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Figure 28. Comparison of HOP and synHOP gait frequency between full α2chimaerin and full EphA4                 
       mutant mice 

 

A: Frequency of HOP gait was significantly decreased in full α2chimaerin mutants in comparison to full 
EphA4 mutant mice at 12, 16 and 20 cm/s. B: Likewise, full α2chimaerin mutants showed a significant lower 
frequency in synchronous hindlimb movement compared to full EphA4 mutants at all tested speeds. Box 
and whisker plots. Values were compared by a Mann Whitney rank sum test (significant difference when 
P<0.05).  
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4. Discussion 

First work describing an abnormal hopping gait in full EphA4-/- and ephrinB3-/- mutant 

mice proposed that the abnormal gait was the result of an aberrantly recrossing of 

corticospinal tract fibers across the spinal midline (Dottori 1998; Kullander 2001a). However, 

following tracing experiments combined with fictive locomotion of isolated spinal cords 

showed that the hopping gait in the full EphA4 mutant is the consequence of aberrantly 

midline-crossing axons from excitatory ventral spinal neurons that normally project 

ispilaterally (Kullander 2003; Butt 2005; Restrepo 2011). Further studies in the spinal cord by 

means of cell-ablation and genetic markers revealed that ventral subpopulations but also 

dorsally derived neurons play a role in coordinating locomotion (Pierani 2001; Lanuza 2004; 

Wilson 2005; Gosgnach 2006; Lundfald 2007; Crone 2008; Zhang 2008; Rabe 2009; 

Andersson 2012; Paixao 2013; Talpalar 2013). However, it remained unclear which 

misguided interneuron subtypes in the spinal cord are involved in the hopping gait of the full 

EphA4 mutant mouse and, thereby, playing a role in the locomotor CPG. 

In this study, we aimed to understand which subpopulation of spinal interneurons 

contributes to the misguidance of axons in the full EphA4 mutant mouse that causes an 

inbalance between excitation and inhibition across the spinal midline. Here, we examined 

the premotor interneuron distribution from specific muscles in conditional EphA4 and 

α2chimaerin mutant mice, in which the EphA4 receptor or its effector α2chimaerin was 

deleted in Lbx1-expressing neurons, respectively. We also analyzed the gait behavior on a 

treadmill of the conditional mutant mice and compared their properties with control and full 

EphA4 mutants. 

First, we have shown that some dorsal Lbx1-expressing interneurons are 

monosynaptically connected to motor neurons innervating different muscles, including Q, TA 

and GS, at P13-15. Second, we revealed that axons of dorsal Lbx1-positive neurons 

aberrantly cross the spinal midline and innervate contralateral motor neurons in conditional 

EphA4 mutant mice whose Lbx1-positive cells lack the EphA4 receptor. Third, a deletion of 

EphA4 in Lbx1-expressing cells resulted in a slight aberrant HOP gait of hindlimbs at higher 

speeds of 3-week old and at lower speeds of adult conditional EphA4 mutant mice. Fourth, 

the conditional EphA4 mutant, either walking with ALT or HOP gait, exhibited a shorther 
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swing time compared to wild type mice suggesting a defect of flexion muscle innervations. 

Therefore, we assume a minor involvement of the Lbx1-expressing subpopulation in pattern 

and rhythm generation. Fifth, the gait of forelimbs was additionally affected in the 

conditional EphA4 mutant and ranged between alternating and synchronous coordination of 

both forelimbs. Sixth, a deletion of the EphA4 receptor in inhibitory neurons of the 

conditional EphA4flox/-vGATCre/+ mice resulted in a partial synHOP gait in addition to ALT gait. 

Seventh, the ablation of α2chimaerin, an EphA4 effector, in Lbx1-expressing neurons in 

conditional α2chimaerin mutants showed no overall difference in premotor interneuron 

distribution and in gait behavior in comparison to wild type mice. Eighthly, the full 

α2chimaerin mutant displayed a partial HOP gait beside ALT gait and, thereby, differs to the 

full EphA4 mutant that showed a complete loss of ALT gait.  

 

4. 1 Premotor interneuron distribution of conditional and                                  

  full EphA4 mutant mice 

4.1.1 Variability of the premotor interneuron distribution in the full              

  EphA4 mutant 

As a first approach to address our question, we started to investigate the premotor 

interneuron distribution of the full EphA4 mutant mice. Surprisingly, we found a high 

variability in the distribution of premotor interneurons in the full EphA4 mutant: while some 

mutant animals displayed a wild type distribution, others showed a significant increase of 

premotor neurons specifically in the dorsal contralateral spinal quadrant to the injection    

(% dorsal contralateral cells [full EphA4: 24.85, 8.1, 6.22, 4.59, 4.45, 4.16, 4.12]). There are 

several possible explanations for this finding. First, growing axons respond to a variety of 

different repulsive and attractive guidance cues during their migration and the axons 

themselves activate and deactivate various receptors at different time points (Dodd 1988; 

Kidd 1998; Imondi 2000). Some axons, missing the EphA4 receptor, might receive stronger 

attractive guidance cues and they migrate towards the correct direction, whereas other 

axons are less attracted and, therefore, directed towards the midline where they migrate in 

the contralateral side. Second, additionally to the misguided axons in the full EphA4 mutant, 
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the cell position of various neurons might be aberrant since it was previously shown that cell 

bodies of migrating interneurons follow their axons (Marin 2010; O`Leary 2011). Paixao et al. 

(2013) revealed a relocation of dorsal interneurons in the spinal cord lacking the EphA4 

receptor. A shift of the dorsal cell position might lead to different innervations from other 

neurons due to competition and various interactions between the neurons resulting in a 

variety of aberrant networks. Another study by Coonan et al. (2001) in the full EphA4 mutant 

described a ventral displacement of the termination zone of corticospinal tract axons in the 

spinal cord due to missing expression of EphA4 in the intermediate zone. Corticospinal tract 

fibers might, therefore, innervate other neurons located more ventrally in the spinal cord. 

Lastly, even though animals were regenotyped several times, one should consider the 

possibility that some of the analyzed mice might in fact not have been bona fide mutants by 

genotype. 

In general, full EphA4 mutants are a difficult model to study the effect of EphA4 receptor 

deletion, since EphA4 is expressed in the entire body (Greferath 2002). In full EphA4 

mutants, descending tract fibers from the cortex are affected (Dottori 1998; Coonan 2001; 

Egea 2005; Canty 2006); certain motor neuron pools innervating specific muscles of the 

hindlimb are caudally displaced (Coonan 2003) and, additionally, the projection of motor 

neurons towards the muscles are misguided (Helmbacher 2000). Given the variety of defects 

in the full EphA4 mutant, it would be difficult to link neuronal circuit properties to behavioral 

defects. This is the reason why we decided to study the connectivity and motor behavior of 

conditional EphA4 mutant mice instead where an assignment of cell types to phenotypes will 

be cleaner than in the full mutant mouse strain. 

 

4.1.2 Wider shape of the dorsal funiculus in full and conditional                                             

   EphA4 mutant mice 

Previous studies reported that the dorsal funiculus in the full EphA4 mutant exhibited a 

wider and broader shape in contrast to wild type mice (Dottori 1998; Kullander 2001b; 

Restrepo 2011; Paixao 2013; Borgius 2014). For this reason, we decided to quantify the 

shape of the dorsal funiculus in the conditional EphA4 mutant and compared it with wild 

type and full mutant mice. We found that the dorsal funiculus in the conditional EphA4 
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mutant mice showed a similar wide shape compared to full EphA4 mutants. Our findings are 

in agreement with the study of Paixao (2013), who revealed that removal of EphA4 

specifically from the dorsal spinal cord neurons affected the dorsal funiculus morphology. 

Specifically, they showed that in full and conditional EphA4 mutants, axons from a 

subpopulation of Lbx1 neurons (dILB - Zic2+ neurons), which normally project into the 

ascending tract of the dorsal funiculus, instead cross the dorsal midline and their cell bodies 

relocate to a more medial position leading to a gap between the ephrinB3-expressing 

midline cells and the ventral tip of the dorsal funiculus. They suggested that crossing axons 

and cells at medial positions might prevent the dorsal funiculus from extending more 

ventrally. Moreover, in another study of Restrepo et al. (2011), an intercalated cell position 

of inhibitory and excitatory neurons in the dorsal commissure was reported in the full EphA4 

mutant. From previous studies and our own findings, we conclude that the misguidance of 

dorsal Lbx1-expressing neurons cause the shortening of the dorsal funiculus.  

 

4.1.3 Premotor interneuron distribution in conditional EphA4                               

    mutants 

The monosynaptic rabies tracing approach allowed the visualization of premotor 

interneurons from specific muscles in the spinal cord. Taking advantage of this technology, 

we demonstrated that the conditional EphA4 mutant exhibited an aberrant increase of 

premotor interneurons localized in the dorsal contralateral part of the spinal cord 

independently of the injected muscle (Q, TA or GS). The distribution pattern in the dorsal 

contralateral side of TA and GS premotor interneurons confirmed our findings of the Q 

premotor interneuron distribution with a low number of animals. Further injections have to 

be performed to confirm this finding and allow a statistical comparison with wild type and 

full EphA4 mutant mice. The same change in the premotor distribution pattern was found 

when Q muscle was injected in some of the full EphA4 mutants, further supporting our 

findings. In addition, we showed that most of the ectopic dorsal contralateral interneurons 

innervating Q motor neurons express Lbx1. Moreover, in a previous study it was shown that 

on average 30% of Lbx1-positive cells express EphA4 and that the number of axons crossing 

the dorsal midline in conditional EphA4 mutant mice was doubled compared to control mice 
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(Paixao 2013). We, therefore, conclude that when dorsal Lbx1-expressing neurons lack the 

EphA4 receptor, their axons are misguided across the spinal midline and connect to 

contralateral motor neurons.  

Interestingly, the GS premotor interneuron distribution revealed a shift of the percentage 

of cells in all four parts of the spinal cord in the conditional EphA4 mutant that was not 

found in TA injections, indicating that either extensor GS premotor interneurons were 

misguided more extensively than flexor TA premotor interneurons or alternatively a 

reduction of the dorsal ipsilateral population raises the ratio of the ventral ipsilateral 

population. Moreover, the premotor distribution of another extensor motor neuron pool, Q, 

displayed a tendency to a decrease of neurons in the ventral ipsilateral side. Although more 

experiments are needed, these results suggest that a different contribution of Lbx1 neuronal 

subpopulation to flexor or extensor premotor circuits could explain our findings. 

