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Otto-Stern-Weg 7, CH-8093 Zürich, Switzerland

Received April 17, 2013; Accepted June 5, 2014

ABSTRACT

The findings that microRNAs (miRNAs) are essential
for early development in many species and that em-
bryonic miRNAs can reprogram somatic cells into
induced pluripotent stem cells suggest that these
miRNAs act directly on transcriptional and chromatin
regulators of pluripotency. To elucidate the transcrip-
tion regulatory networks immediately downstream of
embryonic miRNAs, we extended the motif activity
response analysis approach that infers the regula-
tory impact of both transcription factors (TFs) and
miRNAs from genome-wide expression states. Ap-
plying this approach to multiple experimental data
sets generated from mouse embryonic stem cells
(ESCs) that did or did not express miRNAs of the
ESC-specific miR-290-295 cluster, we identified mul-
tiple TFs that are direct miRNA targets, some of
which are known to be active during cell differentia-
tion. Our results provide new insights into the tran-
scription regulatory network downstream of ESC-
specific miRNAs, indicating that these miRNAs act
on cell cycle and chromatin regulators at several lev-
els and downregulate TFs that are involved in the
innate immune response.

INTRODUCTION

Embryonic stem cells (ESCs) originate from the inner cell
mass of mammalian blastocysts. Due to their ability to self-
renew as well as differentiate into various specialized cell
types, they hold the promise of medical applications, such
as stem cell therapy and tissue engineering. Therefore, the
regulatory mechanisms behind pluripotency, stem cell fate
and renewal are of great interest.

MiRNAs are short (∼22 nt long), single-stranded RNAs
that post-transcriptionally regulate the expression of target

genes (1). Computational and high-throughput studies sug-
gest that a single miRNA can regulate hundreds of target
genes (2,3) and that the majority of human mRNAs are reg-
ulated by miRNAs (4). Several studies found that the ex-
pression of ESC-specific miRNAs is required for initiation
of stem cell differentiation and normal embryonic develop-
ment (5–7). The ESC-specific miR-290-295 cluster accounts
for ∼50% of the miRNA population of mouse ESCs (8–11)
and its expression is downregulated relatively rapidly dur-
ing differentiation (9,12). Interestingly, three of the seven
miRNAs that are co-expressed from the miR-290-295 clus-
ter, namely, miR-291a-3p, miR-294 and miR-295, are suffi-
cient to force a G1→S transition (13) and promote induced
pluripotency (14). All of these miRNAs, as well as those of
another ESC-specific miRNA cluster, miR-302-367 (12,15),
have the same sequence ‘AAGUGCU’ at positions 2-8 (also
called the ‘seed’) which defines a family of miRNAs with
related targets (4).

In contrast to the miR-290-295 cluster, miR-302-367 is
also present in human and has been used to reprogram fi-
broblasts into induced pluripotent stem cells (iPSCs) (16).
The reprogramming of differentiated cells into pluripotent
stem cells by the ESC-specific miRNAs entails large gene
expression and phenotypic changes that are likely to be due
to regulatory cascades that involve several regulators. To
identify transcriptional regulators that are immediate targets
of the AAGUGCU seed family miRNAs, we analyzed data
obtained in several previous studies that aimed to uncover
the function of the miR-290-295 cluster.

These data consist of microarray-based measurements
of mRNA expression in ESCs that were either deficient
in miRNAs or expressed subsets of ESC-specific miR-
NAs (Supplementary Table S1). Sinkkonen et al. (17) an-
alyzed mRNA expression of ESCs that express miRNAs
(Dicer+/ −), ESCs that do not express miRNAs (Dicer−/ −)
as well as Dicer−/ − ESCs transfected with the miR-290-
295 cluster miRNAs (miR-290, miR-291a-3p, miR-292-
3p, miR-293, miR-294 and miR-295 mimics). The study
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showed that the expression profile of ESCs can be restored
to a large extent in Dicer−/ − ESCs through transfection of
miR-290-295 cluster miRNAs, and that these miRNAs are
important for appropriate de novo DNA methylation in dif-
ferentiating ESCs. Hanina et al. (18) profiled mRNA ex-
pression in Dicer−/ − ESCs as well as in Dicer−/ − ESCs
transfected with miR-294. Combining these expression data
with a biochemical approach to isolate Argonaute 2 (Ago2)-
bound mRNAs, the study identified miR-294 targets in
ESCs. It further concluded that miR-294 regulates a subset
of genes that are also targeted by the Myc transcriptional
regulator and that some of the effects of miR-294 expres-
sion may be due to the indirect upregulation of pluripo-
tency factors, such as Lin28. Employing mRNA expression
profiling of Dgcr8−/ − ESCs, as well as miR-294-transfected
Dgcr8−/ − ESCs, Melton et al. (19) showed that self-renewal
and differentiation of ESCs is regulated in an antagonis-
tic manner by miR-294 and let-7. Finally, Zheng et al.
(11) profiled mRNA expression of miRNA expressing ESCs
and Dicer−/ − ESCs and uncovered a pro-survival, anti-
apoptotic function of the miR-290-295 cluster of miRNAs.

Altogether, these studies provide five separate experimen-
tal data sets that can be used to investigate the function of
AAGUGCU seed family miRNAs in ESCs. They all deter-
mined mRNA expression profiles of ESCs with impaired
miRNA expression (due to knockout of either Dgcr8 or
Dicer components of the miRNA biogenesis pathway), as
well as of ESCs that expressed miRNAs of the AAGUGCU
seed family. The latter were either ES cells which expressed
the full complement of miRNAs, or miRNA-deficient ESCs
that were transfected with either miRNAs of the miR-290-
295 cluster, or only miR-294. Although it has been observed
that these studies resulted in sets of miRNA targets that are
only partially overlapping (10), a meta-analysis that com-
bines these data sets to identify the pathways that are most
reproducibly targeted by the AAGUGCU miRNAs has not
been performed.

In our study, we aimed to infer transcriptional regu-
lators that are directly and consistently targeted by the
AAGUGCU family of miRNAs, the pathways that these
regulators control and the interactions that they have with
each other. Toward this end, we modeled genome-wide
mRNA expression in terms of computationally predicted
target sites of both transcription factors (TFs) and miR-
NAs. This approach allowed us to identify a number of tran-
scriptional regulators whose activity is consistently altered
by miRNAs of the AAGUGCU seed family and that could
contribute to the maintenance of pluripotency. Through re-
porter assays we validated these regulators as targets of
AAGUGCU seed family miRNAs. Employing Dicer−/ −
mouse ES cells we showed that the expression of the IRF2
TF is strongly upregulated in the absence of miRNAs and
that the nuclear concentration of the RelA component of
the nuclear factor kappa-B (NF-�B) pathway upon stimula-
tion with tumor necrosis factor � (TNF-�) is also increased.
Our results give new insights into the functions of miRNAs
in the regulatory circuitry of ESCs.

MATERIALS AND METHODS

Experimental data sets

Supplementary Table S1 summarizes the data sets that
we obtained from the Gene Expression Omnibus (GEO)
database of the National Center for Biotechnology Infor-
mation (NCBI) and that we have used in our study. Each
data set covers at least two distinct experimental conditions,
with three replicates per condition. The first condition of
every data set corresponds to an ESC line deficient in ma-
ture miRNAs due to Dicer- or Dgcr8-knockout. The sec-
ond condition corresponds to either an ESC line expressing
the entire complement of embryonically expressed miRNAs
or the knockout cell line transfected with miR-294 or with
mimics of the miR-290 cluster miRNAs (mir-290, mir-291a-
3p, mir-292-3p, mir-293, mir-294 and mir-295).

