author,	author, population § study	study	Pollutant exposure assessment			NO2 mortality	PM mortality	remarks
publication year		and period	methods and period**	mean annual level (SD or range)	exposure metrics	(95% CI)	(95% CI)	
12 Cesaroni G, Italy, 2013	all 1,265,058 people, 30+ yrs old, resident in Rome for 5+ yrs, enrolled in the Roman longitudinal cohort in 2001	Population- based cohort study Follow-up 2001-2009	NO ₂ LUR models for traffic-related air pollution (TRAP), 2007. PM _{2.5} dispersion model for TRAP, 2005 Address-level exposure for previous 5yrs TRAFFIC INDICATORS 1. distance from high-traffic roads 2. traffic intensity	NO ₂ (μg/ m ³) 44.0 (8.2) PM _{2.5} (μg/m ³) 23.2 (3.5) Pearson's Correlation 0.79	NO ₂ IQR 10.7 μg/ m ³ PM _{2.5} IQR 5.8 μg/m ³	Natural HR 1.03 (1.02-1.04) Cardiovascular HR 1.03 (1.02-1.04) Respiratory HR 1.03 (1.00-1.06)	1.02 (1.02 - 1.03) 1.04 (1.03 - 1.05) 1.01 (0.99 - 1.05)	Other pollutants: None Bi-pollutant NO2 - PM _{2.5} Natural HR 1.02 (1.01-1 .03)
13 Heinrich J, Germany, 2012	4752 women, 50- 59 yrs old, resident in North Rhine- Westphalia for 5+ yrs, randomly sampled from previous cross- sectional studies from 1985-94	Sub-cohort enrolled in 1985-87 Follow-up 1986-2008	Monitoring NO ₂ and TSP (from PM ₁₀) within 5-15 km from residence in 1985-94 (predicted in part before 1990) TRAFFIC INDICATORS 1. distance from high traffic roads	NO ₂ (μg/m3) 39 (20-60) PM ₁₀ (μg/m3) 43.7 (35-53) Spearman's correlation 0.5	NO ₂ IQR 16 μg/ m ³ PM ₁₀ IQR 7 μg/m ³	Total RR 1.22 (1.04–1.43) Cardio-pulmonary RR 1.58 (1.19 -2.09)	1.48 (1.08 - 2.04) 2.49 (1.39 - 4.44)	Other pollutants: None Occupational exposure, smoking status and previous diseases.
14 Dong GH China 2011 'Not included in 'META-ANALYSIS'	9941 people, 35+ yrs old, resident in 10 communities in Shenyang region	Retrospecti ve cohort Follow-up 1998-2009	Monitoring NO ₂ and PM ₁₀ at 5 background monitors, 1998-2009	NO ₂ (μg/m ³) 46 (13) PM ₁₀ (μg/m ³) 154 (41) Pearson,s Correlation 0.88	NO ₂ 10 μg/m ³ PM ₁₀ 10 μg/m ³	Respiratory and lung cancer HR 2.97 (2.69–3.27)	1.67 (1.60–1.74)	Other pollutants: SO2 Occupational and behavioral exposure in 2009 (interviews with proxies)

 Table A. Long-Term Studies with measured exposure to NO2 and particles, published 2004 until January 2013