Importantly, a previous study in the laboratory reported of a medio-lateral segregation of 

extensor GS and flexor TA premotor interneurons in the ipsilateral dorsal spinal cord of wild 

type mice where the majority of Lbx1-expressing neurons co-labeled with dorsal GS extensor 

premotor interneurons (Tripodi 2011). Future experiments could address our hypothesis 

through the visualization of all Lbx1-expressing neurons using conditional EphA4 mutant 

mice containing a lacZ reporter gene (EphA4flox/-Lbx1Cre/+Taulox-stop-lox-SynGFP-INLA and    

EphA4flox/-Lbx1Cre/+Taulox-stop-lox-FlpO-INLA mutant mice) and its combination with retrograde 

monosynaptic rabies tracing from specific muscles. With this strategy, it will be possible to 

elucidate whether together with the aberrant axon guidance, the conditional Lbx1 mutant 

also shows a relocation of premotor neurons as it was previously reported for the non-

premotor dILB subpopulation of Lbx1-expressing neurons (Paixao 2013).  

 

4.2 Gait behavior of EphA4 mutant mice 

4.2.1 HOP gait at low frequency locomotion in adult conditional                     

   EphA4 mutant mice 

Since we revealed a misguidance of dorsal Lbx1-expressing cells across the midline of the 

spinal cord innervating contralateral motor neurons, we hypothesized that this anatomical 
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phenotype might result in a gait behavioral phenotype similar to the synchronous hopping 

seen in full EphA4 mutants. We found that adult conditional EphA4 mutant mice exhibited a 

milder hopping phenotype compared to full EphA4 mutants, characterized by a minor 

increase in HOP gait at lower velocities of 12 to 20 cm/s on the treadmill compared to the 

absence of HOP gait in wild type mice. Moreover, when we analyzed the gait behavior of full 

EphA4 mutant mice, we found that they displayed always HOP gait at all tested speeds, and 

this finding is in accordance with the detailed behavioral locomotion study of Akay et al. 

(2006). Previous reports addressed the effect of sectioning either the dorsal or ventral 

commissure in wild type and EphA4 mutant mice and revealed an uncoupling of left-right 

coordination of isolated spinal cords only when the ventral commissure was sectioned 

(Kjaerulff 1996; Restrepo 2011). These findings are in agreement with our results in the 

conditional EphA4 mutant that conserves an alternating gait with only a minor HOP gait.  

In our study, the gait on the treadmill per trial was visually analyzed and classified into 

four gait types, ALT, TS, MIX and synHOP gait, depending on the position of the hind feet on 

the ground. MIX and synHOP gait were further distinguished by the timing between both 

hindlimbs when starting into the swing phase as we wanted to discriminate real synchronous 

hindlimb movement during the entire stride at synHOP gait from a less synchronous 

movement at MIX gait. During synHOP gait, both hindlimbs move synchronously during 

swing and stance phase beside the parallel position on the ground. The gait classification is 

in accordance with hindlimb coupling values obtained in the gait parameter analysis that is 

only calculating the time difference between both hindlimbs. Both gait classification and gait 

parameter analysis by TreadScan software revealed that conditional EphA4 mutants walked 

with a less synchronous hindlimb movement when walking with HOP gait, whereas full 

EphA4 mutants almost always exhibited synchronous hindlimb coupling. This finding 

suggests that the timing between both hindlimbs is not severly affected in the conditional 

EphA4 mutant compared to full EphA4 mutant mice. 

The parallel placement of both hindlimbs during locomotion on the treadmill in the 

conditional EphA4 mutant might be evoked directly by possible misguided Lbx1-positive 

interneurons in the spinal cord or alternatively by an indirect influence of descending fibers 

or sensory feedback. Importantly, it has been shown that dorsal Lbx1-positive interneurons 

are mainly co-located with extensor premotor neurons that receive propioceptive input 
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(Tripodi 2011). However, since conditional mutant mice are able to alternate their limbs 

while walking at different speeds, we conclude that the network for left-right alternation is 

still maintained. Therefore, the removal of EphA4 in Lbx1-expressing neurons might have an 

effect on pattern generation by changing the network that selects between one or another 

mode of locomotion.  

One important consideration is that by the retrograde monosynaptic rabies tracing 

method we are only able to visualize interneurons directly connected to motor neurons. 

Therefore, we cannot exclude that in the phenotype of the minor aberrant HOP gait in the 

conditional EphA4 mutant other non-premotor Lbx1-expressing neurons are additionally 

involved. For example, Lbx1-expressing dILB interneurons lacking EphA4 were reported to be 

misguided across the midline instead of projecting into the dorsal funiculus (Paixao 2013). In 

future, the link between crossing axons and partial aberrant gait has still to be proven.  

 

4.2.2 Difference in HOP gait during development in conditional                                   

   EphA4 mutants 

During development, we observed that 3-week old conditional EphA4 mutant mice 

increased their HOP frequency at higher speeds of 30 to 50 cm/s whereas adult mutants 

showed only an increase in HOP frequency at lower speeds of 12 to 20 cm/s in comparison 

to wild type mice at according age. Regarding the development until adulthood in each 

animal, only some animals displayed a tendency for an increase in HOP frequency at higher 

speeds at the age of 3-weeks and at lower speeds at adulthood. A slightly stronger effect 

appears to ocurr on the gait behavior in 3-week old conditional EphA4 mutant mice 

compared to adults, since the 3-week old mutants performed synHOP gait compared to MIX 

gait of adult mutants. The position of the hindlimbs is affected at both stages but the timing 

between the hindlimbs might be stronger affected in 3-week old mutant mice. Preliminary 

observations in the laboratory of neonatal conditional EphA4 mutant mice performing 

swimming showed an uncoordinated hindlimb movement in comparison to alternating 

movements in wild types (Satoh et al., unpublished finding). Our findings suggest a 

compensation of uncoordinated hindlimb locomotion from neonatal age until adulthood 

which might be possible due to a remodulation of misguided axons of Lbx1-expressing 
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neurons in the spinal cord or by interaction from descending tracts originating in the 

hindbrain of the conditional EphA4 mutant. Hence, Lbx1-positive cells might be involved in 

controlling the speed and could be a component of the rhythm generation. It has been 

shown that ipsilaterally projecting dI6 interneurons located close to the central canal 

oscillate intrinsically and, therefore, are thought to be involved in rhythm generation (Dyck 

2012).  

Wild type (C57BL/6) mice are indeed able to perform synchronous hindlimb movement 

but only under certain circumstances when achieving a high velocity as during flight 

response (Serradj 2009). The authors reported of a gait transition period from alternating to 

synchronous hindlimb movement at high speeds of locomotion, between 70 and 90 cm/s. In 

our study, conditional EphA4 mutant mice switch the gait within the same speed on the 

treadmill and within the same trial. Previous models have suggested two different CPG 

networks, one for alternation, the other for synchronous hindlimb locomotion in the spinal 

cord (Kiehn 2010; Rybak 2013). The question remains how the switch between the two 

different networks occurs. Previous work in rat and decerebrate cat showed that with an 

increase of stimulation intensity in the mesencephalic locomotor region and the 

medioventral medulla, a transition from walk over trot to gallop (hopping) can be evoked 

(reviewed in Grillner (1975); (Atsuta 1990)). Furthermore, Lbx1 is also expressed in several 

nuclei of the hindbrain (Sieber 2007; Pagliardini 2008). An involvement of descending 

hindbrain tracts in the spinal cord cannot be excluded and further recordings from isolated 

spinal cords will have to be performed in future.  

 

4.2.3 Reduced swing time in conditional EphA4 mutants 

In a detailed behavioral locomotion study of full EphA4 mutant mice, a significantly 

decreased swing time and swing amplitude was reported in comparison to wild type mice 

(Akay 2006). This finding is in accordance with the results from our gait parameter analysis 

showing a reduced swing time in conditional and full EphA4 mutant mice walking with a HOP 

gait (not statistically tested in comparison to wild type). However, we also observed a 

significantly decreased swing time in the conditional EphA4 mutant walking with ALT gait 
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4.3  Less anatomical and gait defects in conditional and full                                                                                                                                              

 α2chimaerin mutant mice compared to both EphA4 

 mutants 

Since α2chimaerin is a downstream effector of the EphA4 receptor (Beg 2007; Wegmeyer 

2007) and the full α2chimaerin mutant mice performed a hopping gait (Beg 2007), we 

therefore expected a similar phenotype in the premotor interneuron distribution and gait 

behavior of the conditional α2chimaerin mutant as it was found in the conditional EphA4 

mutant mice. In the conditional α2chimaerin mutant, an ablation of α2chimaerin in Lbx1-

expressing neurons resulted in no anatomical and gait behavioral phenotypes in comparison 

to wild type. To obtain the conditional α2chimaerin mutant in my study,            

α2chimaerin+/-Lbx1Cre/+ mutants were mated with homozygous α2chimaerinflox/flox mutant 

mice which are still poorly characterized (Scheiffele, unpublished). A complete deletion of 

the α2chimaerin allele in the conditional α2chimaerin mutant has not been investigated in 

this study. Further experiments still need to be performed in future to demonstrate a 

complete ablation. However, full α2chimaerin mutant mice were investigated in terms of 

their behavioral gait analysis as a full knockout control. Interestingly, our detailed gait 

behavioral analysis of the full α2chimaerin mutant revealed only a partial synHOP gait in 

addition to a maintained ALT and MIX gait. An uncomplete synchronous hopping locomotion 

in full α-chimaerin and α2chimaerin mutants was previously reported by fictive locomotion 

of L2 ventral roots from isolated spinal cords in neonatal mice (Wegmeyer 2007) and by 

locomotion on a treadmill (Asante 2010), respectively. We provided a direct comparison of a 

detailed gait analysis of hindlimbs between full EphA4 and full α2chimaerin mutant mice. 

The full α2chimaerin mutant exhibited a significantly reduced synchronous hindlimb 

movement in comparison to an almost complete synchronous hopping gait in the full EphA4 

mutant mice. In both conditional and full α2chimaerin mutants, the effect of the removal of 

α2chimaerin either in Lbx1-expressing neurons or in all cells is reduced in comparison to the 

deletion of its EphA4 receptor in the conditional and full EphA4 mutants, respectively.  