Microarray analysis

Computational analysis of Illumina MouseWG-6 v2.0 Ex-
pression BeadChips from Hanina et al. (2010). We down-
loaded the processed data from the GEO database of NCBI
(accession no. GSE20048). Probe-to-gene associations were
made by mapping the probe sequences (provided by the au-
thors) to the set of mouse transcript sequences (downloaded
2011-02-19 from the UCSC Genome Bioinformatics web
site).

We computed average gene expression levels as weighted
averages of the signals of all probes that perfectly matched
to at least one transcript of the gene. Whenever a probe
mapped to multiple genes, a weight of 1/n was assigned to
each of the n genes that the probe matched. For a given repli-
cate experiment, the log2 expression fold change of each
gene was then determined by subtracting the log2-average
expression of the gene in the first condition (control) from
the log2-average expression in the second condition (treat-
ment).

Computational analysis of Affymetrix Mouse Genome 430
2.0 chips from Sinkkonen et al. (2008) and Zheng et al.
(2011). We downloaded the data from the GEO database
(accessions GSE8503, GSE7141 and GSE30012) and an-
alyzed the CEL files with the R software (http://www.R-
project.org) using the BioConductor affy package (20). We
used the GCRMA algorithm (21) for background correc-
tion and the MClust R package (22) to fit a two-component
Gaussian mixture model to the log2-probe intensities and
classify probes as expressed or not expressed. A probe was
considered for further analysis if it was consistently clas-
sified as expressed in all three replicates of at least one
of the two experimental conditions. The remaining probes
were quantile normalized across all conditions and repli-
cates of a particular experiment. Probe-to-gene associa-
tions were made by mapping probe sequences (provided
on the Affymetrix web site, http://www.affymetrix.com)
to mouse transcript sequences (as used by motif activ-
ity response analysis (MARA), downloaded from UCSC
Genome Bioinformatics web site as described above). We
then computed log2-gene expression fold changes as de-
scribed for Illumina Expression BeadChips (see above).
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Computational analysis of Affymetrix Mouse Gene 1.0 ST
chips from Melton et al. (2010). We downloaded the data
from the GEO database (accession no. GSE18840) and
analyzed the CEL files with the R Bioconductor oligo
package (23). We used the Robust Multi-array Average
(RMA) algorithm (24) for background adjustment. The rest
of the analysis, including the classification of probes into
expressed/not expressed, the quantile normalization, and
the calculation of log2 gene expression fold changes, was
carried out as described above.

Proportions of AAGUGCU miRNA seed family targets
among genes that are consistently downregulated in multiple
experiments. For each gene and each experiment, we cal-
culated the standard error in its log2 fold change across the
replicates. A gene was considered significantly downregu-
lated when it was down-regulated more than 1.96 standard-
errors. We then determined the intersection set of signif-
icantly downregulated genes for every possible subset of
the experiments S={MeltonDGCR8KOVs294, Sinkkonen-
DicerKOVs290, SinkkonenDicerKOVsWT}. Subsequently,
for every obtained intersection set, the proportion of
AAGUGCU miRNA seed family targets (TargetScan ag-
gregate PCT score predictions (4)) was determined and plot-
ted against the size of the corresponding intersection set.

Combined MARA of TFs and miRNAs. We carried out
the MARA (25) separately for each experimental data set.
MARA relates the expression level E driven by individ-
ual promoters (measured by microarrays) to the number of
binding sites N that various regulators have in the promot-
ers using a simple linear model

Eps = c̃s + cp +
∑

m

Npm Ams, (1)

where cp is a term reflecting the basal expression of pro-
moter p, c̃s reflects the mean expression in sample s, and
Ams is the (unknown) activity of binding motif m in sample
s (where with ‘sample’ we refer to any individual replicate of
any condition of a data set, see section ‘Experimental data
sets’ above). That is, using the predicted site-counts Npm and
the measured expression levels Eps we used an approxima-
tion (1) to infer the activities Ams of all motifs across all sam-
ples by ridge regression. In our analyses, we considered a
curated set of 189 TF binding motifs (for detailed informa-
tion about the motifs and the corresponding TFs see Sup-
plementary Table S7). Furthermore, we included the bind-
ing sites in the 3’UTRs of mRNAs of 85 miRNA families
by incorporating aggregate PCT scores as provided by Tar-
getScan (4) (predictions downloaded on the 27th of March
2012 from the TargetScan web site, http://www.targetscan.
org). miRNAs are grouped into families by their seed se-
quences and in particular the AAGUGCU seed family corre-
sponds to the following miRNAs: mmu-miR-291a-3p, mmu-
miR-294, mmu-miR-295, mmu-miR-302a, mmu-miR-302b
and mmu-miR-302d. An aggregate PCT score was assigned
to a promoter by averaging the aggregate PCT scores of tran-
scripts associated with this promoter.

For a given motif m, MARA provides for each sample s
motif activities A∗

ms and associated errors �ms. More specif-
ically, marginalizing over all other motifs, the likelihood

P(D|Ams) of the expression data D given the activity of a
given motif is proportional to a Gaussian

P(D|Ams) ∝ exp
[
−1

2
(Ams − A∗

ms)2

σ 2
ms

]
. (2)

Given that all analysed experiments were performed in
multiple replicates we were interested in averaging motif ac-
tivities across replicates and we used the following Bayesian
approach. For each motif m separately, we assumed that the
activities across a group g of replicates belonging to a spe-
cific condition of an experiment (see section ‘Experimental
data sets’ above) are normally distributed around some (un-
known) mean Āmg with (unknown) variance σ 2

mg

P(Ams |Āmg, σmg) = 1√
2πσmg

exp

[
−1

2

(
Ams − Āmg

)2

σ 2
mg

]
.(3)

By combining the prior from Equation (3) with the likeli-
hood from Equation (2) for each replicate sample s ∈ g and
integrating out the (unobserved) true activities Ams in each
of the replicates, we obtained the probability of the form

P(D|Āmg, σmg)

=
∏
s∈g

1√
2π (σ 2

mg + σ 2
ms)

exp

[
− (A∗

ms − Āmg)2

2(σ 2
mg + σ 2

ms)

]
. (4)

Formally, we would next integrate out the unknown stan-
dard deviation of activities in the group �mg of this likeli-
hood. Unfortunately, this integral cannot be performed an-
alytically. We thus approximated the integral by the value
of the integrand at its maximum, i.e. we numerically found
the value of �mg that maximizes expression (4). Assum-
ing an uniform prior over mean activity Āmg, we find that
P(Āmg|D) is again a Gaussian with mean

Ā∗
mg =

∑
s∈g

A∗
ms

(σ ∗
mg)2+(σms )2∑

s∈g
1

(σ ∗
mg)2+(σms )2

, (5)

and error

σ̄ ∗
mg =

√√√√ 1∑
s∈g

1
(σ ∗

mg)2+(σms )2

. (6)

where σ ∗
mg is the maximum likelihood estimate of Expres-

sion (4). We call the quantities defined in (5) and (6) aver-
aged activities and averaged errors, respectively.

To identify motifs that consistently change in their activi-
ties across experiments, we wanted to further average motif
activities across these experiments. However, because of the
inherent differences in the scale of expression variation in
the different experiments, the motif activities also varied in
scale across the experiments. Thus, before averaging we first
standardized the motif activities across the two conditions
a and b. That is, for a given experiment we defined a scale L

L =
√(

Ā∗b
mg

)2 + (
Ā∗a

mg

)2

2
, (7)
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and rescaled the activities

Ã∗
mg = Ā∗

mg

L
(8)

and their errors

σ̃ ∗
mg = σ̄ ∗

mg

L
. (9)

These condition-specific, averaged and rescaled activities
(Ã∗

mg) and errors (σ̃ ∗
mg) from the different experiments were

then combined into two groups, i.e. the group of a condi-
tions and the group of b conditions, and for each group we
again averaged the activities exactly as described above for
the replicates.