author,	author, population § study		Pollutant exposure assessment			NO2 mortality	PM mortality	remarks
publication year		and period	methods and period**	mean annual level (SD or	exposure metrics	estimates* (95% Cl)	(95% CI)	
15 Zhang P China, 2011	9941 people, 35+ yrs old, resident in 10 communities in Shenyang region	Retrospe- ctive cohort Follow-up 1998-2009	MonitoringNO ₂ and PM ₁₀ , at 5 background monitors, 1998-2009	range) NO ₂ (μg/m ³) 46 (13) PM ₁₀ (μg/m ³) 154 (41) Pearson's Correlation 0.88	NO ₂ 10 μg/ m ³ PM ₁₀ 10 μg/ m ³	Cardiovascular HR 2.46 (2.31 -2.63) Cerebrovascular mortality also assessed HR 2.44 (2.27-2.42)	1.55 (1.51 - 1.60) 1.49 (1.45 - 1.53)	Other pollutants: so2. Occupational and individual exposure by interviews in 2009
16 Katanoda K Japan 2011	All 63,520 people, 40+ yrs old, resident in three prefectures, enrolled during a survey from 1983- 85	Population- based cohort study Follow-up 1985-1995	Monitoring NO ₂ and PM _{2.5} (from SPM x 0.7) at 4 background monitors, from 1974-1983 and from 1984-1993.	NO ₂ (ppb) 10-yr range 1.2 -33.7 PM _{2.5} (μg/m ³) 10-yr range 16.8 - 41.9 Pearson's Correlation 0.26	NO ₂ 10 ppb/m ³ PM _{2.5} 10 μg/m ³	Respiratory HR 1.16 (1.12–1.21).	1.16 (1.04–1.30)	Other pollutants: SO2 Occupation, smoking status, heating exposure assessed at baseline (questionnaire)
17 Cao J China 2011	70,947 people, 15+ yrs old, resident in 17 provincies, randomly sampled in 1991 from China National Hypertension Survey	Cohort study Follow-up 1991-2000	Monitoring NOx and TSP at fixed monitors within 15 km from zip-code area of residence in 1991-2000.	NOx (μg/m ³) 50 TSP (μg/m ³) 289 Correlation not given	NOx 10 μg/m ³ TSP 10 μg/m ³	Total %IR 1.5 (0.4 - 2.5) Cardiovascular %IR 2.3 (0.6 - 4.1) Respiratory %IR 2.6 (-0.2 to 5.6)	0.3 (-0.1 to 0.6) 0.9 (0.3 - 1.5) 0.3 (-0.6 to 1.3)	Other pollutants: SO2 Bi-pollutant NOX - TSP Tot %IR 1.4 (0.3-2.5) CV %IR 1.5 (-0.4 to 3.3)
18 Gan WQ Canada 2011	418,826 adults, 45- 85 yrs old, resident in Vancouver for 5+ yrs in 1994 - 1998	Population- based cohort study Follow-up 1999-2002	LUR model for NO ₂ (116 sites) and PM _{2.5} (25 sites) from 1994 - 1998 (LUR assessment year not given)	NO ₂ (μ g/m ³) 32.1 (8.0) PM _{2.5} (μ g/m ³) 4.08 (1.63) Pearson's Correlation 0.47	NO ₂ IQR 8.4 μg/m ³ PM _{2.5} IQR 1.6 μg/m ³	Cardiovascular (CHD) RR 1.04 (1.01–1.08)	1.01 (0.98-1.05)	Other pollutants: BC, NOx Multi-pollutant NO2 - PM _{2.5} - BC CHD mort. RR 1.03 (0.99–1.07)

author, population §		study	Pollutant exposure assessment			NO2 mortality	PM mortality	remarks
location, publication year		design and period	methods and period**	mean annual level (SD or range)	exposure metrics	estimates* (95% CI)	estimates * (95% Cl)	
19 Lipsett MJ USA 2011	124,614 women, 20+ yrs old and resident in California in 1995 at enrolment from California Teachers Study cohort	Cohort study Follow-up 1997-2005	Monitoring NO_2 and PM_{10} at fixed monitors, in a representative range of 3 km for NO_2 and 10 km for PM_{10} (250 x 250m grid), from 1996- 2005.	NO ₂ (ppb) 33.6 (9.6) PM ₁₀ (μg/m ³) 29.3 (9.7) Spearman's correlation 0.8	NO ₂ IQR 10.3 ppb PM ₁₀ 10 μg/m ³	Total HR 0.97 (0.91-1.04) Cardiovascular HR 0.98 (0.88-1.09) Respiratory HR 0.93 (0.75-1.15)	1.0 (0.97-1.04) 1.03 (0.98-1.08) 1.08 (0.98-1.19)	Other pollutants: PM _{2.5} since 2000, NOx, SO ₂ , CO
20 Hart JE USA 2011	53,814 men, 42 yrs old <u>+</u> 9.9 yrs at enrolment from trucking industry registries in 1985.	Cohort study Follow-up 1985-2000	Spatial modeling to predict NO ₂ and PM ₁₀ yearly mean levels from 1985 – 2000, on the basis of data observed in 1985 Address-level exposure	NO ₂ (ppb) 14.2 (7.1) PM ₁₀ (μ g/m ³) 26.8 (6.0) Pearson's correlation > 0.64 for all pollutants	NO ₂ IQR 8 ppb PM ₁₀ IQR 6 μg/m ³	Natural %IR 8.2 (4.5-12.1), Cardiovascular %IR 6.9 (0.6 - 13.6) Respiratory %IR 5.9 (27.4- 21.1)	4.3 (1.1 –7.7) 2.9 (-2.6; 8.7) 2.5 (-9.0; 15.5)	Other pollutants: SO2, PM2.5 only for 2000 Multi-pollutant NO2 - PM10 - SO2 Tot. mort.%IR 7.4 (2.4-12.5)
21 Maheswaran R UK 2010	3320 patients with first stroke from 1995-2005, London, from stroke register	Cohort study Survival follow-up 1995-2006	Dispersion modeling (from traffic and other sources) for NO ₂ and PM ₁₀ (20 x 20m grid) in 2002 zip-code-level exposure	NO ₂ (μg/m ³) 41 (3.3) PM ₁₀ (μg/m ³) 25 (1.3) Correlation not given	NO ₂ 10 μg/m ³ PM ₁₀ 10 μg/m ³	Total %IR 28 (11 - 48)	52 (6 - 118)	