Following explanations might interpret the reduced phenotypes of the conditional and 

full α2chimaerin mutants. First, further studies still need to prove whether α2chimaerin is 

indeed a downstream EphA4 effector in Lbx1-positive cells or not. A lack of α2chimaerin-
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expression in Lbx1-positive cells could explain the wild type-phenotypes in the conditional 

α2chimaerin mutant. However, α2chimaerin is expressed throughout the entire dorsal and 

ventral spinal cord (Beg 2007; Wegmeyer 2007), therefore, it is to assume that also Lbx1-

positive neurons might express α2chimaerin. Second, previous studies suggested that a 

single GAP or GEF effector can bind to various receptors in a cell-specific manner (reviewed 

in Beg (2007)). The study of Wegmeyer et al. (2007) revealed that α2chimaerin binds 

additionally to EphB1 receptors previously shown to be expressed in commissural 

interneurons (Imondi 2000). The axonal guidance of commissural interneurons might 

additionally be affected to the one of ipsilateral neurons in full α2chimaerin mutant mice 

resulting in a possible different phenotype than observed in the full EphA4 mutant. 

Third, α2chimaerin is one of several effectors of the EphA4 receptor and, hence, other 

effectors might still be activated in both conditional and full α2chimaerin mutants and might, 

therefore, lead to reduced fiber crossing across the midline of the spinal cord in comparison 

to conditional and full EphA4 mutant mice, respectively. For instance, other EphA4 effectors, 

such as ephexin or Vav2 (GEFs), might continue to mediate axonal growth cone collapse as 

they activate RhoA which then in turn has an inhibitory effect on actin polymerization in the 

growth cones (Shamah 2001; Cowan 2005; Sahin 2005; Iwasato 2007). On the contrary, it 

was shown that ephexin1-/- and the Vav2/3-/- mutant mice did not display any hopping gait 

(Cowan 2005; Sahin 2005). However, other GEFs such as various ephexin subtypes may have 

a more pronounced effect on RhoA activation and, thereby, in axonal growth cone collapse 

in the spinal cord (Shamah 2001; Sahin 2005), since the study of Katayama et al. (2012) 

showed that a deletion of RhoA in the dorsal and ventral spinal cord resulted in aberrant 

neuronal projections and a hopping gait. A relation to EphA4 receptor activation still needs 

to be proven in future. In a further investigation by Toyoda et al. (2013), the actin nucleator 

and polymerization factor mDia, that is regulated by GTPase Rho, was proposed as a possible 

mechanism in which ephexin might indirectly activate mDia through the activation of Rho 

upon EphA4 stimulation. An ablation of mDia resulted in impaired left-right limb 

coordination and aberrant dorsal midline crossing of axons of corticospinal neurons and 

spinal cord interneurons (Toyoda 2013). However, Fawcett et al. (2007) showed that another 

EphA4 downstream effector, Nck, interacts with α2chimaerin and links to actin regulatory 

proteins. A deletion of Nck caused a hopping gait defect in the spinal CPG (Fawcett 2007). In 
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summary, a variety of EphA4 downstream effectors might compensate to a certain degree 

the loss of α2chimaerin in conditional and full α2chimaerin mutant mice.  

 

4.4 Future experiments 

So far, we have shown that dorsal premotor Lbx1-expressing neurons are misconnected 

in the spinal cord of conditional EphA4 mutants at P13-15 by a retrograde monosynaptic 

tracing method. Regarding the gait behavior, the adult conditional EphA4 mutant displayed a 

minor defect, exhibiting HOP gait at low velocities and a decreased swing time compared to 

wild type mice. Further questions remain to be answered in future experiments, especially 

whether there is a link between the misguided axons of dorsal Lbx1-expressing neurons at 

younger developmental stages and the adult gait phenotype of a minor HOP gait. 

Therefore, first, it is planned to investigate whether axons aberrantly cross the midline in 

the spinal cord of adult conditional EphA4 mutants in comparison to control mice. Previously 

trained and tested conditional EphA4flox/-Lbx1Cre/+ Taulox-stop-lox-FlpO-INLA mutant mice on the 

TreadScan apparatus will be injected with AAV-FRT-GFP in one side of the spinal cord in 

order to visualize the axon projection pattern and cell bodies of Lbx1-expressing neurons in 

the spinal cord. These experiments will answer the question of whether there are still axons 

of dorsal Lbx1-positive neurons misguided across the dorsal midline in adult conditional 

EphA4 mutant mice. Further, one can investigate whether there is a correlation between gait 

behavior (frequency of HOP gait) and anatomy by the number of crossing axons in the spinal 

cord of each animal. We would assume that less axons cross the spinal midline in adult 

conditional EphA4 mutants as it was seen at P13-15 and this possible finding would indicate 

to a reorganization of misguided dorsal Lbx1-positive cells in adulthood. In future, one can 

combine tracing and gait behavioral experiments at different developmental stages in 

conditional EphA4 mutant mice.  

Second, it is necessary to know whether Lbx1-expressing neurons are indeed involved in 

locomotor activity. Hence, the locomotor activity will be examined by the co-expression of 

Lbx1 and the marker for neuronal activity, c-fos, (Dragunow 1989; Al-Mosawie 2007) in 

trained (one hour running on treadmill before perfusion) and untrained conditional 

EphA4flox/-Lbx1Cre/+ Taulox-stop-lox-SynGFP-INLA mutants and control mice. 
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Third, we observed a possible decrease of the aberrant gait behavior during 

development, from neonatal over 3-week old mice until adulthood in the conditional EphA4 

mutant. To test this hypothesis, we will have to start examining the coordination of 

hindlimbs of neonatal mice by airstepping and swimming behavior experiments of 

conditional EphA4 mutants in comparison to wild type mice and continue investigating gait 

behavior until adulthood of the same animals. A possible decrease in the gait defect during 

development could indicate to compensational effects of the misguided axons by 

reorganization in the neuronal network of either spinal interneurons or descending tracts 

from the hindbrain. It has been shown that in full Lbx1-/- mutants, ascending and descending 

tracts from and towards the spinal cord were misrouted (Pagliardini 2008). 

Fourth, Lbx1 is also expressed in several nuclei of the hindbrain (Sieber 2007; Pagliardini 

2008). In order to exclude a general involvement of hindbrain input on locomotion in the 

conditional EphA4 mutant, it would be necessary to perform fictive locomotion experiments 

from isolated spinal cords by recording from ventral roots in neonatal conditional EphA4 

mutant mice and controls. Recording between the right and left L2 or L5 ventral roots 

enables to investigate the coordination between hindlimbs, and between L2 and L5 of the 

same side allows to study the coordination between flexor and extensor muscles. Moreover, 

flexor and extensor activity might be important to study since we have revealed a reduced 

swing time in adult conditional EphA4 mutants. These experiments could be also combined 

with a prior gait behavior analysis of neonatal mice. 

Fifth, it might be interesting to delete Lbx1-expressing neurons only in the spinal cord and 

investigate the locomotor behavior in adult mice since full Lbx1-/- mice die at birth as the 

breathing center in the hindbrain is affected (Pagliardini 2008). Moreover, original Lbx1-

positive cells acquire a different cell fate (Gross 2002; Muller 2002; Glasgow 2005) and 

muscles were severly reduced (Brohmann 2000; Gross 2002) in full Lbx1-/- mutants. To avoid 

any interference with the development of spinal neurons and muscle precursor cells, Lbx1 

could be ablated in adult mice. Therefore, one future approach might be to inject AAV-flex-

DTR (containing diphtheria toxin receptor) in the lumbar spinal cord of Lbx1Cre adult mice 

and following two weeks of virus transport time, diphtheria toxin will be injected 

intraperitoneally (Esposito 2014). In this way, the breathing center of the hindbrain will not 

be affected. Alternatively, the generation of Lbx1loxP-STOP-loxP-DTR mutant mice crossed with 
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Hoxb8Cre mice will produce Hoxb8Cre Lbx1LSL-DTR mutant offspring, in which Cre recombination 

is restricted to spinal segments caudal to cervical segment 4 and leaving out the hindbrain 

(Witschi 2010). A further injection of diphtheria toxin intraperitoneally in adults will cause an 

ablation of Lbx1 cells in the lower cervical and lumbar spinal cord. These two methods would 

result in an ablation of Lbx1-expressing neurons in the spinal cord at adulthood. No 

compensational effect or neuronal reorganization during development would interfer. The 

ablation of Lbx1-expressing neurons in the spinal cord of adult mice could be studied in 

anatomical and gait behavioral experiments in future and will show whether a gait defect 

occurs. 

Sixth, in future experiments, it might be important to identify the role of Lbx1-expressing 

subpopulations, such as dI4, dI5 and dI6, in the misguidance defect in the spinal cord and the 

aberrant gait behavior of the conditional EphA4 mutant. Hence, the EphA4 receptor could be 

deleted in single Lbx1-expressing subpopulations or the single subpopulations could be 

entirely ablated in the spinal cord.  The transcription factor Ptf1a might be targeted for dI4 

and dILA neurons, Lmx1b for dI5 and dILB neurons and Wt1 for dI6 interneurons (reviewed in 

Alaynick et al. (2011)).  

Seventh, further muscle injections by rabies GFP complemented with AAV-glycoprotein 

need to be performed bilaterally in both hindlimbs to reveal possible aberrant interneurons 

projecting to motorneurons on both sides of the body in conditional EphA4 mutants. 

Moreover, retrograde rabies tracing from forelimbs could be investigated whether the 

anatomical defect is less severe in the cervical than in the lumbar spinal cord since forelimb 

coordination was less affected compared to the hindlimb coordination in the full EphA4 

mutant (Akay 2006).  

 

4.5 Conclusion and general outlook 

In this study, we have shown that the EphA4 receptor in Lbx1-expressing neurons is 

important to keep the axonal projection of those neurons to the ipsilateral side of the spinal 

cord and to maintain a complete alternating gait. A deletion of EphA4 in Lbx1-positive 

interneurons resulted in an aberrant axonal misguidance of dorsal neurons across the 

midline as it was also seen in some full EphA4 mutants (Fig. 29A). In general, the behavioral 
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gait phenotype of the conditional EphA4 mutant mice differed mainly to the full EphA4 

mutant. Furthermore, we have revealed that minor gait defects such as a slight frequency in 

hopping gait and a reduced swing time occurred in the conditional EphA4 mutant mouse 

compared to wild type (Fig. 29B and C). Hence, the dorsally-derived Lbx1-expressing neurons 

might be one component of several cell types contributing to the locomotor CPG. In future, 

more experiments will have to identify the location, projection pattern and function of 

further spinal interneuron populations and will, thereby, provide insight into the CPG 

network. This knowledge will be helpful to understand the human CPG network and enable 

the discovery of therapeutic treatments in future. 