To rank the activity changes between two different exper-
imental conditions (presence/absence of miRNAs) we de-
termined a z-value for every motif m by dividing the change
in averaged activities between the two different conditions
a and b by the averaged errors as follows

z = Ã∗b
mg − Ã∗a

mg√(
σ ∗b

mg

)2 + (
σ ∗a

mg

)2
. (10)

Consequently, from the results of Equation (10) we ob-
tained a global z-value-based ranking of the motifs.

Motif–motif interaction network. To uncover which TFs
were targeted by a particular motif m, we focused only on
those TF genes, whose promoters were consistently (in all
experiments) predicted by MARA to be targets of motif m.
MARA computes a target score S for each potential target
promoter of motif m. S corresponds to the log-likelihood ra-
tio of the data D assuming the promoter is indeed a target,
and assuming the promoter is independent of the regulator,
i.e.

S = log
[

P(D|target)
P(D|nottarget)

]
. (11)

Assuming a uniform prior of 1/2 that the promoter is in-
deed a target, the posterior probability p that the promoter
is a target given the data is

p = 1

1 + 1
es

. (12)

To obtain a combined probability pc that a gene is a tar-
get of a particular motif across N different experiments the
probability product was calculated by multiplying the prob-
abilities pn obtained in individual experiments n, i.e.

pc =
N∏

n=1

pn. (13)

Evaluating miR-294 targets with luciferase assays

Cloning, cell culture and luciferase assay. We polymerase
chain reaction (PCR)-amplified 3′UTR fragments of the
putative target genes from Normal Murine Mammary
Gland (NMuMG) genomic DNA and cloned them into

pGEM-T Easy vector (Promega; A1360). We used site-
directed mutagenesis and the QuickChange II kit (Strata-
gene; 200524-5) to generate deletion mutant constructs
that differed in a few nucleotides in the miR-294 seed-
matching region from the wild-type construct. All con-
structs, wild-type and mutated, were verified by sequenc-
ing and then subcloned into the empty psiCHECK-2 vec-
tor (Promega; C8021) at XhoI - NotI restriction sites. The
sequences of the primers used for cloning and mutagenesis
can be found in Supplementary Tables S9 and S10, respec-
tively. NMuMG cells were reverse-transfected with Lipofec-
tamine2000 reagent (Invitrogen; 11668019), and the corre-
sponding psiCHECK-2 constructs in the presence of 50nM
Syn-mmu-miR-294-3p mimic (QIAGEN; MSY0000372),
or 50 nM of non-targeting negative control siRNA (Mi-
crosynth). Between 36 and 48 h post-transfection cells were
collected and both Renilla and firefly luciferase activities
were measured using Dual Glo Luciferase Assay System
(Promega; E2940).

For each gene, expression was measured for both con-
structs in 3 separate experiments, and each experiment con-
tained 3 technical replicates.

Analysis of the luciferase data. We denote by wir the loga-
rithm (base 2) of the expression level of the luciferase con-
struct containing the wild-type 3′UTR in experiment i repli-
cate r and by mir the analogous expression for the mutant
construct. For each gene the data thus consist of 9 values
w and 9 values m. We took into account two sources of
variability, namely, true expression variability across exper-
iments and ‘measurement noise’ between replicates. We first
describe the measurement noise. Assuming the true expres-
sion of the wild type was wi, we assumed that the proba-
bility to measure expression level wir (in a given replicate r)
follows a Gaussian distribution with a certain variance � i

P(wir |wi , τi ) = 1

τi
√

2π
exp

[
−1

2

(
wir − wi

τi

)2
]

, (14)

thus allowing for the possibility that each experiment i has a
different level of noise � i between replicates. The probability
of the wild-type data of experiment i, assuming that � i is
given, is simply the product of expressions P(wir|wi, � i) over
the three replicates r = 1 through 3. Using 〈wi〉 and var(wi)
to denote the mean and variance of the measurement across
the replicates, we can rewrite this as

P({wir }|wi , τi )

∝ 1

τ 3
i

exp

[
−3

2

(
wi − 〈wi 〉

τi

)2

− 3
2

var(wi )

τ 2
i

]
. (15)

Integrating over the unknown variable � i from 0 to infinity
with a scale prior P(� i)∝1/� i we obtain

P({wir }|wi ) ∝
(

1 + (wi − 〈wi 〉)2

var(wi )

)3/2

. (16)

Approximating this Student’s t distribution by a Gaussian,
that is, approximating the probability of the data in experi-
ment i by a Gaussian with mean 〈wi〉 and variance var(wi),
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we have

P({wir }|wi ) ≈
√

3
var(wi )

exp
[
−3(wi − 〈wi 〉)2

2var(wi )

]
. (17)

Since the variability between replicates is much smaller than
the variability across experiments, this approximation will
have a negligible effect on the final outcome.

For the true variability between experiments, we denote
by w the ‘true’ average expression of the wild-type con-
struct. We assume that the deviation of the level wi in ex-
periment i from the mean w follows a Gaussian distribution
with variance σ . We thus have

P(wi |w, σ ) = 1

σ
√

2π
exp

[
−1

2

(
wi − w

σ

)2
]

. (18)

To obtain the probability of the data given w we multiply
P({wir}|wi) by P(wi|w, σ ) and integrate over the unknown
expression level wi. We then obtain

P({wir }|w, σ )

∝ 1√
σ 2 + var(wi )/3

exp
[
− (〈wi 〉 − w)2

2(σ 2 + var(wi )/3)

]
. (19)

The interpretation of this formula is straightforward. The
deviation between the mean 〈wi〉 of the observations in ex-
periment i, and the average level w is Gaussian-distributed
with a variance that is the sum of the variability σ 2 across ex-
periments, and the variability var(wi)/3 associated with es-
timating wi from the 3 replicate measurements due to mea-
surement noise.

For the measurements of the mutant construct in experi-
ment i we obtain an analogous equation

P({mir }|m, σ̃ )

∝ 1√
σ̃ 2 + var(mi )/3

exp
[
− (〈mi 〉 − m)2

2(σ̃ 2 + var(mi )/3)

]
, (20)

where we have introduced the variability σ̃ of the true ex-
pression of the mutant construct across replicates. What we
are interested in is the difference w − m in log-expression of
the wild-type and mutant construct. To this end, we define
μ = w − m and y = (m + w)/2 and integrate over y. We then
obtain

P({wir }, {mir }|μ, σ, σ̃ ) ∝
1√

σ 2 + σ̃ 2 + var(wi )/3 + var(mi )/3
exp

[
− (〈wi 〉 − 〈mi 〉 − μ)2

2(σ 2 + σ̃ 2 + var(wi )/3 + var(mi )/3)

]
. (21)

This is again a Gaussian with mean 〈wi〉 − 〈mi〉 and a vari-
ance that is the sum of all variances σ 2, σ̃ 2, var(wi)/3 and
var(mi)/3.

