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1 General Introduction 
 

Heritable genetic information is encoded by DNA (Watson and Crick, 1953) which is 

transcribed into RNA and ultimately translated to proteins, determining thus the cells 

regulatory mechanisms, metabolic function as well as structure and shape. Cells sharing 

same DNA (genotype) differentiate to form multicellular organisms with a wide range of 

functional and structural characteristics (phenotype). Apart from a set of essential 

housekeeping genes, cells exhibit a highly regulated tissue specific gene expression 

patterns. Bone, muscle, skin are tissues made up of fundamentally divergent cell types 

despite having the same genotype. 

Phenotypic heterogeneity is not restricted to differentiated cells in multicellular organisms. In 

microbiology, advances in single cell analysis revealed cell-to-cell variability to be common 

within populations of isogenic bacteria. A few examples of phenotypic variability evident in 

bacteria include; persistence where dormant bacterial cells are formed within the population 

leading to antibiotic resistance (Balaban et al., 2004), lactose utilization and chemotaxis in 

Escherichia coli (Davidson and Surette, 2008), bistablility in genes expression of extracellular 

matrix and spore formation in Bacillus subtilis (Chai et al., 2007; Veening et al., 2008). Hence 

a genome cannot be considered as a deterministic phenotypic blueprint. Instead a phenotype 

is a product of combinatorial expression and repression of specific sets of genes.  

 

1.1 Epigenetics 
 

“If you want to start an argument, ask the person who just said “epigenetic” what it really 

means” (Language and dispute 2008). Although it is undisputed that epigenetics is of high 

biological importance there is still a big debate on what it actually means. The Greek term 

“Epi” translates to “above” or “in addition”. The term Epigenetics is used typically to describe 

heritable non-genetic based changes in gene expression.  

Before epigenetics became a major term in current scientific vocabulary as well as a vital 

field of research the word had historically been used to describe two different biological 

processes. In 1957, Conrad Waddington first used the term epigenetic to link two separate 

fields at the time, developmental biology and genetics, describing Epigenesis that is the 

development of a phenotype from genotype (Waddington, 1957). In 1958, epigenetics was 

used by David Nanney to describe inherited events deviating from conventional genetics.  
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About 30 years later in the 1990s, an explosion in the use of the word epigenetics started 

notably after reports of DNA methylation status being transmitted through the germ line and 

altering gene expression (Doerfler, 1981; Harrison et al., 1983; Jones, 1985; Holliday, 2006). 

In his book Epigenetic Mechanisms of Gene Regulation, Arthur Riggs defined epigenetics as 

“the study of mitotically and/or meiotically heritable changes in gene function that cannot be 

explained by changes in DNA sequence” (Russo et al., 1996). This definition seems 

nevertheless very lossless, assigning the unexplainable to epigenetics.  

To present several biological processes including cellular differentiation, gene regulation, 

aging, response to environmental effectors, embryology, tumors, and other diseases have 

been directly linked to epigenetics. Such events are associated to direct DNA and chromatin 

modification marks, RNA interference, as well as higher order structures of chromosomes 

and nucleus (Holliday, 2006).  

Epigenetics redefines great works of Mendel and Darwin and is suggested to revive 

Lamarckian theories mainly through the controversial heritable response to environmental 

stress (Heard and Martienssen, 2014). 

 

1.2 DNA methylation and Prokaryotic Epigenetics 
 

Methylation is a chemical post-synthetic modification of DNA. In eukaryotes epigenetics has 

emerged as a significant phenotypic determinant, in addition to the sequence of nucleotides 

in a genome. Eukaryotic DNA methylation is predominantly mediated by the DNA 

methyltransferase (dnmt) gene family modifying cytosine bases into 5-methylcytosine (5mC) 

in the context of CpG dinucleotide or CpHpG (H = A, T, C). 5mC has been correlated with 

gene silencing and given its significance, 5mC has been termed the 5th base (Bird, 2007). 

Recently, additional DNA modifications such as 5-hydroxymethylcytosine or DNA 

glycosylation have been described in eukaryotes (Yu et al., 2012). 

Unlike methylation in eukaryotes, prokaryotes exhibit chemically more diverse modifications 

including 6-methyladenine (6mA), 4-methylcytosine (4mC) and 5mC (Bestor, 1990; 

Pomraning et al., 2009). DNA methylation in bacteria is not confined to CpG dinucleotide, 

instead a diverse set of methyltransferases bind the DNA at specific sequence motifs adding 

a methyl-group at a particular base (Bestor, 1990). The DNA modification process starts by 

the binding of a methyltransferase enzyme to a sequence motif, followed by flipping of the 

target base and transferring a methyl group using S-adenosyl-L-methionine (AdoMet) as the 

group donor (Casadesús and Low, 2006). 



General Introduction 3 
 

 

Historically, prokaryotic DNA methylation was mainly characterized as part of restriction-

modification systems (RMS) and its antiviral defense mechanisms (Arber and Linn, 1969). 

RMS typically consists of a restriction enzyme and a cognate methyltransferase sharing the 

same DNA target motif. Host genome is methylated and protected, whereas un-methylated 

foreign DNA, for instance of viral origin, gets cleaved by the restriction enzyme. The sheer 

diversity of RMS is collected in a dedicated database (REBASE) containing information from 

a large number of microorganisms (Roberts et al., 2010). 

With time, the mechanisms and functions of DNA methylation revealed to be more complex. 

Evidence of hemi-methylated DNA and methylation-dependent restriction enzymes cleaving 

DNA only in the presence of specific DNA methylation patterns challenged the assigned 

function of RMS as a defense mechanism (Camacho and Casadesús, 2005). Similarly, the 

identification of “orphan” methyltransferases, such as the DNA Adenine Methylase (Dam), in 

several organisms lacking a cognate restriction enzyme suggested methylation to have 

additional biological aspects (Palmer and Marinus, 1994). Adding to the puzzle was the 

characterization of many different DNA methyltransferases potentially active within a 

bacterial cell (Ishikawa et al., 2010). 

A detailed exploration of numerous bacterial transcriptomes suggests that transcription in 

bacteria resembles that of eukaryotes in terms of complexity more closely than was 

previously thought (Güell et al., 2011). Although considered simpler model organisms to 

study, prokaryotic epigenetics gained less attraction compared to eukaryotes due to the lack 

of tools to detect the diverse types and specificities of methylation in bacteria. Until recently, 

DNA methylation detection methods mostly targeted the simpler 5mC CpG patterns of 

eukaryotes, however novel sequencing technologies (section 1.3) have closed this gap 

enabling a more broad detection of DNA modifications and paving the way for a boom in 

bacterial epigenetic research (Flusberg et al., 2010) . 

With the advances in DNA methylation detection, recent studies link prokaryotic DNA 

methylation with several biological functions. In Mycobacterium tuberculosis, the mamA 

methyltransferase activity was correlated with the regulation of gene expression ensuring 

hypoxic survival (Shell et al., 2013). Caulobacter crescentus ccrM methyltransferase 

regulation was in return found to be crucial for cell cycle regulation (Kozdon et al., 2013). A 

similar mechanism was also proposed for Mycoplasma pneumoniae (Lluch-Senar et al., 

2013). Epigenetic effects are further postulated to enabling a small fraction of cells in 

isogenic Mycobacteria populations to resist antibiotics (Wakamoto et al., 2013). In addition, 

genetic re-arrangements was reported to generate genetic and epigenetic diversity in cell 

populations of Streptococcus pneumoniae and Helicobacter pylori (Manso et al., 2014; 

Furuta et al., 2014). DNA methylation was also linked to E. coli mtuH DNA mismatch 
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recognition and repair mechanisms (Casadesús and Low, 2013a).  

 

1.3 Detection of DNA modifications using SMRT sequencing 
 

Pacific Biosciences' Single Molecule Real-Time (SMRT) sequencing is based on the direct 

monitoring of DNA polymerase during its processing of single DNA molecules. The 

monitoring of individual DNA polymerase complexes is enabled by the scattering of light 

through a small aperture in the bottom of Zero Mode Waveguides (ZMW) chambers with ~70 

nm diameter (Figure 1-1A). The laser light from below penetrates only the lower 20-30 nm of 

the ZMW where a DNA molecule and polymerase complex is immobilized at the bottom, 

reducing interference and background noise (Flusberg et al., 2010). If associated with an 

extension reaction, phosphor-linked fluorescent labels on nucleotides are cleaved and light 

pulse is emitted. Not only the color and thereby the nucleotide sequence is recorded, but 

also the kinetics of base incorporations by engineered DNA polymerase complexes. Due to 

direct effects of steric hindrance, different modifications may be discriminated by divergent 

specific kinetic signatures (Figure 1-1B). Modifications displaying weak SMRT signals such 

as 5mC can be enzymatically oxidized and converted with the Tet1 enzymes into the bulkier 

5-carboxylcytosine (5caC) (Tahiliani et al., 2009) and thereby the SMRT signal on 5mC is 

enhanced, while maintaining detectability of other modifications (Clark et al., 2013). 

Reproducible alterations in the kinetics allow the detection of modifications on the specific 

DNA strand serving as template for DNA synthesis. The chemistry and analysis methods of 

this novel third generation DNA sequencing are continuously developing with modeling 

approaches further improving the localization of kinetic variation events (Fang et al., 2012). 

Sequencing small genomes with SMRT represents a highly accurate sequencing method 

and the extended lengths of sequence reads can enable the closure of bacterial genomes. 

The determination of DNA modification profiles represents a unique advantage of SMRT 

technology, which may have a profound effect on our understanding of this biology (Roberts 

et al., 2013).  
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A 

 

B 

 

Figure 1-1: (a) a cartoon of the ~70 nm Zero Mode Waveguides (ZMW) chambers with the 

polymerase-DNA molecule complex fixed at the bottom. (b) Schema of DNA Synthesis with 

methylated (top) and unmethylated (bottom) bases and the corresponding typical SMRT sequencing 

florescenses traces of nucleotide incorporation rate. Letters on top refer to the nucleotides on the 

synthesized strand. Dashed arrows before thymine base indicate the Inter-pulse duration (IPD) of 

nucleotide incorporation. At the example of 6
m
A in this sequence context, the IPD is 5 times larger 

than un-methylated Adenosine. Adapted from (Flusberg et al., 2010).  
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1.4 Neisseria meningitidis 
 

Neisseria meningitidis is a gram-negative diplococcal proteobacterium and one of the major 

causes of bacterial meningitis and sepsis worldwide. Infectious meningococcal meningitis is 

likely a newly emerged health care problem (Greenwood, 2006). The disease was first 

described by Vieusseux after an outbreak in Geneva Switzerland causing 33 deaths in 1805 

(Vieusseux, 1805). Shortly after in 1806 two American physicians Elias Mann and Lothario 

Danielson reported another outbreak in Massachusetts, USA (Danielson and Mann, 1806). In 

1887, the Viennese doctor Anton Weichselbaum first isolated the bacterium from patients, it 

was initially named Diplococcus intracellularis (Weichselbaum, 1887). 

Neisseria meningitidis is an obligate human pathogen and a regular commensal of the 

nasopharyngeal mucosa. The rate of asymptomatic carriers within a population is in general 

around 10% (Caugant and Maiden, 2009), but also varies considerably depending on age 

and conditions peaking among adolescents, as well as in military and university dormitories 

(Caugant and Maiden, 2009; Christensen et al., 2010). Early diagnosis is key to treat the 

disease, after onset of symptoms it could rapidly lead to disability or death in as short as 24 

hours (Stephens et al., 2007). Consequently, meningococcal meningitis is a deadly disease 

worldwide especially in regions with little to no access to medical care.  

In comparison to carriage, invasive meningococcal disease is rare with incidents rate 

between 0.5 to 1000 cases/100,000 individuals depending on the epidemiological region 

(Pizza and Rappuoli, 2015). In high income countries the disease is in continuous decline 

(0.15 per 100,000 in the USA in 2012) (Andrews and Pollard, 2014). However, Sub-Saharan 

Africa still suffers the highest burden of meningococcal meningitis (Leimkugel et al., 2007). 

 

1.4.1 Meningitis belt 

 

After an extensive survey, Lapeyssonnie published his “La méningite cérébro-spinale en 

Afrique” in 1963, where he first introduced the term Meningitis Belt. Lapeyssonnies’ 

comprehensive epidemiological survey allowed him to recognize unusual meningococcal 

infection patterns unique to the region bounded between the Sahara and the tropical forests. 

His pioneering work included a description of the disease causative agent, asymptomatic 

carriage, periodicity of epidemics, climate influence and clinical aspects (Lapeyssonnie, 

1963) which are still effectively valid to present.  

Within the meningitis belt (Figure 1-2) meningococcal disease occur in recurring epidemic 
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cycles every eight to 12 years leading up to 10,000 deaths annually (Leimkugel et al., 2007; 

Teyssou and Muros-Le Rouzic, 2007). Another peculiar behavior is the epidemics 

seasonality, peaking towards the end of the dry season, stopping abruptly at the arrival of the 

rainy season only to start over again with the start of the dry season. Typically during the dry 

season the temperatures can drop below 10 degrees leading to population congregation, and 

strong blowing winds (Harmattan) carrying fine desert dust disrupting nasopharyngeal 

mucosa likely to facilitate invasion (Molesworth et al., 2003). 

 

1.4.2 Classification 

 

Clinical infections have almost entirely been attributed to encapsulated strains. Among 13 N. 

meningitidis serogroups, defined based on the capsular polysaccharide structure, six 

serogroups (A, B, C, W-135, X, and Y) have mainly been responsible for the large majority of 

infections (Virji, 2009). The biochemical composition of the polysaccharide capsule 

determines strain’s serogroup. Invasive serogroups A & X are formed by N-acetyl-d-

mannosamine-6-phosphate and N-acetylglucosamine 1-phosphate whereas serogroups B,C, 

W-135 and Y capsule is composed of sialic acid (Tzeng et al., 2003) . Nevertheless, 

recombination events allow N. meningitidis to alter its capsular polysaccharide phenotype 

(Swartley et al., 1997).  

Until World War II, most epidemics in North America and Europe were attributed to 

serogroup A (Greenwood, 1999). Since then serogroup A practically diminished, responsible 

for <1% in the late 1990s of the cases, serogroup B is however causing the majority of cases 

as well as local outbreaks caused by serogroup C (Harrison et al., 2009). On the other hand, 

serogroup A remained a major contributor to infections in Asia and Africa, however the 

introduction of monovalent A conjugate vaccine in 2011 is reducing the infection rate caused 

by this serogroup (Daugla et al., 2014). Figure 1-2 denotes the distribution of the major 

serogroups worldwide.  

Neisseria meningitidis serogroups can be further sub-classified into serotypes, subtypes and 

immunotypes based on outer membrane proteins and lipopolysaccharides antigens 

(Poolman et al., 1995). In addition, in 1998 Maiden et al. developed Multilocus Subtyping 

(MLST) whereby unique alleles defined by 500 basepair fragments of seven housekeeping 

genes are identified. The combination of alleles result in a sequence type (ST) and clusters 

of closely related strains are grouped into clonal complexes (CC) (Maiden et al., 1998). Over 

the past 20 years most serogroup A epidemics within the African meningitis belt were caused 

by ST 5, 7 and 2859 (Lamelas et al., 2014; Caugant et al., 2012; Teyssou and Muros-Le 
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Rouzic, 2007). 

 

Figure 1-2: The African meningitis belt in grey shades with the global spread of N. meningitidis 
serogroups. Figure adapted from (Harrison et al., 2009) 

 

 

1.4.3 Neisseria genomic plasticity  

 

The asexual reproduction of bacteria through “binary fission”, whereby a mother cell divides 

into two genetically identical daughter cells (clones) theoretically limits genetic variation. 

Consequently, genotypic variants would only be the outcome of de novo mutagenesis and 

selection coupled with the accumulation and propagation across generations. Based on 

MLST profile, some organisms such as Salmonella enterica, Mycobacterium tuberculosis 

and Bacillus anthracis are indeed genetically clonal with largely uniform MLST profiles 

(Achtman, 2004; Boyd et al., 1997). On the other hand, although meningococcal clonal 

clusters remain detectable through their MLST profile, the introduction of pulsed field gel 

electrophoresis in 1990 quickly revealed a strikingly dynamic chromosomal structure of N. 

meningitidis. Some strains, even belonging to the same clonal complex, had evidently 

divergent restriction patterns (Smith et al., 1993; Bautsch, 1998; Gagneux et al., 2000; 

Schoen et al., 2009). Notably, large genomic rearrangements (40 kb deletion) were also 

observed during the course of infection of a single strain (Vogel and Frosch, 2002). 

The high throughput sequencing era revealed more peculiar plasticity of the meningococcal 

genome. In the year 2000, whole genome sequences of two strains of serogroup B (Tettelin 
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et al., 2000) and serogroup A (Parkhill et al., 2000) were published. Since then a steadily 

increasing number of sequenced genomes is becoming available (18 closed genomes so far) 

which have shed the light on mechanism mediating remarkable genome plasticity allowing 

genetic and antigenic variation (Schoen et al., 2009). Comparative genomics of sequenced 

strains, including carriage and invasive strains as well as closely related commensal species 

like Neisseria lactamica helped to identify several virulence factors (Bentley et al., 2007). 

Nevertheless, no pathogenic genotypes or classic pathogenicity islands could be identified 

so far differentiating invasive from commensal isolates (Perrin et al., 2002; Virji, 2009). 

 

Recombination 

 

Meningococcal competence for natural transformation and recombination is a determinant 

factor driving its dynamic genome structure at the level of gene content and sequence 

diversity (Jolley et al., 2005). High frequency of recombination has been reported in several 

studies (Hao et al., 2011; Holmes et al., 1999; Kong et al., 2013; Lamelas et al., 2014). The 

genomic flexibility of Neisseria meningitidis allows for horizontal transfer of entire genes as 

well as intragenic fragments. Hence, mutations occurring in different genomes could be 

shared within the population thus having a profound impact on biological processes, 

phenotype and adaptation (Kong et al., 2013). The meningococcus has also been reported to 

acquire DNA fragments from other commensal species such as N. cinerea and N. flavescens 

sharing the nasopharyngeal environment (Bowler et al., 1994). 