 

 

 

Figure 29. The EphA4 receptor in Lbx1-expressing neurons is important to maintain an ipsilateral axonal                               
      projection and to conserve a complete alternating gait 

 

A: Presence of the EphA4 receptor in wild type results in repelling of axons from the spinal midline whereas 
an ablation of EphA4 in Lbx1-positive interneurons revealed misguidance of axons across the dorsal midline 
connecting to contralateral motor neurons. B: Gait analysis in the conditional EphA4 mutant showed a low 
frequency of HOP gait in addition to the maintained ALT gait. C: The swing time was significantly reduced in 
conditional EphA4 mutant mice walking with ALT gait in comparison to wild type mice. 
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5. Experimental Procedures 

5.1. Mouse genetics 

The following various transgenic mouse lines were used to study the premotor 

interneuron distribution pattern in the spinal cord and the gait behavior. Wild type mice 

were maintained on a mixed genetic background (129/C57BL/6). The above described full 

EphA4-/- mutant mouse was an EphA4lacZ/lacZ mutant whose lacZ was expressed under the 

promoter of EphA4 and was provided by P. Schwab, Zürich. The full EphA4 knockout mouse 

was generated by Helmbacher et al. (2000).  The transgenic Lbx1Cre mouse was received from 

C. Birchmeier, Berlin (Sieber 2007). Further, the EphA4flox mutant mouse was obtained from 

O. Kiehn, Stockholm and was previously generated by Herrmann et al. (2010). The 

generation of Taulox-stop-lox-SynGFP-INLA mutant (Tripodi 2011) and Taulox-stop-lox-FlpO-INLA mutant 

(Pivetta 2014) mice were performed in our laboratory using a strategy described previously 

(Hippenmeyer 2005). We bred and obtained a conditional EphA4flox/-Lbx1Cre/+ mutant mouse 

whose Lbx1-expressing cells lack the EphA4 receptor. Full EphA4 mutant mice were first bred 

with Lbx1Cre mice to obtain EphA4+/-Lbx1Cre/+ mutants that were then further mated with 

homozygous EphA4flox/flox mutant mice. As Lbx1 is mainly expressed in a short time window in 

the embryonic stage of mice (Gross 2002; Muller 2002), the Cre-recombinase enzyme 

expression under the control of the Lbx1 promoter might not have been efficient enough to 

flox the EphA4 gene in two alleles. Therefore, we bred a conditional mouse in which one 

EphA4 allele was already deleted and the second EphA4 allele solely needed to be floxed. In 

the gait behavior analysis, EphA4+/-Lbx1Cre/+ males were mated with              

EphA4flox/floxTaulox-stop-lox-SynGFP-INLA or EphA4flox/floxTaulox-stop-lox-FlpO-INLA females. The Cre-

recombinase enzyme, expressed under the control of the Lbx1 promoter, additionally floxed 

the loxP-stop-loxP cassette of the Tau genomic locus resulting in the expression of LacZ in 

Lbx1-positive cells and, thereby, enabling the visualization of Lbx1-expressing neurons by a 

subsequent immunohistochemical staining of the spinal cord in conditional EphA4 mutant 

mice. Finally, conditional EphA4flox/-Lbx1Cre/+Taulox-stop-lox-SynGFP-INLA and                

EphA4flox/Lbx1Cre/+Taulox-stop-lox-FlpO-INLA mutant mice were obtained. Furthermore, the  

vGATIRES-Cre mouse was generated by B. Lowell, Harvard (Vong 2011).  
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The effect of the deletion of α2chimaerin, a downstream effector of the EphA4 receptor, 

was studied. The full α2chimaerin-/- mutant (Beg 2007) and the α2chimaerinflox mutant mice 

(unpublished) were obtained by P. Scheiffele, Basel. A conditional α2chimaerinflox/- Lbx1Cre/+ 

mutant mouse was bred as described above for the conditional EphA4 mutant mouse. 

 

5.2 Monosynaptically retrograde virus tracing 

5.2.1 Virus production 

5.2.1.1 AAV-glycoprotein production 

In nitrogen frozen T293 HEK (human embryonic kidney) cells (ATCC company, Manassas, 

VA, USA) were thawed and placed in a small petri dish (10 cm diameter) with 10% 

FBS/DMEM medium (FBS: fetal bovine serum (Sigma Aldrich, St. Louis, USA); DMEM: 

Dulbecco`s modified eagle medium, FMI media kitchen). DMEM is a growing medium for 

mammalian cells containing different nutrients like anorganic salts, amino acids and 

vitamins. FBS was added since it consists of embryonic growth promoting factors in order to 

support specific metabolic requirements. Confluent petri dishes with HEK cells were split 

several times in order to obtain 30 or 60 big petri dishes (15 cm diameter) for two or four 

viral tube productions, respectively. Splitting cells required a washing step with PBS 

(phosphate buffered saline) before adding 0.05% trypsin (Gibco Life Technologies, Carlsbad, 

CA, USA) for 2 minutes at 37°C. Trypsin is a serine protease and hydrolyses proteins. In cell 

culture, it is used to remove adherent cells from the dish surface. After 2 minutes of trypsin 

incubation, 10% FBS/DMEM medium was quickly added to inhibit further tryptic activity and, 

thereby, avoiding cell damage. Cells were resuspended and mixed by pipetting up and down 

before collecting them in a falcon tube. Cells were added to the medium in a higher number 

of petri dishes and were grown at 37°C in a 5% CO2 incubator. At circa 80% confluence, cells 

were transfected with PEI (polyethylenimine). Following substrates were added to a warmed 

up DMEM without FBS: 70 µg/µl AAV helper plasmid (serotype pAAV2/6, Plasmid Factory 

GmbH & Co.KG, Bielefeld, Germany), 70 µg/µl AAV vector (pAAV-CMV-Gly, Plasmid Factory) 

containing the glycoprotein genome, 200 µg/µl pHGTI-adeno1 (provides adenoviral helper 

function, Plasmid Factory) and 1360 µl PEI (1:4 ratio of DNA:PEI, Polyscience AG, Cham, 
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Switzerland). Transfection with PEI enables high viral titers as it condenses DNA into particles 

which are transported into the cell by endocytosis. After 15 minutes incubation time at room 

temperature, 5 ml of transformation mix was added per plate. The dishes were incubated at 

37°C for 48-50 hours until cell collection was performed. Cells were removed from the dish 

surface by pipetting up and down. Medium and cells with AAV were collected in a falcon 

tube and centrifuged at 2000 rpm for 10 minutes (5804R, Eppendorf, Hamburg, Germany). 

The supernatant was removed and the remaining cell pellet was stored at -80°C.  

The frozen cell pellet was thawed in a water bath at 37°C and then re-suspended in 15 ml 

lysis buffer (150mM NaCl, 20mM Tris, pH 8.0). Further, cells with AAV were freeze-thawed 

three times between dry ice/ethanol and 37°C water bath before vortexing in order to 

destroy the cells. 1mM MgCl2 and benzonase (Sigma Aldrich) were added for DNA removal 

and incubated at 37°C for 15 minutes (the DNA/protein aggregate which formed in the 

thaw/freeze cycle should have dissolved). The cell debris was centrifuged at 4000 rpm at 4°C 

for 20 minutes (5804R, Eppendorf). The supernatant containing the virus was collected after 

centrifugation.  

AAV was concentrated and purified by Iodixanol gradients. The gradients were formed in 

an Optiseal tube (Beckman Coulter, Washington D.C., USA) starting with 5ml of 60%, then 

6ml of 40%, 6ml of 25% and 5ml of 17% Iodixanol solution (see Appendix, Table 3). The 

solutions were applied drop by drop with a needle and syringe. The virus supernatant was 

added on the top and the Optiseal tube was filled up by lysis buffer if required. It was 

essential to close the tube without any air bubbles for a further centrifugation in an 

ultracentrifuge for 90 minutes at 48-50,000 rpm (Optima L-90, Beckman Coulter, 

Washington D.C., USA) at 16°C. The virus was purified through the layers and was then 

concentrated in the 40% Iodixanol solution. The 40% solution containing the virus was 

harvested by inserting a needle into the intersection of 40 and 60% solutions through the 

Optiseal tube. 15ml 1x PBS was added to the virus fraction and transferred to a filter tube 

(Millipore Amicon 100K columns, EMD Millipore Corporation, Billerica, MA, USA) and 

centrifuged several times at 3500 rpm at 4°C for 30 minutes. This step was repeated until the 

virus fraction consisted only of a volume of 150-250 µl in the filter. The virus solution was 

collected in tubes and stored at 4°C for further muscle injections. AAV glycoprotein virus was 

produced at a titer of approximately 3e1012. 
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5.2.1.2 Modified rabies virus production 

Modified rabies virus was produced in BHK-SADGly-NLS-GFP cells (Callaway, Salk Institute, 

USA) originating from BHK21 (baby hamster kidney) cells (ATCC company, Manassas, VA, 

USA). Therefore, BHK cells stably express a GFP reporter gene and glycoprotein (Wickersham 

2007a; Wickersham 2007b; Marshel 2010; Wickersham 2010). One vial of in nitrogen-frozen 

BHK-SADGly-NLS-GFP cells were thawed and plated on a 10 cm diameter petri dish with 10% 

FBS/DMEM that was then stored at 37°C in a 5% CO2 incubator. The following day, the 

medium was exchanged. When the cells were confluent, cells were split into a higher 

number of dishes. The medium was removed and the cells were washed with PBS. Then, 2ml 

of 0.25% trypsin (Sigma Aldrich) was applied for 5 minutes at 37°C in order to detach the 

cells from the dish surface. Trypsin was inactivated by adding 2ml of medium. The cells were 

re-suspended, collected and splitted into 10 plates. Two to three days later, the cells were 

repeatedly collected. The number of cells was counted with a Neubauer Improved slide 

(Hatfield, PA, USA). Approximately 4.5*106 cells were plated in each petri dish. 20 plates 

were used for one production. At circa 80% confluence, cells were infected with the 

modified rabies virus (delta glycoprotein rabies GFP/ mCherry; supernatant of a previous cell 

production was used). The medium was changed to 2% FBS/DMEM medium. Circa 100 µl of 

frozen rabies GFP or mCherry virus from an old stock was applied to each plate. The 

inoculated cells were cultured at 35°C in a 3% CO2 incubator.  

