The interaction of tiotropium with long lasting β2-agonists on lung cell function

Inauguraldissertation

Zur
Erlangung der Würde eines Doktors der Philosophie
Vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultät
Der Universität Basel

Von
Luigi Costa
Aus Ischia, Italien

Basel, 2014
© Luigi Costa, 2013
Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät
Auf Antrag von

Prof. Michael Roth
Prof. Markus A. Ruegg
Prof. Luigi Terracciano

Prof. Dr. J. Schibler
Dekan der Philosophisch-Naturwissenschaftlichen Fakultät
Acknowledgments

I would like to thank Prof. Michael Tamm and Prof. Michael Roth for giving me the opportunity to do my thesis in their laboratory. Things were not always easy over the past four years but in the end, I had the chance to develop my independence in research and to learn from my own mistakes. Thanks for giving me chances to present my data at international scientific conferences, which I enjoyed and where I found the motivation to continue with my work.

Thanks to my previous and new colleagues for sharing the ups and down of a Ph.D. thesis with me; and for giving me advice when I was getting frustrated with my experiments.

Luigi
Table of Content

 Acknowledgments ... 2

 List of abbreviations ... 5

 Summary and Implications of the thesis 6

 Chapter 1- Asthma ... 11

 1.1. Definition and pathogenesis of asthma 11

 1.2. New aspects of asthma pathologies and therapeutic targets 12

 1.3. Pathological mechanisms in asthma 15

 1.4. The muscarinic receptor on lung fibroblasts: function and role in asthma 17

 1.5. β2-adrenergic receptor in lung fibroblasts: function and role in asthma 22

 1.6. Tissue remodeling in asthma 25

 1.7. The role of airway smooth muscle cells in asthma associated airway remodeling 27

 1.8. The role of airway fibroblast in asthma associated airway remodeling 27

 1.9. The epithelial-mesenchymal trophic unit and its role in airway remodeling 32

 1.10. Enzymes that deregulate the EMTU 35

 1.11. Mast cells and other immune activated cell types 37

 1.12. Asthma relevant cytokines that are produced by airway fibroblasts 39

 I.12.a Platelet-derived growth factor-BB (PDGF-BB) 39

 I.12.b Tumor necrosis factor (TNF)-α 41

 I.12.c Interleukin-1β ... 42

 Chapter 2- Materials and Methods 45

 2.1. Primary human lung fibroblasts.......................... 45

 2.2. Primary human lung fibroblasts characterization 45

 2.3. Drug treatment .. 45

 2.4. Cytokine secretion .. 46

 2.5. Protein expression .. 46
Chapter 3- Effect of muscarinic receptors and β2-adrenergic receptors on Fibroblast proliferation

3.1. Control of fibroblast proliferation in asthma and COPD by muscarinic receptors and β2 receptors

3.2. On-going studies and preliminary results

References

Chapter 4- Results and publication.

4.1. Publication # I

Role of cyclic AMP in the interaction of muscarinic receptors and β2-adrenergic receptors.