Clearly, although both σ 2 and σ̃ 2 are unknown, the only
variable that enters in our equations is their sum. We thus
simplify the notation by defining this sum as

γ 2 = σ 2 + σ̃ 2. (22)

Similarly, we redefine the variance associated with mea-
surement noise as

t2
i = var(wi )/3 + var(mi )/3, (23)

which leads to

P({wir }, {mir }|μ, γ )

∝ 1√
γ 2 + t2

i

exp
[
− (〈wi 〉 − 〈mi 〉 − μ)2

2(γ 2 + t2
i )

]
. (24)

We now combine the data from the different experiments
and remove the final unknown variable γ . The probability
of all data given the variable of interest μ and unknown vari-
ability parameter γ is simply the product

P(D|μ, γ ) =
3∏

i=1

P({wir }, {mir }|μ, γ ). (25)

To obtain the probability of the data D given μ we multiply
this expression with a scale prior for γ , i.e. P(γ ) = 1/γ , and
integrate over γ

P(D|μ) =
∫ ∞

0
P(D|μ, γ )

dγ

γ
. (26)

We performed the integration numerically with Mathemat-
ica to obtain P(D|μ), and used Bayes’ theorem to compute
the posterior distribution of the parameter �, P(μ|D) as
P(D|μ)/

∫ ∞
−∞ P(D|μ)dμ. Finally, we determined the 5 per-

centile, the 25 percentile, the median, the 75 percentile and
the 95 percentile of this distribution again with the Mathe-
matica software.

Mouse ESC (mESC) culture

The generation of Dicer(DCR)flox/flox and DCR−/ − mouse
ES cell lines has been described elsewhere (26). The cells
were routinely screened for both pluripotency and differen-
tiation markers (see Supplementary Figure S4). Both mES
cell lines were maintained in Dulbecco’s modified Eagle’s
medium (DMEM) (Gibco; 41966-029) supplemented with
15% of a special batch of fetal bovine serum tested for opti-
mal growth of mESCs. In addition, the DMEM contained
1000 U/ml of a homegrown recombinant LIF (a kind gift of
Thomas Grentzinger), 0.1mM 2�-mercaptoethanol (Milli-
pore; ES-007-E), 1x L-Glutamine (Gibco; 25030-024), 1x
Sodium Pyruvate (Gibco; 11360) and 1x Minimum Essen-
tial Medium, Non-Essential Amino Acids (MEM, NEAA)
(Gibco; 11140-35). The cells were grown on gelatin-coated
(Sigma; G1393) dishes. The medium was changed daily, and
the cells were subcultured every 2–3 days. To induce NF-�B
signaling, mESCs were treated with 20 ng/ml TNF-� (Cell
Signaling Technology; 5178) for 24 h.

Quantitative reverse transcriptase-PCR (qRT-PCR)

Total RNA was extracted from mESCs using Tri Reagent
(Sigma; T9424) following the supplier’s protocol. Con-
taminating DNA was removed using the RQ1 RNase-
Free DNase kit (Promega; M6101). The resulting DNA-
free RNA was then purified using the RNeasy MinElute
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Cleanup kit (Qiagen; 74204) and quantified using Nan-
odrop. Superscript III (Invitrogen; 18080) was then used
to create cDNA following the manufacturer’s recommenda-
tions. The cDNA was finally purified using QIAquick PCR
Purification kit (Qiagen; 74204), quantified using Nan-
odrop and diluted to 8 ng/�l. Each qRT-PCR reaction was
run using 2 �l of the purified cDNA in triplicate (n = 3) us-
ing Power SYBR Green PCR Master Mix (Applied Biosys-
tems; 4367659) on a StepOne Plus RT-PCR System (Ap-
plied Biosystems). The following primer pairs were used in
this study:

� Mouse IRF2 Fwd: 5′-CTG GGC GAT CCA TAC AGG
AAA-3′

� Mouse IRF2 Rev: 5′-CTC AAT GTC GGG CAG GGA
AT-3′

� Mouse E2F5 Fwd: 5′-GTT GTG GCT ACA GCA AAG
CA-3′

� Mouse E2F5 Rev: 5′-GGC CAA CAG TGT ATC ACC
ATG A-3′

� Mouse c-Myc Fwd: 5′-GTT GGA AAC CCC GCA
GAC AG-3′

� Mouse c-Myc Rev: 5′-ATA GGG CTG TAC GGA GTC
GT-3′

� Mouse GAPDH Fwd: 5′-CAT CAC TGC CAC CCA
GAA GAC TG-3′

� Mouse GAPDH Rev: 5′-ATG CCA GTG AGC TTC
CCG TTC AG-3′

qRT-PCR data were normalized using glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) expression and evalu-
ated using the 2−��Ct method (27). Significant changes in
gene expression were identified based on Student’s t-test.

Western blots

To extract total proteins from mESCs, radioimmunopre-
cipitation assay buffer supplemented with 1x Complete,
ethylenediaminetetraacetic acid (EDTA)-free protease in-
hibitor cocktail (Roche; 11873580001) was used to lyze cell
pellets. Cytosolic and nuclear protein fractions were en-
riched using a series of lysis buffers as follows:

� Lysis Buffer 1 (LB1): 50 mM Hepes-KOH, pH 7.5; 140
mM NaCl; 1 mM EDTA, pH 8.0; 10% v/v Glycerol; 0.5%
v/v NP-40; 0.25% v/v Triton X-100.

� Lysis Buffer 2 (LB2): 10 mM Tris-HCl, pH 8.0; 200 mM
NaCl; 1mM EDTA, pH 8.0; 0.5 mM EGTA, pH 8.0.

� Lysis Buffer 3 (LB3): 10mM Tris-HCl, pH 8.0; 100
mM NaCl; 1 mM EDTA, pH 8.0; 0.5 mM EGTA,
pH 8.0; 0.1% v/v Na-Deoxycholate; 30% v/v N-
Lauroylsarcosine.

All lysis buffers were supplemented with the protease in-
hibitor cocktail immediately before use. The cytosolic frac-
tion was extracted by lyzing the cell pellets in LB1 that leaves
the nuclear membrane intact. The nuclei were then pelleted
(1,350 x g; 4◦C; 5 min), washed with LB2, pelleted once
more and finally lyzed with LB3 to release the nuclear con-
tents. All protein lysates were quantified using the BCA Pro-
tein Assay kit (Pierce; 23227). The following antibodies (di-
lution 1:1000) were used in this study:

� Anti-IRF2 (Center) rabbit IgG (Abgent; AP11225c)
� Anti-NF-�B p65 (D14E12) XP rabbit IgG (Cell Signal-

ing Technology; 8242)
� Anti-GAPDH (6C5) mouse IgG (Santa Cruz Biotech-

nology; sc-32233)
� Anti-Histone H3 (C-16) goat IgG (Santa Cruz Biotech-

nology; sc-8654)
� HRP-conjugated Polyclonal swine Anti-Rabbit (Dako;

P0217)
� HRP-conjugated Polyclonal rabbit Anti-Mouse (Dako;

P0260)
� HRP-conjugated Polyclonal rabbit Anti-Goat (Dako;

P0449)

Western blot signals were visualized with the enhanced
chemiluminescence blotting detection reagents (GE Health-
care; RPN2106). Cytosolic enrichment was confirmed via a
postive GAPDH signal, while nuclear enrichment was con-
firmed by Histone H3. Western blot quantifications were
performed using the ImageJ software by quantifying the
pixels of each band and normalizing against a housekeeper,
such as Histone H3.

RESULTS

General relationship between data sets

A common, though perhaps naive expectation is that com-
bining data from experiments that have been independently
performed in different labs, with different experimental pro-
cedures, allows one to identify essential properties of the
system that are invariant with respect to details of the ex-
perimental approach. In our case, in any given experiment,
confounding effects may have led to some genes being spu-
riously identified as targets of AAGUGCU miRNAs (false
positives), and true targets of AAGUGCU miRNAs be-
ing missed (false negatives). For example, because it is un-
clear whether the miRNA processing enzymes solely func-
tion in this pathway, it is important to analyze data from
ESCs in which the miRNA biogenesis has been impaired
at different levels (Dicer in the studies of Sinkkonen et al.
(17) and Hanina et al. (18) and Dgcr8 in the study of
Melton et al. (19)). Furthermore, although ESCs express-
ing the full complement of miRNAs provide the most phys-
iological reference point for the function of the miR-290-
295 cluster miRNAs in normal, unstressed cells, the effect
of these miRNAs in these cells is confounded by the ef-
fects of other co-expressed miRNAs. Similarly, if the pro-
filed cell population was heterogeneous with respect to the
pluripotency/differentiation status, the let-7 miRNAs may
have masked the effect of miR-294, because these miRNAs
have antagonistic effects (19).