author,	population §	study	Pollutar	nt exposure assess	ment	NO2 mortality	PM mortality	remarks
location,		design	methods and	mean annual	exposure	estimates*	estimates *	
vear		and period	period**	level (SD or	metrics	(95% CI)	(35% CI)	
,				range)				
22 Jerrett M Canada 2009	2360 patients of a lung clinic in Toronto from 1992-1999.	Cohort study Follow-up 1992-2002	LUR for NO ₂ 2002- 2004, using 2- week (in 2002) and 2-week (in 2004) data LUR for PM ₁₀ 2002-2004, using monitoring data from 2002 census-area-level exposure TRAFFIC INDICATORS 1. distance from high-traffic roads	NO ₂ (ppb) range 20.8 – 24.8 PM _{2.5} (μ g/m ³) range 8.64 – 8.83 Correlation not given	NO ₂ IQR 4 ppb PM _{2.5} IQR 1 μg/m ³	Total RR 1.17 (1.00–1.36) Cardiovascular (IHD) RR 1.45 (1.10–1.92) Respiratory RR 1.06 (0.67–1.49)	No significant effects for PM2.5 (estimates not given)	Other pollutants: ozone Bi-pollutant with traffic proximity; lower estimates for total and IHD mortality
23 Krewski D, USA, 2009	406,917 (for NO2), 351,338 (for PM _{2.5}) adults 30+ yrs old (with at least one 45+-yr-old household) randomly enrolled from original ACS database	Cohort study Follow-up 1982-1989	Monitoring NO ₂ and PM _{2.5} at fixed monitors, in metropolitan statistical areas (MSA)	NO ₂ (ppb) 1979-83 27.9 (9.2) PM _{2.5} $(\mu g/m^3)$ 1979-83 21.2 (4.6) Correlation not given	NO ₂ IQR 10.6 ppb PM _{2.5} IQR 6.3 μg/m ³	Total HR 0.99 (0.99-1.00) Cardiopulmonary HR 1.01 (1.00–1.02) Cardiovascular (IHD) HR 1.02 (1.00–1.03)	1.03 (1.01-1.04) 1.06 (1.04-1.08) 1.12 (1.09-1.16)	Other pollutants: SO2, SO4 ²⁻ In 2009 reanalysis, including ecological covarieties
24 Lipfert FW, USA 2009	67,938 male military veterans with hypertension, aged 51 (<u>+</u> 12) at enrolment in 1976, from the Veterans cohort database	Cohort study Survival follow-up 1976-2001	Dispersion models for NOx and diesel PM (resolution 36 x 36 Km) County-level exposure in 1975- 76 TRAFFIC INDICATORS 1. traffic density	NOx (ppb) 19.5 (14.0) Diesel PM (μg/m ³) 1.81 (1.0) Correlation 0.7	NOx IQR 10 ppb Diesel PM 10 μg/m ³	Total RR 1.08 (1.06-1.10)	1.08 (1.06-1.10)	Other pollutants: Metals, PAH, HCl, benzene, SO2, SO4 ²⁻ , EC Bipollutant NOx - with traffic density Tot RR 1.01