A diversity of genes associated with virulence and contributing to surface and antigenic 

variation in N. meningitidis have been reported as recombination hot spots including, 

penicillin binding proteins (penA), pili (pil locus) and adhesion genes (maf locus), surface 

antigens glycosylation genes (pgl locus) as well as capsule and vaccine target genes, 

(Bowler et al., 1994; Hao et al., 2011; Joseph et al., 2011; Kong et al., 2013; Lamelas et al., 

2014).  

Restriction modification systems (RMS) have been suggested as a tool utilized by a bacteria 

to control genetic exchange. RMS could theoretically block homologous recombination 

between strains having non-matching methylation patterns by cleaving such DNA fragments 

at corresponding recognition sequences (Budroni et al., 2011; Jeltsch, 2003). Such a 

mechanism remains controversial and species-specific. Helicobacter pylori for example, 

displays a significant correlation of methylation target sequences occurrence at end points of 

identified recombination fragments (Lin et al., 2009). On the other hand, several reports on 

recombination between different meningococcal clonal complexes or even different Neisseria 
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species having detectable divergent DNA methylation pattern have been published (Hao et 

al., 2011; Holmes et al., 1999). Recently, few studies have suggested a transient effect of 

restriction modification systems on recombination efficiency, attributed partially to the 

plasticity of RMS and differential distribution across clonal complexes as well as the 

meningococcus competence for single stranded DNA recombination (Budroni et al., 2011; 

Kong et al., 2013).  

 

Phase-variation 

 

Adaptability is a vital strategy that allows pathogens to endure stress conditions such as 

rapidly changing environment, variable nutrient sources, host and tissue specific immune 

stress (Balaban et al., 2004; Zhou et al., 2014). A rapid response by a pathogen requires a 

prompt ability to modulate gene expression (Avery, 2006). Stochastic de novo mutations and 

selection does indeed produce genotypic variants, however random mutations are often 

deleterious, less likely to be reversible and the selection process occurs over several 

generations (Rando and Verstrepen, 2007). Phenotypic variability in clonal (genetically 

uniform) population of bacteria is observed in several pathogenic species. Transient 

phenotypes have been traditionally associated with non-genetic mechanism; nevertheless, 

reversible genotypic variations have been also identified to mediate phenotypic heterogeneity 

(Goldberg et al., 2014).  

Special genomic sequences referred to as short tandem repeats (STRs) have been reported 

as unstable loci subject to reversible extension/contraction via insertion/deletion mutations of 

repeat units leading to divergent yet interchangeable phases. The average rate of typical 

mutations of a gene in bacteria is 10−9 mutations per division (Bayliss, 2009); certain 

microsatellite sequences (1-10 unit size) can however reach up to 10-3 mutations per division 

(Bayliss, 2009). This special reversible, localized, stochastic and rapid mechanism is term 

termed phase-variation (van Ham et al., 1993).  

Two hypothetical models have been proposed for the observed high frequency length 

variability of STRs associated with phase-variable genes: replication induced strand slippage 

(slipped-strand mispairing) and intra/inter repeat recombination (Figure 1-3). Although the 

first model is less characterized, it’s presumed that self-pairing of the repeat region during 

the replication process causes DNA polymerase slippage. Looping of the nascent strand 

causes elongation of the repeat region, conversely looping of the template strand results in a 

shortening of the repeat region (Figure 1-3B) (Gemayel et al., 2010; Tachida and Iizuka, 

1992). Recombination is however more potent in altering longer tandem repeats by unequal 
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crossing over (Figure 1-3A) (Zhou et al., 2014). In addition, a double strand breakage and 

repair model have been proposed leading to expansion and contraction of tandem repeat loci 

(Pâques et al., 1998). 

Phase-variation provides pathogens with an additional layer of genome plasticity allowing 

some genes to be transiently expressed. Early reports of phase-variation described ON/OFF 

switching of Opa gene family in Neisseria gonorrhoeae caused by frameshifts introduced by 

a CTCTT microsatellite variable repeat region located inside the open reading frame (ORF) 

(Stern et al., 1986). Since then several phase-variable loci have been reported in pathogenic 

and commensal bacteria such as Haemophilus influenzae, Neisseria meningitidis and 

Campylobacter jejuni (Bayliss, 2009; Parkhill et al., 2000; Saunders et al., 2000). In N. 

meningitidis several phase-variable loci have been reported (Table 1-1), some of which are 

located within ORF sequence leading to ON/OFF switching by causing frameshifts 

(Saunders et al., 2000), others are located in promoter regions and could influence gene 

expression by complex mechanisms such as interaction with transcription factors binding 

sites or altering mRNA stability (Loh et al., 2013). 

 

 

 

 

Figure 1-3: Simplified models illustrating mechanisms of tandem repeat length variation. 

Source (Gemayel et al., 2010). 
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Growing evidence suggest phase-variation as one of the vital mechanisms triggering immune 

evasion through rapid antigenic variation and apt response to stress within a bacterial 

population. In addition, identification of an increasing number of phase-variable genes within 

the genome therefore allows for combinatorial expression profiles. A cell phasotype denotes 

the combinatorial expression state (ON/OFF) of a set of phase-variable genes. The 

phasevariome however, signify the cumulative percentage of an expression state of 

individual genes within the whole population (Bidmos and Bayliss, 2014).  

Besides driving antigenic variation, phase-variation also contributes to epigenetic variability. 

In several bacterial species including meningococci, a number of methyltransferase genes 

are also reported to undergo phase-variation. These are mainly type I and type III restriction 

modification systems (Zhou et al., 2014). Meningococci have two phase-variable type III 

RMS genes (even three in some strains) which were reported to have an effect on gene 

expression (Table 1-1) (Seib et al., 2011; Srikhanta et al., 2009). 

 

 

     Table 1-1: Confirmed phase-variable loci in N. meningitidis. 

Moiety Locus Microsatellite Reference 

Adhesins 

Opa 

NadA 

CTCTT 

TAAA 

(Stern et al., 1986) 

(Martin et al., 2005) 

Capsule 

siaD 

CssA 

C 

TATACTTA 

(Loh et al., 2013) 

Iron binding 

hpuA 

hmbR 

G 

G 

(Lewis et al., 1999) 

(Tauseef et al., 2011) 

Lipopolysaccharides lgtA C (Saunders et al., 2000) 

Outer membrane protein porA G (Jennings et al., 1999) 

Glycosylation pglA G (Snyder et al., 2001) 

Restriction-modification 
systems 

modA 

modB 

modD 

AGCC 

CCCAA 

ACCGA 

(Srikhanta et al., 2009) 

(Srikhanta et al., 2010) 

(Seib et al., 2011) 
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2 Objectives 
 

The aim of this PhD thesis was to develop bioinformatic tools to investigate genetic and 

epigenetic variation in Neisseria meningitidis population.  

Specific aims: 

 Assay and compare the DNA methylome of two serogroup A Neisseria meningitidis 

isolates using the recent single molecule real-time sequencing technology.  

 

 Analyze the consequences of DNA methylation in the sequenced isolates. 

 

 Develop bioinformatic tools to analyze microsatellite repeat length variation using 

sequencing data. 

 

 Identify phase-variable genes using the developed tools by comparing a closely 

related set of meningococcal genomes. 
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3.1 Abstract: 

 
The gram-negative prokaryote Neisseria meningitidis features extensive genetic variability. To 

present, proposed virulence genotypes are also detected in isolates from asymptomatic carriers, 

indicating more complex mechanisms underlying variable colonization modes of N. meningitidis. 

We applied the SMRT sequencing method from Pacific Biosciences to assess the genome-wide 

DNA modification profiles of two closely related N. meningitidis strains of serogroup A. The 

resulting DNA methylomes revealed high divergence, represented by the detection of shared target 

motifs and of one novel strain-specific DNA methylation target motif. The positional distribution of 

these methylated target sites within the genomic sequences displayed clear biases, which 

suggests a functional role of DNA methylation related to the regulation of genes. 

DNA methylation in N. meningitidis has a likely underestimated potential for variability, as 

evidenced by a careful analysis of the ORF status of a panel of confirmed and predicted DNA 

methyltransferase genes in an extended collection of N. meningitidis strains of serogroup A. Based 

on high coverage short sequence reads, we find phase-variability as a major contributor to the 

variability in DNA methylation. Taking into account the phase-variable loci, the inferred functional 

status of DNA methyltransferase genes matched the observed methylation profiles. 

Towards an elucidation of presently incompletely characterized functional consequences of DNA 

methylation in N. meningitidis, we reveal a prominent co-localization of methylated bases with 

Single Nucleotide Polymorphisms (SNPs) detected within our genomic sequence collection. 

These findings suggest a more diverse role of DNA methylation and Restriction-Modification 

systems in the evolution of prokaryotic genomes. 
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3.2 Introduction 
 

3.2.1 Neisseria: pathogenicity and genomic plasticity 

 

Neisseria meningitidis is a commensal Gram-negative bacterium exclusively found in the human 

nasopharyngeal mucosa and is readily transmitted via respiratory secretions or saliva (Trivedi et al. 

2011). A small proportion of individuals colonized by a virulent strain may develop invasive disease 

including sepsis or meningitis (Caugant & Maiden 2009), especially devastating as epidemics in 

the African ‘meningitis belt’ (Leimkugel et al. 2007). Regular transmission events in meningitis 

outbreaks indicate that the disease causing invasive colonization mode is at least in part 

'inheritable', in other words a bacterial population can maintain its 'invasive' phenotype. However 

not all transmissions necessarily lead to disease, a complex interplay of host-pathogen interactions 

influences the outcome of invasive infections (Stephens et al. 2007). Vaccination projects have 

dramatically lowered the incidence of meningococcal disease, yet the asymptomatic carriage and 

the high genetic variability of meningococci (Dunning Hotopp et al. 2006) might be responsible for 

occasional reemergence of epidemics (Maiden 2013). Genome sequencing of steadily increasing 

numbers of N. meningitidis strains suggested a number of genotypes associated with virulence 

including genes involved in the synthesis of the polysaccharide capsule. Yet to present no strict 

pathogenic genotype is defined which would allow to distinguish disease-causing strains from 

inoffensive carrier strains (Maiden 2008). 

 

3.2.2 Prokaryotic epigenetics and detection of DNA modifications using SMRT 

 

In eukaryotes, epigenetics has emerged as a significant phenotypic determinant representing an 

additional layer to the sequence of nucleotides in a genome, as showcased by the epigenetic 

roadmap project (Bernstein et al. 2010). DNA methylation in prokaryotes differs by more diverse 

modification types including 6-methyladenine (6mA), 4-methylcytosine (4mC) and 5-methylcytosine 

(5mC), deposited by a diverse set of methyltransferases at specific target sequences (motifs). 

Prokaryotic DNA methylation is therefore not concentrated to the CpG dinucleotide context and 

was in the past mainly characterized as part of restriction-modification (R-M) systems and its 

antiviral defense mechanisms cleaving any unmodified ‘non-self’ DNA (Arber 2000). Contemporary 

sequencing methods enable the determination of genome-wide epigenetic DNA modification maps. 

Pacific Biosciences' Single Molecule, Real-Time (SMRT) sequencing method is based on the direct 

monitoring of the processing of single DNA molecules by DNA polymerase (Eid et al. 2009). The 

kinetics of DNA synthesis enables the genome-wide determination of diverse DNA modifications 
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(Cao et al. 2014), which represents a unique advantage for studying prokaryotic epigenetics 

(Roberts et al. 2013). The approach has previously been successfully applied to the genome-wide 

mapping of methylated adenine and cytosine residues in multiple organisms including pathogenic 

Escherichia coli (Powers et al. 2013), Helicobacter pylori (Krebes et al. 2014), Caulobacter 

crescentus (Kozdon et al. 2013), and Mycoplasma (Lluch-Senar et al. 2013). SMRT sequencing 

enabled to determine previously unknown target sequences and the exact site of methylation of 

specific methyltransferases (Clark et al. 2012). Yet these experiments revealed also considerable 

divergence in the target sequences and/or methylation efficiency, if comparing homologous alleles 

of methylation enzymes in related strains differing by only a few amino acids (Furuta et al. 2014). 

A number of studies in diverse prokaryotic systems have linked deficiencies in DNA methylation 

with altered gene expression patterns (Srikhanta et al. 2009), (Fang et al. 2012), (Furuta et al. 

2014), (Manso et al. 2014). However the molecular mechanisms for direct effects of DNA 

methylation on prokaryotic gene expression are presently not elucidated, and only in single cases 

for instance a positional overlap of differentially methylated target sites with binding sites of 

transcription factors could be shown (Shell et al. 2013) (Kozdon et al. 2013). In many cases the 

detected methylation sites cannot be directly linked to a larger number of differentially expressed 

genes. Accordingly alternative molecular effects of DNA methylation are proposed, including 

interactions at the origin of replication and an involvement in genome replication (Bendall et al. 

2013). 

Variable DNA methylation in Neisseria species has been reported previously (Ritchot & Roy 1990), 

yet no direct association of the activity of a specific DNA adenine methyltransferase (Dam) with 

virulence was found (Jolley et al. 2004). More recently different alleles of the mod DNA 

methyltransferase gene family undergoing phase-variability were associated to divergent cellular 

phenotypes (Furuta et al. 2014). 

Given the described variability in genomic sequences and phenotypes, we set out to investigate 

the epigenetic DNA modification profiles in N. meningitidis isolates. We determine DNA methylation 

target motifs (one or several DNA sequences), and our analysis reveals biased distributions of 

these target sequences in the genomes. We observe high variability in the methylation profiles 

among a population of closely related bacterial isolates. Strikingly, we also discover enrichments of 

SNPs at the precise positions of methylated bases in the genomes, pointing to a role of DNA 

methylation in the evolution of favorable genome configurations. 
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3.3 Materials and methods 
 

3.3.1 Cultivation of strains of N. meningitidis, isolation of genomic DNA 

 

Neisseria meningitidis reference strain Z2491 (DSM No. 15465) was obtained from DSMZ 

(Braunschweig, Germany). N. meningitidis isolates were previously collected over a time period of 

~10 years during meningococcal meningitis epidemics in Sub-Saharan Africa (two sequence types 

ST2859 and ST7). Isolates underwent typically 2 rounds of single colony sub-culturing and over-

night expansion in vitro. For genomic DNA preparation, strains were grown on supplemented GC 

agar base (Oxoid) plates for 20-24 hours in 5% CO2 at 37°C. Single colonies were transferred into 

liquid Brain Heart Infusion (BactoTM) medium and again incubated overnight in 5% CO2 at 37°C. 

Genomic DNA was extracted as described previously (Marri et al. 2010). SMRT sequencing of 

strain NM1264 was performed on aliquots of a genomic DNA sample previously subjected to the 

Illumina sequencing method (Lamelas et al. 2014). 

 

3.3.2 Methylation sensitive restriction digest 

 

NlaIV Restriction enzymes (methylation sensitive target sequence GGNNCC) were obtained from 

New England Biolabs (catalog #R0126) and used according to manufacturer specifications to 

digest 1 ug of genomic DNA of each strain. 

 

3.3.3 SMRT sequencing 

 

Genomic DNA preparations were sheared by sonication to ~500bp fragments, aiming at shorter 

reads with an increased coverage for DNA modification detection. To enhance detection of 5mC 

modifications, enzymatic conversion of 5- methylcytosine (5mC) to 5-carboxylcytosine (5caC) was 

carried out using the 5mC Tet1 oxidation kit (WiseGene) with an input of ~500ng of genomic DNA 

(Clark et al. 2013). Generation of SMRTbell libraries and SMRT sequencing were performed 

following manufacturer instructions (Flusberg et al. 2010) to obtain a strand-specific sequencing 

coverage of about 50X on a standard PacBio RS instrument at the Yale Center for Genomic 

Analysis. Sequencing reads were aligned to Z2491 reference genome (AL157959) or to the 

genome assembly of strain NM1264 (344 contigs in supp. dataset 6). To identify modified 

positions, we used Pacific Biosciences’ SMRTPortal analysis platform, v. 1.3.1. In brief, at each 

genomic position, modification scores (modQV) were computed as the -10 log of a p-value for 

http://www.ncbi.nlm.nih.gov/nuccore/AL157959
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representing a modified base position, based on the distributions of the kinetics of base 

incorporation (IPD ratios) from all reads covering this position and from in silico kinetic reference 

values (details are available at  

http://www.pacb.com/pdf/TN_Detecting_DNA_Base_Modifications.pdf, (Feng et al. 2013)). 

Methylated sequence motifs were identified as previously described (Furuta et al. 2014). 

 

3.3.4 Local deviations in positional distributions of methylation motifs 

 

Occurrences of methylation target sequences in genome sequences were determined using the 

fetchGWI tool (Iseli et al. 2007)The start positions and orientations of 1997 annotated ORFs 

(Parkhill et al. 2000) were used as 'reference feature' to sum up the occurrence counts for each 

methylation target motif ('target feature') using the ChIP-Cor tool (http://ccg.vital-

it.ch/chipseq/chip_cor.php). Thereby motif counts were aggregated within 50bp windows positioned 

relative to the start (position zero) of each ORF. Statistical significance for the observed 

depletions/enrichments in the plotted counts was derived from a comparison to 1000 sets of 

simulated reference features with 2000 random genomic loci each. P-values represent the fraction 

of random reference feature sets exhibiting aggregate motif counts across their corresponding 

50bp windows more extreme than the count observed across the 50bp windows of the ORF set. 

 

3.3.5 Identification of DNA methyltransferase genes 

 

Protein sequences of methyltransferases as obtained from REBASE (rebase.neb.com) were used 

to identify genes with >80% identity via BLAST searches. Potential methyltransferase ORFs were 

attributed the REBASE annotation, as available for the reference strain Z2491. For each of our 

isolate strains each methyltransferase ORF was verified for indels and SNPs (see SNP calling 

below) altering the frame or introducing premature stop mutations and thereby deactivating the 

enzyme. 

 

3.3.6 SNP calling 

 

Single nucleotide polymorphisms (SNP) detection was performed as described in (Lamelas et al. 

2014), (sequence data available at  

http://www.sanger.ac.uk/resources/downloads/bacteria/neisseria.html#t_2). 

In brief, sequence variations relative to the N. meningitidis serogroup A, ST4 strain Z2491 (Parkhill 

http://ccg.vital-it.ch/chipseq/chip_cor.php
http://ccg.vital-it.ch/chipseq/chip_cor.php


DNA Methylation in N. meningitidis 21 
 

 

et al. 2000) were determined, excluding SNPs in phage sequences, recombinant fragments 

(Croucher et al. 2011), and repetitive regions (>50bp) of the reference genome, as identified using 

repeat-match (Holt et al. 2008), (Kurtz et al. 2004). 