Requiring targets to show consistent downregulation
across multiple data sets can reduce the number of false
positive miR-294 targets. On the other hand, requiring per-
fect consistency across a large number of experiments is
likely to lead to too many false negatives, simply because
different experiments have different levels of accuracy or
confounding effects. Thus, we first investigated the relation-
ship of gene-level expression changes between ESCs that
did or did not express embryonic miRNAs in all pairs of
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Figure 1. Overview of the mRNA expression data sets––(a) Data sources.
(b) Matrix of scatter plots (below diagonal) and Pearson’s correlation co-
efficients (above diagonal) of per-gene log2 fold changes in pairs of exper-
iments. The names of the individual data sets are shown on the diagonal.
(c) Proportion of predicted targets of the AAGUGCU seed family of miR-
NAs (TargetScan aggregate PCT score based predictions (4)) among genes
that are consistently downregulated in all three (orange), pairs (green) or
individual data sets (blue) (indicated by the labels, key given in the ‘Abbr.’
column of the table in panel (a)), plotted against the number of genes that
are consistently downregulated in all of the considered data sets.

experiments. Although pairwise Pearson’s correlation co-
efficients were as low as 0.11 (Supplementary Figure S1),
three of the five experimental data sets (Figure 1a), cover-
ing all described conditions (expression of miR-294, miR-
290-295 cluster miRNAs or the entire complement of em-
bryonically expressed miRNAs in a miRNA-deficient back-
ground) gave reasonably high pairwise correlation coeffi-
cients (Figure 1b). We therefore focused our discussion on
these data sets, and for completeness, we present the re-
sults of a similar analysis of all five data sets in the Sup-
plementary material (Supplementary Figure S2 and Tables
S5 and S6). Of the ∼4000–5000 genes that were downreg-
ulated in a single experiment, a little less than 2000 genes
were downregulated in all three experiments. Importantly,
the proportion of predicted AAGUGCU seed family tar-
gets among downregulated genes increased when intersect-
ing an increasing number of data sets (Figure 1c), indicating
that the approach of a combined analysis of these data sets
does have the potential to reveal important regulators that
are immediately downstream of the AAGUGCU family of
miRNAs. 252 of the genes downregulated in all three exper-
iments were predicted AAGUGCU seed family targets (4)
(Supplementary Table S2).

The transcriptional network regulated by the miRNAs of the
AAGUGCU seed family in ESCs

As mentioned in the Introduction, the main aim of our
study was to identify transcriptional regulators that are tar-
geted by the AAGUGCU seed family and at the same
time can account for the largest fraction of gene expres-
sion changes that are observed in cells that do or do not
express the miRNAs. We therefore built on the MARA ap-
proach (28) that we recently made available in the form of
an easy-to-use web application (25). In contrast to standard
transcriptome analyses that strive to find genes (including

transcription regulators) whose expression changes signif-
icantly between conditions, MARA aims to infer changes
of the regulatory impact (also referred to as ‘activity’) of
binding motifs. This is achieved by modeling gene expres-
sion as a linear function of the number of regulatory mo-
tif binding sites occurring in the promoter (for TFs) and
3′UTR (for miRNAs) of the gene and the unknown ac-
tivity of each motif. The change in activity of a specific
binding motif (e.g. of the Irf2 TF) in a specific condition
(e.g. transfection of miR-294) is inferred from the expres-
sion changes of all (predicted) targets of this motif (deter-
mined by transcriptome profiling), taking into account the
occurrences of sites for other regulators in these targets.
For example, a decrease in Irf2 activity is inferred when
the predicted Irf2 targets consistently show a decrease in
expression that cannot be explained by the occurrence of
binding sites for other regulatory motifs in the promoters
or 3′UTRs of these targets. This means that MARA can
uncover gene expression changes that are due not only to
changes in the mRNA expression level of a regulator, but
also to changes in the active form (e.g. for TFs through post-
translational modifications, such as phosphorylation) of the
regulator. MARA was initially developed for the character-
ization of transcription regulatory networks (28), and we
have recently extended it to also model miRNA-dependent
changes in mRNA stability (25). For this study we further
extended the MARA approach to identify regulators whose
activity not only changes most significantly between sam-
ples but also reproducibly across multiple data sets. Our ap-
proach is described in detail in the Materials and Methods
section.

To verify that MARA can indeed uncover the key reg-
ulator in these experiments, namely, the miRNAs of the
AAGUGCU seed family, we first applied MARA taking
into account all TFs and miRNA seed families (see Sup-
plementary Table S4). In subsequent analyses, however, we
performed the MARA analysis with only the AAGUGCU
seed family motif added to the full complement of TF mo-
tifs. This was because when all miRNAs are included in the
analysis, MARA will also infer non-zero activities for other
miRNAs, e.g. those with significantly overlapping sets of
targets (29).

MARA quantifies the extent to which the activity of each
motif varies across conditions by a z-statistic, that roughly
corresponds to the ratio between the average deviation of
the motif activity from zero and the standard deviation of
the motif activity (see Materials and Methods). Supplemen-
tary Table S3 shows all motifs ranked by their absolute z-
values.

MARA also predicts which promoters or 3′UTRs are tar-
geted by each motif, quantifying the confidence in each pre-
dicted motif-target interaction by a posterior probability
(see Materials and Methods). We used these probabilities
to construct a regulatory network of motif–motif interac-
tions (Figure 2) that provides a synthetic view of the regu-
latory impact of the AAGUGCU seed family of miRNAs
on the transcriptional network of pluripotent stem cells. An
arrow was drawn from motif A to motif B whenever motif A
was predicted by MARA to regulate a TF b whose binding
specificity is represented by motif B. Only motif-TF inter-
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Figure 2. The transcriptional network inferred to be affected by the miR-
NAs of the AAGUGCU seed family (represented by miR-294)––A di-
rected edge was drawn from a motif A to a motif B if A was consistently
(across data sets) predicted to regulate a TF b whose sequence specificity
is represented by motif B. The thickness of the edge is proportional to the
product of the probabilities that A targets b. For the clarity of the figure,
only motifs with absolute z-values >5 and only edges with a target prob-
ability product >0.3 are shown. The intensity of the color of a box repre-
senting a motif is proportional to the significance of the motif (the corre-
sponding z-values can be found in Supplementary Table S3). Red indicates
an increase and green a decrease in activity, corresponding to increased and
decreased expression, respectively, of the tagets of the motif when the miR-
NAs are expressed. The full motif names as well as the corresponding TFs
are listed in Supplementary Table S7.

actions that were predicted in all data sets and that involved
motifs with high significance (|z-value| > 5) are shown.

The motif corresponding to the AAGUGCU seed family
(represented by the dark green ‘miR-294’ motif in Figure 2)
is by far the most significantly changing motif (see also Sup-
plementary Table S3). Its negative change in activity upon
miRNA expression is consistent with the destabilizing effect
of the miRNA on its targets.

The motif with the second most significant change in ac-
tivity, ‘IRF1,2,7’, is bound by the interferon regulatory fac-
tors. MARA predicts that this motif is directly targeted by
miR-294, in line with previous suggestions that the inter-
feron regulatory factors are targets of the miR-290 cluster
miRNAs (18). We present a more detailed analysis of this
motif in the next section.