author,	population §	study	Pollutar	nt exposure assessr	nent	NO2 mortality	PM mortality	remarks
location, design publication and period year	design and period	methods and period**	mean annual level (SD or range)	exposure metrics	estimates* (95% Cl)	estimates * (95% Cl)		
25 Rosenlund M Sweden 2009	24,347 incident cases of MI from hospital discharge registries from 1985-1996, 15-79 yrs old, 5+ yrs' exposure 276,926 controls, matched with residents of Stockholm for sex, age, calendar year	Case- control study, population- based Survival follow-up within 28 days of event	Dispersion models for NO ₂ and PM ₁₀ based on traffic data for 1960, 1970, 1980, 1990 and 2000, and on land-use variations Address-level exposure in previous 5 yrs	5-yr mean ($95^{th}-5^{th v}$ percentile) NO ₂ (µg/m ³) 12.4 (31.3) PM ₁₀ (µg/m ³) 2.3 (5.7) Correlation not given	95 th -5 th percentile NO ₂ 31.3 μg/m ³ PM ₁₀ 5.7 μg/m ³	Cardiovascular Non-fatal MI No association fatal MI OR 1.23 (1.15-1.32)	No association 1.16 (1.09-1.24)	Other pollutants: CO Additional OR restricted to people not changing address duringstudy Individual data on SEP, not smoking
26 Beelen R, Netherlands 2008	120,852 subjects enrolled in 1986 in NLCS, aged 55-69	Cohort study follow-up 1987-1996 (case control within cohort)	Monitoring NO ₂ , for 1976-85 and 1987-96, and PM _{2.5} (from PM ₁₀ , by a local factor) for '92-'96. Residence-level exposure TRAFFIC INDICATORS Traffic density	NO ₂ (μg/m ³) 36.9 (8.2) PM _{2.5} (μg/m ³) 28.3 (2.5) Correlation coefficient > 0.8 for all pollutants	Difference 95 th – 5 th perc. NO ₂ 30 μg/m ³ PM _{2.5} 10 μg/m ³	Total RR 1.08 (1.00-1.16) Cardiovascular RR 1.07 (0.94–1.21) Respiratory RR 1.37 (1.00-1.87)	1.06 (0.97-1.16) 1.04 (0.90-1.21) 1.07 (0.75-1.52)	Other pollutants: BS, SO ₂ No association with individual risk factors Details about residence expo not given

author,	population §	opulation § study	Pollutant exposure assessment			NO ₂ mortality	PM mortality	remarks
publication and year	and period	methods and period**	mean annual level (SD or range)	exposure metrics	– estimates* (95% CI)	(95% CI)		
27 Schikowski T, Germany 2007	4750 subjects from 4874 women enrolled in SALIA cohort from 1985- 1994, aged 55+ , in North Rhine- Westphalia	Cohort study Follow-up 2001-2003	Monitoring NO ₂ and PM ₁₀ (from TSP, by 0.71) at fixed stations. Previous 5-yr exposure inferred from Ruhr-area monitoring data TRAFFIC INDICATORS 1. Proximity to traffic.	NO ₂ (μg/m ³) 39 (22-55) PM ₁₀ (μg/m ³) 48 (39-56) Correlation not given.	NO ₂ IQR 16 μg/m ³ PM ₁₀ IQR 7 μg/m ³	Cardiovascular RR 1.72 (1.24–2.39)	1.64 (1.15–2.33)	Publication with original analysis of cardio-pulmonary mortality in Gehring U 2006.
28 Naess O, Norway 2007	All 143,842 residents of Oslo, aged 51-90 on 1 st Jan 1992	Cohort study, registry- based Follow-up 1992-1998	Dispersion model for NO ₂ and PM _{2.5} from 1992–1995 Neighborhood- level exposure. Previous 4-yr exposures given in quartiles	NO ₂ (μg/m ³) 39 (2-73) PM ₁₀ (μg/m ³) 15 (7-22) Correlation > 0.88	NO ₂ IQR 21.8 μg/m ³ PM ₁₀ IQR 7 μg/m ³	MEN (51-70 years old) Cardiovascular HR 1.08 (1.04-1.13) Respiratory (COPD) HR 1.21 (1.05-1.39) WOMEN (51-70 year sold) Cardiovascular HR 1.07 (1.0-1.14) Respiratory (COPD) HR 1.06 (0.92-1.21)	MEN 1.10 (1.05-1.16) rev 1.27 (1.11-1.47) rev WOMEN 1.14 (1.06-1.21) 1.09 (0.94-1.25)	Other pollutants: PM10 smoking impact has been inferred from other studies Dose – response linear increase of total mortality between 20 and 60 µg/m3 NO2 or above 19 µg PM10/m3 or above 14µg PM _{2.5} /m3. No threshold for COPD, evidence of threshold for CV death and lung cancer deaths.

