.3± 0.9 20.3± 6.5

(εξ2)−1 µW 0.111± 0.09 0.55± 0.08 0.113± 0.051
Γ0 µeV 3.84± 0.04 3.17± 0.08 3.10± 0.02
γsw µeV 1.4± 0.3 0.2± 0.3 1.5± 0.1
γpd µeV ≈ 1.6 −∗ ≈ 0.8

∗ No consistent determination of γsw was found for QD2.

symbols). Applying the relation eq. (A.22b) to the data, for QD1 and QD3, the relation

is well reproduced for γsw = 1.5±0.1µeV and 1.4±0.2µeV respectively (solid line). For

comparison the best fit for γsw = 0 (dotted line) is in clear contradiction to the exper-

imental data. For QD2 no significant spectral wandering is observed, however we note

that the relative error on the resonance fluorescence intensity is considerably larger than

for the other QDs and no consistent behaviour at low intensity is found. Thus on QD2

no reliable estimation of the spectral wandering rate can be obtained. The T2-limited

linewidth γ̄ = γ + γpd = Γ0 − γsw evaluates to ≈ 2.44µeV (1.6µeV) for QD1 (QD3).

As the transform-limited radiative decay rate γ ≈ 0.8µeV, we estimate a corresponding

pure dephasing rate of γpd ≈ 1.6µeV (≈ 0.8µeV) for QD1 (QD3).

In summary, we observe that spectral wandering is likely to represent a dominating

broadening mechanism in the investigated sample. This result underlines the major

statement of the article: the cavity-coupled exciton cooperativity can be readily en-

hanced if the additional emitter broadening, identified as spectral wandering, can be

reduced.
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