Eight to nine days after transfection, GFP or mCherry expression of the virus was 

controlled under a fluorescence microscope (SZX16, Olympus, Hamburg, Germany). When 

most of the cells expressed the fluorescent protein and were 100% confluent, the first virus 

collection was performed. The supernatant of all 20 plates was collected into a falcon tube 

and centrifuged for 10 minutes at 4000 rpm (5430R, Eppendorf, Hamburg, Germany). 2% 

FBS/DMEM was added to the plates prior a further incubation at 35°C. After centrifugation, 

the supernatant was collected and transferred to six Beckman centrifuge tubes (Beckman 

Coulter, Washington D.C., USA). 5ml of 20 % sucrose was applied carefully to the bottom of 

the tube as a cushion. All steps were performed on ice. The Beckmann tubes were then 

placed in an ultracentrifuge (Optima L-80XP, Beckman Coulter, Washington D.C., USA) at 4°C 

at a speed of 25,000 rpm for 4 to 5 hours. Following centrifugation, the supernatant was 

removed and the tube placed upside down in order to ensure that all medium was removed. 
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The pellet containing the virus remained in the tube and was re-suspended by vortexing 

gently with 400 µl ice-cold PBS starting in the first tube. The re-suspended pellet was 

transferred to the next tube for a further re-suspension until the last one. Then, the            

re-suspended pellets were collected, mixed again and aliquoted in small tubes for muscle 

injection. The aliquoted tubes were immediately frozen on dry ice until storage at -80°C. A 

second batch was collected by re-suspending the remaining pellets another time in the 

Beckmann tubes. 

The following two days, the second and third collection was performed in the same 

manner as described above. Modified rabies virus was produced at a titer of approximately 

1e108 (FACS analysis was performed by Monika Mielich). 

 

5.2.2 Retrograde virus injection in muscle 

The technique of retrograde rabies virus tracing allowed the visualization of 

monosynaptically connected neurons to the primarily infected cell. The modified rabies virus 

vector is derived from an attenuated strain and possesses a genomic substitution in the gene 

encoding the envelope glycoprotein G by a fluorescent marker protein. The envelope 

glycoprotein G is important for the transport across synapses. Due to the lack of the 

glycoprotein G, rabies virus is not able to spread from the infected cell. However, 

complementation by an independently derived gene for the glycoprotein G into an infected 

neuron results in monosynaptic spread of the virus to its pre-synaptic partners but not any 

further. Infected neurons express a marker protein such as GFP or mCherry and, thus, can be 

visualized (Wickersham 2007a; Wickersham 2007b). 

In this project, we studied the premotor interneuron network in the spinal cord by 

investigating monosynaptic tracing from particular motor neuron pools. Modified rabies 

virus (ΔG protein rabies) was, therefore, injected into particular muscles to infect 

retrogradely the connected motor neurons through their axons. Additionally, AAV carrying 

the gene for the glycoprotein G (AAV-G-protein) was injected into the same muscle in order 

to complement expression in motor neurons. This method allowed the identification of 

monosynaptically connected interneurons to the corresponding motor neuron pool in the 

spinal cord (Stepien 2010).  
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Mice age P5-7 were anaesthetized by placing them on ice and the Q muscle was exposed. 

Rabies GFP or mCherry was mixed together with AAV glycoprotein in a ratio 1:1. Circa 5 µl of 

the mixed virus solution was injected into the Q muscle by a glass pipette (TW100-4, 

borosilicate glass capillaries, World Precision Instruments Inc., Sarasota, FL, USA; glass 

pipette was pulled by PC-10 Narishige group, Tokyo, Japan) connected to a picospritzer with 

several pulses of 8 µs (Parker Hannifin corporation, general valave operation, Cleveland, OH, 

USA). Skin closure was performed by polypropylene suture (Prolene, Ethicon, LLC., San 

Lorenzo, Puerto Rico). Following eight days of virus transport time, mice were sacrificed 

using initially isoflurane anaesthesia (Attane, Minrad, Inc., Buffalo, N.Y., USA) and then 

perfusion fixation (ice-cold PBS followed by 4% PFA (paraformaldehyde), Microstain Division, 

Martinego, Italy). Spinal cord and muscles were dissected and kept in PFA overnight. The 

precision of Quadriceps injection was verified under a fluorescence dissection microscope 

(MVX10, Olympus, Hamburg, Germany). Spinal cords were washed in PBS before transferring 

them to a 30% sucrose solution for 1-2 days. This step was essential for cryoprotection of the 

tissue. Spinal cords were then frozen in tissue tek (Sakura Finetek Europe B.V., Alphen aan 

den Rijn, Netherlands) at -20°C. Results of wild type (n=4), conditional EphA4 mutants (n=2), 

full EphA4 mutants (n=7) and conditional α2chimaerin mutant mice (n=3) were used for this 

study.  

Additionally, TA and GS muscle injections with rabies GFP or mCherry complemented by 

AAV-glycoprotein were performed by Dr. Daisuke Satoh and conducted as described above. 

Wild type mice (n=5) were used for each of TA and GS muscle injections (see data in 

Dougherty et al. (2013)). Furthermore, TA and GS muscles were injected in conditional 

EphA4 mutant mice (TA: n=4 and GS: n=3). 

 

5.2.3 Immunohistochemistry and imaging 

Spinal cords frozen in tissue tek (Sakura Finetek Europe B.V.) were mounted on a cryostat 

stage (cryostat, Histocom AG, Zug, Switzerland). 40 µm thick slices were sectioned from 

middle thoracic to sacral spinal segments and transferred in PBS in a rostral to caudal order. 

Spinal cord slices were then incubated overnight at 4°C in the first primary antibody against 

GFP and/or RFP corresponding to the rabies virus used. This step was necessary in order to 
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block rabies GFP or mCherry and, therefore, avoiding further unspecific stainings. Chicken 

anti-GFP (Molecular Probes, Eugene, Oregon, USA) and/or rabbit anti-RFP (Rockland, 

Gilbertsville, PA, USA) were diluted 1:1,000 and 1:5,000, respectively in a blocking buffer 

consisting of 1% BSA (bovine serum albumin, Sigma Aldrich, St. Louis, USA) and 0.1% triton 

X-100 (Sigma Aldrich) in PBS. To avoid unspecific background staining, BSA was essential to 

block endogenous proteins in the tissue. Triton is a detergent and, therefore, provoked a 

more permeable membrane for antibodies. The following day, further primary antibodies 

were applied after rinsing spinal cord slices in PBS. Goat anti-ChAT (choline 

acetyltransferase) 1:1,000 (Chemicon International, Temecula, CA, USA) and guinea pig   

anti-Lbx1 1:10,000 (provided by C. Birchmeier, Berlin (Muller 2002)) in blocking buffer were 

used to visualize motor neurons and Lbx1-expressing cells, respectively. Antibodies were 

incubated for 3 days at 4°C. Then, the slices were repeatedly washed in PBS before 

secondary antibody incubation with donkey anti-chicken FITC (Jackson ImmunoResearch 

Laboratories, Inc, PA, USA)/ Alexa488 (Jackson ImmunoResearch, Milan Analytica AG, 

Rheinfelden, Switzerland), donkey anti-rabbit Cy3 (Jackson Milan), donkey anti-guineapig 

Cy3 (Jackson Milan), donkey anti-goat Alexa 647 (Jackson Milan), donkey anti-guinea pig Dyl 

649 (Jackson) and donkey anti goat Dyl 405 (Jackson) (corresponding to the primary 

antibodies used) overnight at 4°C. Slices were rinsed several times in PBS, mounted on a 

glass slide (Roth GmbH, Karlsruhe, Germany) in a rostral to caudal order and, then, 

coverslipped with Airvol mounting medium (Airvol 205, Air Products GmbH, Bochum, 

Germany).  

Single slices of the lumbar level were scanned at 20x using image stacks ranging between 

0.3 and 0.5 µm to provide an overview of the dorsal spinal cord. The photos were imported 

and further processed in Imaris (version 7.4.0, Bitplane AG, Zurich, Switzerland) and Corel 

Photo-Paint X5 (Ottawa, Canada). 

 

5.2.4 Interneuron reconstructions 

Spinal cord slices for cell reconstruction were scanned in a rostral to caudal order either 

with a 4x or 10x objective by a confocal microscope (FV1000, Olympus Fluoview, Hamburg, 

Germany). Slices were imported and aligned in Image J (version 1.43m, Wayne Rasband, 
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National Institutes of Health, USA), Fiji Project (version 1.48, software based on Image J, 

imaging processing package) or Matlab (version7.11.0.584, The MathWorks, Inc., Natick, 

MA, USA). Regarding the reconstruction in Matlab, a custom-made plug-in “Reference Axes” 

running by image processing suite “Qu” was used for a three-dimensional reconstruction of 

the position of interneurons (previously described by Tripodi et al. (2011), full methods). In 

all reconstructions, interneurons and motor neurons were reconstructed in each slice. With 

the help of the ChAT staining, Q motor neurons were identified. The central canal was set to 

0.0 and the y-axis parallel to the midline. The midline, dorsal and ventral funiculus served as 

landmarks for the alignment of all slices. To compare all spinal cords, slices from T11 until S1 

segments were selected for the analysis. The segments were identified by ChAT staining and 

compared with the mouse spinal cord atlas (Watson 2008). 

Analysis and plotting of the reconstructed cells was performed in R project (version 

2.14.0, The R Foundation for Statistical Computing, Vienna, Austria). Kernel density for 

contour plots was estimated using the kde2D function in the “MASS” library. The two 

dimensional density plots were obtained using the R “density” function. Percentages of the 

premotor interneuron distribution in the spinal cord were plotted and statistically analyzed 

in graph pad prism (version 6, GraphPad Software, Inc., La Jolla, CA, USA; see chapter 5.4)  

 

5.3. Behavior analysis 

5.3.1 TreadScan gait behavior analysis 

Adult mice older than 1.5 months were tested for the gait behavior analysis on the 

TreadScan apparatus (Clever Sys, Inc., Reston, VA, USA). Mice were trained for the first three 

days on a rodent treadmill (Robomedica, Inc., Irvine, CA, USA) for acclimatization on a 

moving belt at speeds of 12, 16 and 20 cm/s. The following days, all animals were trained on 

the TreadScan apparatus for ca. 10 minutes every day at the same speeds of 12, 16 and      

20 cm/s for one to two weeks until they walked consistently. During training period, mice 

were set under food restriction. Animals received one chocolate treat as a reward after each 

training session. The testing of the mice consisted of a one-day recording session. In the 

beginning of gait behavior experiments, all animals were recorded at speeds of 12, 16 and  
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20 cm/s.  Several trials of each belt speed were recorded. The lowest belt speed of 12 cm/s 

was selected as the animals started to display problems in walking consistently. 20 cm/s was 

chosen since the Robomedica treadmill only achieved the highest speed of 23 cm/s and the 

full EphA4 mutant mice already struggled in keeping up this speed. In order to compare wild 

type and conditional EphA4 mutants with full EphA4 mutant mice, the speed of 20 cm/s was 

selected as the highest speed at the beginning of the behavioral gait experiments. Given that 

the gait type and gait parameter analysis of the first and second set of conditional EphA4 

mutants showed no striking differences between 16 and 20 cm/s, the following animals 

were recorded at higher speeds of 30, 40 and 50 cm/s. TreadScan apparatus allowed a 

maximum belt speed of 51 cm/s. Most of the mice refused to walk at higher speeds and 

needed, therefore, to be stimulated. 