4.1.1 Introduction

4.1.2 Methods

4.1.2.1 Primary human lung fibroblasts

4.1.2.2 Fibroblast treatment

4.1.2.3 Cytokine secretion

4.1.2.4 Protein expression

4.1.2.5 cAMP detection

4.1.2.6 Primary human lung fibroblasts characterization

4.1.3 Results

4.1.3.1 Fibroblasts characterization

4.1.3.2 Dose-dependent induction of IL-6 and IL-8 by PDGF, TNF-α and IL-1β

4.1.3.3 Tiotropium counteracts the IL-1β and carbachol-induced release of IL-6 and IL-8

4.1.3.4 The combination of olodaterol plus tiotropium reduces IL-1β-induced IL-6 and IL-8 secretion

4.1.3.5 Tiotropium restores olodaterol-induced cAMP formation

4.1.4 Discussion

4.1.5 References
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>Th-1, 2</td>
<td>T-cell helper</td>
</tr>
<tr>
<td>β2</td>
<td>Beta two</td>
</tr>
<tr>
<td>ASM</td>
<td>Airway smooth muscle</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic Obstructive Pulmonary Disease</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Interleukin one beta</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor necrosis factor-alpha</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>EMT</td>
<td>Epithelial-mesenchimal transition</td>
</tr>
<tr>
<td>GAG</td>
<td>Glycosaminoglycans</td>
</tr>
<tr>
<td>HBEC</td>
<td>Human bronchial epithelial cells</td>
</tr>
<tr>
<td>TGF-β1</td>
<td>Transforming growth factor-beta one</td>
</tr>
<tr>
<td>LABA</td>
<td>Long acting beta agonist</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>AHR</td>
<td>Airway hyper-responsiveness</td>
</tr>
<tr>
<td>PGE 2</td>
<td>Prostaglandin E two</td>
</tr>
<tr>
<td>MMPs</td>
<td>Matrix metalloproteinase’s</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal calf serum</td>
</tr>
<tr>
<td>EMTU</td>
<td>Epithelial mesenchymal trophic unit</td>
</tr>
<tr>
<td>PDGF-ββ</td>
<td>Platlet derived growth factor – beta beta</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal growth factor</td>
</tr>
<tr>
<td>BALF</td>
<td>Bronchioalveolar fluid</td>
</tr>
<tr>
<td>SNPs</td>
<td>Single nucleotide polymorphisms</td>
</tr>
<tr>
<td>uPAR</td>
<td>Urokinase plasminogen activator receptor</td>
</tr>
<tr>
<td>uPAI-1</td>
<td>Plasminogen activator inhibitor-one</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>p38MAPK</td>
<td>p38 mitogen-activated protein kinases</td>
</tr>
<tr>
<td>ERK1, 2</td>
<td>Extracellular-signal-regulated kinases one, two</td>
</tr>
<tr>
<td>PI3</td>
<td>Phosphatidylinositol three</td>
</tr>
<tr>
<td>Akt</td>
<td>Protein Kinase B</td>
</tr>
<tr>
<td>FGF10</td>
<td>Fibroblast growth factor</td>
</tr>
<tr>
<td>Wnt</td>
<td>Wnt signaling pathways</td>
</tr>
<tr>
<td>I-CAM</td>
<td>Intercellular Adhesion Molecule 1</td>
</tr>
<tr>
<td>CREB</td>
<td>Cyclic AMP response element binding protein</td>
</tr>
<tr>
<td>CO2</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>HCL</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-Buffered Saline</td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>IBMX</td>
<td>Iso-butyl-methylxantine</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immune sorbent assay</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of mean</td>
</tr>
<tr>
<td>GCs</td>
<td>Glucocorticoids</td>
</tr>
<tr>
<td>PDE4D</td>
<td>Phosphodiesterase-4D</td>
</tr>
<tr>
<td>GRK2</td>
<td>G-protein-coupled kinase 2</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese hamster ovary</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte/macrophage-colony stimulating factor</td>
</tr>
</tbody>
</table>
Summary and Implications of the thesis

The major question addressed in this thesis was to find the mechanism(s) by which muscarinic receptors interact with β2-adrenergic receptors in human airway fibroblasts. This question is of importance to understand the molecular biological basis of the clinical observation that blocking the muscarinic receptors, while activating the β2-adrenergic receptor allows better symptom control in COPD and asthma than increasing the concentration of a single drug. This knowledge will also help to improve and optimize the action of the two drugs when combined.

The question what is the molecular biological basis of the improved beneficial clinical effects observed in COPD patients treated by a combination of muscarinic receptor inhibitors and long acting β2-agonists became of special interest for asthma therapy after Grainge et al (2011) described that airway remodelling when induced by allergens or cholinergic stimuli was prevented when the patients had inhaled a short acting β2-agonist. This study not only indicated a novel unknown interactive mechanism between the muscarinic receptor and the β2-adrenergic receptor, in addition, it provided for the first time clear in vivo experimental evidence in humans, that asthma associated airway wall remodelling is independent of preceding inflammation and that it occurs within days and does not need months as indicated by animal models.

In my thesis I provide first evidence, that not only airway smooth muscle cells, but also human primary lung fibroblasts, isolated from lungs of asthma patients, do secrete more pro-inflammatory cytokines than cells isolated from non-asthmatic patients (including COPD). This disease specific pro-inflammatory response, however, was not occurring under all conditions, but was dependnt on the type of stimulus used. Comparing the effect of three different asthma relevant stimuli, PDGF-BB, IL-1β and TNF-α, it was obvious that TNF-α had a stronger inductive effect on IL-6 secretion in fibroblasts of asthma patients compared to non-asthmatic cells, while it had a stimulating but not disease specific effect on IL-8 secretion. PDGF-BB had a similar inductive effect on IL-6 secretion in both asthmatic and non-asthmatic fibroblasts, while it had a significant stronger inducing effect on IL-8 secretion by asthmatic fibroblasts compared to control cells. In contrast, stimulation with IL-1β significantly stronger up-regulated the secretion of IL-6 and IL-8 by control fibroblasts compared to cells of asthma patients.

Carbachole, a muscarinic receptor activator, had no stimulative effect on either cytokine, neither in asthmatic nor in control fibroblasts. However, when combined with especially
IL-1β it further increased the cytokine secretion. Therefore, it can be concluded that subepithelial fibroblasts in the airway wall represent an additional source of proinflammatory cytokines. These initial findings were the reason why the combination of IL-1β with carbachol was used in all subsequent experiments to investigate the effects of the long acting β2 agonist olodaterol and the muscarinic receptor inhibitor tiotropium on cytokine secretion by fibroblasts.

Both classes of drugs, olodaterol and tiotropium, alone significantly reduced the IL-1β induced secretion of IL-6 and IL-8. When combined their inhibitory effects were only additive. Thus, the therapeutic combination of both classes of drugs may be beneficial, but has to be proven for other compounds.

Our group has provided earlier data that showed the expression of the β2-adrenergic receptor on the cell surface of human lung fibroblasts, but there was no data for the type of muscarinic receptor (MR1-5) was expressed by the cells. Using RT-PCR we showed that the majority of muscarinic receptors expressed by human lung fibroblasts were of type-3 and only little of type-1.

