Multispecific anion exchange in basolateral (sinusoidal) rat liver plasma membrane vesicles

Hugentobler, G. and Meier, P. J.. (1986) Multispecific anion exchange in basolateral (sinusoidal) rat liver plasma membrane vesicles. American journal of physiology. Gastrointestinal and liver physiology, Vol. 251, H. 5 , G656-G664.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5261800

Downloads: Statistics Overview


The mechanisms and driving forces for hepatic uptake of sulfate were investigated in basolateral (sinusoidal) rat liver plasma membrane vesicles. A transmembrane pH difference (pH 8.0 inside, 6.0 outside) stimulated sulfate uptake above equilibrium ("overshoot"). This pH gradient-stimulated sulfate uptake was saturable with increasing concentrations of sulfate and could be inhibited by probenecid, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), carbonyl cyanide p-(trifluoromethoxy)-phenylhydrazone, and nigericin. At low buffer concentrations and pH 6.0 an inwardly directed sodium gradient also stimulated sulfate uptake. This sodium-dependent sulfate uptake could be inhibited by amiloride and DIDS, indicating indirect coupling of sodium and sulfate flux through concomitant sodium-proton and sulfate-hydroxyl exchange. Cisinhibition of initial pH gradient-stimulated sulfate uptake, as well as transstimulation of sulfate uptake under pH-equilibrated conditions (pH 7.5 inside and outside), were observed with sulfate, thiosulfate, oxalate, and succinate, but not with chloride, bicarbonate, acetate, lactate, pyruvate, p-aminohippurate, citrate, glutamate, aspartate, and taurocholate. Furthermore, cholate and sulfobromophthalein exhibited competitive inhibition of pH gradient-stimulated sulfate uptake. In addition, an inside-to-outside hydroxyl gradient also stimulated uptake of cholate and this pH gradient-sensitive portion of cholate uptake was inhibited by extravesicular sulfate. In contrast to basolateral membranes, no evidence for multispecific sulfate-hydroxyl exchange was found in canalicular plasma membrane vesicles.
Faculties and Departments:11 Rektorat und Verwaltung > Vizerektorat Forschung
UniBasel Contributors:Meier-Abt, Peter J.
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Physiological Society
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:21
Deposited On:22 Mar 2012 13:23

Repository Staff Only: item control page