Hence, conditional EphA4 mutants (n=6, EphA4flox/-Lbx1Cre/+ Taulox-stop-lox-SynGFP-INLA and 

EphA4flox/-Lbx1Cre/+ Taulox-stop- lox-FlpO-INLA mutants), full EphA4 mutants (n=3) and wild type mice 

(n=3) were additionally tested at a speed of 30, 40 and 50 cm/s. In total, videos of wild type 

(n=10), conditional EphA4 (n=6), full EphA4 (n=10), conditional α2chimaerin (n=4) and full 

α2chimaerin (n=4) mutant mice were used for analysis at lower speeds of 12, 16 and           

20 cm/s. In addition, two conditional EphA4flox/-vGATCre/+ mutants were recorded at 12, 16, 

20, 30, 40, and 50 cm/s. 

Furthermore, the same conditional EphA4 mutant mice (n=6) were previously recorded 

without prior training at the age of 3-weeks at belt speeds of 12, 16, 20, 30, 40 and 50 cm/s. 

Likewise, 3-week old wild type mice (C57BL/6; n=3) were additionally tested as controls. 

TreadScan apparatus enabled the detection of feet placement of mice and, thereby, 

allowed the analysis of gait pattern and gait parameters. Mice were walking on a transparent 

belt (operated by Exer-gait treadmill, Columbus Instruments, Columbus, Ohio, USA) while a 

camera (Basler Camera A602fc, Basler AG, Ahrensburg, Germany) detected the steps at 100 

frames per second from underneath over a mirror.  A video software (BCamCapture 

version2.0, CleverSys, Inc.) enabled recordings of a duration of 20 seconds per trial. The gait 

behavior analysis with the TreadScan software (version3.0, CleverSys, Inc.) consisted of two 

parts: gait type and gait parameter analysis. 

In the gait type analysis, four different gait types were found and classified by the position 

and time of both hindlegs to each other. The four gait types consisted of 1. ALT (alternating), 
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2. TS (transitional step), 3. MIX (mixture) and 4. synHOP (synchronous Hopping) gaits. A 

further description of the gait types can be seen in chapter 3.1.2.1. Percentages of the 

classified gait types per trial were counted for the right hindleg. The average of three trials at 

a single speed was analyzed for each animal. Finally, animals of the same genotype were 

pooled. The gait type analysis of few litter mate controls of conditional EphA4 and 

conditional a2chimaerin mutant mice (EphA4flox/+Taulox-stop-lox-SynGFP-INLA,                  

EphA4flox/+Taulox-stop-lox-FlpO-INLA  and a2chimaerinflox/+ mutants) showed a comparable 

percentage of ALT gait as in wild type mice and, therefore, were not further used for the 

analysis.  

In the gait parameter analysis, TreadScan software (version3.0, CleverSys, Inc.) was used 

to automatically detect the steps on the treadmill and, thereby, recorded stance phase time, 

swing phase time and stance length of each hind- and forelimb. The recorded steps were 

manually examined and falsely detected steps were excluded. Nine to eleven steps 

consisting of at least two consistent steps were selected for each animal and gait type for a 

further analysis. The software calculated a variety of gait parameters such as stance phase 

time, swing phase time, stride length, stride frequency, limb track width and limb coupling. 

Values of the different gait parameters were taken for the right hind- and forelimb. Different 

gait parameters of ALT gait in wild type and conditional EphA4 mutants at 16 and 40 cm/s 

and of HOP gait in conditional and full EphA4 mutant mice at 16 cm/s were obtained and 

used for further statistical comparisons (see chapter 3.1.2.5 for a description of the gait 

parameters used in this study). In the gait parameter analysis following adult mice were 

used: wild type (ALT gait: n=10 at 16 cm/s, n=3 at 40 cm/s), full EphA4 mutant (HOP gait: 

n=10 at 16 cm/s) and conditional EphA4 mutant (ALT gait: n=6 at 16 and 40 cm/s, HOP gait: 

n=5 at 16 cm/s). As the conditional EphA4 mutant mice did not show frequent steps of HOP 

gait, the number of 9-11 consistent steps for the gait parameter analysis could not always be 

achieved.  

 

5.3.2 Open field behavior analysis 

Adult wild type (n=4, C57BL/6) and conditional EphA4 mutant mice (n=6,              

EphA4flox/-Lbx1Cre/+Taulox-stop-lox-SynGFP-INLA and EphA4flox/-Lbx1Cre/+Taulox-stop-lox-FlpO-INLA mutants) 
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were placed in a white and odourless 50 x 50 cm box for 10 minutes. A 1.2 lux lamp was 

used as low light source for video detection from above connected to a Debut Video Capture 

software (NCH Software, Inc., Greenwood Village CO, USA). The videos were further 

analyzed by Analysis Viewer 3 (version 3.0.1.339, Biobserve GmbH, St.Augustin, Germany) 

which automatically calculated different parameters. The parameters, average velocity and 

total track length, were used for a further statistical test in this study.  

 

5.4 Analysis and statistics of premotor interneuron                            

  distribution and behavior experiments 

For each genotype, the ratio of the length devided by the width of the dorsal funiculus 

and the ratio of the dorsal cord length devided by the dorsal gray matter were calculated 

from three to four spinal cord slices of lumbar segments. The values of the mean plus the 

standard error of mean (SEM) of the ratios (dorsal funiculus and dorsal gray matter) were 

plotted in a bar graph in Graph Pad Prism (version 6, GraphPad Software, Inc., La Jolla, CA, 

USA). Data of premotor interneuron distribution and behavior analysis was plotted as box 

and whisker graphs in Graph Pad Prism (version 6, GraphPad Software, Inc.). The box 

extended to the 25th and 75th percentile. The horizontal line in the box indicated the median 

value. The whiskers extended to the minimum and maximum values. All mean and median 

values are given in the Appendix in Tables 1.1 to 1.16. The numbers of interneurons in the 

four parts of the spinal cord and the numbers of the four gait types during a trial were 

calculated in percentages and, therefore, were considered as dependent. Hence, it was not 

possible to statistically compare all four parts together of the spinal cord and all four gait 

types together. The percentages of the dorsal contralateral part in the spinal cord and in 

addition the percentages of the ventral ipsilateral quadrant were statistically compared. 

Percentages of HOP gait (MIX and synHOP gait types pooled together) were used for further 

statistical tests.  

All values were tested for a normal distribution by the Shapiro-Wilk normality test in 

Graph Pad Prism (version 6, GraphPad Software, Inc.) or in R project (version 2.14.0, The R 

Foundation for Statistical Computing). The values of the ratios of the dorsal funiculus and 

the dorsal gray matter were normally distributed and, therefore, parametric statistical tests 
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were performed. Unpaired t test with Welch`s correction was conducted to compare 

between two genotypes, whereas a one-way ANOVA test with post-hoc Tukey-Kramer 

multiple comparison test was performed to compare between three genotypes in Graph Pad 

Prism (version 6, GraphPad Software, Inc.). As some values of premotor interneuron 

distribution and gait behavior analysis were not normally distributed or n was too small, a 

non-parametric test was selected to obtain a fair and equal comparison between all groups. 

Regarding the premotor interneuron distribution, percentages of the dorsal contralateral or 

ventral ipsilateral quadrant were compared between the genotype groups. Concerning the 

gait types, percentages of the HOP gait were either compared between the genotypes within 

one speed or compared between the speeds within one genotype. When only two groups 

were compared, the Mann Whitney rank sum test was performed with Graph Pad Prism 

(significant difference when P<0.05). When three or more groups were compared with each 

other, the Kruskal Wallis rank sum test was completed with Graph Pad Prism (significant 

difference when P<0.05). A further post-hoc pairwise Wilcoxon test was conducted only 

when a significant difference was found in the Kruskal Wallis test. This post-hoc test was 

performed in R project (Wilcox_test from package “coin”) and required a P-value correction 

by a multiple testing correction according to Benjamin and Hochberg. This test uses a false 

discovery rate (FDR) which correlates with a P-value. The FDR value of 0.05 was selected as a 

significant difference cut-off in order to achieve a correlation to the P-values. To compare 

the percentages of HOP gait of each conditional EphA4 mutant mouse at the age of 3-weeks 

and as adult at a certain speed, the Wilcoxon matched-paired signed rank test in Graph Pad 

Prism was performed (significant difference when P<0.05). In the gait parameter analysis, 

gait parameters of ALT and HOP gait types were compared between the genotypes within 

the belt speed of 16 and 40 cm/s, and parameters of ALT gait were compared between 16 

and 40 cm/s within the genotype by a Mann Whitney rank sum test in Graph Pad Prism 

(significant difference when P<0.05). Given that the steps of ALT and HOP gait were already 

selected according to the gait type classification, solely ALT gait of conditional EphA4 mutant 

mice was statistically compared with the ALT gait of wild type mice and HOP gait of 

conditional EphA4 mutant mice was statistically compared with the HOP gait of full EphA4 

mutants for the different gait parameters. In the open field analysis, the values of average 

velocity and total track length were compared by a Mann Whitney rank sum test in Graph 

Pad Prism (significant difference when P<0.05).  
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All P and FDR values are given in Tables 2.1 to 2.14 in the Appendix. Finally, plots and 

graphs were further processed in Corel Draw Graphics Suite X5 (Ottawa, Canada). The 

significance level in the box and whisker plots was indicated as following: one star (*) when P 

or FDR < 0.05, two stars (**) when P or FDR < 0.01, three stars (***) when P or FDR < 0.001 

and four stars (****) when P or FDR < 0.0001. 
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Appendix 

1. Tables of median and mean values  

Table 1.1 Dorsal funiculus and dorsal gray matter (mean ± SEM) 

Ratio WT ConEphA4 EphA4 Con α2chimaerin 

dorsal funiculus 
(Length/Width) 

2.8 ± 0.19 0.46 ± 0.04 0.52 ± 0.04 2.56 ± 0.09 

dorsal gray matter  
(Dorsal length/DGM length)  

4.38 ± 0.41 1.4 ± 0.05 1.39 ± 0.03 3.77 ± 0.12 

 

Table 1.2 Premotor interneuron distribution of Q motor neurons (median) 

% interneurons WT ConEphA4 EphA4 Con α2chimaerin 

dorsal ipsi 49.25 55.41 43.63 47.77 
dorsal contra 3.45 13.95 4.59 3.42 

ventral ipsi 30.35 17.94 33.14 30.40 
ventral contra 17.37 12.70 17.38 15.92 

 