We further investigated the signaling pathway underlying the anti-inflammatory effect of the β2-agonist and the muscarinic receptor inhibitor. The data showed that in part the inhibitory mechanism involves the increase of intracellular cAMP levels, which is known to mediate the muscle relaxing effect of this class of drugs. However, it was surprising that carbachol overruled the anti-inflammatory effect of the β2-agonist which was not in line with the in vivo results presented by Grainge et al (2011), but would fit with other studies showing only a limited anti-inflammatory effect of β2-agonists.

However, when the cells were pre-incubated with the muscarinic receptor inhibitor tiotropium for 30 minutes prior to the addition of carbachol the β2-agonist dependent increase of the intracellular cAMP level was rescued, followed by activation of the cyclic AMP response element (CREB). These findings may explain why the anti-inflammatory effect of the combined drugs was additive rather than synergistic.

Initially it was assumed that the clinically observed beneficial effect of the combined drugs may result from the interaction of specific G-proteins to which both receptor types are linked (see figure below). However, the obtained data did not indicate any role of G-proteins in the anti-inflammatory effect of neither the β2 adrenergic receptor nor of the muscarinic receptor.
Proposed separation of the anti-inflammatory and anti-proliferative signalling interaction of muscarinic and β2-adrenergic receptors in human lung fibroblasts.

Beside inflammation, airway wall remodelling is characterized by an extensive increase of sub-epithelial fibroblast numbers and extracellular matrix deposition. According to the literature there is no drug in asthma therapy which has a significant reducing effect on airway wall remodelling. In earlier studies our research group had shown that the lack of anti-proliferative effect of at least glucocorticoids is due to the lack of a differentiation/cell cycle control factor, CCAAT enhancer binding protein-α (C/EBP-α), which disease specifically missing in airway smooth muscle cells of asthma patients. Unpublished data suggested that at least the β2-agonists, formoterol and salmeterol, have an anti-proliferative effect of 30% reduction in airway smooth muscle cells. The literature reported similar small effects of anti-proliferative action of β2-agonists and even reported pro-proliferative actions. In contrast to glucocorticoids which depend on C/EBP-α and subsequent activity of p21(Waf), the anti-proliferative action of β2-agonists involved p27\(^{Kip}\). In this thesis, we tested the inhibitory potential of olodaterol on fibroblast proliferation induced by PDGF-BB.

At the time of this thesis, there was no data published showing an inhibitory effect of muscarinic receptor inhibitors in regard of fibroblast proliferation.

Olodaterol confirmed an inhibitory effect of β2-agonists on lung fibroblast proliferation, when the cells were stimulated with PDGF-BB. The anti-proliferative effect of olodaterol was dose-dependent and was paralleled by the increase of intracellular cAMP. Based on our earlier data with formoterol and salmeterol we concluded that this beneficial effect applies to all β2-agonists.
Combining olodaterol with the muscarinic receptor inhibitor, however, did not improve the anti-proliferative effect of the β2-agonist. In contrast the muscarinic receptor inhibitor counteracted the anti-proliferative effect of olodaterol to a certain extent. Surprisingly, neither the anti-proliferative effect of olodaterol nor the counteractive effect of tiotropium could be linked to the rescue of β2-agonist cAMP level increase or to G-protein activity. Importantly, similar results have been recently published by others and suggest a novel anti-proliferative acting signalling pathway for β2-adrenergic receptors through so called β-arrestins, which are involved in muscarinic receptor activity, however, with controversial results. Therefore, no conclusion on the role of β-arrestins as an anti-proliferative protein in the signalling of combined β2 agonists and muscarinic receptor inhibitors can be made. It would be interesting to screen our samples for the expression of β-arrestins.

The impact of this thesis on the understanding of the interaction of β2-adrenergic receptors and muscarinic receptor signalling is as follows:

(i) The intracellular signalling cascades that get activated by the muscarinic receptor-3 or by the β2-adrenergic receptor are not involving G-proteins;

(ii) That combined β2-agonsists and muscarinic receptor inhibitors indeed have beneficial additive anti-inflammatory action which may be due to a rescuing effect of muscarinic receptor inhibition on β2-adrenergic receptor dependent intracellular cAMP activation.

(iii) The combination of the two classes of drugs is not beneficial for airwaywall remodelling based on increased fibrotic lesions, and thus is in line with clinical data. However, proliferation is only one part of remodelling which also includes increased deposition of extracellular matrix.

(iv) Preliminary experiments on the deposition of collagens and fibronectin show that β2-agonsists reduce TGF-β and endothelin induced deposition of extracellular matrix components but do not have a general inhibitory effect. Some of the inhibitory effects of β2-agonists on collagens can be explained by the increase of cAMP, while the inhibitory effect on fibronectin is independent of cAMP. The available data indicates that long acting β2-agonists (formoterol, salmeterol) reduce the deposition of specifically collagen type-I and of fibronectin through a cAMP dependent and a cAMP independent pathway.
In summary, the data obtained in this thesis answered some aspects of the interaction of the two receptor types, but also raised further questions. In addition, it became clear that some of the beneficial anti-inflammatory actions of combined β2-adrenergic receptor agonists with inhibitors of muscarinic receptors involves the action of cAMP while others do not. The beneficial anti-inflammatory action of combined β2-adrenergic receptor agonists with inhibitors of muscarinic receptors is clear, but the net-effect of the two drugs on tissue remodelling has to be further investigated.