 

3.3.7 Co-occurrence of SNPs at methylation motifs 

 

Based on coordinates in BED format of SNPs and of individual bases within target motifs (or non-

target control motifs), we determined the number of overlapping positions using the intersect and 

count commands of BEDTools (Quinlan & Hall 2010). For plotting, the overlap counts between 

mutated bases and methylation sites were normalized by the number of genome wide motif 

occurrences and multiplied by a scaling factor x1000. The specificity of the overlaps to methylated 

positions was ascertained by the comparison to unmethylated positions within methylation target 

sites, as well as within 2 similar control sequences not known as DNA-methylation targets. To test 

the statistical significance of the observed increased overlaps, we assumed a random distribution 

of SNPs over the genome. The null hypothesis of independence between mutations and 

methylations was tested using the Chi-square approximation to the hyper-geometric distribution 
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3.4 Results 
 

3.4.1 SMRT sequencing determines divergent DNA modification profiles 

 

We assayed the DNA methylation profiles of 2 N. meningitidis strains (Z2491 and NM1264) using 

SMRT sequencing at a coverage for each strand approximating 50x on Tet1 converted genomic 

DNA samples. 

The kinetics of polymerase extension steps were compared with previously recorded control values 

for highly similar, unmodified reference sequences (Schadt et al. 2012). We observed diverse 

kinetic variation signals, some of which could be attributed to known modification events such as 

DNA methylation. DNA methylation on each genomic position was represented by a probabilistic 

modification score (“modQV”) comprising base incorporation rates differing from that of the 

unmodified reference sequences. A genomic position is covered by several sequenced DNA 

fragments, and the modification scores include the consistency by which a specific modification 

was observed (supp. datasets S4, S5). SMRT sequencing assessed both DNA strands 

independently, accordingly we determined for strain Z2491 comparable average modification 

scores of 78.97 over 5237 sites with a modification score > 50 on the forward strand versus an 

average of 80.27 over 5246 sites on the reverse strand. In a plot of modification scores against 

sequencing coverage (Figure 3-1), both strains displayed a signal for modified cytosines (green 

dots). Spurious signals on non-cytosine bases in strain Z2491 are due to secondary peaks from 

nearby modified cytosines (see Figure 3-2B). Modification scores on adenosine bases (red dots) 

were clearly dominant in strain NM1264. If comparing to SMRT sequencing of unmodified aliquots 

of identical DNA samples (Figure S3-1), we find a satisfactory specificity of the Tet1-conversion for 

5mC, with a minor reduction of the modification scores for 6mA. 

In order to identify DNA recognition sequences of prokaryotic methyltransferases, we applied the 

SMRT® Analysis software suite from Pacific Biosciences to interpret the kinetic variation data on a 

genome-wide scale. We identified sequence motifs associated with a consistent kinetic variation 

pattern. Table 3-1 summarizes sequence motifs with a stringent modification score threshold >50. 

To relate the discovered sequence motifs with information from REBASE (Roberts et al. 2010) and 

the ORF status of the corresponding gene in the genome sequences, we assessed the presence 

of functional ORFs of DNA methyltransferase genes in the assembled genome sequences. We 

compiled a set of 13 DNA methyltransferase genes (RM genes) occurring in our genomes (Z2491 

and NM1264), based on sequence similarity with established DNA methyltransferase genes in all 

bacterial species in REBASE. 

This comparison allowed attributing the identified motifs to established DNA methylation target 
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motifs (Table 3-1). Two DNA methylation motifs were identified to be common in both N. 

meningitidis strains. A closely similar sequence motif predicted in both strains perfectly fit the 

C5mCGG target motif of the methyltransferase gene M.NmeAI active in both strains. Multiple 

partially overlapping motifs could be attributed to either the T5mCTGG target motif of 

M.NmeAORF1035P or to the related CC[AT]GG target motif of the methyltransferase gene 

M.NmeAORF1500P. Given the considerable similarity of these two target sequences including 

ambiguous positions, we cannot completely exclude technical artifacts in the motif discovery 

defining the target sequence motifs and improvements of the sequence specificity description in 

future REBASE releases. 

Two adenosine methylation motifs were detected exclusively in strain NM1264, consistent with the 

global DNA modification scores in Figure 3-1. The motif ATGC6mAT matches the (predicted) target 

sequence for M.Nme2594ORF759P in REBASE. As a novel finding the motif AC6mACC can be 

attributed to modA12 (M.NmeAORF1589P), which is the only remaining DNA methyltransferase 

with functional ORF solely in strain NM1264 (Table 3-1). Notably this target specificity differs from 

the 5'-AGAAA-3' recognition site of a related modA13 allele in N. gonorrhoeae (Srikhanta et al. 

2009). Our SMRT sequencing results resolved furthermore the position of the modified base within 

target sequences with a yet undetermined position as reported by REBASE, exemplified by 

ATGC6mAT for M.Nme2594ORF759P (Table 3-1). Given the still limited positional resolution of 

5mC even after Tet1 conversion (see also Figure 3-2B), the position calls were considered 

particularly reliable for 6mA modifications. 

The SMRT sequencing results moreover revealed a modification of the sequence motif 

GGNN5mCC, which strain-specific detection associated with an ORF for the gene 

M.NmeAORF1453P complete solely in the strain Z2491. The existence of a methylation-sensitive 

restriction enzyme NlaIV targeting an identical sequence motif (GGNNCC) allowed validating the 

differential methylation as detected by SMRT sequencing. Accordingly NlaIV fragmented the 

genome of strain NM1264, whereas the Z2491 genome methylated at GGNNCC sites resisted 

NlaIV digestion (Figure 3-2A). 

The results of these restriction digests indicated a complete protection and therefore a genome-

wide methylation of 'GGNNCC' sequences in the strain Z2491. However only 48% of the 1817 

instances of 'GGNNCC' sequences were called as modified in SMRT sequencing, despite the 

genome-wide methylation (Figure 3-2B). This limited sensitivity was presumably due to a very 

stringent threshold >50 for the SMRT modification score, to an incomplete enzymatic Tet1 

conversion, and/or to limited positional precision of the kinetic signature of 5caC (Tet1-modified 

5mC). In clear contrast, the fractions of modified bases were below 1% for the NlaIV restriction 

sensitive strain NM1264. 
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Most of the discovered sequence motifs were palindromic, and accordingly a modification signal 

was also detected on the 'mirror' base on the opposite strand. The motif AC6mACC is exemplifying 

the strand-specificity and sensitivity of the SMRT sequencing on adenosine methylation, for this 

non-palindromic motif consequently no signal was observed on the opposite strand (Figure 3-2C). 

Given the limited sensitivity and positional precision for 5mC modifications, instead of using the 

actual SMRT modification scores, in subsequent analysis we considered all sequences matching 

the methylation target motifs identified by SMRT. In conclusion, SMRT sequencing of 2 closely 

related N. meningitidis strains of serogroup A revealed highly divergent DNA methylation profiles 

associated with the functional status of DNA methyltransferase genes. In addition our approach 

enabled the confirmation and identification of novel target motifs for predicted DNA 

methyltransferase genes. 

 

3.4.2 Methylation target motifs with biased distributions in regulatory genomic regions 

 

Functional consequences of DNA methylation are incompletely characterized. Moreover the 

genomic locations of DNA parts with regulatory functions are not precisely established in N. 

meningitidis. We therefore focused on sequences immediately upstream from genes, which were 

suggested to harbor a considerable proportion of loci under purifying selection based on the 

analysis of phylogenetically conserved sequences in prokaryotes (Molina & van Nimwegen 2007). 

We applied a cumulative analysis of the occurrence of methylation motifs relative to a set of 1997 

start positions of annotated ORFs. The aggregation over a large set of loci renders this ChIP-cor 

analysis (see methods for details) very sensitive for recurring local deviations in linear distributions. 

At distances up to 1kb to ORF start positions, methylation motifs were detected at frequencies in 

general closely approaching the average genome wide frequencies (Figure 3-3). Only the motif 

occurrences immediately upstream from ORFs displayed a significant deviation (p value < 0.05), if 

compared to motif counts in equally sized sets of random loci. The observed deviations displayed a 

larger magnitude than the average GC content, which is only slightly decreased at the ORFs 

(Figure 3-3). To further control for base composition effects, we assessed the positional 

distributions of a set of non-methylated sequence motifs without overlaps with target motifs 

described in this study, with similar base composition as the two non-palindromic target motifs, and 

not specifying exclusively G and C bases. Unlike methylation target motifs, these control sequence 

motifs displayed no significant deviation, if compared to motif counts at random loci as described 

above. 

We have extracted 120 ORFs displaying at least one AC6mACC motif within the interval from -75bp 

to their start position, but the current annotations of the large majority of those genes (hypothetical 
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protein, unknown function) did not allow to identify particular functional groups sharing methylation 

target sequences in their regulatory sequences. An analogous analysis for each of the 5-

methylcytosine motifs neither led to the identification of over-represented gene categories, 

functions or localization. Nevertheless the observed clear biases in the positional distribution of 

methylated target sites strongly suggests a functional role of DNA methylation likely related to the 

regulation of genes. 

 

3.4.3 Variable set of active DNA methyltransferase genes in serogroup A N. meningitidis 

isolates 

 

In order to establish the potential of DNA methylation in the genomes of a collection of N. 

meningitidis strains, we extended the assessment of the presence of functional ORFs of DNA 

methyltransferase genes to assembled genome sequences of 101 strains of N. meningitidis 

previously collected over a time period of ~10 years during meningococcal meningitis epidemics in 

Sub-Saharan Africa, clustering into two sequence types (ST2859 and ST7) (Lamelas et al. 2014). 

We included two reference strains of serogroup A, namely WUE2594 (Schoen et al. 2011) and 

Z2491 (Parkhill et al. 2000). 

Our analysis of the matrix of predicted DNA methylation activities revealed the genomic diversity 

within the 101 serogroup A strains assessed here. While the majority of DNA methyltransferase 

genes display constant presence/absence (ORF ON/OFF) patterns (Figure 3-4), selected genes 

featured a larger diversity than to be expected from the global genome sequence similarity. 

Contributing to the ON/OFF diversity, we detected point mutations leading to premature stop 

codons (M.NmeAORF1453P in all strains except Z2491), or deletion of complete genes 

(M.Nme2594ORF759P =NMAA_0759) likely related to genome rearrangement events and 

horizontal gene transfers. The largest part of divergence between the strains is however due to 

phase-variability in two type III methyltransferase genes modB2 (M.NmeAORF1467P) and 

modA12 (M.NmeAORF1589P). 

We used for SMRT sequencing an aliquot of the genomic DNA preparation of strain NM1264 

previously subjected to the Illumina sequencing method. Thereby we detected only 198 sequence 

variants (supp. dataset S3) if mapping circular consensus reads from SMRT sequencing at an 

average coverage of approximately 100x (twice 50x from each strand) to contigs assembled from 

Illumina reads (~300x coverage (Lamelas et al. 2014), supp. dataset S6). Hence the augmented 

number of indels in individual sub-reads of the SMRT method are effectively averaged out if DNA 

fragments are read multiple times and unified into circular consensus sequences. 

As standard genome assembly and read mapping algorithms consistently failed especially at 
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longer microsatellite repeat regions (Treangen & Salzberg 2012), we determined the repeat unit 

numbers directly from Illumina reads covering the corresponding locus (Figure 3-5). The 

determined repeat numbers enabled to call the ORF status at the ModA12 locus (ON: 18 strains; 

OFF: 59) and at the ModB2 (ON: 4; OFF: 62). The read length of 75bp represented a limit to 

determine the number of microsatellite repeat units ('AGCC' for modA12 and 'TTGGG' for modB2) 

flanked by at least 5bp of non-repeat sequence. We could therefore not determine the ORF status 

at modA12 for 22 strains or at modB2 loci for 33 strains, respectively. These genomes contain in all 

likelihood repeats of a lengths exceeding the read length, for instance more than 15 x (AGCC) 

repeat units at the modA12 locus (Figure 3-4). Strikingly a few genomic DNA preparations yielded 

in a limited number of sequence reads containing repeat units divergent from the majority of reads 

covering the corresponding locus. Assuming no cross-contaminations from other samples, these 

reads might be products of intra-clonal variability, consistent with increased mutations rates at 

phase-variable loci (Gemayel et al. 2010). In conclusion, our careful analysis of the ORF status of 

a panel of DNA methyltransferase genes revealed phase-variability as a major contributor to 

variability in the DNA methylomes of isolates assessed here. 

 

3.4.4 Mutations overrepresented at DNA methylation target motifs 

 

We set out to investigate correlations of DNA modifications as determined in this study to the 

mutations as observed in the genomes of our serogroup A strain collection (Lamelas et al. 2014). 

The single nucleotide polymorphisms were determined based on the genome sequence of strain 

Z2491 as reference and presumingly reflect the in vivo mutation and selection processes within the 

bacterial population associated with the meningitis epidemics. 

From the total number of 6031 SNPs filtered for repeats and for recombinant fragments in the 

genomes of these strains and from the 20537 methylated nucleotides based on the consistent DNA 

methylation target sequences (AC6mACC, C5mCGG, Y5mCTGG, GGNNC5mC) we would expect from 

a random distribution a total of 6031 SNPs /1.6Mb * 20537bp = ~77 SNPs occurring per chance on 

a methylation target site in a 1.6Mb Mb repeat-excluded genome length. We actually observed a 

total number of 201 SNPs overlapping a methylation site, representing a 2.6 fold over-

representation. This global approach indicated that methylated nucleotides indeed have an 

increased likelihood of mutation in settings with in vivo mutation and selection processes. The 

corresponding 201 methylation sites detected in the Z2491 genome did lose their function as target 

sites by the occurrence of the SNPs in the sequences of our serogroup A strain collection. 

To highlight the specificity of this effect to the methylated base position, we assessed the average 

number of SNPs at each motif position, normalized by the number of genome-wide occurrences of 
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the motif. Given that our SNP calling could not determine the strand affected by a mutation, we 

considered both complementary bases. Figure 3-6 represents five of the methylation target motifs 

detected in this study. We compared the SNP counts (C/G→N or A/T → N) at each position of 

methylated motifs, or of scrambled non-methylated sequence motifs. The cytosine positions 

(T5mCTGG, C5mCWGG) consistently methylated in both strains as well as the methylated 

adenosines in the phase-variable AC6mACC target motif displayed a ~2-3 fold significantly higher 

co-occurrence rate of SNPs, if compared to corresponding positions within scrambled motifs with 

unmethylated bases (p-value < 10-5). Non-methylated nucleotides in neighboring positions within 

the same motif, or within motifs not identified as methylation targets featured SNP occurrence rates 

close to the expected overlap if assuming randomly distributed SNPs. SNP classes (synonymous, 

non-synonymous, intergenic) might reveal divergent selective pressures, we did however not 

observe significant differences for SNPs overlapping methylated bases (Figure S3-2). The target 

motif ATGC6mAT detected in this study displayed a tendency to increased co-occurrence rates with 

SNPs at methylated positions, however the motif was excluded due to a low number of only 128 

occurrences in the Z2491 genome. For palindromic sequence motifs only the occurrence on the 

forward strand was considered. Consistent with a full methylation on both strands the palindromic 

motif C5mCGG showed a mirroring peak at the guanosine in the third motif position, which 

correspond to the methyl-cytosine on the reverse strand. The methylated positions in the 

palindromic motif GGNN5mCC displayed a barely increased overlap with SNPs. The corresponding 

methyltransferase (M.NmeAORF1453P) is only active in strain Z2491 (Figure 3-4, Table 3-1). From 

the uniform inactivation of the methyltransferase in all our isolates by an identical premature stop 

mutation we can assume an early time point of this mutation event in the evolutionary history 

separating our genomes from a common ancestor genome. Therefore the limited overlap of SNPs 

is consistent with a loss of methylation at GGNNCC, further supporting mutation rates depending 

on the duration of DNA methylation during evolution of the genomes. 

 

3.5 Discussion 
 

We applied SMRT sequencing to genomes of the facultative human pathogen Neisseria 

meningitidis. The thereby determined DNA modification profiles of closely related isolates revealed 

similarities and differences in DNA methylation motifs, which could be associated with the 

presence of intact ORFs of a set of methyltransferase genes. Part of the differential DNA 

methylation could be attributed to the phase-variable state of corresponding DNA 

methyltransferase genes. We furthermore assessed the positional distribution of the detected 

methylation target motifs within the genome assemblies. Clear occurrence biases of methylation 
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motifs within presumable regulatory sequences are suggesting a role of DNA methylation in gene 

regulation, possibly related to proposed differences in antimicrobial susceptibility (Jen et al. 2014). 

Moreover in our cross-sectional analysis of Neisseria isolates, we detected a prominent co-

localization of SNPs with methylated bases, demonstrating an association of DNA methylation with 

mutagenesis and the evolution of genomes. This may have general implications for other 

prokaryotic populations. 

 

Detection limits for 5mC modifications 

 

Our genomic DNA samples were subjected to an enzymatic conversion of 5mC to 5caC via the 

Tet1 enzyme. We detected kinetic signals for DNA methylation at only a fraction of the 5mC target 

sites in the genome. In contrast we observed a genome-wide complete protection of GGNNC5mC 

target sequences in a methylation-sensitive restriction digest. As a likely explanation the 

conversion of 5mC by Tet1 may have been incomplete. In addition, we detected a modification 

signal only on 22% of the CCGG sequences, which may hint for motif discovery artifacts due to 

partial overlaps with GGNNC5mC target sequences. We therefore excluded the 358 instances of 

DDGGNNCCGG or CCGGNNCCHH sequences (D= not-C; H= not-G) in the Z2491 genome and 

still detected a SMRT modification signal at 19% of C5mCGG sequences. 

Another potential reason for partial modification signals at a discovered sequence motif is the 

arbitrarily chosen threshold for the modification score. A threshold of 50 applied in this study 

represents a compromise to minimize presumable false positive calls while still enabling to 

discover target motifs including also cytosine methylation with reduced kinetic signatures. Our data 

analysis procedures required some consistency in DNA modifications within the pool of individual 

cells subjected to SMRT sequencing. Consequently the absence of SMRT modification calls 

cannot be interpreted as complete absence of any DNA modification at this locus. Conceptually 

intra-sample variations in DNA modifications could occur at different loci in the genome, for 

instance if some of the potential target sequences are 'masked' for the DNA modification enzymes 

by other DNA binding complexes. Such divergent modification patterns at specific loci reminding of 

eukaryotic cellular differentiation mechanisms have been previously observed (Kozdon et al. 

