The subtalar and talonavicular joints: a way to access the long-term load intake using conventional CT-data

Mueller, F. and Hoechel, S. and Klaws, J. and Wirz, D. and Muller-Gerbl, M.. (2014) The subtalar and talonavicular joints: a way to access the long-term load intake using conventional CT-data. Surgical and radiologic anatomy, Vol. 36, H. 5. pp. 463-472.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A6338257

Downloads: Statistics Overview


PURPOSE: The aim of this study was to investigate the distribution of density of the subchondral bone plate within the articular surfaces of the subtalar and talonavicular joint regarding to its mineralisation and to verify whether a correlation to the mechanical bone strength exists. METHODS: A total of 21 cadaverous lower leg specimens were investigated. Computed tomography osteo-absorptiometry (CT-OAM) was used to display the mineralisation of the subchondral bone plate analysing its density. The mechanical strength was measured by means of indentation testing. The distribution pattern was analysed regarding their dissemination with the main focus on number and location of their maxima. The correlation of both parameters was evaluated by linear regression. RESULTS: The mineralisation and the mechanical strength were not distributed homogenously throughout the articular surfaces but showed unique and reproducible patterns. The range of absolute values for density and strength varied in between the samples and joint surfaces, but the number and location of the maxima evaluated by both methods showed to be concurring. The coefficient of correlation of both datasets ranged from 0.76 to 0.95 (median 0.88) and showed a linear dependency. CONCLUSIONS: Density distribution and mechanical strength of the subchondral bone plate are significantly associated and can be seen as a mirror of the long-term load intake of a joint. It can be concluded that CT-OAM as a tool to visualize subchondral bone plate density distribution regarding to its mineralisation can be used to indirectly gain information about joint biomechanics in vivo by the use of conventional CT-data.
Faculties and Departments:03 Faculty of Medicine > Departement Biomedizin > Division of Anatomy > Musculosceletal Research (Müller-Gerbl)
UniBasel Contributors:Müller-Gerbl, Magdalena
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Springer International
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:06 Feb 2015 09:59
Deposited On:06 Feb 2015 09:59

Repository Staff Only: item control page