A second motif whose activity decreases significantly
upon miRNA expression is ‘FOX{I1,J2}’ (Figure 3a). Of
the TFs associated with this motif, Foxj2 is predicted within
all data sets to be directly regulated by miR-294 (Figure 2).
Consistently, Foxj2 is downregulated upon miRNA expres-
sion on the mRNA level (Figure 3b). In order to validate
that Foxj2 is a direct target of the miRNAs, as predicted by
both ElMMo (30) and TargetScan (Figure 3b), we cloned
the 3′UTR of Foxj2 downstream of a luciferase reporter
and co-transfected this construct together with miR-294 in
the murine mammary gland cell line NMuMG. For com-
parison, we generated a construct in which the presumed
miRNA-294 target site was mutated and we performed sim-
ilar co-transfection experiments. The results of this experi-
ment clearly show that Foxj2 is indeed a functional target
of miR-294 (Figure 3c). We carried out similar transfection
experiments with control siRNAs, that do not target the re-
porter, and a standard analysis of these data is presented in
Supplementary Figure S3. Little is known about the func-
tion of Foxj2 in cell fate. It appears to be expressed very
early in development (31), but its overexpression has a neg-

Figure 3. Foxj2 is a direct target of miR-294––(a) The ‘FOX{I1,J2}’ mo-
tif shows a negative change in activity in the presence of miR-294. (b)
Foxj2 mRNA log2 fold changes (±1.96*SEM; n = 3) in the Melton
et al. Dgcr8−/ − versus miR-294 transfection (yellow), Sinkkonen et al.
Dicer−/ − versus miR-290-295 cluster transfection (dark brown) and
Dicer−/ − versus Dicer+/ − (light brown) data sets, as well as the predic-
tion scores for these genes as targets of miR-294 as given by ElMMo (30)
(dark red) and TargetScan (aggregate PCT) (4) (light red). (c) A luciferase
reporter construct carrying the 3′UTR of Foxj2 is downregulated upon co-
transfection with miR-294 relative to a construct carrying the Foxj2 3′UTR
but with a mutated miR-294 target site (n = 9).

ative effect on embryogenesis (32). Our results suggest that
the AAGUGCU seed family of miRNAs contributes to the
maintenance of an adequate expression of Foxj2 in pluripo-
tent stem cells. The third most significant changing motif,
basic-helix-loop-helix (referred to as ‘bHLH..’ in Figure 2),
can be bound by many TFs (reviewed in (33)), some of
which are predicted direct targets of miR-294.

To further elucidate the transcription regulatory network
downstream of the AAGUGCU seed family of miRNAs,
we analyzed in-depth the TFs whose associated motif had
the most significant activity change (|z-value| > 5) and that
were consistently predicted by MARA to be direct targets of
the miR-294 seed family miRNAs across the multiple data
sets (Table 1).

We found that the majority of these direct target TFs fall
into three categories that have previously been associated
with pluripotency: NF-�B-related interferon response fac-
tors that control NF-�B signalling, cell cycle regulators and
epigenetic regulators.

AAGUGCU seed family miRNAs modulate Irf2-dependent
transcription

The ‘IRF1,2,7’ motif shows the second strongest activity
change upon changes in miR-294 expression (Figure 4a
and Supplementary Table S3). Of the individual factors
associated with this motif, Irf2 is the one that was con-
sistently predicted by our analysis to be a direct target
of the AAGUGCU seed family miRNAs across data sets
(Table 1), consistent with the predictions of both ElMMo
and TargetScan (Figure 4b). Irf2 was downregulated at
the mRNA level across all analyzed data sets (Figure 4b).
Consistently, we found that Irf2 is strongly downregulated
in DCRflox/flox compared to DCR−/ − ESCs, both at the
mRNA level (Figure 4c) as well as at the protein level (Fig-
ure 4d). To validate Irf2 as a direct target of miR-294, we
conducted luciferase assays as described above for Foxj2.
Our results demonstrate that Irf2 is indeed targeted by miR-
294 (Figure 4e). Although relatively little is known about
the function of this factor in ESCs, a recent study showed
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Table 1 TFs consistently predicted by MARA to be direct targets of miR-294 and whose absolute motif activity z-value is >5

Name Motif
Motif
Abbreviation

Activity
z-value

Irf2 IRF1,2,7.p3 IRF1,2,7 -16.29
Mxd3 bHLH family.p2 bHLH.. 13.00
Clock bHLH family.p2 bHLH.. 13.00
Arnt2 ARNT ARNT2 BHLHB2 MAX MYC USF1.p2 ARNT.. 11.60
Arnt2 AHR ARNT ARNT2.p2 AHR.. 8.39

BAF170
DMAP1 NCOR{1,2} SMARC.p2 ..SMARC -6.98

E2f5 E2F1..5.p2 E2F1..5 6.62
Foxj2 FOX{I1,J2}.p2 FOXI1,J2 -5.62

Figure 4. miR-294 targets the Irf2 TF and modulates ‘IRF1,2,7’ and
‘NFKB1 REL RELA’ activities––(a) The activity of the ‘IRF1,2,7’ motif
is strongly decreased in the presence of miR-294. (b) The expression of Irf2
is downregulated within all analysed data sets (±1.96*SEM; n = 3) and Irf2
is predicted by ElMMo and TargetScan to be a direct target of miR-294
(color scheme as in Figure 3). Low levels of Irf2 mRNA (c) and protein (d)
in DCRflox/flox ES cells compared to miRNA deficient DCR−/ − ESCs are
observed with qRT-PCR and western blot, respectively. qRT-PCR exper-
iments were run in triplicate (± SEM; n = 3). (e) The luciferase reporter
construct carrying the Irf2 3′UTR shows a strong response to miR-294 co-
transfection compared to a similar construct but with a mutated Irf2 target
site (n = 9). (f) Sequence logo of the ‘NFKB1 REL RELA’ motif that is as-
sociated with the canonical NF-�B pathway and that exhibits a significant
decrease in activity in the presence of miR-294. (g) Western blots of RelA,
GAPDH and Histone H3 in nuclear and cytoplasmic fractions in ESCs
that do and do not express miRNAs. The densitometric quantification in-
dicates an increased level of nuclear RelA in the DCR−/ − ESCs compared
to DCRflox/flox ESCs (± SEM; n = 3). (h) Proposed model of the inhibitory
effect of miR-290-295 cluster miRNAs on the canonical NF-�B pathway
in pluripotent stem cells. Regulatory motifs are denoted by colored rectan-
gles and individual genes by ovals. See text for the evidence of individual
interactions.

that Irf2 overexpression causes differentiation of ESCs (34).
The strong impact of AAGUGCU miRNAs on Irf2 lev-
els and the relatively large impact of the ‘IRF1,2,7’ motif
on gene expression suggest that this regulatory connection
plays an important role in maintaining ESC pluripotency.