2013), however only for modifications on adenosines bases, presumably due to the experimental 

limitations mentioned above. 

At present potential biological variability can thus not be distinguished from the technical variability, 

specifically for 5mC. Further development of analysis methods might enable the detection of 

additional divergence in individual cells or at specific loci. 
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Comparable sequencing accuracy of SMRT sequencing 

 

The design of our SMRT sequencing assays was aiming at a reliable detection of DNA 

modifications with high sequencing coverage via relatively short sequence inserts (average 

~260bp), therefore current hybrid assembly algorithms did not lead to an improvement of the 

genome assembly of strain NM1264. Circular consensus sequences covering the phase-variable 

loci confirmed the divergent genotypes for the two SMRT sequenced strains, as originally derived 

from Illumina sequences, or from the reference genome assembly, respectively. Overall the SMRT 

sequencing in our approaches displayed a sequencing accuracy very comparable to that of other 

standard sequencing methods. 

 

Sequence variability in clonal populations 

 

In addition to the differences between strains we also observe divergent repeat unit counts in 

genomic sequences extracted from clonal populations. Extending the considerations above, we do 

not observe such variability for all samples and for all loci, suggesting site-specific mutagenesis 

mechanisms. Albeit the sequencing coverages applied in these studies did yield in only a few 

reads with divergent repeat unit counts, we might nevertheless be detecting the products of phase- 

variable mutations occurring during expansion of a clonal cell population. Verification of this 

hypothesis might require extreme precautions in preparations of genomic DNA samples and high-

coverage sequencing in distant facilities to exclude the possibility of cross-contaminations of 

samples. 

 

Functional consequences of highly variable DNA modifications 

 

Previous studies described the direct consequences of variable numbers of microsatellite repeat 

units within the ORF of two methyltransferase genes (modB2 and modA12) on the ORF status and 

consequently the DNA methylation profiles (Srikhanta et al. 2009). The rate at which these phase-

variability mutations occur and underlying mechanisms are ill characterized (Gemayel et al. 2010). 

Reports describing mutations rates at other phase-variable loci in N. meningitidis described drastic 

differences between serotypes, possibly linked to mismatch repair systems (Richardson & 

Stojiljkovic 2001). 

We do reveal in our study a non-random positioning of the methylation target sites which might 

suggest an involvement in gene regulation. Altered RNA abundance levels of a set of genes are 
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however difficult to interpret as direct consequence of divergent global DNA methylation activities, 

as typically there is a very limited correlation of deregulated transcripts and DNA methylation target 

sequences observed (Bendall et al. 2013). Mutations in target sequences associated with 

divergent expression levels of specific genes could reveal more mechanistic insights. Our 

observation of increased numbers of SNPs precisely at methylation sites may however indicate 

that the regulatory mechanisms feature large degrees of plasticity and redundancy. 

An additional consequence of the presence of restriction sites was reported on the DNA uptake 

sequence-dependent transformation (Ambur et al. 2012). Specific DNA methylation profiles in N. 

meningitidis strains might thus define 'compatibility groups' for horizontal DNA transfers within the 

microbial community in the human nasopharynx (Claus et al. 2000) (Bart et al. 2001). We could not 

identify significant biases in the presence or absence of DNA methylation target sites within 

putative recombinant fragments. These fragments putatively originating from N. lactamica or N. 

gonorrhoeae constituted about 20% of the genome length, and are containing a matching 

proportion of methylated motifs. 

In the present study we detected a significant enrichment of SNPs between genomes of N. 

meningitidis serogroup A strains at positions of methylated bases within DNA methylation target 

motifs. The causes of this correlation and the consequences on genome evolution are at present 

not clear. Strikingly, of the 4096 instances of the non-palindromic AC6mACC target motifs within the 

genome of the Z2491 strain, only 33% occur on the leading strand, which might relate to the 

observation of a clear bias (60.2%) of ORFs on the leading strand in one replichore (Parkhill et al. 

2000). Essential genes are favored to occur on the leading strand, hypothetically due to lower 

mutation rates resulting from reduced replication–transcription conflicts (Paul et al. 2013). 

Accordingly the observed biased distributions of specific DNA methylation target motifs might be 

either the consequence of increased mutations at these sites or represent selection pressure to 

exclude or maintain DNA methylations sites at intergenic regulatory regions. Strikingly we could not 

discern major biases, SNPs overlapping methylated nucleotides showed a similar distribution 

between intergenic and coding regions. Similarly no bias was observed between synonymous and 

non-synonymous SNPs within the coding region deviating from the overall SNPs segregation 

(Figure S3-2). Therefore we conclude that selective pressures are similar on mutations associated 

with DNA methylation. 

Recent comparative genome analysis has considerably expanded our knowledge of prokaryotic 

defense systems (Makarova et al. 2013). Specifically the presence of apparent conflicts between 

restriction systems (Ishikawa et al. 2010), or orphan methyltransferases lacking cognate restriction 

enzymes (Marinus & Casadesus 2009) hint for more complex biological roles of prokaryotic DNA 

methylation. The precise effect of DNA methylation on mutation rates in prokaryotes is presently 
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unclear due to multiple levels of mutational, mismatch repair, and selection mechanisms 

(Casadesús & Low 2006). The damage of an uracil base resulting from deamination of an 

unmodified cytosines can typically be corrected (Walsh & Xu 2006). Original studies describe an 

increased rate of spontaneous deamination of 5-methylcytosine compared to cytosine residues 

(Ehrlich et al. 1986). Deamination of 5-methylcytosine results in a 'genuine' thymine base. In the 

context of double stranded DNA molecules, mismatch repair mechanisms have therefore limited 

means to detect and repair unequivocally the newly mutated nucleotide in a G/T mismatched pair. 

Repair systems counteracting the mutagenic effects of hydrolytic deamination of m5C (Vsr 

endonucleases) have been described in Neisseria gonorrhoeae (Kwiatek et al. 2010), yet we have 

no evidence for activities of orthologous genes (V.NmeIP) in Neisseria meningitidis. Methylated 

bases have been reported to be mutational hotspots for instance in mutation-accumulation studies 

in E. coli in laboratory settings (Lee et al. 2012). Our present study addresses for the first time the 

association of experimentally confirmed DNA methylation and the genome evolution in an in vivo 

setting. Here a number of additional processes are involved in the selection of favorable 

configurations of genome structures at different scales (Rocha 2008). Our results suggest that 

DNA methylation and evolutionary processes are two processes intimately correlated. Despite the 

highly variable activities of DNA methyltransferase genes in evolutionary timescales, genomic and 

epigenomic factors contribute in a complex interplay to the evolution of the optimally adapted 

prokaryotic populations. 

 

Conclusions 

 

SMRT sequencing determines DNA methylation profiles of prokaryotes at a genome-wide level. 

This study contributes to the recognition of a previously underestimated potential for variability in 

DNA methylation. The discovery of biased presence of methylation target motifs in genomic 

sequences may indicate a role in gene regulation. The increased occurrences of mutations 

precisely at methylation target positions suggests additional yet unidentified functional 

consequences of DNA methylation and Restriction-Modification systems in the evolution of 

prokaryotic genomes. 
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3.6 Tables 

 

Table 3-1: summary of detected modifications at DNA target motifs 

SMRT identified motifs 
Closest motif 

in REBASE 

GeneID / REBASE 

entry 
ORF status 

Z2491  NM1264   Z2491  NM1264 

C
5m

CGG C
5m

CGG C
5m

CGG M.NmeAI ON ON 

T
5m

CTGG T
5m

CTGG T
5m

CTGG M.NmeAORF1035P  ON ON 

C
5m

CWGG C
5m

CWGG CCWGG  M.NmeAORF1500P ON ON 

GGNN
5m

C

C 
— GGNNCC M.NmeAORF1453P  ON early stop 

— AC
6m

ACC — 
ModA12 

M.NmeAORF1589P      
early stop* ON * 

— — — 
ModB2 

M.NmeAORF1467P 
early stop* early stop* 

— ATGC
6m

AT  ATGCAT  M.Nme2594ORF759P not present  ON 

— — CATG M.NmeAORF59P early stop early stop 

— — GGTGA M.NmeAORF191P early stop early stop 

— — GCCG
6m

AG NMAIII RM early stop early stop 

— — [C/T/G]A M.NmeAIV  ON ON 

— — — M.NmeAORF1038P  early stop ** early stop** 

— — — M.NmeAORF1385P  early stop early stop 

DNA methylation target motifs as inferred from sites featuring a SMRT modification score >50. N. 

meningitidis strains Z2491 and NM1264 feature shared and strain-specific motifs, mostly with a 

correspondence in REBASE. Suffix 'P' in the GeneID specifies a methyl-transferase gene 

predicted by REBASE based on sequence homology. * Premature stop due to phase-variable 

mutation ** premature stop codon in specificity subunit of type I RM system comprising 

M.NmeAORF1038P. 
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3.7 Figures 
 

 

 
Figure 3-1: Two N. meningitidis serogroup A strains Z2491 and NM1264 display divergent 

DNA modifications. 

DNA modification scores are plotted against the coverage in SMRT sequencing of Tet1 converted 

samples. Each dot represents a position on either strand with a modification score larger than 20, 

the color specifying the nucleotide base, on which the modification was detected. Modified 

adenosines (red dots) are predominantly detected in strain NM1264. The horizontal line indicates 

the threshold score 50 applied for subsequent motif finding.  
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Figure 3-2: Methylation-sensitive restriction assays to validate DNA methylation derived 

from SMRT sequencing 

(A) DNA samples separated via gel electrophoresis, lane labels indicating (M) size marker, (gDNA) 

whole genomic DNA preparations, and (NlaIV) restriction digest products targeting sites 'GGNNCC' 

in a methylation-sensitive manner. Samples from 2 different strains (Z2491 and NM1264, genome 

size: 2.18 Mb) display differential resistance consistent with DNA methylation profiles.(B) single 

position resolution of modification signal averaged over ~1800 'GGNNC5mC' sites in the 

respective genome assemblies. The fractions of sites exhibiting a modification score above 50 are 

displayed for each position and strand. (C) For comparison, adenosine methylation featuring 

enhanced sensitivity and positional resolution averaged over ~4000 'AC6mACC' sites. 
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Figure 3-3: Depletion of cytosine methylated motifs in the immediate upstream region of 

ORFs. 

Occurrence counts of five (most frequent) methylation target motifs are plotted against their 

position (in bp) relative to 1997 oriented ORFs (genome annotation N. meningitidis strain Z2491). 

Motif counts are presented as sum over all ORFs within 50 bp windows, centered at position zero. 

Red lines in each panel compare to the GC content percentage (y-axis label to the right), averaged 

over all ORF regions. Dashed horizontal lines represent the averaged motif occurrences 

corresponding to statistically significant (p value 0.05) depletions of the corresponding motif, 

derived from a comparison to equally sized sets of random loci. The lower right panel represents 

occurrence counts of a set of six non-methylated control motifs with similar base composition 

(identical positions in bold), and similar occurrence frequencies as the non-palindromic target 
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motifs TmCTGG and ACmACC. None of the control motifs display significant depletions at ORFs 

comparable to that of methylated motifs. 
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Figure 3-4: Variability at DNA methyltransferase loci. 101 N. meningitidis isolates clustered according to SNP distance, yielding in two 

sequence type (ST) groups. Each column represents an isolate and rows specify the ORF status of 13 DNA methyltransferases (Rebase gene 

IDs of Z2491 reference strain). Bars in grey at the bottom represent the number of repeat units determining ON/OFF status of the phase-

variable modA12 (M.NmeAORF1589P) 
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Figure 3-5: Phase-variability at modA12 locus: Alignment of representative read sequences 

derived from genome sequencing (strains NM1264 or Z2491). The number of repeat units is 

indicated in the second column, with blue cell background indicating a resulting ON status of the 

ORF, and yellow for an OFF status. The third column indicates the total number of reads matching 

the corresponding repeat configuration. 
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Figure 3-6: Methylated nucleotides display higher mutation rates than non-methylated 

positions. 

Positional co-occurrences of (in total 6031) SNPs at positions within (methylation) target motifs. 

Methylated positions highlighted in red within five target motifs (bold), as detected in the present 

study, with, each compared to two similar control sequences. Black bars in histogram represent 

nucleotides in methylated motifs, gray shades represent sequences not known as DNA-

methylation targets. For each motif, counts of overlapping SNPs (for 5m-cytosine motifs: C/G in 

reference →N; or for 6m-adenosine: A/T→N) at each position are normalized by the genome-wide 

motif occurrences (numbers for methylated motifs in inset box). The dashed lines indicate the 

corresponding number of SNPs expected from random occurrence (G/C or A/T) across the 

genome and over-representation was tested with the χ2 statistics (*p-value < 10-5). 
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3.8 Supplementary material  
 

Figure S3-1: SMRT sequencing on samples without Tet1 conversion detects modified 

adenosines. 

DNA modification scores are plotted against the coverage in SMRT sequencing of samples. Each 

dot represents a position on either strand with a modification score larger than 20, the color 

specifying the nucleotide base, on which the modification was detected. Modified adenosines (red 

dots) are predominantly detected in strain NM1264. The horizontal line indicates the threshold 

score 50 applied for subsequent motif finding. (See figure 3-1 for Tet1 converted samples) 
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Figure S3-2: Comparable distribution of SNPs 

overlapping methylated bases. 

6031 SNPs as observed within the repeat-filtered genome 

assemblies of a strain collection of N. meningitidis are 

classified into synonymous and non-synonymous 

mutations in coding sequences, or attributed to intergenic. 

SNPs overlapping methylated bases display a very similar 

distribution, indicating that selective pressures are similar 

on mutations associated with DNA methylation. 

  



DNA Methylation in N. meningitidis 43 
 

 

 

3.9 References 
 

Ambur OH, Frye SA, Nilsen M, Hovland E, Tønjum T. 2012. Restriction and Sequence Alterations Affect DNA Uptake 
Sequence-Dependent Transformation in Neisseria meningitidis. PloS One. 7:e39742. doi: 
10.1371/journal.pone.0039742. 

Arber W. 2000. Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol. Rev. 
24:1–7. 

Bart A, Pannekoek Y, Dankert J, van der Ende A. 2001. NmeSI restriction-modification system identified by 
representational difference analysis of a hypervirulent Neisseria meningitidis strain. Infect. Immun. 69:1816–1820. doi: 
10.1128/IAI.69.3.1816-1820.2001. 

Bendall ML et al. 2013. Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis 
MR-1. J. Bacteriol. 195:4966–4974. doi: 10.1128/JB.00935-13. 

Bernstein BE et al. 2010. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28:1045–1048. doi: 
10.1038/nbt1010-1045. 

Cao B et al. 2014. Genomic mapping of phosphorothioates reveals partial modification of short consensus sequences. 
Nat. Commun. 5:3951. doi: 10.1038/ncomms4951. 

Casadesús J, Low D. 2006. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. MMBR. 70:830–
856. doi: 10.1128/MMBR.00016-06. 

Caugant DA, Maiden MCJ. 2009. Meningococcal carriage and disease--population biology and evolution. Vaccine. 27 
Suppl 2:B64–70. doi: 10.1016/j.vaccine.2009.04.061. 

Clark TA et al. 2012. Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA 
sequencing. Nucleic Acids Res. 40:e29. doi: 10.1093/nar/gkr1146. 

Clark TA et al. 2013. Enhanced 5-methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation. 
BMC Biol. 11:4. doi: 10.1186/1741-7007-11-4. 

Claus H, Friedrich A, Frosch M, Vogel U. 2000. Differential distribution of novel restriction-modification systems in 
clonal lineages of Neisseria meningitidis. J. Bacteriol. 182:1296–1303. 

Croucher NJ et al. 2011. Rapid Pneumococcal Evolution in Response to Clinical Interventions. Science. 331:430–434. 
doi: 10.1126/science.1198545. 

Dunning Hotopp JC et al. 2006. Comparative genomics of Neisseria meningitidis: core genome, islands of horizontal 
transfer and pathogen-specific genes. Microbiol. Read. Engl. 152:3733–3749. doi: 10.1099/mic.0.29261-0. 

Ehrlich M, Norris KF, Wang RY, Kuo KC, Gehrke CW. 1986. DNA cytosine methylation and heat-induced deamination. 
Biosci. Rep. 6:387–393. 

Eid J et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science. 323:133–138. doi: 
10.1126/science.1162986. 

Fang G et al. 2012. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-
molecule real-time sequencing. Nat. Biotechnol. 30:1232–9. doi: 10.1038/nbt.2432. 

Feng Z et al. 2013. Detecting DNA modifications from SMRT sequencing data by modeling sequence context 
dependence of polymerase kinetic. PLoS Comput. Biol. 9:e1002935. doi: 10.1371/journal.pcbi.1002935. 

Flusberg BA et al. 2010. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. 
Methods. 7:461–465. doi: 10.1038/nmeth.1459. 

Furuta Y et al. 2014. Methylome diversification through changes in DNA methyltransferase sequence specificity. PLoS 
Genet. 10:e1004272. doi: 10.1371/journal.pgen.1004272. 

Gemayel R, Vinces MD, Legendre M, Verstrepen KJ. 2010. Variable tandem repeats accelerate evolution of coding and 
regulatory sequences. Annu. Rev. Genet. 44:445–477. doi: 10.1146/annurev-genet-072610-155046. 

Holt KE et al. 2008. High-throughput sequencing provides insights into genome variation and evolution in Salmonella 
Typhi. Nat. Genet. 40:987–993. doi: 10.1038/ng.195. 



DNA Methylation in N. meningitidis 44 
 

 

Iseli C, Ambrosini G, Bucher P, Jongeneel CV. 2007. Indexing strategies for rapid searches of short words in genome 
sequences. PLoS ONE. 2:e579. doi: 10.1371/journal.pone.0000579. 

Ishikawa K, Fukuda E, Kobayashi I. 2010. Conflicts targeting epigenetic systems and their resolution by cell death: novel 
concepts for methyl-specific and other restriction systems. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes. 17:325–
342. doi: 10.1093/dnares/dsq027. 