Finally, it became clear, that we need to better understand how β2-adrenergic receptors and muscarinic receptors mediate their signals to the cells, it seems that we do not yet know all the details and novel mechanisms will be described soon.
I Asthma:

I.1 Definition and pathogenesis of asthma

The World Health Organization (WHO) estimates that asthma affects more than 250 million people worldwide (http://www.who.int/topics/asthma/en/). The guidelines of the World Health Organization (WHO) define asthma as an inflammatory disease of the airways: “It is a disease characterized by recurrent attacks of breathlessness and wheezing, which vary in severity and frequency from person to person. In an individual, they may occur from hour to hour and day to day. This condition is due to inflammation of the air passages in the lungs and affects the sensitivity of the nerve endings in the airways so they become easily irritated. In an attack, the lining of the passages swell causing the airways to narrow and reducing the flow of air in and out of the lungs” (http://www.who.int/respiratory/asthma/definition/en/).

The WHO also states that children represent more than 50% of all asthma patients and that asthma is not curable, only the disease symptoms can be controlled by inhaled drugs. It had been claimed that many children "grow out" off asthma; however, recent studies suggest that asthma re-occurs at older age. Asthma shows a strange gender-related association as it occurs more frequent in boys at young age and more often in women at older age, thus suggesting the influence of hormones (Dijk et al 2013; Moreno-Macías et al 2013). Several studies aimed to link asthma with susceptibility genes and thus with genetic pre-dispositions, but so far there is no clear evidence for any inheritable factors that pre-condition for asthma (Anderson et al 2013; Berenguer et al 2013; Boudier et al 20913; Li et al 2013; Lloyd et al 2013; Macintyre et al 2013). More recently so-called epigenetic mechanisms have been linked to asthma including age related DNA methylation patterns (Harris et al 2013). Nutrition and living conditions also affect asthma. Beside a beneficial effect of Mediterranean food and increased intake of oxygen radical scavengers such as vitamin C and D, it was claimed that there exists a North-South gradient with lower asthma prevalence in the equatorial countries (Lang et al 2013; Malinovschi et al 2013; Tsai et al 2013; Wegienka et al 2013). This hypothesis has to be rejected and it is more likely that living conditions in rural areas is protective to asthma, while life in cities furthers asthma (Anderson et al 2013; Macintyre et al 2013). However, beside the epidemiologic evidence, there is no biological mechanisms known that could explain how the different triggers, allergic and non-allergic, can lead to one disease phenotype "asthma".
I.2 New aspects of asthma pathologies and therapeutic targets:

New studies imply that the pre-condition to develop asthma is set during pregnancy or in the first years of life, and therefore, many asthma patients suffer from birth throughout their life (Covaci et al 2013; Dijk et al 2013; Malmström et al 2013; van Schayck et al 2013; Wright et al 2013). In the past decades asthma was regarded as a chronic inflammatory disease of the lung caused by a deregulated organ specific immune response which is triggered mainly by inhaled substances including allergens, chemicals, or dust (Hams & Fallon 2012; Holtzman 2012; Ozdemir et al 2011). The hypothesis which sees an over-reactive immune response as the cause of asthma ignores that 40% of asthma patients have no known allergies and their asthma is caused by physical or psychological stress, such as exercise, sports (winter- and water sports), stress or anxiety; furthermore sudden changes of the environment such as temperature, humidity and air pressure can trigger asthma attacks. All those triggers cannot be explained by an over-reactive immune response.

Thus the hypothesis of the over-reactive immune system has been challenged recently and today the role of tissue forming cells in the pathology of asthma is re-investigated (Black et al 2012; Leonardi et al 2012; Pongdee et al 2013; Thompson et al 2012). There is increasing evidence for the role of mechano-compressive forces within the asthmatic airway contributing to airway structural changes. An often asked question is if the re-occurring strong constriction during an asthma attack could lead to changes of the airway wall structure.

In contrast to chronic obstructive pulmonary disease (COPD), the airway constriction which causes the shortness of breath, is reversible in asthma as soon as the muscle bundles relax, this is the rational to inhale muscle relaxing drugs such short or long acting β2-agonists, which are investigated in this thesis for their actions on cytokine release, proliferation, and their interaction with muscarinic receptor signaling. Muscle relaxing drugs seem not to affect airway wall remodeling, mucus secretion or cytokine release. In order to control the latter factors many asthma patients use a combination of β2-agonists with steroids or other anti-inflammatory agents such as steroids, cytokine inhibitors; or IgE-antibodies for allergic asthma (Kandeel et al; Marandi et al 2013; Manuyakorn et al 2013; Miller et al 2013; Robinson et al. 2013). However, none of the available drugs is able to cure asthma. Off course the interaction of the different lung
forming cell types with immune cells in the airways has to be taken into consideration (Ramakrishna et al. 2012). Last but not least inhibition or control of airway remodeling is getting into the focus of new therapeutic asthma targets (Manuyakorn et al 2013).