Like the ‘IRF1,2,7’ motif, the ‘NFKB1 REL RELA’
motif also exhibits a significantly lower activity when
the embryonic miRNAs are expressed (Figure 4f). West-
ern blot confirms that after stimulation with TNF-�,
DCRflox/flox ESCs have lower levels of nuclear NF-�B

pathway-associated marker RelA compared with miRNA-
deficient DCR−/ − ES cells (Figure 4g). This observation is
consistent with a decreased activity of the canonical NF-�B
signalling pathway in the presence of the miRNAs, which
has been shown to be important for maintaining ESCs in
a pluripotent state yet poised to undergo differentiation
(35,36). Indeed, the Nanog pluripotency factor directly in-
teracts with components of the NF-�B complex, inhibiting
its transcriptional activity (35). Combining our results with
recent reports that link the expression of the miR-290-295
cluster to signalling through the canonical NF-�B pathway
and the latter to Irf2, the following model of the involve-
ment of the miR-290-295 cluster in the regulation of NF-
�B signalling emerges. Expression of the RelA component
of the NF-�B complex is repressed post-transcriptionally by
the miR-290-295 cluster members miR-291b-5p and miR-
293 both of which do not belong to the AAGUGCU seed
family of miRNAs (36). In humans, RelA recruitment to
the nucleus, which is a pre-requisite for NF-�B complex-
dependent transcription, appears to depend on IRF2 (37),
whose knockdown interferes with transcriptional activation
via NF-�B (37). Here we found that in mouse, IRF2 expres-
sion is also repressed by other members of the miR-290-295
cluster, namely, the AAGUGCU family of miRNAs. Thus,
the miRNAs of the miR-290-295 cluster may act in con-
cert to inhibit the canonical NF-�B signalling in ESCs (Fig-
ure 4h).

miRNAs of the AAGUGCU seed family impact the cell cycle
at multiple levels

AAGUGCU seed family members of the miR-290-295
cluster were previously shown to accelerate the G1→S
transition and promote proliferation of ESCs by target-
ing the cyclin E-Cdk2 regulatory pathway (13). Consis-
tently, we found that these miRNAs increase the activ-
ity of transcription regulatory motifs associated with ac-
tivation of the cell cycle (Figure 5a), in particular, the
‘ARNT ARNT2 BHLHB2 MAX MYC USF1’ motif that
is bound by Myc. This TF was previously found to increase
upon miR-294 transfection (19). How the miRNAs, with in-
trinsically repressive function, increase the Myc activity on
its targets is unknown. Our analysis suggests a few hypothe-
ses.

Specifically, luciferase assays show that three cell cycle-
associated TFs, namely, Mxd3 (also known as Mad3), E2f5
and Arnt2 are not only predicted but also experimentally
confirmed direct targets of the AAGUGCU seed family
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Figure 5. miR-294 impacts cell cycle regulation at multiple levels––(a) MARA analysis reveals that miR-294 induces positive activity changes
of multiple motifs involved in cell cycle regulation. Shown are the sequence logos of these motifs: the Myc- and Arnt2-associated motif
‘ARNT ARNT2 BHLHB2 MAX MYC USF1’, the putative Myc-regulating ‘E2F1..5′ motif and the Mxd3-associated ‘bHLH-family’ motif. (b) log2
mRNA fold changes (±1.96*SEM; n = 3) of Myc, Arnt2, E2f5 and Mxd3 (color scheme as in Figure 3) in the analyzed data sets. (c) Luciferase constructs
carrying the 3′UTR of Arnt2, E2f5 or Mxd3, respectively, are downregulated upon co-transfection with miR-294 relative to constructs carrying the same
3′UTRs but with mutated miR-294 binding sites (n = 9). (d) qRT-PCR shows decreased expression of Myc and increased expression of E2f5 in DCR−/ −
ESCs relative to DCRflox/flox ESCs. qRT-PCR experiments were run in triplicate (±SEM; n = 3). (e) Proposed model of miR-294-dependent regulation of
the Myc-Max/Mxd-Max network. Shapes scheme is as in Figure 4. Green or red shapes represent negative or positive changes (in motif activities or gene
expression fold changes), respectively. Dashed lines indicate indirect and solid lines direct regulatory links between motifs/genes.
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miRNAs (Figure 5b and c and Table 1). Mxd3 is one of the
so-called ‘Mad’ partners of the Max protein (reviewed in
(38)). In contrast to Myc, which forms a heterodimeric com-
plex with Max in proliferating cells (39), the Mad factors
Mad1, Mad3 (i.e. Mxd3) and Mad4 are primarily expressed
and form complexes with Max in differentiating, growth-
arrested cells (40). Mxd3 was further shown to specifically
regulate the S-phase (41).

Second, we found that E2f5, one of the TFs associated
with the ‘E2F1..5′ motif, was consistently downregulated at
the mRNA level in all analyzed data sets (Figure 5b) and lu-
ciferase assays further confirm that E2f5 is a target of miR-
294 (Figure 5c), albeit with a small response to the miRNA.
Consistently, E2f5 expression is increased in DCR−/ − ESCs
compared to DCRflox/flox ESCs (Figure 5d). The positive ac-
tivity change of the E2F1..5 motif in the presence of the
miRNAs (Figure 5a) suggests that this TF acts predomi-
nantly as repressor (as proposed before, reviewed in (42)).
Notably, Myc is among the predicted targets of E2F1..5,
providing an indirect path to the upregulation of Myc upon
the presence of the miRNAs (Figure 5b and d).

Finally, Arnt2, a TF associated with the
‘ARNT ARNT2 BHLHB2 MAX MYC USF1’ motif,
but also with the ‘AHR ARNT ARNT2’ motif that corre-
sponds to the complex of Arnt2 and Ahr, is also a predicted
direct target of the AAGUGCU seed family which we
validated in a luciferase assay (Figure 5c). This TF forms
heterodimers with the aryl-hydrocarbon receptor (AHR)
(43) and appears to be involved in the differentiation of
ESCs into endothelial cells under hypoxic conditions (44),
but otherwise little is known about its function. Given
that Arnt2 and Myc (45) share the same binding motif,
an interesting hypothesis is that Arnt2 competes with
Myc for binding to targets and that its downregulation
by AAGUGCU miRNAs allows Myc to act at promoters
which would otherwise be bound by Arnt2. This hypothesis
is again consistent with a positive Myc activity in ESCs, in
which these miRNAs are expressed.

The model that we propose based on these results is that
miRNAs of the AAGUGCU family regulate the cell cycle
and the G→S transition through multiple pathways that
come together in the increased expression of the crucial Myc
regulator (Figure 5e). The miRNAs are able to downregu-
late the Mxd3 antagonist of Myc, the E2f5 repressor which
would in turn result in the increased expression of E2f5 tar-
gets including Myc, and can downregulate Arnt2 which may
compete with Myc for binding to regulatory sites.

miRNAs of the AAGUGCU seed family control multiple epi-
genetic regulators

As TFs, epigenetic regulators are also enriched among the
targets of miRNAs (46). A role for the miR-290-295 cluster
in epigenetic regulation was already proposed by Sinkkonen
et al. (17), who found that expression of retinoblastoma-like
2 (Rbl-2) protein, a known repressor of the de novo methyl-
transferases, is controlled by these miRNAs. Through our
analysis we found that the AAGUGCU miRNAs directly
target the epigenetic regulator BAF170 (Smarcc2), a com-
ponent of ATP-dependent, BAF (BRG1-associated factor)
complexes (also known as SWI/SNF complexes) that re-

Figure 6. The BAF170 (Smarcc2) component of the dBAF chromatin re-
modeling complex is a direct target of miR-294––(a) MARA analysis re-
veals a negative activity change of the ‘DMAP1 NCOR{1,2} SMARC’
motif in the presence of miR-294. (b) Expression of BAF170 (Smarcc2) is
consistently downregulated in the presence of miR-294 in all considered
experimental data sets (±1.96*SEM; n = 3; color scheme as in Figure 3).
(c) A luciferase construct carrying the BAF170 3′UTR is downregulated
upon co-transfection with miR-294 relative to a construct carrying a mu-
tated 3′UTR (n = 9). (d) Model of the possible involvement of miR-294
in the maintenance of the ESC-specific chromatin remodeling complex es-
BAF. The miRNA-induced reduction in BAF170 levels may contribute to
the maintenance of appropriate levels of esBAF complexes in ESCs thereby
maintaining self-renewal and proliferation (48). Color, shapes and lines
scheme is as in Figure 5.

model the nucleosome structure and thereby regulate gene
expression (reviewed in (47)). The activity of the BAF170
motif changed significantly upon AAGUGCU miRNA ex-
pression in miRNA-deficient ESCs (Figure 6a, Table 1),
accompanied by consistent downregulation of BAF170
mRNA (Figure 6b). Comparing constructs with and with-
out the putative miR-294 binding site in the BAF170
3′UTR in a luciferase assay we found that BAF170 is sig-
nificantly downregulated by miR-294 (Figure 6c), indicat-
ing that BAF170 is indeed a direct target of miR-294.