author, population § study		study	Pollutar	nt exposure assessm	ent	NO ₂ mortality	PM mortality	remarks
location, publication year		design and period	methods and period**	mean annual level (SD or range)	exposure metrics	estimates* (95% CI)	estimates * (95% Cl)	
29 Rosenlund, Sweden 2006	1397 cases with first MI, aged 45- 70 from 1992- 1994 (females) and from 1992-1993 (males), resident of Stockholm, and 1870 population controls	Case- control study, registry- based	Dispersion model for NO ₂ and PM ₁₀ based on 1995 data address-level exposure since 1960 (average for previous 30 yrs), based on mea- surements from 2000.	NO ₂ (μ g/m ³) (95 th -5 th percentile) 13.9 (3.0 – 32.2) PM ₁₀ (μ g/m ³) 2.5 (0.5-6.0) Correlation (0.9)	NO ₂ (differe- nce between 95 th and 5 th Percentile). 30 μg/m3 PM ₁₀ IQR 5 μg/m ³	Fatal MI within 28 days OR 1.51 (0.96-2.16), , Fatal MI out of hospital OR 2.17 (1.05-4.51).	1.39 (0.94–2.07) 1.84 (1.00-3.4).	Other pollutants: CO, SO ₂ No association between any pollutant and MI incidence.
30 Lipfert FW, USA 2006 (INHAL TOXICOL)	70,000 male military veterans enrolled in 1975, 28,635 survivors in 1997	Cohort study Follow-up 1997-2001	Monitoring NO ₂ and PM _{2.5} , from 1997-2002 County-level exposure TRAFFIC INDICATORS Traffic density	NO ₂ (ppb) 20.3 (5.2) PM _{2.5} (μg/m ³) 14.3 (3.0) Correlation (0.6)	NO ₂ exp incr. (20.3- 3.9) 16.4 ppb PM _{2.5} exp incr. (14.3-4.8) 9.5 μg/m ³	Total RR 1.07 (1.01 – 1.30)	1.06 (0.99 – 1.27)	Other pollutants: CO, SO ₂ ,SO ₃ , O ₃ ,SO ₄ , , NO ₃ , EC, OC, metals Bi-pollutant with traffic density No effect for NO2 or PM _{2.5}
31 Lipfert FW, USA 2006 (ATMOSPH ENVIRON)	70,000 male military veterans enrolled in 1975, 28,635 survivors in 1997	Cohort study Follow-up 1997-2001	Monitoring NO ₂ and PM _{2.5} in 1997-2002 County-level exposure in 1997 TRAFFIC INDICATORS Traffic density	NO ₂ (ppb) 19.8 (5.5) PM _{2.5} (μg/m ³) 14.4 (3.1) Correlation (0.6)	NO ₂ IQR 17 ppb PM _{2.5} IQR 10 μg/m ³	Total RR 1.10 (0.98-1.23)	1.03 (0.92, 1.15)	Other pollutants: CO, SO ₂ ,SO ₃ , O ₃ ,SO ₄ , NO ₃ , , EC, OC, metals associations with TD, EC, NO ₃ , vanadium, nickel