Jen FE-C, Seib KL, Jennings MP. 2014. Phasevarions mediate epigenetic regulation of antimicrobial susceptibility in 
Neisseria meningitidis. Antimicrob. Agents Chemother. doi: 10.1128/AAC.00004-14. 

Jolley KA, Sun L, Moxon ER, Maiden MC. 2004. Dam inactivation in Neisseria meningitidis: prevalence among diverse 
hyperinvasive lineages. BMC Microbiol. 4:34. 

Kozdon JB et al. 2013. Global methylation state at base-pair resolution of the Caulobacter genome throughout the cell 
cycle. Proc. Natl. Acad. Sci. U. S. A. 110:E4658–67. doi: 10.1073/pnas.1319315110. 

Krebes J et al. 2014. The complex methylome of the human gastric pathogen Helicobacter pylori. Nucleic Acids Res. 
42:2415–2432. doi: 10.1093/nar/gkt1201. 

Kurtz S et al. 2004. Versatile and open software for comparing large genomes. Genome Biol. 5:R12. doi: 10.1186/gb-
2004-5-2-r12. 

Kwiatek A, Luczkiewicz M, Bandyra K, Stein DC, Piekarowicz A. 2010. Neisseria gonorrhoeae FA1090 carries genes 
encoding two classes of Vsr endonucleases. J. Bacteriol. 192:3951–3960. doi: 10.1128/JB.00098-10. 

Lamelas A et al. 2014. Emergence of a New Epidemic Neisseria meningitidis Serogroup A Clone in the African 
Meningitis Belt: High-Resolution Picture of Genomic Changes That Mediate Immune Evasion. mBio. 5:e01974–14. doi: 
10.1128/mBio.01974-14. 

Lee M et al. 2012. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N. Engl. J. Med. 367:1508–
1518. doi: 10.1056/NEJMoa1201964. 

Leimkugel J et al. 2007. Clonal waves of Neisseria colonisation and disease in the African meningitis belt: eight- year 
longitudinal study in northern Ghana. PLoS Med. 4:e101. doi: 10.1371/journal.pmed.0040101. 

Lluch-Senar M et al. 2013. Comprehensive methylome characterization of Mycoplasma genitalium and Mycoplasma 
pneumoniae at single-base resolution. PLoS Genet. 9:e1003191. doi: 10.1371/journal.pgen.1003191. 

Maiden MC. 2008. Population genomics: diversity and virulence in the Neisseria. Curr. Opin. Microbiol. 11:467–471. 
doi: 10.1016/j.mib.2008.09.002. 

Maiden MCJ. 2013. The endgame for serogroup a meningococcal disease in Africa? Clin. Infect. Dis. Off. Publ. Infect. 
Dis. Soc. Am. 56:364–366. doi: 10.1093/cid/cis896. 

Makarova KS, Wolf YI, Koonin EV. 2013. Comparative genomics of defense systems in archaea and bacteria. Nucleic 
Acids Res. 41:4360–4377. doi: 10.1093/nar/gkt157. 

Manso AS et al. 2014. A random six-phase switch regulates pneumococcal virulence via global epigenetic changes. Nat. 
Commun. 5:5055. doi: 10.1038/ncomms6055. 

Marinus MG, Casadesus J. 2009. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, 
transcriptional regulation, and more. FEMS Microbiol. Rev. 33:488–503. doi: 10.1111/j.1574-6976.2008.00159.x. 

Marri PR et al. 2010. Genome sequencing reveals widespread virulence gene exchange among human Neisseria 
species. PloS One. 5:e11835. doi: 10.1371/journal.pone.0011835. 

Molina N, van Nimwegen E. 2007. Universal patterns of purifying selection at noncoding positions in bacteria. Genome 
Res. 18:148–60. doi: 10.1101/gr.6759507. 

Parkhill J et al. 2000. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature. 
404:502–6. doi: 10.1038/35006655. 

Paul S, Million-Weaver S, Chattopadhyay S, Sokurenko E, Merrikh H. 2013. Accelerated gene evolution through 
replication-transcription conflicts. Nature. 495:512–515. doi: 10.1038/nature11989. 

Powers JG et al. 2013. Efficient and accurate whole genome assembly and methylome profiling of E. coli. BMC 
Genomics. 14:675. doi: 10.1186/1471-2164-14-675. 

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinforma. Oxf. Engl. 
26:841–842. doi: 10.1093/bioinformatics/btq033. 



DNA Methylation in N. meningitidis 45 
 

 

Richardson AR, Stojiljkovic I. 2001. Mismatch repair and the regulation of phase variation in Neisseria meningitidis. 
Mol. Microbiol. 40:645–55. 

Ritchot N, Roy PH. 1990. DNA methylation in Neisseria gonorrhoeae and other Neisseriae. Gene. 86:103–106. 

Roberts RJ, Carneiro MO, Schatz MC. 2013. The advantages of SMRT sequencing. Genome Biol. 14:405. doi: 
10.1186/gb-2013-14-6-405. 

Roberts RJ, Vincze T, Posfai J, Macelis D. 2010. REBASE--a database for DNA restriction and modification: enzymes, 
genes and genomes. Nucleic Acids Res. 38:D234–236. doi: 10.1093/nar/gkp874. 

Rocha EPC. 2008. The organization of the bacterial genome. Annu. Rev. Genet. 42:211–233. doi: 
10.1146/annurev.genet.42.110807.091653. 

Schadt E et al. 2012. Modeling kinetic rate variation in third generation DNA sequencing data to detect putative 
modifications to DNA bases. Genome Res. 23:129–41. doi: 10.1101/gr.136739.111. 

Schoen C et al. 2011. Whole-genome sequence of the transformable Neisseria meningitidis serogroup A strain 
WUE2594. J. Bacteriol. 193:2064–2065. doi: 10.1128/JB.00084-11. 

Shell SS et al. 2013. DNA Methylation Impacts Gene Expression and Ensures Hypoxic Survival of Mycobacterium 
tuberculosis. PLoS Pathog. 9:e1003419. doi: 10.1371/journal.ppat.1003419. 

Srikhanta YN et al. 2009. Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLoS 
Pathog. 5:e1000400. 

Stephens DS, Greenwood B, Brandtzaeg P. 2007. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. 
Lancet. 369:2196–2210. doi: 10.1016/S0140-6736(07)61016-2. 

Treangen TJ, Salzberg SL. 2012. Repetitive DNA and next-generation sequencing: computational challenges and 
solutions. Nat. Rev. Genet. 13:36–46. doi: 10.1038/nrg3117. 

Trivedi K, Tang CM, Exley RM. 2011. Mechanisms of meningococcal colonisation. Trends Microbiol. 19:456–63. doi: 
10.1016/j.tim.2011.06.006. 

Walsh CP, Xu GL. 2006. Cytosine methylation and DNA repair. Curr. Top. Microbiol. Immunol. 301:283–315. 

  



Bioinformatic Detection Of Tandem Repeat Variation 46 
 

 

 

  



Bioinformatic Detection Of Tandem Repeat Variation 47 
 

 

4 Exploring the phase-variable genome of Neisseria meningitidis 

from massively parallel sequencing data 
 

Mohamad R. Abdul Sater1,2,3, Araceli Lamelas1,2,Nagwa Peter Thelma Niba1,2 , Gerd 

Pluschke and Christoph D. Schmid1,2,3* 

 

1
Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland

 

2
Universität Basel, Petersplatz 1, CH-4003 Basel, Switzerland 

3
 SIB Swiss Institute of Bioinformatics, Basel 4056, Switzerland 

 

* Corresponding author 

 

 

 

Manuscript in preparation 

  



Bioinformatic Detection Of Tandem Repeat Variation 48 
 

 

 

4.1 Abstract 
 

Massively parallel sequencing methods are becoming routine, yet repetitive sequences 

present in most genomes still poses numerous difficulties in data analysis. The commonly 

applied exclusion of these sequence parts appears not satisfactory, as they are informative 

for genomic diversity or the prediction of gene functionality. Hyper-mutable short tandem 

repeats cause ON/OFF switching of phase-variable genes in bacterial genomes. This rapid 

and reversible mechanism offers bacteria a prompt response to environmental stress. 

 

We present here a novel method to infer the precise number of repeat units at specific 

tandem repeat loci based on the raw read sequences resulting from large scale sequencing 

assays. We demonstrate that the probabilistic approach, based on Hidden Markov Model 

(HMM), detects divergent repeat length configurations and therefore functional states of 

ORFs directly from raw sequencing data, offering an enhanced detection power and 

accuracy over conventional tools. We integrated our tools into a fast and efficient 

computational pipeline to detect genome wide phase-variation events by comparing a large 

number of sequenced meningococcal genomes. Our comprehensive approach identified a 

high number of hyper-variable repeat regions. Our ongoing analysis, have so far revealed the 

top ranking phase-variable loci to be mostly associated with outer membrane components 

and other virulence determinants.  
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4.2 Introduction 
 

N. meningitidis has a very high potential for genetic change and surface structural variability. 

The major outer membrane components (capsular polysaccharide, outer membrane proteins, 

and lipopolysaccharide (endotoxin); are linked to meningococcal virulence (Stephens et al., 

2007). Variable expression of surface antigens in Neisseria is suggested to be key in 

facilitating colonization of the host, adaptation to host environments and evasion of immune-

responses (Stephens, 2009). Genome analysis and phylogenetics revealed high 

recombination rate as a result of horizontal gene transfer between closely related Neisseria 

species (Schoen et al., 2009). Frequent recombination within meningococcal populations 

was proposed to contribute to immune evasion by hyper virulent clones via the introduction 

of intricate changes in the antigenic makeup of the bacterial cell surface components 

(Lamelas et al., 2014). However, growing evidence also suggests phase-variation as a 

mechanism triggering immune evasion by host-adapted bacterial pathogens through rapid 

and reversible ON /OFF switching of expression of specific genes mediated by unstable 

short tandem repeat sequences (Goldberg et al., 2014). 

Novel sequencing approaches reveal considerable variability in genomic sequences, even so 

in cells derived from an individual organism or from closely related populations of the same 

bacterial strain. In particular, prokaryotic genomes underlay reduced evolutionary pressure to 

conserve global genome structure due to the lack of chromosome pairing in meiosis. 

Commonly, single nucleotide polymorphisms (SNPs) and copy number variation (CNV) are 

used for comparing genomes. A third class of genotypic variation is tandem repeats including 

micro- and mini-satellites, also known as simple sequence repeats (SSRs) or short tandem 

repeats (STRs). These sequences have historically been ignored as “junk DNA”, in part due 

to the difficulties associated with the study of these unstable repeat tracts. Variations in those 

repetitive sequences can have significant phenotypic consequences, if located within 

regulatory sequence elements or within coding regions (Gemayel et al., 2010). 

Variable tandem repeat sequences can for instance lead to a reversible, random, high 

frequency gain or loss of a phenotype, a phenomenon known as phase-variation. An 

insertion or deletion of a repeat unit with a length divergent from a multiple of 3bp within a 

coding sequence will lead to frame shift mutations. Consequently the translation into proteins 

is switched OFF or conversely reverted back to an ON state with a full-length open reading 

frame (Figure 4-1). At the example of Neisseria subspecies, a number of phase-variable 

genes have been proposed (summarized in section 1.4.5). 
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Figure 4-1: ON/OFF switching mechanism of Phase-variable gene determined by repeat unit number 

(dark bars). Adding or deleting a repeat unit leads to a frame shift and an early stop codon or 

reversibly restoring original frame.  

 

Recent massively parallel sequencing methods enable the efficient determination of 

nucleotide sequences of a large number of short DNA fragments. Those fragment sequences 

are then typically assembled into larger contigs and eventually to complete chromosome 

assemblies. Repetitive regions are however very problematic for both mapping based 

approaches as well as de novo assembly of genomic sequences. In both approaches, 

repetitive regions interfere with reads scaffolding as it is impossible to attribute such reads to 

their original locus. In order to determine SNPs, the read sequences are frequently aligned to 

the best matching position in a reference genome sequence assembly. A high coverage of 

the genome by short reads makes this a very powerful approach to call SNPs and short 

indels (Koboldt et al., 2009). However, larger divergences due to variable unit numbers of 

tandem repeats pose considerable problems to assembly and mapping approaches 

(Treangen and Salzberg, 2012). Therefore, the results of high-throughput sequencing 

methods have to date mainly been exploited to predict suitable PCR primer sequences for 

further analysis of potentially divergent tandem repeat regions (Guichoux et al., 2011) and 

only a few studies attempted to assess the microsatellite directly from sequencing data (Kim 

et al., 2013). The precise resolution of longer microsatellite repeat stretches obviously 

benefits from sequencing methods providing longer read lengths, yet for instance the 454 

pyrosequencing method suffers from reported short comings to achieve sufficient coverage 

and problems with homopolymer stretches. 

A rapidly growing number of genome sequences with the lower sequencing costs enable 

large scale sequencing experiments. Analyzing the enormous amount of generated data 

represents the bottleneck in current research. A common task is to compare specific regions 

in a large number of sequenced genomes with fast and precise methods providing a simple 

to interpret output. At the example of bacterial repeat sequences and phase-variable genes 

whole genome mapping and/or de novo assembly of a large number of genomes could be a 

time consuming and a computationally heavy approach which would ultimately require 

additional analysis steps to compare such regions. Moreover, longer repetitive sequences 
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have always been problematic for mapping and assembly programs. Consequently, 

sequence variants resulting from events such as phase-variation are ignored or vastly under 

estimated. 

In this chapter we introduce a fast and accurate analysis pipeline for a direct quantification 

and comparison of repeat regions variability from sequencing experiments involving a large 

number of genomes circumventing mapping and genome assembly. Our bioinformatic 

pipeline is the first comprehensive attempt to identify Neisseria meningitidis phase-variable 

genome from a sequenced population. The pipeline contains a newly developed tool that 

provides an extended detection power for longer repeat region and allows detection of subtle 

and rare sequence variants tolerating sequence mismatches as compared to other 

conventional approaches. The present pipeline relies on both efficient string matching and 

probabilistic methods (Durbin et al., 1999), a combination of both approaches is required by 

the large number of read sequences typically required to obtain sufficient sequencing 

coverage and the occurrence of mutations and sequencing errors disabling 'simple' pattern 

matching approaches. The resultant is a simple and easy to analyze tabular output (figure 4-

6). 
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4.3 Methods 
 

4.3.1 Identify short tandem repeats using Phobos 

 

STRs, as potentially phase variable loci, were detected from N. meningitidis strain WUE 

2594 reference genome (Schoen et al., 2011) (accession number: FR774048.1) using 

Phobos tandem repeat search tool (Mayer, Christoph, Phobos 3.3.11) (Mayer et al., 2010). 

Program parameters were set to match exact repeats ranging from 1 and up to 15 

nucleotides per unit and score set to maximum with zero gaps allowed. An early filtering step 

depending on the repeat unit length was applied, whereby repeat units consisting of a 

multiple of 3 nucleotides and occurring inside ORFs were discarded as these would not lead 

to frame shift mutations. In addition, homopolymer tracts length threshold was set to 5 

nucleotides, following reports on homopolymer relative stability (Jennings et al., 1999; 

Snyder et al., 2001). 

Using custom Perl scripts a 5 nucleotide flanking sequence was extracted acting as 

upstream and downstream anchor of the repeat region. In cases where the flanking 

sequence was not sufficiently divergent from the repeat unit sequence (<2 different 

nucleotide) the flanking sequence was extended to eight nucleotides. 

 

4.3.2 Regular expression fast approach for an exact sequence matching 

 

A set of 100 strains derived from Neisseria meningitidis isolates were sequenced to an 

average coverage of ~300x using a standard paired-end 75bp read-length Illumina protocol 

(Lamelas et al., 2014). Quality scores and paired-end information contained in the original 

raw sequencing fastq files were not considered. 

Using the ~9000 short tandem repeats identified by the genome wide scan for repetitive 

sequences, we designed custom Perl scripts to scan raw fastq files for reads containing 

matching repeat sequences. Our approach utilizes string matching algorithm (RegEx) to 

match anchor sequences flanking any repeat unit conformation in the form of [5’ flanking — 

(Repeat Unit)n —3’ flanking]. For each matched read, the number of repeat units (n) is 

calculated. Restricted by the read length the upper limit of n is dependent on the repeat unit 

length allowing a 5bp flanking sequences. The algorithm reports for each locus the number 

of reads matching a discrete repeat unit conformation. The final output is a tabular format 

comparing for each locus the repeat length from each of the sequenced isolates.  



Bioinformatic Detection Of Tandem Repeat Variation 53 
 

 

A Perl script is provided whereby the flanking and repeat unit sequences are fed in tabular 

format as well as the input fastq files. 

 

4.3.3 RepHMM an exhaustive approach for approximate sequence matching 

  

RepHMM in a nutshell: 

 

(1) Identification of candidate loci with short tandem repeats in reference genome assembly. 

(2) Pre-selection of read sequences from raw sequencing data (fastq format) containing at 

least two perfect repeat units.  

(3) Generate a probabilistic model based on Hidden Markov Model (HMM) encoding for a 

range of distinct conformations represented by repeat unit(s) and flanking sequence. 

(4) Score all pre-selected reads with probabilistic model of repeat configurations (HMM), 

select reads with high-probability in Viterbi decoding. 

(5) Infer predominant repeat conformation based on number of reads.  

 

 

Generating HMM model and scoring of preselected reads 

 

For each read sequence, a precise count of repeat units in the context of specific flanking 

sequences was determined by applying a Hidden Markov Model (HMM) approach. The HMM 

encodes a set of paths with flanking sequences and divergent numbers of repeat units 

(schema of HMM Figure 4-2). Based on an estimated Illumina sequencing error frequency, 

the emission probabilities for mismatches within the repeats state was set to 0.01. Acting as 

boundaries, flanking sequences of the repeat region are very crucial for an accurate and 

specific counting of repeat unit number, thus a higher stringency was set by applying 

reduced emission probabilities for mismatches within the flanking sequences to increase 

specificity at this critical region. Within the random (R-) state equal emission probabilities for 

each base (A, T, G or C) were set to 0.25. A Perl script (Mamot_model.pl) is provided to 

generate the HMM model as input for MAMOT (see below). Simulated read sets with 

specified numbers of repeat units and randomly inserted mismatches were used to evaluate 

our model. Emission and transition probabilities were optimized for best distinction of each 

repeat path based on score threshold. 