Regarding the role of tissue forming lung cells it is interesting to note that the hypertrophy and hyperplasia of airway wall smooth muscle (ASM) bundles was the first disease specific pathology described in 22 patients with fatal asthma by Huber & Koessler in 1922. This pathology was for some time accepted as the explanation of airway hyper-constriction and obstruction. However, its development could not be explained well and from the late 1960-ies onwards immunological pathologies were described in asthma patients and the new dogma was that asthma results from an overactive immune system and first indications of the role of immunoglobulins to the pathogenesis of asthma (Hanissian et al 1969; Hilman et al 1969; Koltay et al 1967; Stenius et al 1969).

In the late 1980-ies to 90-ies animal models were made and confirmed the importance of the immune system in the pathogenesis of asthma. These animal models suggested that a shift from Th-1 to Th-2 is important in allergic asthma (Corry et al 1996; Coyle et al 1996; O'Brien et al 1996; Schwarze et al 1997). However, this Th1 – Th2 shift was never fully confirmed in humans (Holgate 2012; Shalaby & Martin 2010; Warrington 2010).

In the past two decades, the role of the mesenchymal cell types, especially of airway wall residing fibroblasts and smooth muscle cells, in asthma was re-assessed and increasing evidence suggest that airway wall remodeling is a central pathology that most probably causes asthma (Manuyakorn et al 2013). The picture that evolves today suggests that asthma results from a disrupted interaction of epithelial cell with immune cell and mesenchymal cell. Furthermore, there is evidence that the condition to develop asthma is set during the late phase of pregnancy and early childhood (Dotterud et al 2013; Källén et al 2013; Olsson et al 2013; Tedner et al 2012; Yang et al 2012; Wu et al 2012). In several studies it was reported that the increase of fibroblasts and airway smooth muscle cell hyperplasia and hypertrophy in the airway wall occurs early in life and in some studies these pathologies, together with wheezing, were recorded even before asthma was diagnosed by standard clinical parameters and methods (Chawes et al 2011; Donohue et al 2013; Gold et al 2013; Jenkins et al 2003; Konradsen et al 2013, Lopez-Guisa et al 2012). Furthermore, airway wall remodeling preceded other symptoms.
including inflammation in childhood asthma (Jenkins et al 2003; Malmström et al 2013). These findings indicate that the structural differences of the airway wall tissue which are shown in figure 1 may have a much more directing effect on inflammation and airway function than it was thought earlier.

Compared to a tissue section of a non-asthmatic airway of similar grade (Figure 1, left panel), the epithelium layer of asthma patient’s airway wall lost its even thickness and is covered by mucus. Furthermore, the sub-epithelial basal membrane is significantly thickened and consists of extracellular matrix, which seems to be differently composed than that in the underlying fibroblast layer. The basement membrane does not contain any cells and it is an unanswered question which cell type deposes this large amount of extracellular matrix. Logically it would be the epithelial cells, but this cell type does not produce to much extracellular matrix.

Histopathology of Asthma

Fig 1: Histology of a representative airway tissue section of a non-asthma control (left panel), and a patient with moderate asthma (right panel).

If it would be the fibroblasts below the basement membrane that produce its extracellular matrix the question how the extracellular matrix of the basement membrane is accumulated so neatly with a consistent thickness between the epithelial cells and the fibroblasts. The structure of the sub-epithelial fibroblast/myo-fibroblast cell
layer has produced a large amount of extracellular matrix which contains large areas which seem to be cell free (no nuclei). This fibroblast layer is followed by an even more increased layer of smooth muscle cells forming clear contractile bundles (Figure 1, right panel).

I.3 Pathological mechanisms in asthma

Beside the fact that in the past 20 years 92’337 scientific articles were published on human asthma the cause of asthma remains unclear. As mentioned above, it was assumed for a long time that the major reason to develop chronic inflammation was a deregulated immune response (Corry et al 1996; Coyle et al 1996; O’Brien et al 1996; Schwarze et al 1997), which, however, was never fully confirmed in humans (Holgate 2012; Shalaby & Martin 2010; Warrington 2010). Therefore, other explanations must be found, such as airway wall remodeling, which can lead to inflammation and immune cell activation (Berair et al 2013; Siddiqui et al 2013; Xiao et al 2013). In order to understand the interaction between the different cell types it is important to study the crosstalk of inflammatory factors and their corresponding receptors, especially of the muscarinic receptor with others (McGraw et al 2007; Oenema et al 2013; Quizon et al 2012; Verhein et al 2009).