Table 1.3 Premotor interneuron distribution of TA and GS motor neurons (median) 

% interneurons TA GS 

 WT ConEphA4 WT ConEphA4 
dorsal ipsi 61.54 56.18 65.30 46.86 

dorsal contra 1.92 14.41 3.68 6.77 
ventral ipsi 27.31 19.18 22.99 27.10 

ventral contra 9.21 8.93 9.06 17.19 
 

Table 1.4 Gait types of adult wild type mice (median) 

%  
gait types 12 cm/s 16 cm/s 20 cm/s 30 cm/s 40 cm/s 50 cm/s 

ALT 86.46 90.64 93.91 92.71 93.60 97.16 
TS 13.02 9.36 6.09 6.92 6.40 2.84 

MIX 1.01 0 0 0 0 0 
synHOP 0 0 0 0.4 0 0 
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Table 1.5 Gait types of adult conditional EphA4 mutants (median) 

%  
gait types 12 cm/s 16 cm/s 20 cm/s 30 cm/s 40 cm/s 50 cm/s 

ALT 76.26 81.71 88.30 97.02 99.03 99.25 
TS 17.18 13.65   9.64   2.98   0.97   0.75 

MIX   5.09   3.98   2.02 0 0 0 
synHOP 0   0.24 0 0 0    0.26 

 

Table 1.6 Gait types of adult full EphA4 mutants (median) 

%  
gait types 12 cm/s 16 cm/s 20 cm/s 30 cm/s 40 cm/s 

ALT 0 0 0 0 0 
TS 0 0 0 0 0 

MIX  5.78  7.50   2.45  0.46 0 
synHOP 94.22 92.50 97.39 99.54 100 

 

Table 1.7 Gait types of 3-week old wild type mice (median) 

%  
gait types 12 cm/s 16 cm/s 20 cm/s 30 cm/s 40 cm/s 50 cm/s 

ALT 87.88 93.46 95.48 97.69 98.28 99.05 
TS 11.51   6.54   4.52   2.31   1.72   0.42 

MIX  0.54 0 0 0 0 0 
synHOP 0 0 0 0 0 0 

 

Table 1.8 Gait types of 3-week old conditional EphA4 mutants (median) 

%  
gait types 12 cm/s 16 cm/s 20 cm/s 30 cm/s 40 cm/s 50 cm/s 

ALT 93.56 92.29 94.92 94.81 93.83 87.67 
TS   5.91   7.00   4.02   3.63   3.01   5.27 

MIX   0.26 0   0.15   0.56   0.65   1.39 
synHOP   0.49   0.20   0.18   0.72   2.69   4.03 

 

Table 1.9 Percentage of HOP gait of wild type and EphA4 mutant mice (median) 

%  
HOP gait type 12 cm/s 16 cm/s 20 cm/s 30 cm/s 40 cm/s 50 cm/s 

adult WT 1.01 0 0 0.40 0 0 
adult ConEphA4 6.18 4.77 2.18 0 0 0.26 

adult EphA4 100 100 100 100 100 n/a 
3-week WT 0.54 0 0 0 0 0 

3-week ConEphA4 0.54 0.70 0.36 1.28 3.26 6.34 
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Table 1.10 Percentage of HOP gait for each conditional EphA4 mutant mouse (mean of 3 trials) 

% HOP 
gait type 12 cm/s 16 cm/s 20 cm/s 

mouse 3-week adult 3-week adult 3-week adult 
# 1 0.57 0 1.41  0.63 0.41 0 
# 2 0 11.51 1.97  6.12 3.49  3.38 
# 3 1.52  9.79 0  2.22 0.31  0.97 
# 4 0.51 10.55 0  3.41 0.72  3.96 
# 5 0.48  1.09 0 15.86 0 10.66 
# 6 2.75  2.58 3.41  6.31 0  0.48 

 
% HOP 

gait type 30 cm/s 40 cm/S 50 cm/s 

mouse 3-week adult 3-week adult 3-week adult 
# 1 0 0 n/a 0 n/a 0.53 
# 2 1.00 0.74 19.41 0 n/a 0.52 
# 3 0 0 14.39 0 n/a 0 
# 4 2.12 0   3.26 0   6.34 0 
# 5 5.12 2.23   3.16 3.80 11.46 5.65 
# 6 1.57 0   0.79 0   3.49 0 

 

Table 1.11 Gait parameters (median) 

gait parameters 16 cm/s 40 cm/s 

  
WT 
ALT 

ConEphA4 
ALT 

ConEphA4 
HOP 

EphA4 
HOP 

WT 
ALT 

ConEphA4 
ALT 

Hindlimb Coupling 
 0.46 0.44 0.17 0.02 0.48 0.46 

Diagonal Feet Coupling 
(HL) 0.10 0.12 0.18 0.36 0.03 0.08 

Stride Length (HL) 
[mm] 53.01 55.13 42.02 48.87 67.05 68.56 

Stride Frequency (HL) 
[Hz] 2.78 3.46 3.51 3.19 5.05 5.55 

Stance Time (HL)  
[ms] 235 204.5 209.1 228.6 100 91.82 

Swing Time (HL)  
[ms] 128 95.73 77.5 88.64 98.18 83.19 

Swing Time Percentage 
HL [%] 35.92 32.18 27.15 27.77 49.66 47.17 

Hindlimb Track Width 
[mm] 20.08 18.76 18.57 22.88 20.25 16.24 

Forelimb Coupling 
 0.43 0.44 0.22 0.02 0.47 0.46 

Stance Time (FL) 
[ms] 220 175.9 138.3 196.7 94.55 90.91 

Swing Time (FL)  
[ms] 142.8 99.51 95 86.44 100 87.28 
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Table 1.12 Open field behavior (median) 

10 min WT ConEphA4 

Avg. Velocity [cm/s]    7.90    6.62 
Track Length [m]  47.44  39.68 

 

Table 1.13 Gait types of conditional EphA4flox/-vGATCre/+ mutants (mean of 3 trials) 

% gait 
types 12 cm/s 16 cm/s 20 cm/s 30 cm/s 40 cm/s 

mouse # 1 # 2 # 1 # 2 # 1 # 2 # 1 # 1 
ALT 36.08 9.66 19.63 11.11 12.61 5.41 9.81 1.19 
TS 13.95 7.49 10.09 6.79 5.38 5.41 4.75 1.19 

MIX 28.27 34.80 19.69 27.78 22.65 29.73 11.03 0.79 
synHOP 21.70 48.04 50.58 54.32 59.37 59.46 74.41 96.83 

 

Table 1.14 Gait types of conditional α2chimaerin mutants (median) 

%  
gait types 12 cm/s 16 cm/s 20 cm/s 

ALT 88.98 91.13 92.37 
TS 11.02  7.67   6.81 

MIX   1.10  0.31   0.82 
synHOP 0 0 0 

 

Table 1.15 Gait types of full α2chimaerin mutants (median) 

%  
gait types 12 cm/s 16 cm/s 20 cm/s 

ALT 24.42 37.11 12.22 
TS  8.73  7.93   5.33 

MIX 23.53 27.89 27.27 
synHOP 39.83 25.35 56.49 

 

Table 1.16 Percentage of HOP gait type of α2chimaerin mutants (median) 

% 
HOP gait type 12 cm/s 16 cm/s 20 cm/s 

WT 1.01 0 0 
Con α2chimaerin 1.10 0.31 0.82 

α2chimaerin 65.2 53.2 82.71 
EphA4 100 100 100 
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2. Tables of statistical tests 

(significant difference when P/FDR value < 0.05) 

Table 2.1: Comparison of dorsal funiculus and dorsal gray matter in EphA4 mutants and                                              
         α2chimaerin mutants 

Ratio One-way ANOVA 
Test (P value) 

post-hoc Tukey-Kramer Test  
(P value) 

Unpaired t test  
(P value) 

  WT vs 
ConEphA4 

ConEphA4  
vs EphA4 

WT vs  
EphA4 

WT vs  
Con α2chimaerin 

dorsal funiculus 
(Length/Width) 

< 0.0001 < 0.0001 0.9431 < 0.0001 0.3165 

dorsal gray matter  
(Dorsal length/GM length) 

< 0.0001 0.0001 0.9997 < 0.0001 0.2352 

 

Table 2.2: Comparison of interneuron distribution of Q motor neurons in EphA4 mutants and                 
       α2chimaerin mutants 

% 
interneurons 

Kruskal Wallis 
Test (P value) 

post-hoc Pairwise Wilcoxon Test  
(FDR value) 

Mann-Whitney Test  
(P value) 

  WT vs 
ConEphA4 

ConEphA4  
vs EphA4 

WT vs  
EphA4 

WT vs  
Con α2chimaerin 

dorsal 
contralateral 0.0095 0.06408 0.14323 0.02334 > 0.9999 

ventral 
ipsilateral 0.2166 n/a n/a n/a n/a 

 

Table 2.3: Comparison of interneuron distribution of TA and GS motor neurons in conditional                                      
       EphA4 mutants  

% interneurons Mann-Whitney Test  
(P value) 

 TA 
WT vs ConEphA4 

GS 
WT vs ConEphA4 

dorsal contralateral 0.0159 0.0357 
ventral ipsilateral 0.0635 0.0357 
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Table 2.4: Comparison of HOP gait of EphA4 mutants between speeds within genotype 

% HOP  
gait type 

Kruskal Wallis 
Test (P value) post-hoc Pairwise Wilcoxon Test (FDR value) 

  12 vs 16 cm/s 12 vs 20 cm/s 12 vs 30 cm/s 12 vs 40 cm/s 
WT 0.0744 n/a n/a n/a n/a 

ConEphA4 0.0122 1 0.58799 0.09789 0.09789 
EphA4 0.8183 n/a n/a n/a n/a 

 
% HOP 

gait type post-hoc Pairwise Wilcoxon Test (FDR value) 

 12 vs 50 cm/s 16 vs 20 cm/s 16 vs 30 cm/s 16 vs 40 cm/s 16 vs 50 cm/s 
WT n/a n/a n/a n/a n/a 

ConEphA4 0.1271 0.3935 0.07784 0.07784 0.07784 
EphA4 n/a n/a n/a n/a n/a 

 
% HOP 

gait type post-hoc Pairwise Wilcoxon Test (FDR value) 

 20 vs 30 
cm/s 

20 vs 40 
cm/s 

20 vs 50 
cm/s 

30 vs 40 
cm/s 

30 vs 50 
cm/s 

40 vs 50 
cm/s 

WT n/a n/a n/a n/a n/a n/a 
ConEphA4 0.1271 0.12334 0.36918 0.7725 0.7725 0.40182 