The tool automatically calculates the optimal score threshold adapting to read length and the 

user input for the preferred number of allowed mismatches resulting from sequencing error. 
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Decoding 

 

Each of the preselected read sequences was decoded by the Viterbi algorithm using the 

Markov Modeling Tool MAMOT (revision 77M) (Schutz and Delorenzi, 2008). From the 

MAMOT output the most probable path with a score above threshold was extracted using 

Perl scripts (Supplementary material). The scoring and decoding of the 4 million 75 bp 

preselected reads for modA12 locus required 2 hours run time using a standard single core 

system. For the visualization of read diversity, sequences were aligned using Jalview (Clamp 

et al., 2004). An example of a RepHMM model and Perl scripts along with a training dataset 

is available as supplementary materials at (http://www.swisstph.ch /Rep-HMM). 

 

Pre-selection of candidate reads 

 

Using the Linux command-line pattern matching utility grep, we extracted from the .fastq files 

for each Neisseria strain all raw read sequences containing at least 2 perfectly matching 

repeat units. Quality scores and paired-end information contained in the original fastq files 

were not considered. 

 

4.3.4 Generation of simulated data and comparison of performance 

 

In phase-variation, sequence variants deviating from the ubiquitous repeat unit genotype are 

relatively infrequent. In order to quantify the potentials of RepHMM to detect divergent repeat 

unit genotypes within the same pool of reads we generated, using custom Perl scripts, a 

simulated data set of sequences using the phase-variable modA12 locus (flanking) (AGCC x 

N) (flanking) as template where “AGCC” is the repeat unit sequence. Limited by read length 

of 75bp matching our actual Illumina read length the maximum number of AGCC repeats 

was set to 16x units which could still include anchor flanking sequence. For each repeat 

genotype (2-16x repeats) a simulated data set of 75bp reads with 5% mismatch rate and 

300x coverage was generated. In addition, 3-5 random genotype variants of ± 3 repeat units 

constituting up to 10% of total read count were added to the read pool. 

Each data set was analyzed using de novo assembly, simple pattern matching RegEx and 

RepHMM. Performance of each method was assessed by calculating the ratio of called 

genotypes relative to actual number of simulated genotypes. De novo assembly was 

attempted using Velvet (3≤kmer≤31), RegEx recognition pattern was set to match 
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(flanking)(AGCC{1,16})(flanking) counting the number of AGCC repeat units. 100x 

Simulation runs were performed.  

 

4.3.5 Bacterial cultivation, PCR and Sanger Sequencing 

 

Single colonies of Neisseria meningitidis strains were grown on supplemented GC agar base 

(Oxoid) plates for 20-24 hours in 5% CO2 at 37°C. Colonies were transferred into liquid Brain 

Heart Infusion (BactoTM) medium and again incubated overnight in 5% CO2 at 37°C. 

Chromosomal DNA was extracted as described previously in (Marri et al., 2010) . DNA 

extraction was performed using Promega DNA extraction kit according to manufacturer 

specifications. PCR Primers where designed, avoiding identified, SNPs using N. meningitidis 

Z2491 reference genome. Forward primer: ‘aatacgccaaccgcattgg’, Reverse primer: 

‘ttgtttgccgtctgcgg’ generating a 300bp amplicon spanning flanking and repeat regions of the 

modA12 locus. Sequencing of the PCR amplicons by the Sanger method was performed at 

Macrogen (Korea). 

 

4.3.6 SNP calling  

 

SNP calling was performed as described in the previous chapter, with100 sequenced 

genomes mapped to the reference genome N. meningitidis serogroup A, strain WUE 2594 

(Schoen et al., 2011) using SMALT (http://www.sanger.ac.uk/resources/software/smalt/). 

Sequence variations were determined using SAMtools (Li et al., 2009), excluding  phage 

sequences, recombinant fragments and repetitive regions (>50bp)  (Croucher et al., 2011).  

Anchor sequences of the reference genome overlapping SNPs were identified using Bed 

intersect tool (Quinlan and Hall, 2010). 

  

http://www.sanger.ac.uk/resources/software/smalt/


Bioinformatic Detection Of Tandem Repeat Variation 56 
 

 

 

 

Figure 4-2: Schematic view of RepHMM used for assessing phase-variable repeat 

sequences. A probabilistic approach based on a Hidden Markov Model (HMM) for scoring 

high-throughput sequencing reads. The model encodes DNA sequences in a range of 

distinct conformations denoted by repeat units represented by pink blocks ('AGCC' for the 

modA12 locus) and sequences flanking the repeats (4-6 bases each). Additional flanking 

sequences are encoded by the R-state. Transition and emission probabilities at each 

sequence position are specified in the model, the schema indicates the major probabilities. 

PEm indicates emission probabilities for bases matching the sequences of repeat units, or 

flanking sequences, respectively. Given the max. read-length of 75bp in this study, longer 

repeat stretches (>16x) are matched by a path lacking flanking sequences. 
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4.4 Results 
 

Phase-variable loci covered by large scale sequencing experiments of bacterial genomes led 

us to develop a bioinformatic pipeline to detect phase-variation events within N. meningitidis 

population by counting and comparing short tandem repeat unit numbers. 

Comparing a large number of genomes using approaches such as mapping and de novo 

assembly was inefficient. Moreover an assembly approach, if successful, yielded in only the 

predominant length of the repeat loci, and did not allow the detection of repeat variants within 

the “clonal” population. We thus developed computational tools, adaptable to sequence data 

from all organisms for an enhanced detection and analysis of repetitive sequences. 

 

4.4.1 Development of a flexible microsatellite repeat typing tool (RepHMM) 

 

The high sequencing coverage guarantees a locus to be spanned by multiple reads and thus 

overcoming random sequencing errors. The number of reads is however inversely proportional 

to a locus sequence length, thus longer repeat stretches are completely covered by fewer 

numbers of sequencing reads. In addition, minor repeat variants signifying clonal variability also 

have a reduced coverage. Simple pattern matching via RegEx failed at longer repeat regions 

due to its intolerance of sequencing errors. Likewise SNPs with respect to reference genome 

also crippled RegEx matching. We therefore developed a novel tool that allows for an 

extended detection power for longer repeat region, detection of subtle and rare sequence 

variants as well as tolerating SNPs and sequencing errors.  

 

Figure 4-3: modA12 gene encoding type III 

methyltransferase with the phase determining repeat region 

(AGCC) inside the ORF. 

 

For this part we will focus on established phase-variable loci of the mod and opa gene 

families. modA12 is a member of the mod gene family associated with type III restriction–

modification systems and phase-variable tandem repeats in the N-terminal region of the 

ORF (Srikhanta et al., 2010) can lead to 'pseudogene' annotations at these loci in several 

genome assemblies (Figure 4-3). The repeat sequence 'AGCC' in the context of 5´ and 3´ 

flanking sequences 'CAGTAAT' and 'AATTAT' respectively, is specific for the modA12 locus 

in the assemblies of the N. meningitidis genomes. 
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The workflow starts with a pre-selection of sequence reads containing at least two repeat 

units as identified by Phobos (see methods). This pre-selection step reduced the total 

amount of reads to be scored by the probabilistic model, thereby reducing the computational 

time required. At the example of the repeat sequences of the modA12 loci (Figure 4-3), the 

pre-selection of reads containing ‘AGCCAGCC’ reduced the number of reads to assess 

from over 6 billion to 4 million sequencing reads.  The assessed data set contained reads 

with a maximal length of 75bp. 

Scoring the pre-selected reads with an HMM tolerated defined rate of (sequencing) errors 

while specifically identifying read sequences covering a phase-variable locus. For each set of 

read sequences, the number of reads best matching a specific conformation with repeat units 

and locus-specific flanking sequences was reported (Table 4-1). Specificity was ensured by 

stringent matching of the flanking sequences (Figure 4-2). 

 

…#Repeats 
Strain 

4 5 6 7 8 9 10 11 12 13 14 15 16 >16 

NM1264* 310                           

NM1325   1     2 9 52 2 1           

NM1446*   1 199 2                     

NM1471*   288 1                       

NM1673 2 1 3       1           2   

NM1901*     285 3 1   1               

NM2335                       3     

NM2193 1 1               1 10       

NM2369     1         26       1     

NM2933                           2 

 

Table 4-1: RepHMM Output, a direct read count comparison of repeat unit conformation 

between and within sequenced strains. 

A representative set of strains showing the number of sequencing reads detected for each repeat 

length conformation identifying variability at the modA12 locus between different strains as well as 

within strains. Green background indicates repeat unit numbers resulting in a complete ORF (gene 

ON). Grey background marks repeat unit conformations confirmed by Sanger sequencing. (*) 

Representative reads from these strains are extracted and aligned in Figure 4-5. Table S4-1 contains 

the complete dataset of all sequenced strains. 

 

4.4.2 RepHMM outperforms alternative approaches 

 

RepHMM featured substantial repeat length quantification advantages mainly allowing for 

longer repeat conformation quantification in both simulated data as well as sequencing data. 

Notably, RepHMM also provided a higher detection resolution for read variants deviating 

from the predominant genotype (repeat number) denoting clonal phase-variation. 
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Comparing RepHMM versus RegEx matching using simulated reads of ModA12 locus  

 

Phase-variation events leading to few read variants conferring a divergent repeat genotype 

usually constitute a minor fraction of the predominant repeat genotype. Thus, in our 

simulated reads dataset we generated in addition to the predominant read conformation a 

few number of reads of ±3 repeat units resulting in a total of 3-5 divergent repeat genotypes. 

We also introduced sporadic mismatches, mimicking random sequencing errors or SNPs, at 

a 5% rate for each generated read matching the modA12 locus (methods). The ratio of 

accurately called genotypes to the actual simulated genotypes assesses the performance of 

each approach. 

Using the simulated reads dataset, we compared our RepHMM to RegEx pattern matching 

(Figure 4-4) in the form of (flanking)(AGCC){1,16}(flanking). Sequencing errors are overcome 

by higher sequencing coverage, thus the probability to obtain error free sequences increases 

with number of sequenced reads covering a particular locus. Consequently, the likelihood to 

find the predominant repeat genotype using RegEx is high; conversely the likelihood of error 

free sequences drops with longer repeat stretches or for rare genotype variants (Figure 4-4). 

The number of reads spanning whole repeat length is inversely-proportional to the repeat 

unit number hence the observed drop in genotype calling using RegEx towards longer 

repeats (Figure 4-4). Therefore, longer repeat stretches and sequence mismatches rendered 

RegEx inefficient compared to a much improved detection power using RepHMM. 

Velvet de novo assembly performance was severely impaired after introducing repeat 

genotype variability (scanning all 3≤kmer≤31 options), whereby the contig assembly failed if 

the repeat unit number is >4 (Figure 4-4) whereas a uniform genotype allowed the assembly 

of longer repeat stretches (Table 4-2). 
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Figure 4-4: RepHMM efficiently quantifies genotypic variability from simulated pool of reads. 

Comparing performance of RepHMM, RegEx and de novo assembly in detecting genotype variants. 

For each repeat unit genotype (number of repeats), constituting the predominant read count, there 

exists 3-5 random genotype variants of ± 3 repeat units constituting up to 10% of the simulated read 

count (methods). Plotted is the mean ratio of genotypes called by each approach shaded by the 

corresponding standard deviation of 100 simulation rounds.  
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RepHMM efficiently quantifies population and clonal variability of modA12 locus from 

Illumina sequenced genomes  

 

In order to quantify the actual phase-variation at modA12 locus between the sequenced 

Neisseria meningitidis isolates, we applied our RepHMM approach to the Illumina sequenced 

genomes. Similar to the simulated data, we also compared RepHMM performance to RegEx 

and de novo assembly. Both approaches detected the predominant repeat conformations at 

modA12 locus, provided the length of the repeats remained below 14 units (Table 4-2, Figure 

4-5A). 

Longer repeat stretches (14-16 repeat units) can still include flanking sequences given the 

75bp read length; however restricting the precise coordinates of the genomic origins of the 

reads reduces also the expected coverage. In these situations RepHMM was clearly more 

sensitive to correctly quantifying repeat unit numbers than both de novo assembly and 

RegEx. Correctness of RepHMM was verified for 45 selected genomes via PCR sequencing 

where we found a 100% co-incidence of the predominant repeat unit number determined by 

RepHMM (Table 4-2). 

 

  Count of strains Number of reads 

Repeat  

units 

# 

De novo 

Assembly 
Regex RepHMM 

PCR 

sequencing 
Regex RepHMM 

2-13  56 56 56 3* 5390 7620 

14 2 9 14 14 27 83 

15   0 † 1 7 7 3 12 

16   0 † 0 1 1 0 4 

>16   0 † 0 22 20 6 106 

ND  42 34 0 7 - - 

 

Table 4 - 2: RepHMM efficiently detects longer repeat conformations. 

Comparing aggregate counts of reads from the sequencing of 100 N. meningitidis strains targeting 

sequences derived from the modA12 loci. Comparing de novo assembly and simple string matching 

(RegEx) to RepHMM specificity using PCR Sanger sequencing as the gold mark standard. Count of 

strains represents the number of similar cases out of 100 sequenced strains. (†) Contig break. (ND): 

Number of strains with a non-determined repeat conformation by each approach. (*) 4 strains tested 

with PCR sequencing as control. 

 

The read length inherently limits the number of detectable repeat units by RepHMM, 

nevertheless the model is still capable of correctly reporting repeat unit number above a 

certain length compared to a contig break (Table 4-2) or even wrongly reported repeat length 
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in de novo assemblies where 40% of the cases with >14 units were incorrectly reported as 

shorter repeat length. 

RepHMM with its tolerance of sequencing errors did not only recover reads with longer 

repeats but also allowed detecting rare genotype variants. Figure 4-5B shows extracted and 

aligned reads with a divergent repeat length from the same strain most likely resulting from 

clonal phase-variation events. As described in the introduction, such phase-variation 

occurring within a clonal population is rare (~1 in 300); likewise the corresponding number of 

reads would be rare. Thus, analogous to what we observe with the simulation data set 

described earlier, sequencing errors as observed in figure 4-5B hampered the detection of 

rare read variants using RegEx. De novo assembly and PCR sequencing also could not 

detect such 'mixed' repeat genotype conformations only reporting the predominant repeat 

genotype (Table 4-2).  

In cases where we observe a comparable number of reads at two or more distinct repeat 

genotypes such as NM1673 in Table 4-1, we derived a mathematical formula in order to infer 

the predominant repeat length. The formula calculates the expected number of reads using 

the average coverage at adjacent genomic regions and average read length. The 

predominant clonal repeat genotype is inferred by comparing the ratio of the number of reads 

observer/expected for each genotype variant, a higher ratio designates the predominant 

genotype. In the case of NM1673 (Table 4-1), the highest ratio corresponds to repeat unit 

conformation (16) compared to the other conformations, indicating the predominant clonal 

genotype is 16 repeat units and an ON ORF status.  

 

             
    

   
[                  ] 

Xcov standing for coverage, Lrd read length and Lflk for pre-specified flanking length and Urpt 

for repeat unit length and nrpt for total number of tandem repeats. 

With further optimization, the formula could be utilized to estimate the repeat unit number in 

cases where the repeat region is longer than the read length (>16xAGCC). At this stage we 

can only presume, the higher the ratio of the number of reads observed/expected >1 the 

longer the repeat region. 
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Figure 4-5: Alignment of reads sequences at modA12 locus. (A) divergent counts of 'AGCC' 

repeat units in 3 different N. meningitidis strains (NM1264, NM1446, and NM1471) separated by 

boxes as identified by RepHMM. Grey boxes on top of the alignment indicate flanking sequences 

used to delineate the repeat region. The table to the right indicates the number of reads derived from 

each strain and repeat unit conformation as identified by RepHMM compared to RegEx. (B) Divergent 

repeat conformations within the same clonal population are aligned displaying a high read count for 

predominant repeat length conformation and lower counts for read variants. Please note interspersed 

sequence variants disabling RegEx pattern matching approaches. 

 

4.4.3 Evaluating RepHMM at multi-copy gene duplicates. 

 

Tandem repeats are a popular target in molecular epidemiology, yet current genotyping 

assays including multiplex PCR remain laborious and time consuming. We therefore 

compared the repeat unit counts at the opa loci determined by RepHMM with genotyping 

assays applied to matching DNA samples (Huber et al., 2012). 4 opa gene copies are 

present in the N. meningitidis genomes with identical repeat and immediate flanking 

sequences, yet having variable repeat unit numbers. Specific PCR primer sequences located 

at larger distances to the repeats allowed assessing individual opa loci, while RepHMM 

determined repeat unit counts combined over all loci sharing identical flanking sequences. 
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Table 4-3 summarizes our findings showing RepHMM results perfectly correlating with PCR 

sequencing results combined over the 4 opa loci, if considering read counts >12 as detection 

threshold, due to longer repeat unit length ('CTTCT'). Moreover, similar to modA12, RepHMM 

also detects read variants representing clonal variability at the phase-variable opa locus. 

 

 

 Repeat unit number 

Neisseria 

isolate 
7x 8x 9x 10x 11x 12x >12x 

NM2008 0 0 7 119 6 22 na* 

NM2009 0 0 9 68 47 17 na* 

NM2700 0 80 3 3 35 7 na* 

NM2701 0 127 4 9 53 12 na* 

 

Table 4-3. Validation of opa loci by direct PCR sequencing 

RepHMM determines for specific strains (in rows) the predominant counts of 'CTTCT' repeat units at 

opa loci. Each cell of the table indicates the number of sequencing reads best matching with the 

corresponding repeat conformation (and flanking sequences) specifying the 4 opa loci. Each individual 

opa locus in the corresponding strain displays a specific repeat conformation as detected by direct 

PCR-sequencing, summarized in the table by grey background. (*): the maximal read length of 75bp in 

the present sequencing experiments disables the detection of repeat configurations with more than 12 

repeats (12x5bp repeats + 2x6bp flanking sequences). 

 

4.4.4 Integrated Pipeline for identification of Phase-variable Genome  

 

Pipeline development 

 

Having established the utility of RepHMM in detecting repeat variation, we integrated 

RepHMM and RegEx into a pipeline for a comprehensive identification of phase-variable 

genes from massively parallel sequencing data of closely related bacterial population (Figure 

4-6). The pipeline begins with a thorough scan of reference genome, in this case N. 

meningitidis WUE 2594, for short tandem repeats using Phobos repeat finder (section 4.3.1). 