author, location.	population §	study design	Pollutant exposure assessment		NO ₂ mortality	PM mortality estimates *	remarks	
publication year		and period	methods and period**	mean annual level (SD or range)	exposure metrics	(95% CI)	(95% CI)	
32 Gehring U, Germany 2006	4750 women, 50- 59 yrs old, enrolled in two cross- sectional studies in 1985 and 1994 in North Rhine- Westphalia	Follow-up study 2002-2003	Monitoring NO_2 and PM_{10} (from TSP by 0.71) TRAFFIC INDICATORS distance from high-traffic roads	mean 5-yr NO ₂ (μg/m3) 39 (22-55) PM ₁₀ (μg/m ³) 48 (39-56) Correlation 0.8	NO ₂ IQR 24 μg/m3 PM ₁₀ IQR 10.7 μg/m ³	Total RR 1.19 (1.02-1.39) Cardio-pulmonary RR 1.74 (1.29-2.33). Lung cancer estimated with other diseases	1.13 (0.99-1.30) 1.59 (1.23-2.04)	Bi-pollutant with traffic density No change in effects for NO ₂ or PM ₁₀
33 Chen LH, USA, 2005	3239 not smoking, non-Hispanic whites, aged 25+ enrolled from Adventists Health Study in 1977, from 3 metro- politan areas in California.	Cohort study Follow-up 1977-2000	Fixed stations monitoring for NO ₂ and PM2.5, in 1973-1998, PM2.5 estimated from airport visibility data Zip-code-level exposure in the 4 yrs before event	NO ₂ (ppb) 34.9 (9.7) PM2.5 (μg/m ³) 29.0 (9.8) Correlation (0.3)	NO ₂ IQR ppb 10 PM2.5 IQR 10 μg/m ³	Cardiovascular (CHD) MEN RR 1.16 (0.86–1.56), WOMEN RR 1.17 (0.92–1.49),	MEN 0.90 (0.67–1.19) WOMEN 1.42 (1.11–1.81) ,	Other pollutants: PM ₁₀ , PM ₁₀ –2.5, SO2, O3 Multipollutant model results given only for particles.
34 Filleul L, France 2005	Subjects enrolled in 24 areas of seven cities, from 1974-76 (PAARC study), household (not headed by manual worker) members, aged 25- 59, born in France	Cohort study Follow-up: vital status 1995 - 2001; cause of death 1995 - 1998	Monitoring NO ₂ and BS in each area from 1974-76 in 18/24 areas with a NO/ NO ₂ ratio < 3 ppb	3-yrs range NO ₂ (μg/m ³) 12-32 PM2.5 (as BS) 18-77 correlation 0.72	NO ₂ 10 μg/m ³ PM2.5 10 μg/m ³	Natural RR 1.14 (1.03 - 1.25) Cardio-pulmonary RR 1.27 (1.04-1.56)	1.07 (1.03 - 1.10) 1.05 (0.98 - 1.12)	Other pollutants: SO2, TSP, NO

<u>Notes</u>

Studies excluded from meta-analysis: all four ecological studies; three studies for which analyses were repeated a few years later [29, 30, 31]; one study [15] which reported effect estimates by exposure tertiles. The papers included were 19. Since two papers [28, 33] gave separate estimates for men and women, the effect estimates considered for the meta-analysis numbered 21.

(a)men (b)women § gender and/or specific health conditions are specified, when there are restrictions.

* the estimates were adjusted for many factors at baseline. The specific factors for each study are reported below.

1. Cesaroni adjusted for individual (sex, age, place of birth, residential history, marital status, education, occupation) and area (socio-economic status, clustering) 2. Heinrich adusted for age, educational level and smoking status 3. Zang adjusted for sex, age, education, family, smoking status, income, occupation, characteristics 4. Dong adjusted for age, gender, educational level, smoking status, personal income, occupational exposure, BMI and exercise BMI, physical exercise 5. Katanoda adjusted for sex, age (continuous), smoking status, pack-years, smoking status of cohabiting family members, daily green and yellow vegetable consumption, daily fruit consumption, and use of indoor charcoal or briquette braziers for heating 6. Cao adjusted for sex, age, smoking status, education, physical activity, alcohol consumption, hypertension 7. Gan adjusted for age, comorbidity, SES 8. Lipsett adjusted for age, race, smoking status, total pack-years, body mass index, marital status, alcohol consumption, diet, menopause and hormone therapy, family history ov CV diseases, blood pressure medication, aspirin use and six different SEP indicators 9.Hart adjusted for age, hire time, race, occupation, health worker effects 10. Mahesharan adjusted for age, sex, ethnicity, smoking status, alcohol consumption, living alone, Barthel Index score, comorbidities, deprivation index, social class 11. Jerret adjusted for age, sex, BMI, FVC %, deprivation index 12. Krewski adjusted for 44 16. Beelen adjusted for sex, age at baseline, smoking status, area-level (income) 17. Schikowski adjusted for education level and smoking individual-level covariates 18. Naess adjusted for occupation and education 22. Gehring adjusted for SES and smoking status 23. Chen adjusted for smoking status, BMI, education, status meat consumption 24. Filleul adjusted for age, smoking, BMI, education and occupation, and stratified by sex

** Method refers to data obtained by monitoring or by models, including whether they were dispersion or LUR models. The level of precision at which spatial exposure was assessed for the subjects is also reported: address-level, zip-code-level or larger-area assessment. Period refers to both the monitoring period and the time interval covered by the modelling estimates; in the latter case, even the period when data for models were observed is reported.