Recently, it was shown that BAF170 is downregu-
lated during miR-302-367-based reprogramming and that
BAF170 knockdown increases the number of iPSC colonies
in somatic cell reprogramming (49). As miRNAs of the
miR-302-367 cluster share the seed sequence with miR-294,
it is likely that miR-294 has similar effects on BAF170 ex-
pression and pluripotency.

The model that emerges from these studies is that the
AAGUGCU family of miRNAs may play a role in the re-
modeling of BAF complexes. In ESCs, the BAF complex
(esBAF), which contains a BAF155 subunit, shares a large
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proportion of target genes with the pluripotency-associated
TFs Oct4, Sox2 and Nanog (50) and is required for the
self-renewal and maintenance of pluripotency in mESCs
(48). Consistently, overexpression of esBAF components
was found to promote reprogramming (51). In differenti-
ated cells, however, the so-called differentiated cell BAF
complex (dBAF) (52), contains the BAF170 and not the
BAF155 subunit (48). The fact that induced BAF170 ex-
pression in ESCs decreases the level of BAF155 protein
suggested that BAF170 can displace BAF155 from esBAF,
thereby increasing its degradation rate (48). By preventing
expression of BAF components that are specific to differ-
entiated cells and that antagonize embryonic state-specific
BAF (Figure 6d), the AAGUGCU family of miRNAs may
promote an ESC-specific epigenetic state.

DISCUSSION

It has been established that ESC-specific miRNAs that
share an AAGUGCU seed region are among the regula-
tory factors that are necessary to maintain a pluripotent
ESC state. Strikingly, overexpression of a cluster of ESC-
specific miRNAs was found sufficient for inducing repro-
gramming of differentiated cells into iPSCs. This suggests
that the miRNAs can set into motion an entire regulatory
cascade that leads to cell reprogramming. Several studies
determined the gene expression profiles of ESCs that did
and did not express AAGUGCU family miRNAs. An in-
sight emerging from these studies was that miR-290-295
miRNAs regulate the cell cycle and apoptosis, either di-
rectly or indirectly.

To better understand how the direct regulatory factor tar-
gets of these miRNAs contribute to pluripotency, we made
use of a recently developed method, called MARA, that
models gene expression in terms of computationally pre-
dicted regulatory sites. The approach originates in regres-
sion models that were first proposed by Bussemaker et al.
(53) for inferring regulatory elements from gene expression
data. However, MARA’s goal is different. It uses predicted
regulatory sites in combination with a linear model to infer
from gene expression data the activities of transcriptional
regulators. The first application of MARA (28) to the re-
construction of the core transcriptional regulatory network
of a differentiating human cell line, demonstrated that the
method can successfully infer key regulatory interactions ab
initio. Notably, it was found that MARA accurately infers
the activities of the key regulatory motifs, in spite of com-
putational predictions of regulatory sites being error-prone,
and of gene expression likely being a much more complex
function of the regulatory sites. The power of the method
stems from the fact that motif activities are inferred from
the statistics of expression of hundreds to thousands of pu-
tative target genes of each regulatory motif. Here we have
used an extended version of the MARA model, which also
includes predicted miRNA binding sites, to infer both tran-
scriptional and post-transcriptional regulators of mRNA
expression levels. A similar approach was recently applied
by Setty et al. (54) to reconstruct the regulatory networks
in glioblastoma.

The TF targets of the AAGUGCU miRNAs that we
identified with the extended MARA model had the follow-
ing properties:

(i) The activity of their corresponding motif changed sig-
nificantly upon expression of the AAGUGCU miR-
NAs, meaning that the predicted targets of these
regulators showed, on average, consistent expression
changes.

(ii) Their expression was consistently downregulated at the
mRNA level upon expression of the AAGUGCU miR-
NAs.

(iii) They were predicted as direct targets of the
AAGUGCU family of miRNAs by miRNA tar-
get prediction programs.

(iv) They were consistently (i.e. within every analyzed data
set) predicted by MARA to be directly regulated by
the AAGUGCU seed family of miRNAs on the basis
of the dependence of their expression changes on the
presence of the miRNA binding sites in their 3′UTRs.

(v) They could be confirmed as AAGUGCU miRNA tar-
gets with luciferase assays.

Altogether, these lines of evidence firmly establish
these transcriptional regulators as direct targets of the
AAGUGCU seed family miRNAs, forming the first layer
downstream of this miRNAs in the regulatory network of
pluripotency.

First, our analysis suggests that AAGUGCU miRNAs
target the cell cycle, and in particular the G1→S transition,
through multiple pathways. By targeting the repressive cell
cycle regulator E2f5, the miRNAs might directly promote
the G1→S transition. In addition, the miRNAs seem to in-
crease the activity of the proliferation-associated TF Myc
through multiple indirect routes, including shifting the bal-
ance between Myc and its antagonist Mxd3 within tran-
scription regulatory complexes that act on Myc target genes.
Second, we found that the AAGUGCU miRNAs may af-
fect the balance between chromatin remodeling complexes
that are active in ESCs and in differentiated cells, a func-
tion probably important for keeping specific genomic re-
gions from being silenced through heterochromatin forma-
tion. Third, we found that the AAGUGCU miRNAs di-
rectly target the interferon regulatory factor Irf2, whose ex-
pression is strongly increased in DCR−/ − cells, consistent
with a significant change in the regulatory impact that we
inferred for this factor. Finally, our analysis uncovers a few
transriptional regulators that have previously not been con-
nected to the transcriptional network of pluripotent stem
cells, including Foxj2, whose expression is strongly affected
by the miRNAs and the Clock (circadian locomotor output
cycles kaput) TF. Interestingly, circadian oscillations are not
present in mouse ES cells, but are switched on during differ-
entiation, and then disappear again upon reprogramming
of differentiated cells into iPSCs (55). It is thus tempting to
speculate that circadian oscillations in ESCs may be actively
suppressed by the AAGUGCU miRNAs and that downreg-
ulation of these miRNAs during development may be nec-
essary for the establishment of circadian rhythms. However,
the response of the 3′UTR of Clock in luciferase assays was
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very variable in our hands, and we were not able to unam-
biguously validate it as a direct target of miR-294.

As mentioned before, the AAGUGCU seed motif is not
unique to miRNAs of the mouse-specific miR-290-295 clus-
ter. It also occurs in the miR-302 family of miRNAs that
is present in human and in a shifted version (at positions
3–9 instead of 2–8) it occurs in the miR-17/20a miRNAs
of the oncogenic miR-17-92 cluster. Although miR-19 has
been reported to be the key oncogenic component of this
cluster (56), the strong effects that AAGUGCU miRNAs
exert on the cell cycle raise the question of whether miR-
17 and miR-20a may not play a role similar to miR-294 in
malignant cells.

In summary, our analysis demonstrates that combining
accurate predictions of regulatory elements with analysis
of transcriptome-wide mRNA expression changes in re-
sponse to specific manipulations is a general and power-
ful approach to uncovering key regulators within gene ex-
pression networks. In the future, incorporation of measure-
ments of miRNA expression as well as of predictions of TF
binding sites in miRNA genes will enable identification of
feedback loops between miRNAs and TFs that are known
to operate in many systems.
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