The highly sensitive scan identified 9000 loci containing a repeat sequence.  

Using two synergic methods, sequencing reads matching a flexible length of each of the 

identified STRs in the context of fixed flanking sequences (anchors) are detected directly 

from raw sequencing data (fastq files). For each detected read the corresponding repeat unit 

number is calculated. The approach integrates the fast and exact Regular Expression 
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(RegEx) string matching algorithm (section 4.3.2) with the slower yet exhaustive RepHMM 

tool, based on a Hidden Markov Model (HMM) read scoring (sections 4.3.3; 4.4.1). 

SNPs, sequencing errors and reduced coverage severely cripple exact matching algorithms 

especially at longer repeat sequences. Our probabilistic tool RepHMM tolerates mismatches 

and allows a thorough detection of repeat variant complementing the fast and exact RegEx 

sequence matching. Despite its advantages, the complexity of the HMM algorithms would 

nevertheless render scanning six billion reads (of 100 genomes) computationally demanding 

and time wise futile. Thus, loci found to contain SNPs in the flanking sequences (~450 loci) 

are scanned for by the approximate matching tool RepHMM, whereas conserved loci are 

scanned for by the custom designed RegEx based Perl scripts. In cases where RegEx fails 

for reasons such as longer repetitive region and sequencing errors, or requiring a higher 

resolution to detect minor genotype variants, a targeted RepHMM is applied per genome or 

locus. A combination of those two methods vastly reduces the computational and time 

constraints. 

A variable repeat number at each locus across the sequenced isolates indicates a hyper-

variable microsatellite region undergoing extension/contraction mechanism. Loci falling 

inside ORFs lead to direct phase-variation events thereby allow inferring the phase-variable 

genome within the studied population. Loci occurring in the intergenic region might have an 

indirect effect and would be unfeasible to computationally predict their outcome. 

An isolate phasotype is deduced by analyzing combinatorial ON/OFF conformation of each 

phase-variable gene, and the aggregate proportion of ON/OFF variants within a population 

denotes the phasevariome. 

The output is sorted according to degree of repeat length variability within the population. In 

the case of homopolymer repeat regions it is impossible to distinguish an insertion or deletion 

(indel) from a phase-variation event as both would have the same outcome. Therefore, we 

set a rather stringent threshold of >10 variants across the 100 genomes representing a high 

frequency of localized variability consistent with phase-variation rather than indel mutation or 

sequencing errors which are expected to be more sporadic.  
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Figure 4-6: Pipeline to identify phase-variable genome from a sequenced population of 

N. meningitidis isolates. The method or tool used is indicated adjacent to each step. In 

brackets the number of loci determined by the corresponding step. 
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Analysis of pipeline output  

 

Our ongoing analysis of the large output has so far revealed 288 hyper-variable repeat 

regions occurring inside gene bodies. Table 4-4 summarizes the top 70 genes based on 

repeat unit length and degree of variability within our population of isolates. Our pipeline 

successfully identifies genes known to undergo phase-variation (blue cells, Table 4-4) such 

as the mod and opa genes. Analyzing and publishing the first whole genome sequence of N. 

meningitidis strain Z2491 (Parkhill et al., 2000) described 27 repeat regions potentially 

associated with phase-variation in a serogroup A. The following year, Snyder et al. expanded 

the predicted list to 57 putative phase-variable genes by conducting a basic comparison of 

repetitive loci from three distinct whole genome sequences of Neisseria genus available at 

the time. Analyzing our 100 closely related genomes, 21 out of 57 putative phase-variable 

genes appear in the top ranking phase-variable loci (yellow cells, Table 4-4). 15 loci appear 

to have no variation or are not present in our reference genome. The rest of the putative loci 

appear to have a reduced degree of variation in our population. 

Examining the main association of the top ranking hits shows the majority of the genes in 

Table 4-4 are associated with cell surface structures, adhesion and other virulence factors. In 

particular, 14 genes are associated with adhesion and pili (Opa alleles, nhhA), pilus-

associated proteins (pilC) and glycosylation (pgl, igtG, rfaG1), five lipopolysaccharide 

associated genes (Lgt, IpxC) and two capsule biosynthesis proteins (sacB, sacD). Ten 

additional genes are associated with membrane proteins, six of which are outer membrane 

proteins (porA, autB). Genes involved in DNA methylation (modA, modB), iron binding (tonB, 

fetA) and phage associated (intA) also appear to phase-vary. 
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Table 4-4. Top loci having variable repeat unit length with in the meningococcal serogroup A 

population. The gene and the corresponding repeat unit and the degree of variability based on the 

number of variants within the population is indicated (H= High >10 variants, M= Medium >5 variants, 

L=Low >3 ). Where available the product and main association are listed for each gene. Blue 

highlights genes reported as phase variable, yellow highlights indicates putative phase-variable genes 

predicted by (Snyder et al., 2001). 

Gene 
Repeat 

Unit 
Degree of 
variability 

Main 
Association 

Product 

opaA CTTCT H Adhesion Opacity protein 

opaB CTTCT H Adhesion Opacity protein 

opaC CTTCT H Adhesion Opacity protein 

opaD CTTCT H Adhesion Opacity protein 

modA12 AGCC H 
DNA 

methylation 
type III restriction/modification system 

modB2 TTGGG H 
DNA 

methylation 
type III restriction-modification system 

cotSA C H pili pilin glycosyl transferase A 

UbiE T H   Ubiquinone/menaquinone biosynthesis 

SacD T H capsule Capsule biosynthesis protein 

pcm T H   Protein-L-isoaspartate O-methyltransferase 

pilC1 C H pili Type IV pilus-associated protein 

NMAA_1262 A H   Uncharacterized protein 

M.NlaIV A H 
DNA 

methylation 
methyltransferase 

SstT A H membrane inner membrane Serine/threonine transporter 

glmS A H   Glutamine-fructose6phosphateamino-transfer 

icd T H   Isocitrate dehydrogenase 

pilc2 G H pili Type IV pilus-associated protein 

mfpsA (lgtA) G H LPS lipooligosaccharide glycosyl transferase A 

IgtG G H LPS lipooligosaccharide glycosyl transferase G 

pglI G H pili putative LipO-oligosaccharide acyltransferase 

pglA G H pili pilin glycosyl transferase A 

ssa1 G H   extracellular serine protease precursor 

porA C H membrane outer membrane porin protein 

NMAA_0422 T H   flavoprotein-ubiquinone oxidoreductase 

NMAA_1672 T H   Putative metallopeptidase 

sacB A H capsule Capsular polysaccharide phosphotransferase 

NMAA_0828 T H   Putative phosphatase 

thiC A H   Phosphomethylpyrimidine synthase 

Alx  A H membrane membrane protein 

NMAA_0064 T H   Uncharacterized protein 

NMAA_0123 C H   Uncharacterized protein 

tbp2 T H membrane outer membrane Transferrin-binding protein 2 
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lpxC CG M LPS 
lipid A biosynthesis, LPS anchor to outer 

membrane 

pdxA GC M   NAD(P)-dependent oxidation 

potG  GGCAA M   Putrescine transport ATP-binding protein 

NMAA_1079 AAGAA M   Uncharacterized protein 

ssb GCGGC M   recombination and DNA repair 

MtrC GC M membrane Cell membrane lipoprotein 

topA T M   DNA topoisomerase 1 

NMAA_1879 T M membrane Putative membrane protein 

ZipA T M   Cell division protein 

rfaG1 T M pili Glycosyl transferase group 1 

NhhA T M adhesion outer membrane protein 

NMAA_0797 T M   Uncharacterized protein 

FtsK 2 T M   
integral component of membrane DNA 

translocase 

hscA A M   Chaperone protein HscA homolog 

NMAA_0920 A M   Putative cytochrome 

NMAA_1126 T M membrane Putative membrane protein 

NM1626_01938 C M pili glucosyl transferase 

NM1626_00384 G M LPS lipopolysaccharide-1,6-D-galactosyltransferase 

Opc (promoter) C M Membrane Outer membrane protein 

pntA_serB G M   
NAD(P) transhydrogenase subunit alpha-and-

SerB protein 

intA_1 TG M 
phage 

associated 
putative phage integrase 

NMAA_0143 A M   Uncharacterized protein 

fetA T M Iron binding TonB-dependent enterobactin receptor FetA 

NMA0643 GGCG L LPS Lipopolysaccharide biosynthesis translocase 

PglE AAACAAC L pili glycosyltransferase 

ilvD  CG L   Dihydroxy-acid dehydratase, cofactor Fe 

NMAA_0927 AC L   Putative HTH-type transcriptional regulator 

thiL AC L   Thiamine-monophosphate kinase 

autB  TGCT L membrane outer membrane transporter 

drg TTCC L 
DNA 

methylation  
Dam-replacing protein 

NMAA_0690 AT L   Uncharacterized protein 

NMA_0299 CG L   Putative ATP-binding protein 

RibD GA L   Riboflavin biosynthesis protein 

NM1626_01372 CAAG L   hypothetical protein 

vapA_2 GCTT L adhesion 
Aida-related Type V secretory pathway 

adhesin 

tonB GT L Iron binding tonB-dependent ferric siderophore receptor  

hpuB T L Iron binding Hemoglobin-haptoglobin utilization protein B 
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4.4.5 A Predominant OFF state of type III methyltransferases. 

  

Within a bacterial population, a straightforward analysis would be to determine the ON 

versus OFF frequency of a particular phase-variable gene. In the case of multiple phase-

variable genes, each cell would have a combinatorial ON/OFF conformation of these genes 

denoting a cells phasotype. On the other hand, the cumulative frequency of each phase-

variable gene status within the population denotes the phasevariome. 

A higher number of phase-variable genes would lead to an exponential increase in possible 

genotype combinations (2n
 ; n denoting number of genes). In the case of genes having 

regulatory functions or antigenic determinants such a mechanism could generate a 

remarkable number of possible phasotypes thereby giving the pathogen a huge repertoire of 

rapidly accessible ON/OFF genotypes maximizing variation potentials. At the example of the 

phase-variable opacity genes, four allele copies are present in WUE 2594 (Table 4-4). With 

each allele having 2 expression states (ON or OFF) this would result in 16 possible 

phasotypes combinations significantly increasing potential genotype variability. 

Two phase-variable type III methyltransferase genes are present in our reference strain WUE 

2594, modA12 and modB2. Using our pipeline we have confirmed a high phase-variation 

rate of both genes (Table 4-1; Table 4-4). For some isolates, our computational approach 

indicated longer repeat stretches but failed to resolve the exact repeat unit number due to 

read length limitations. For a complete overview of the population at these two mod genes, 

we complemented our data with PCR and Sanger sequencing to determine repeat unit 

number and subsequently the gene status (Table S4-1). 

In order to identify isolate phasotype, we used the predominant repeat conformation as the 

most likely approximation for the (original) single cell status. The combinatorial ON/OFF 

status of both mod genes allow defining for each isolate a methyltransferase phasotype. The 

frequency of each possible phasotypes of the two mod genes in our 100 meningococcal 

isolates indicates that the majority of isolates have both methyltransferase genes switched 

off (58%). A mere 5% have both genes ON whereas 30% of the isolates have an alternate 

ON/OFF status of the two genes (Table 4-5). The three possible frames would suggest a 

33% ON status versus 67% off status to be expected from a random fluctuation of repeat 

number. Instead, we observe a consistent reduced proportion of ON status for both modA12 

and modB2 genes at 18% and 22% respectively (Table 4-5). Both phasotype and 

phasevariome of the mod genes indicate a predominant OFF status within the population 

which hints potential selective pressure to maintain an inactive status of these two genes.  
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Table 4-5: Type III methyltransferases phasotypes (purple) and phasevariome (orange). (*) Total 

undetermined where pipeline and PCR failed. 

 

 

4.4.6 Repeat region length evolution at modA12 locus 

 

The 100 sequenced Neisseria meningitidis strains represent epidemics isolates with a 

hypothetic common ancestor strain. In order to investigate the evolutionary dynamics of a 

phase-variable repeat region within the 100 sequenced strains, we used pairwise genetic 

distances based on genome wide SNP count. From the RepHMM inferred modA12 repeat 

length, we calculated a pairwise repeat unit count difference. Based on pairwise genetic 

distance we observe two main clouds of data points (Figure 4-7) consistent with two main 

sequence types in the analyzed collection of strains. Within one cluster, strains show a high 

similarity (<40 SNPs) but are clearly separated between clusters. Pairwise difference of 

repeat unit count reveals a slight tendency for an increased repeat unit length with increased 

genetic distance however the two mutation types clearly appear to evolve independently 

(Figure 4-7). Repeat unit number seem to be highly dynamic with a fast variability rate a 

process which allows a phase-variable gene to be turned on and off rapidly. 

  

         

ModB2  Phase-

variome ON OFF 

ModA12 
ON 5% 13% 18% 

OFF 17% 58% 75% 

phasevariome 22% 71% 7%* 



Bioinformatic Detection Of Tandem Repeat Variation 72 
 

 

 

 

 

Figure 4-7: Evolution of repeat region length is independent of genetic distance. Pairwise 

genetic distance of 100 strains plotted against pairwise absolute difference in repeat unit count at the 

modA12 repeat locus. Bubble size reflects aggregate number of dots. 
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4.5 Discussion 
 

Summary  

 

Complementing the fast and exact simple pattern matching algorithm (RegEx), we developed 

a probabilistic tool ‘RepHMM’ for an extended repeat length detection by tolerating 

mismatches resulting from sequencing errors or SNPs. RepHMM also provides an enhanced 

detection resolution enabling detection of rare repeat genotypes variants signifying clonal 

variation. Our results demonstrate the utility of our methods to discover and assess repeat 

unit numbers at microsatellite loci directly from high-throughput sequencing data. In the era 

of big data where large scale whole genome sequencing is becoming routine, we provide a 

well-designed pipeline for a fast and reliable genome wide assessment of phase-variation 

events using raw sequencing data. Our direct approach circumvents the need of 

computationally heavy and time consuming classical approaches to detect phase-variation 

which are mostly locus specific and/or require genome assembly or PCR amplification. 

Applied to a large dataset of sequenced Neisseria meningitidis genomes our pipeline 

revealed a rapid ON/OFF switching mechanism that controls an extended set of genes. The 

identified phase-variable genes are mostly associated with surface antigens, capsule and 

adhesion elements, which are proposed to contribute to the pathogens adaptability and 

evasion of the host immune system. 

We prove the ability of RepHMM to determine locus specific repeat unit counts from a mix of 

different sequence variants. Highly similar, recently duplicated genomic sequences such 

as the opa loci can however not be resolved by our method, nevertheless RepHMM is able 

to provide an aggregate count of the different repeat length conformations present in the 

genomes of the population of cells subjected to sequencing. The present results suggest that 

RepHMM can also be applied to monitor highly unstable tandem repeat loci in the (clonal) 

population of cells pooled for a sequencing assay. 

 

Consistent mutation rate of phase-variable short tandem repeats 

 

Our results are consistent with the reported rapid variability of phase-variable genes in 

Neisseria spp. Mutations at STRs can reach up to10-3 per division (Bayliss, 2009). Divergent 

repeat conformations from a particular isolate likely represent clonal variants. Calculating the 

ratio of minor repeat genotype variants to the predominant repeat conformation using 

sequencing reads count as detected by RepHMM provides an estimate of the rate of phase-

variation at a particular locus. At the example of modA12 locus, our calculated clonal phase-
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variation rate matches for most isolates the reported mutation rates. In few extreme cases 

however we do observe much higher mutation rates (Table 4-1, NM1325) which might be 

also attributed to contaminations or selection biases in cell culture. 

 

Pipeline adaptable to other sequencing technologies 

 

In addition to analyzing genome wide repeat regions, our pipeline can be adapted to target a 

specific genomic locus for a direct and detailed analysis using raw sequencing data. 

Furthermore, the tool can be used with virtually any sequencing technology. We have applied 

the pipeline also to circular consensus sequences (ccs) reads generated by PacBio single 

molecule real-time sequencing platform and we were successful in quantifying repeat unit 

length and detecting single molecule variability at phase-variable regions similar to what we 

observe in the Illumina data sets (Figure S4-1). Although read length is constantly increasing 

with advances in sequencing technologies thus covering longer repeat loci, yet rare repeat 

genotype variants are still ignored using conventional genome mapping and assembly tools. 

 

Closely related bacterial population ideal for identifying phase-variable genome 

 

We utilize a sequenced population of 100 meningococcal serogroup A isolates which were 

collected within the framework of longitudinal micro-epidemiological studies in Ghana and 

Burkina Faso between 1998 and 2011 (Leimkugel et al., 2007b; Sié et al., 2008, Lamelas et 

al. 2014 ). Although the genomes belong to two sequence types, ST7 strains are only single 

locus variants of ST2859 strains. While the MLST profile underestimates the overall genome-

wide differences, the population is highly closely related with a total of only 361 SNPs 

occurring within the 100 isolates population (Lamelas et al. 2014). Such population is 

therefore an ideal set up to infer genome wide phase-variation events and ultimately a 

serogroup (A) meningococcal phase-variable genome. The assembly and mapping 

complications relating to repetitive sequences as described in the introduction prevents 

classical comparative genomics analysis as performed by (Lamelas et al.) to easily detect 

and compare phase-variation events. Therefore, a potential role of phase-variation in 

adaptation and pathogenesis would be severely underestimated or even neglected due to 

technical limitations.  

Genes known to phase-vary and are present in our WUE 2594 reference genome are 

successfully detected by our approach. Complementing the pioneering work of (Parkhill et 

al.) and (Snyder et al.), we have validated some of the putative phase-variable genes which 
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also occur in our reference genome. In comparison, our data provide a more reliable and 

solid assessment of genome wide phase-variation events as we compare highly closely 

related population of isolates whereas (Snyder et al.) analysis compared only three distant 

strains of Neisseria spp., namely two N. meningitidis strains Z2491 and MC58 and N. 

gonorrhoeae strain FA1090. Such a limited number of compared genomes and their 

evolutionary distance could very likely confound phase-variation with simple mutagenesis 

and selection.  