A recent study strongly supported the hypothesis that airway remodeling should be regarded as a major cause and not only as a follow-up event in asthma (Grainge et al 2011). This in vivo study in patients with mild asthma demonstrated that the activation of the adreno-cholinergic system induced significant remodeling of the epithelium and the airway wall within 8 days. Remodeling was induced equally by a muscarinic receptor agonist or by an inhaled allergen. The most surprising result was that remodeling occurred within a few days, while animal models suggested that this pathology needs years to develop. Furthermore, the study showed that inhalation of β2-agonists can effectively prevent airway wall remodelling. The results of this study supported the idea that the combination of muscarinic receptor inhibitors with β2-agonists is a new therapeutic drug combination for asthma and COPD. The interaction of these two classes of drug is the topic of my thesis. In figure 2 there is a model of how the two systems may work together.
Most studies suggested that inflammation and remodeling are linked, however, there is increasing evidence that remodelling occurs independent of inflammation and does not need years to develop, as it was suggested by earlier studies in humans and animal models (Blackquiere et al 2010; Evans et al 2010; Nihlberg et al 2010; Van Hove et al 2009).

Airway wall remodeling consists of two major parts: (i) the increase of mesenchymal cells in numbers and (ii), the increase of extracellular matrix deposition. Both events are independent of each other, but they affect each other. Airway wall remodeling includes structural changes of the tissue such as modified epithelial cell characteristics, increased mass of airway smooth muscle cells and increased numbers of active fibroblasts turning into myo-fibroblasts; fibrosis and increased vascularization. Cytokines released by inflammatory cells activate the epithelium and stimulate a network of extracellular signals that determine the tissue structural changes in asthma. The structural defect of the epithelium, include reduced cell-cell contact and allows allergens to migrate into the sub-epithelial cell layer where they come into direct contact with the mesenchymal cell types (fibroblasts, smooth muscle cells). Interestingly, airway mesenchymal cells express antigen recognizing receptors and immunoglobulin receptors and directly respond to allergens by releasing pro-inflammatory (Gounni et al 2005; Grunstein et al
2002; Redhu et al 2013; Redhu et al 2009; Xia et al 2011). It is currently investigated if blocking immunoglobulin receptors may prevent or even reverse asthma associated airway wall remodeling (Rabe et al 2011). In monkey fibroblast cells anti-IgE antibodies blocked their activation (Takai et al 2011) and similarly in human fibroblast like cells (Smith et al 1995). Furthermore, IgG can directly interact with fibrocyte cells and activate them (Pilling et al 2006). In summary, immunoglobulin exposure of fibroblast like cells activated the production of pro-inflammatory mediators, induced cell constriction and altered enzyme secretion (Lee et al 2003). However, the pathogenesis of asthma cannot depend on a single cell type and the interactions between de-regulated tissue forming mesenchymal cell types in the airway wall with infiltrating immune cells has to be studied in more details. An overview of possible interactions of mesenchymal cells, immuno-globulins and immune cells in asthma is provided in figure 3.

Fig. 3: Summary of airway wall remodelling through tissue forming mesenchymal cell interaction with mast cells and immuno-globulins.

I.4 The muscarinic receptors on lung fibroblasts: function and role in asthma

The interaction of muscarinic receptors (MR) have been since long a target for therapy in asthma and other chronic inflammatory lung idseases. Together with other membrane bound receptor, especially with the asthma relevant β2-adrenoceptor is largely unkown. MRs modulates different intracellular signal transduction pathways by coupling to
various G proteins and thereby they activate phospholipases C, A2 and D, or degrade cAMP, and increase cGMP production, thus regulating several ion channels (Felder et al 1995; Hosey et al 1992).

In the human lung M1 subtype was only reported in human bronchial fibroblasts at a low level (Milara et al 2012). However, this finding is in contrast to our studies where we observed that bronchial fibroblasts of asthma patients and controls did not express M1 receptors (Costa et al 2013). M2 receptors were also expressed by bronchial epithelial cells (Profita et al 2011). Stimulation of M1 receptors in the human lung caused broncho-constriction and modulated electrolyte and water secretion (Gosens et al 2006, Lammers et al 1989). The available literature does not allow the conclusion that all these actions of the M1 receptor are mediated through G-proteins alone, but they are the best studied signalling proteins of MRs.

The M2 receptor was expressed in the human peripheral lung and in the bronchus (Ikeda et al 2011; Gies et al 1989) indicating their role in homeostasis of the bronchial wall tissue and function. Moreover immuno-blotting revealed the expression of the M2 receptor protein by human bronchial fibroblasts which make them a target for MR inhibitors and open the possibility that remodelling can be blocked by such drugs (Milara et al 2012). However, beside the study of Grainge et al (2011) no data supports such a role of MRs in airway pathologies. M1 receptors were also reported to be expressed by epithelial cells (Profita et al 2011), and smooth muscle cells (Gosens et al 2006), while their function in the regulation of cell phenotypes has not been studied extensively in these cells. The findings of Milara et al (2012) suggested that MRs can induce so-called phenotyp transition from fibroblasts to myo-fibroblasts. This opens also the possibility that MRs may trigger epithelial to mesenchymal transition which will be described later in more details.