EphA4 n/a n/a n/a n/a n/a n/a 
 

Table 2.5: Comparison of HOP gait of EphA4 mutants between genotypes within speed 

% HOP  
gait type 

Kruskal Wallis Test 
(P value) post-hoc Pairwise Wilcoxon Test (FDR value) 

   WT vs ConEphA4 ConEphA4 vs EphA4 WT vs EphA4 
12 cm/s < 0.0001 0.15236 0.00018 0.00005 
16 cm/s < 0.0001 0.00118 0.00034 0.00004 
20 cm/s < 0.0001 0.01489 0.00034 0.00005 
30 cm/s 0.0104 0.28071 0.01342 0.0369 
40 cm/s 0.0242 0.4795 0.02092 0.0455 

Mann-Whitney Test (P value) 
50 cm/s n/a 0.5238 n/a n/a 
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Table 2.6: Comparison of HOP gait of 3-week old conditional EphA4 mutants between speeds                   
        within genotype  

% HOP  
gait type 

Kruskal Wallis 
Test (P value) post-hoc Pairwise Wilcoxon Test (FDR value) 

  12 vs 16 cm/s 12 vs 20 cm/s 12 vs 30 cm/s 12 vs 40 cm/s 
3-week WT 0.3435 n/a n/a n/a n/a 

3-week ConEphA4 0.024 0.86447 0.63011 0.75545 0.07551 
 

% HOP 
gait type post-hoc Pairwise Wilcoxon Test (FDR value) 

 12 vs 50 cm/s 16 vs 20 cm/s 16 vs 30 cm/s 16 vs 40 cm/s 16 vs 50 cm/s 
3-week WT n/a n/a n/a n/a n/a 

3-week ConEphA4 0.07551 1 0.75545 0.14013 0.07551 
 

% HOP 
gait type post-hoc Pairwise Wilcoxon Test (FDR value) 

 20 vs 30    
cm/s 

20 vs 40   
cm/s 

20 vs 50 
cm/s 

30 vs 40 
cm/s 

30 vs 50 
cm/s 

40 vs 50 
cm/s 

3-week WT n/a n/a n/a n/a n/a n/a 
3-week ConEphA4 0.63011 0.0843 0.07551 0.1867 0.09514 0.75545 

 

Table 2.7: Comparison of HOP gait of 3-week old and adult conditional EphA4 mutants between                                        
       genotypes within speed 

% HOP gait type Mann-Whitney Test (P value) Wilcoxon Matched-Paired 
Test (P value) 

 
WT vs ConEphA4  

(3-week) 
3-week vs adult 

ConEphA4  
3-week vs adult  

ConEphA4  
12 cm/s 0.7738 0.1385 0.1563 
16 cm/s 0.7024 0.0411 0.0625 
20 cm/s 0.1667 0.1775 0.1563 
30 cm/s 0.1667 0.2749 0.125 
40 cm/s 0.0357 0.0216 0.125 
50 cm/s 0.1 0.0357 0.25 
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Table 2.8: Comparison of gait parameters of EphA4 mutants between genotypes within speed 

Gait parameters Belt speed Mann-Whitney Test (P value) 

 
 

WT(ALT) vs 
ConEphA4(ALT) 

ConEphA4(HOP) vs 
EphA4(HOP) 

ConEphA4(ALT) vs 
ConEphA4(HOP) 

Hindlimb 
Coupling     
 16 cm/s 0.2624 0.0003 0.0043 
 40 cm/s 0.0595 n/a n/a 
Diagonal Feet 
Coupling 
(hindlimb) 

    

 16 cm/s 0.3192 0.0023 0.1342 
 40 cm/s 0.0357 n/a n/a 
Stride Length 
(hindlimb) 

    

 16 cm/s 0.7842 0.4109 n/a 
 40 cm/s 0.619 n/a n/a 
Stride Frequency 
(hindlimb) 

    

 16 cm/s 0.0142 0.0033 n/a 
 40 cm/s 0.5 n/a n/a 
Stance Time 
(hindlimb) 

    

 16 cm/s 0.1718 0.0423 n/a 
 40 cm/s 0.4286 n/a n/a 
Swing Time 
(hindlimb) 

    

 16 cm/s 0.011 0.0523 n/a 
 40 cm/s 0.1667 n/a n/a 
Swing Time 
Percentage 
(hindlimb) 

    

 16 cm/s 0.1746 0.4795 n/a 
 40 cm/s 0.381 n/a n/a 
Hindlimb Track 
Width 

    

 16 cm/s 0.3511 0.0173 n/a 
 40 cm/s 0,2619 n/a n/a 
Forelimb 
Coupling 

    

 16 cm/s > 0.9999 0.0003 0.0022 
 40 cm/s 0,119 n/a n/a 
Stance Time 
(forelimb) 

    

 16 cm/s 0.0209 0.0193 n/a 
 40 cm/s 0.7143 n/a n/a 
Swing Time 
(forelimb) 

    

 16 cm/s 0.0225 0.5335 n/a 
 40 cm/s 0.1905 n/a n/a 
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Table 2.9: Comparison of hindlimb gait parameters between speeds of 16 and 40 cm/s within                 
       genotype  

Gait parameter 
Hindlimb Mann-Whitney Test (P value) 

 Hindlimb Coupling 
 

Diagonal Feet 
Coupling (HL) 

Stride Length (HL) 
 

Stride Frequency 
(HL) 

WT (ALT) 0.2483 0.007 0.007 0.007 
ConEphA4 (ALT) 0.3463 0.1385 0.026 0.0022 

 
Gait parameter 

Hindlimb Mann-Whitney Test (P value) 

 Stance Time (HL) 
 

Swing Time (HL) 
 

Swing Time % (HL) 
 

Hindlimb Track 
Width 

WT (ALT) 0.0035 0.049 0.007 > 0.9999 
ConEphA4 (ALT) 0.0022 0.3052 0.0022 > 0.9999 

 

Table 2.10: Comparison of forelimb gait parameters between speeds of 16 and 40 cm/s within                                         
         genotype  

Gait parameter 
Forelimb Mann-Whitney Test (P value) 

 Forelimb Coupling Stance Time (FL) Swing Time (FL) 
WT (ALT) 0.0035 0.007 0.049 

ConEphA4 (ALT) 0.0216 0.0022 0.132 
 

Table 2.11: Open Field Behavior 

10 min Mann-Whitney Test (P value) 
  WT vs ConEphA4 

Avg. Velocity 0.3524  
Total Track Length 0.3524  

 

Table 2.12: Comparison of HOP gait of α2chimaerin mutants between speeds within genotype 

% HOP gait type Kruskal Wallis Test 
(P value) post-hoc Pairwise Wilcoxon Test (FDR value) 

    12 vs 16 cm/s 12 vs 20 cm/s 16 vs 20 cm/s 
WT 0.0568 n/a n/a n/a 

Con α2chimaerin 0.7974 n/a n/a n/a 
α2chimaerin 0.307 n/a n/a n/a 
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Table 2.13: Comparison of HOP gait of α2chimaerin mutants between genotypes within speed 

% HOP gait type Kruskal Wallis Test 
(P value) post-hoc Pairwise Wilcoxon Test (FDR value) 

  
WT vs  

Con α2chimaerin     
Con α2chimaerin vs 

α2chimaerin   
WT vs  

α2chimaerin 
12 cm/s 0.0024 0.55601 0.02016 0.00424 
16 cm/s 0.0007 0.28785 0.02016 0.00173 
20 cm/s 0.0002 0.05027 0.02092 0.00252 

 

Table 2.14: Comparison of HOP and synHOP gait types between full α2chimaerin versus full EphA4         
        mutants 

Gait type  Mann-Whitney Test (P value) 
  % HOP % synHOP 

12 cm/s 0.001 0.004 
16 cm/s 0.001 0.002 
20 cm/s 0.001 0.002 
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3. AAV-glycoprotein production 

 

Table 3: Preparation of Iodixanol solutions 

 10xPBS 
(ml) 

1M MgCl2 
(ml) 

1M KCl 
(ml) 

5M NaCl 
(ml) 

Optiprep 
(Iodixanol, 
Sigma)(ml) 

0,5%Phenol 
red (Sigma) 

(ml) 

H2O 
(ml) 

17% 5 0.05 0.125 10 12.5 - up to 50 
25% 5 0.05 0.125 - 20 0.2 up to 50 
40% 5 0.05 0.125 - 33.3 - up to 50 
60% - 0.05 0.125 - 50 0.05 - 
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Abbreviations 

AAV   adeno-associated virus 

ALT   alternating gait type of hindlimbs 

BHK   baby hamster kidney cells 

BMP   bone morphogenetic protein 

BSA   bovine serum albumin 

C segment  cervical segment of spinal cord 

CC   central canal in spinal cord 

ChAT   choline acetyltransferase 

ConEphA4  conditional EphA4 mutant mouse (EphA4flox/-Lbx1Cre/+ Taulox-stop-lox-SynGFP-INLA and  

   EphA4flox/-Lbx1Cre/+ Taulox-stop-lox-FlpO-INLA mutant mice (figures)  

conditional EphA4  EphA4flox/-Lbx1Cre/+ or EphA4flox/-Lbx1Cre/+ Taulox-stop-lox-SynGFP-INLA or  

   EphA4flox/-Lbx1Cre/+ Taulox-stop-lox-FlpO-INLA mutant mice (text) 

CPG   central pattern generator 

DGM   dorsal gray matter 

DMEM  dulbecco`s modified eagle medium 

E   embryonic stage of development 

EphA4  full EphA4-/- k.o. mutant mouse (figures) 

FBS   foetal bovine serum 

FDR   false discovery rate 

full EphA4  full EphA4-/- k.o. mutant mouse (text) 

G-protein  glycoprotein of rabies virus  

GEF   guanine nucleotide exchange factor 

GFP   green fluorescent protein 

GS   Gastrocnemius muscle (extensor) 

HEK   human embryonic kidney cells 

HOP   hopping gait type of hindlimbs (includes synHOP and MIX gait types) 

IN   interneuron 
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L segment  lumbar segment of spinal cord 

MIX   mixture gait type of hindlimbs (mixture between alternating and hopping gait) 

MN   motor neuron 

P   postnatal stage of development 

PBS   phosphate buffered saline 

PCR   polymerase chain reaction 

Q   Quadriceps muscle (extensor) 

RFP   red fluorescent protein 

S segment  sacral segments of spinal cord 

SEM   standard error of the mean 

Shh   sonic hedgehog 

synHOP  synchronous hopping gait type of hindlimbs 

T segment  thoracic segment of spinal cord 

TA   Tibialis anterior muscle (flexor) 

TS   transitional step of hindlimbs 

WT   wild type (figures) 
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