 

Phase-variable surface components and regulatory genes 

 

Adding to the sheer number of genes (288) containing hyper-variable repeat sequences 

within our isolates population, another striking feature is the diversity of functions of the top 

ranking genes. The majority of our identified phase-variable genes can be associated with 

pathogenicity determinants and surface components in Neisseria. The 13 genes already 

known to phase-vary (blue cells Table 4-4) are also known as virulence factors in Neisseria 

(Loh et al., 2013). Phase-variation of enzymes involved in LPS biosynthesis would lead to 

antigenic variation typical of meningococci. In addition, adhesion associated genes including 

pili and opacity proteins are characterized virulence traits important for establishment of N. 

meningitidis on mucosal surfaces. The constant switching of surface components help 

maintain colonization as well as facilitate immune evasion by the bacterium (Virji, 2009).  

Remarkably genes not associated with Neisseria surface structures but are nevertheless 

crucial pathogenicity determinants such as iron acquisition; regulatory mechanisms and DNA 

methylation are also phase-variable. Minor yet rapid changes in repeat regions of regulatory 

genes would have genome wide ramifications augmenting the consequences of phase-

variation. The phasevarion is one such system whereby phase-variation of type III DNA 

methyltransferases (mod genes Table 4-4) has been associated with a coordinated switching 

of multiple genes in several species including Neisseria spp. and Helicobacter pylori 

(Gawthorne et al., 2012a; Srikhanta et al., 2010).  

 

Phase-variation mediates a reduced expression status of genes 

 

Phase-variation provides an additional layer of gene expression control. To our knowledge 

no biases in the extension/contraction mechanism of repeat unit number has been reported 

so far. Accordingly, the three reading frames would theoretically render phase-variable genes 

to have a reduced expression status (33% ON versus 67% OFF) compared to other non-
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phase-variable genes. Analyzing phasotypes and phasevariome of type III 

methyltransferases, both modA12 and modB2 display an even lower ON percentage within 

our population than expected from arbitrary repeat unit number variation (Table 4-5), 

suggesting a pressure to keep these methyltransferase enzymes with potential regulatory 

functions (Srikhanta et al., 2010) at a low frequency expression state. It is worth noting that 

despite the observed predominant OFF status, mod gene family appear to be highly 

conserved in Neisseria spp. (Seib et al., 2011). A similar observation of reduced expression 

was reported for phase-variable outer membrane proteins. NadA and porA, which are 

components of the recently licensed Bexsero vaccine (Vogel et al., 2013) and fetA another 

vaccine candidate (Urwin et al., 2004) were shown to be down regulated as a consequence 

of phase-variation (Alamro et al., 2014). The reduced expression of cell surface components 

in N. meningitidis is suggested to facilitate host persistence by evasion of adaptive immune 

responses (Alamro et al., 2014). In contrast, the autotransporters mspA phase-variable gene 

from serogroup B strains displayed a predominant ON state (86%) suggesting an important 

role in certain epidemiological settings (Oldfield et al., 2013). Nevertheless, Phasotyopes and 

phasevariome are indicative of the bacterial response but cannot be used to predict in vivo 

phenotype since external factors and post-transcriptional modifications could also control 

gene expression (Bidmos and Bayliss, 2014). 
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4.6 Supplementary materials 
 

 

 

Figure S4-1: Pipeline applied to ccs reads from Pacbio SMRT sequencing detecting repeat 

unit variation at modB2 locus. 
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Table S4-1: Complete set of 100 isolates modA12 and modB2 genes status including the 

predominant repeat length as determined by RepHMM (repeat number modA12<16; modB2 

<12) or by PCR/Sanger sequencing (repeat number >16 and >12). (*) Accession number at 

the Sanger data resource 

http://www.sanger.ac.uk/resources/downloads/bacteria/neisseria.html#project_1893 

 

Isolate 
Accession 
Number* 

ModA12 
Repeat 
units #  

ORF 
ModB2 
Repeat 
units #  

ORF 

 

Isolate 
Accession 
Number* 

ModA
12 

Repea
t units 

#  

ORF 
ModB2 
Repeat 
units #  

ORF 

1264 ERS040961 4 On 12 Off 
 

2181 ERS041011 15 Off 9 Off 

1325 ERS040962 10 On 7 Off 
 

2187 ERS041012 13 ON 9 Off 

1359 ERS040963 5 Off 14 On 
 

2188 ERS041013 14 Off 9 Off 

1360 ERS040964 6 Off 12 Off 
 

2193 ERS041014 14 Off 9 Off 

1361 ERS040965 5 Off 14 On 
 

2206 ERS041015 13 On 10 Off 

1362 ERS040966 4 On 14 On 
 

2228 ERS041016 15 Off 9 Off 

1363 ERS040967 5 Off 14 On 
 

2232 ERS041017 13 On 10 Off 

1364 ERS040968 5 Off 14 On 
 

2237 ERS041018 12 Off 9 Off 

1446 ERS040969 6 Off 12 Off 
 

2239 ERS041019 14 Off 9 Off 

1471 ERS040970 5 Off 12 Off 
 

2244 ERS041020 12 Off 10 Off 

1482 ERS040971 5 Off 14 On 
 

2254 ERS041021 15 Off 9 Off 

1483 ERS040972 5 Off 13 Off 
 

2261 ERS041022 14 Off 10 Off 

1544 ERS040973 8 Off 15 Off 
 

2263 ERS041023 11 Off 9 Off 

1549 ERS040974 8 Off 15 Off 
 

2264 ERS041024 18 Off 9 Off 

1550 ERS040975 8 Off 16 Off 
 

2332 ERS041025 14 Off 9 Off 

1561 ERS040976 6 Off 15 Off 
 

2335 ERS041026 10 ON 10 Off 

1573 ERS040977 4 On 9 Off 
 

2369 ERS041027 11 Off 11 On 

1578 ERS040978 6 Off 15 Off 
 

2381 ERS041028 13 On 11 On 

1666 ERS040979 14 Off 7 OFF 
 

2382 ERS041029 17 Off 10 Off 

1672 ERS040980 15 Off 14 On 
 

2389 ERS041030 11 Off 9 Off 

1673 ERS040981 14 Off 14 On 
 

2393 ERS041031 14 Off 9 Off 

1757 ERS040982 7 On 13 Off 
 

2394 ERS041032 15 Off 10 Off 

1758 ERS040983 8 Off 14 On 
 

2431 ERS041033 19 On 11 On 

1779 ERS040984 8 Off 10 Off 
 

2432 ERS041034 17 Off 10 Off 

1797 ERS040985 9 Off 10 Off 
 

2433 ERS041035 14 Off 8 On 

1805 ERS040986 8 Off 10 Off 
 

2439 ERS041036 14 Off 9 Off 

1826 ERS040987 8 Off 10 Off 
 

2441 ERS041037 17 Off 8 On 

1829 ERS040988 8 Off 10 Off 
 

2524 ERS041038     10 Off 

1831 ERS040989 5 Off 8 On 
 

2602 ERS041039 12 Off 9 Off 

1837 ERS040990 5 Off 18 Off 
 

2606 ERS041040     10 Off 

1845 ERS040991 10 On 14 On 
 

2617 ERS041041 16 On 9 Off 

1891 ERS040992 10 On 14 On 
 

2700 ERS041042 20 Off 9 Off 

1892 ERS040993 6 Off 15 Off 
 

2701 ERS041043 20 Off 9 Off 

1893 ERS040994 6 Off 15 Off 
 

2717 ERS041044 10 ON 10 Off 
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1895 ERS040995 5 Off 12 Off 
 

2718 ERS041045 15 Off 9 Off 

1901 ERS040996 6 Off 21 Off 
 

2808 ERS041046 20 Off 9 Off 

1910 ERS040997 10 ON - - 
 

2809 ERS041047 19 On 9 Off 

1919 ERS040998 6 Off - - 
 

2810 ERS041048 20 Off 9 Off 

1921 ERS040999 8 Off 10 Off 
 

2811 ERS041049 20 Off 9 Off 

1928 ERS041000 4 On 12 Off 
 

2812 ERS041050 20 Off 9 Off 

1931 ERS041001 7 Off 10 Off 
 

2813 ERS041051 20 Off 9 Off 

1937 ERS041002 10 ON - - 
 

2814 ERS041052 20 Off 9 Off 

1938 ERS041003 5 Off 9 Off 
 

2856 ERS041053 12 Off 10 Off 

1963 ERS041004 4 ON 12 Off 
 

2857 ERS041054 12 Off 10 Off 

1976 ERS041005 5 Off 19 Off 
 

2932 ERS041055 20 Off 9 Off 

2008 ERS041006 14 Off 17 On 
 

2933 ERS041056 20 Off 8 On 

2009 ERS041007 14 Off 15 Off 
 

2934 ERS041057 20 Off 9 Off 

2025 ERS041008 14 Off 15 Off 
 

2935 ERS041058 20 Off 8 On 

2032 ERS041009 15 Off - - 
 

3128 ERS041059 20 Off 8 On 

2033 ERS041010 14 Off - - 
 

3129 ERS041060 20 Off 8 On 
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5 General Discussion 
 

5.1 Summary 
 

Meningococcal disease occurs worldwide as endemic infections. The gram-negative bacteria 

Neisseria meningitidis is a predominant cause of septicemia and meningitis, at the same time 

it is also a frequent commensal of the human nasopharynx. Meningococci displays a high 

genetic diversity, yet to present the results from multilocus sequence typing (MLST) and 

whole genome sequencing have not defined a strict core patho-genome enabling the 

prediction of virulence on a genetic basis.  

Towards a better understanding of meningococcal complexity and genomic plasticity, we 

address in this thesis the epigenetic diversity and the consequences of DNA methylation as 

well as developing tools to assess phase-variation events within a population of Neisseria 

meningitidis isolates. 

We applied single-molecule real-time (SMRT) sequencing technology to establish genome 

wide DNA modification profiles of two closely related N. meningitidis strains. DNA 

modifications, and in particular DNA methylation as the most common DNA modification, are 

thereby detected based on delay in the kinetics of the DNA synthesis in vitro. Our approach 

revealed a high diversity in DNA methylation between closely related Neisseria strains. The 

methylated sequences as defined by the SMRT sequencing results largely correspond to 

putative target sequence of DNA methyltransferases identified in N. meningitidis and to the 

observed protection from digestion by methylation-sensitive cognate restriction enzymes. 

Association of epigenetic modifications with phenotypes is still poorly characterized in 

bacteria. Our analysis of the methylation patterns along the genome showed a biased 

distribution evident by a clear depletion of 5-methylcytosine motifs relative to gene start 

positions. These results suggest a more complex role for DNA methylation in terms of the 

hypothesized regulatory functions. In addition, we identified a striking co-localization of 

mutations at methylated bases indicating additional un-known consequences of DNA 

methylation in relation to bacterial evolution and adaptation. 

We also developed a novel bioinformatic tool to infer the precise number of repeat units at 

specific tandem repeat loci exploiting increasing read length resulting from recent versions of 

large scale sequencing assays. Our probabilistic approach detects divergent repeat length 

configurations and therefore functional states of ORFs directly from raw sequencing data, 

offering an enhanced detection power and accuracy over conventional tools. We integrated 

our tool into a fast and efficient computational pipeline to detect genome wide phase-
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variation events by comparing a large number of sequenced meningococcal genomes. Our 

comprehensive approach identified a high number of hyper-variable repeat regions mostly 

associated with genes encoding outer membrane components and other virulence 

determinants.  

 

 

5.2 DNA methylation interplay with other adaptation mechanisms 
  

Several mechanisms contributing to Neisseria meningitidis genomic plasticity and adaptation 

have been identified over the years. These mechanism include point mutations, homologous 

recombination and horizontal gene transfer as well as phase-variation (Jeltsch, 2003; Jolley 

et al., 2005; Casadesús and Low, 2013b; Lamelas et al., 2014). Taken individually each 

mechanism provides the pathogen with distinctive variability and adaptation tools. An 

interplay between these mechanism augments the pathogen complexity and adaptability 

(Virji, 2009).  

Our results integrate DNA methylation into an established system of evolution and adaptation 

(Figure 5-1). We provide evidence of methylated nucleotides being more prone to mutation 

within a selective environment. Conversely, mutations lead to a localized loss of methylation 

by altering the methylation target sequence and rendering it unrecognizable by the 

methyltransferase. Mutations occurring in the DNA recognition domain of a 

methyltransferase gene could in return modify the methylation target motif and thereby 

altering the methylome of the bacterium (Gawthorne et al., 2012b).  

In the same line, our results are consistent with previous reports linking methyltransferase 

enzymes with phase-variation (Seib et al., 2011; Srikhanta et al., 2010). We demonstrate 

phase-variation to be the major contributor to the observed variability in DNA methylation 

between meningococcal isolates. The ON/OFF switching of a gene primarily affects its own 

function and possibly in some cases other downstream functions. In the case of genes 

encoding a protein with a regulatory function, as proposed for some DNA methyltransferases 

(phasevarion), the switching mechanism has genome wide consequences involving a 

number of biological processes (Srikhanta et al., 2010).  

DNA methylation has been proposed to have a selective role in horizontal gene transfer 

(Budroni et al., 2011). Our data however did not support this hypothesis perhaps for reasons 

related to size and properties of our studied bacterial population. While this hypothesis 

remains debatable (Bart et al., 2001; Kong et al., 2013), a potential role of restriction 
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modification systems in defining compatible fragments for horizontal transfer requires 

additional investigation.  

On the other hand, horizontal gene transfer has been proven to play a role in 

methyltransferase plasticity. In Helicobacter pylori, methyltransferases DNA recognition 

sequences have been described as recombination hotspots (Lin et al., 2009). In addition, the 

high number and diversity of methyltransferase genes in Neisseria spp. has been attributed 

to horizontal gene transfer (Budroni et al., 2011). Inter repeat recombination is also proposed 

as one of the mechanisms causing extension and contraction of tandem repeats regions and 

consequently leading to phase-variation events (Gemayel et al., 2010). 

  

 

Figure 5-1: Integrating DNA methylation into an established concept of mutagenesis and selection to 

obtain genomes encoding for better adapted phenotypes. 

 

5.3 Relevance to public health  
 

Advances in bioinformatics, sequencing technologies and microbiology are expanding the 

scope of epidemiology to include not only the disease but also the pathogens biology. 

Genomics tools can recognise single nucleotide variations across sequenced genomes 

which allow exploring diversity among microbial populations with high resolution, replacing 

methods that depended on phenotype or specific genetic markers. In addition to basic 

scientific understanding of the bacterium, these advances have provided insights into public 

health issues such as mechanisms of drug resistance in bacteria, epidemiological linking of 

infected individuals and transmission dynamics in several pathogens including 
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Mycobacterium tuberculosis (Coscolla et al., 2015; Stucki et al., 2014), Staphylococcus 

aureus (Harris et al., 2013) and Neisseria spp. (Grad et al., 2014).  

The field of prokaryotic epigenetics is still in its early stages. Our effort at this stage was 

primarily focused on the basic implications of DNA modifications in bacteria. Nevertheless, 

our successful characterisation of dynamic and variable DNA modification patterns between 

meningococcal isolates, suggest an “epi-genotype” could potentially complement genetic 

basis for phenotype diversity, which in return could be investigated in an epidemiological 

context of the host population.  

Short tandem repeats are popular markers used in epidemiological studies. In the era of 

large scale sequencing experiments an increasing number of whole genome sequences of 

bacterial isolates are becoming routine. However, there exists a large gap between the sheer 

amount of generated data and the lack of analysis capacity. We provide an efficient 

bioinformatic pipeline to analyze and compare tandem repeat regions, adaptable to any 

organism and sequencing experiment.  

High resolution computational tools similar to what we present in this thesis contribute to the 

advancement of pathogen genome analysis methods which can uncover otherwise unknown 

transmission dynamics and give insight into organism evolution and the genetic basis for 

phenotypes. 

 

5.4 Considerations for future sequencing approaches 
 

Despite its outstanding advantages, Pacific Biosciences’ SMRT sequencing so far has a 

complicated and not fully transparent analysis pipeline, especially for detecting DNA 

modifications. For instance, the modification score calculation remains a black box. The 

technology suffers from short comings due to a low detection power for 5-methylcytosines, 

which is the most common DNA modification. The Tet1 enzymatic conversion used to 

enhance the 5mC signal does not have a 100% yield, therefore only a methylation target 

motif can be reliably inferred but individual genomic positions cannot be consistently 

detected. Thus, advanced exploration targeting specific genomic regions and/or differential 

methylation analysis could only be conducted for 6-methyladenosines and 4-

methylcytosines. Both SMRT hardware and analysis pipeline is under continuous 

development and hopefully future improvements could also reduce the cost of this third 

generation sequencing technology, which would open new horizons in epigenetic research 

(Roberts et al., 2013). 
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Having said that, it would be advantageous to use SMRT sequencing especially for small 

bacterial genomes. The long read length would allow to have closed full genomes in addition 

to the bacterial methylome. The usefulness of having a full genome with its corresponding 

epigenome could prove to be highly valuable for our understanding of bacterial biology. 

We compared the epigenetic potentials of a population of strains based on in silico prediction 

of gene status compared to only two actually SMRT sequenced genomes. Such predictions 

does not ensure in vivo activity of the corresponding methyltransferase. Lower sequencing 

costs would enable a more thorough assessment of epigenetic phenotype of bacterial 

population.  

Sequencing technologies maintaining accuracy but requiring a less amount of genomic DNA 

would enable studying isolate samples directly from patients. The current need for secondary 

laboratory culturing steps is likely to confound original isolate status by propagating 

generations in the new culture environment. In addition, Current culture based methods 

assume a single colony selection accurately represents the whole plated population. 

However, our data shows phase-variation to be caused by dynamic and rapid genetic 

changes even at the clonal level. Single colony based culture and sequencing could 

therefore underestimate actual within host diversity of bacterial isolates. 
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7 Abbreviations 
 

SNP  Single Nucleotide Polymorphism 

dnmt   DNA Methyltransferase  

5mC  5-methylcytosine 

4mC  4-methylcytosine 

6mA  6-methyladenosine  

5caC  5-carboxylcytosine 

AdoMet S-adenosyl-L-methionine 

RMS  Restriction-Modification systems 

Dam  DNA Adenine Methylase 

SMRT  Single Molecule Real Time 

ZMW  Zero Mode Waveguides 

IPD  Interpulse Duration 

MLST  Multilocus Sequencetyping 

ST  Sequence Type 

STR  Short Tandem Repeats 

PV  Phase Variation 

ORF  Open Reading Frame 

modQV  Modification Quality Value  

CNV  Copy Number Variation 

RegEx  Regular expression 

HMM  Hidden Markov Model 

Indel  Insertion or Deletion
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