Inhibition of M2 receptors may have further benefits in asthma and COPD therapy, as it was reported that in neurons the M2 receptor functioned as auto-activating receptor, thereby limiting the release of acetylcholine from nerve terminals in the lung (Gosens et al 2006; Kistenmaker et al 2012). M2 receptors were also expressed in the human trachea (Patel et al 1995), and in bronchi, but not in bronchioles, where, M2 receptors mediated the inhibition of adenyl cyclase and thereby preventing broncho-dilation (Ten Berg et al 1996; Roux et al 1998).
In regard to airway wall remodelling the stimulation of the M2 receptors induced fibroblasts proliferation (Matthiessen et al 2006; Haag et al 2006) and acetylcholine enhanced cell proliferation in cells isolated from COPD patients, as compared to healthy non-smokers, through a process involving ERK1/2 MAPK and NFκB phosphorylation (Profita et al 2009). Airway smooth muscle thickening is a characteristic pathology of asthma, and to a lesser extent of COPD. Accumulating evidence suggests that stimulation of MRs is involved in the proliferation and maturation of airway smooth muscle cells (Kistenmaker et al 2012). Furthermore, MR activation enhanced the mitogenic effect of PDGF-BB and of EGF in airway smooth muscle cells (Kong et al 2006; Gosens et al 2007). However, the molecular interaction of the receptor specific signalling cascades is not clear. Moreover, the expression of myosin light-chain kinase was augmented by carbachol in human airway smooth muscle cells which had been stretched by cyclical mechanical forces (Fairbank et al 2008).

Furthermore, and relevant to airway wall remodeling stimulation of MRs supported TGF-β1-induced expression of contractile proteins by smooth muscle cells and thus would increase the constrictive forces in an asthma attack (Oenema et al 2012). In animal models of asthma and COPD, the M1, M2 and m3 receptor inhibitor tiotropium significantly inhibited airway smooth muscle remodelin and contractile protein expression in guinea pigs (Gosens et al 2005; Bos et al 2007). The drug also prevented smooth muscle thickening and the expression of TGF-β1 in the bronchi in an ovalbumine mouse model (Ohta et al 2010). In a murine asthma model the selective M3 receptor antagonist bencycloquidium bromide had similar beneficial effects as it inhibited ovalbumin-induced mRNA expression of IL-5, IL-4, and MMP-9, as well as lung tissue eosinophil infiltration, airway mucus production, and collagen deposition in lung tissues (Cao et al 2011).

Further, in regard to remodeling in asthma Hypoxia and PDGF-BB induced synthesis of soluble collagen type I via ERK1/2 and p38 MAP kinase in human lung fibroblasts and pulmonary vascular smooth muscle cells (Karakiulakis et al 2007). In human lung fibroblasts stimulation of M2 receptors induced cell proliferation and collagen synthesis (Matthiessen et al 2006; Haag et al 2008). In a clinical trial, inhalation of methacholine induced airway remodeling in asthma patients, through the expression of TGF-β and collagen type-I as shown in bronchial biopsies (Grainge et al 2011). Treatment with tiotropium inhibited the increased peri-bronchial collagen deposition in a guinea pig COPD model (Pera et al 2011).
The M3 receptor is the primary MR subtype that mediates the contraction of bronchial and tracheal smooth muscle. However, compared to M2 levels, the M3 receptor is expressed at 25% (Roffel et al. 1988). In addition, the M3 receptor is expressed by airway smooth muscle cells (Eglen et al. 1996), by human bronchial fibroblasts (Milara et al. 2012), and by human bronchial epithelial cells (Profita et al. 2011), and by human peripheral lung cells (Gies et al. 1989). The M3 receptor is predominantly expressed in the bronchus and its density decreases from the segmental to subsegmental bronchus tissue, while it has not been reported in lung parenchyma (Ikeda et al. 2012). Stimulation of the M3 receptor in the human lung, and in isolated human bronchus caused bronchoconstriction and mucus secretion from submucosal glands (Gosens et al. 2006; Roux et al. 1998; Eglen et al. 1996; Roffel et al. 1990). A summary of the expression and function of the different MR in the airway wall and its three major tissue forming cell types is shown in figure 4.

There are a lot of different signalling options for MR, and the interaction with other signalling pathways is even more complicated, as each single MR subtype can activate more than one G protein type in a specific cell type. It can therefore be assumed that the condition of the cell and its phenotype dictate to which G-protein the MR is coupled under a defined condition, which in consequence alters the signalling pathway and the cells response (Felder 1995; Hosey 1992; Eglen & Nahorski 2000). MRs can be divided...
into two primary G-proteins couplings: 1) M2 and M4, which are coupled to pertussis-toxin sensitive Gi/o type proteins, while 2) the M1, M3, and M5 receptors are coupled to Gq/11-type proteins (Felder 1995; Caulfield & Birdsal 1998). However, MRs can also couple to a wider range of G-proteins as well as to other signaling proteins and thus, it is difficult to predict their effects (Nathanson 2000; van Koppen 2003). An overview of known muscarinic receptor signaling is provided in Figure 5.

Figure 5: Overview of known muscarinic receptor coupled G-proteins and subsequent signalling.

