edoc

The ubiquitin/proteasome system-dependent control of mitochondrial steps in apoptosis

Neutzner, A. and Li, S. and Xu, S. and Karbowski, M.. (2012) The ubiquitin/proteasome system-dependent control of mitochondrial steps in apoptosis. Seminars in cell & developmental biology, Vol. 23, H. 5. pp. 499-508.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A6338238

Downloads: Statistics Overview

Abstract

Insights into the role of ubiquitin-dependent signaling in the regulation of apoptosis have provided one of the most significant breakthroughs in recent years for cell death research. It has been revealed that all steps in the apoptotic cascade, including transcriptional regulation of apoptotic gene expression, outer mitochondrial membrane permeabilization and caspase activation, are under the control of the ubiquitin/proteasome system. This makes ubiquitin signaling one on the most critical life and death decision checkpoints in mammalian cells. Here we discuss the ubiquitylation-dependent regulation of the mitochondrial steps in apoptosis, with a focus on the role of regulated protein degradation in this process. The newly identified ubiquitylation-dependent processes in the Bcl-2 family-regulated outer mitochondrial membrane permeabilization, as well as the role of mitochondria-associated ubiquitin ligases and other molecular components of the ubiquitin/proteasome system in the control of mitochondrial steps in apoptosis, are discussed.
Faculties and Departments:03 Faculty of Medicine > Departement Biomedizin > Department of Biomedicine, University Hospital Basel > Ocular Pharmacology and Physiology (Neutzner/Meyer)
UniBasel Contributors:Neutzner, Albert
Item Type:Article, refereed
Article Subtype:Research Article
Bibsysno:Link to catalogue
ISSN:1084-9521
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:10 Apr 2015 09:14
Deposited On:10 Apr 2015 09:14

Repository Staff Only: item control page