As mentioned above MRs can activate other signalling pathways beside G-proteins. Studies on animal, human cell lines and on isolated lung tissue showed that MR also act via extracellular signal-regulated kinases 1 and 2 (ERK1/2), or mitogen-activated protein kinase 1 (MAPK-1) (Rosenblum et al 2000). In human bronchial epithelial cells different MR inhibitors such as tiotropium which blocks M1, M2, and M3 receptors, gallamine: blocking specifically the M2 receptor, telenzepine blocking specifically the M1 receptor, and 4-diphenylacetoxy-N-methylpiperidine methiodide which is a specific M3 receptor antagonist, down-regulated acetylcholine-induced leukotriene B4 release through activating ERK1/2 MAPK and nuclear factor-kappaB (NFκB) pathways (Profta et al 2011). With respect to COPD and smoking related asthma it is important to note that it has been reported that M2 and M3 receptors mediated cigarette-smoke-extract-induced IL-8 secretion by in human airway smooth muscle cells via a protein kinase C-dependent activation of the inhibitor of IκBa and ERK1/2 (Oenema et al 2010), which suggests a signaling pathway depicted in Figure 6.
Figure 6: Hypothesized synergistic effects of acetylcholine (ACH) and cigarette smoke through the activation of M1, M2, and M3 receptor on the release of pro-inflammatory, asthma related stimuli. LTB4: leukotriene B4, PKC: protein kinase C, NFκB: nuclear factor kappaB, and IκB: inhibitor of NFκB.

1.5 β2-adrenergic receptors in lung fibroblasts: function and role in asthma

The β2-adrenergic receptor has been the target for asthma therapy since several decades. Its activation by natural and synthetic ligands leads to muscle relaxation (Geumei et al 1975; Campbell et al 1976). In regard to asthma therapy, the addition of long acting β2-agonists to the anti-inflammatory treatment with glucocorticoids has been proven to be beneficial as clinical studies implied (Azzis et al 1998; Nelson et al 2001; Simons et al 1997). Furthermore, the studies suggested that β2-adrenergic receptor agonist must have additional effects beside muscle relaxation, which became especially obvious. Ikeda et al (2012) provided first evidence of compartment specific density and availability of the MR types and of the β2-adrenergic receptor.

The β2 adrenergic receptor is embedded into the cell membrane and its ligands have to integrate into the membrane before being able to bind to it. The known mechanism of action of β2-adrenergic receptors involves the activation of adenylyl cyclase and generation of intracellular cAMP, which then activates the cAMP dependent protein kinase A (PKA) and Epac. PKA also phosphorylates other key regulatory proteins that e.g. control the tone of airway smooth muscle cells. However, in the past decade it became obvious that adenylyl cyclase signalling for b2-adrenergic receptors is coupled more complex than it was considered earlier. Surprisingly few information is available for details of β2-adrenergic receptor signalling, despite its massive use in the therapy of chronic inflammatory lung diseases (Cazzola et al 2013). Among the described activities of β2-adrenergic receptors is the subsequent activation of various G-proteins and their subsequent signalling cascades, as shown in figure 7.
In 1999 our group was the first to provide a cAMP-dependent mechanism by which β2-adrenergic agonists are capable of activating the glucocorticoid receptor in a ligand independent manner which was linked to the activation of the cell cycle regulator p21(Waf1/Cip1) (Eickelberg et al 1999; Rüdiger et al 2002; Roth et al 2002). Two years later our group, together with our colleagues from Sydney, reported that the beneficial anti-proliferative effect of glucocorticoids and long acting β2-adrenergic receptor agonists (LABA) does not occur in asthmatic airway smooth muscle cells, while the anti-inflammatory action and the muscle relaxing action of the drugs was not affected (Roth et al 2004). This mechanism was first controversially discussed, but later confirmed in human epithelial cells isolated from asthma patients by brushing (Usmani et al 2005). In a recently publish study we provided evidence that this beneficial interaction of glucocorticoids with LABA also occurs in circulating lymphocytes as fast as within 30 minutes after drug inhalation (Rüdiger et al 2103). This finding may prove that inhaled drugs enter the circulation and there calm down the inflammatory process, respectively the activation of circulating immune cells, thereby reducing the migration of these cells into the inflamed asthmatic lung. The hypothesized molecular chemical interaction of LABA with glucocorticoids is depicted in figure 8.
In this thesis we investigated the novel described interaction of the β2-adrenoceptor with MRs, especially with the fibroblast specific M2 receptor in the condition of asthma. Based on a recent clinical study there is very strong evidence that both receptor types affect each other, since remodelling of the airway wall induced by a cholinergic stimulus was prevented when the probands had inhaled a short acting β2-adrenergic agonist (Grainge et al 2011). In view of the compartment specific receptor density (Ikeda et al 2012) this finding is most important for the suspected interaction of the two receptor types. Together the studies may imply that the receptors do not interact directly but through secreted mediators and thus their regulation and function may be different in various cell types (Blumethal 2012).

In other asthma relevant mesenchymal cell types, the smooth muscle cell, it has been reported that the different G-protein types interact with each other in an unexpected pattern (McGraw et al 2007). Dependent on the available partnering proteins (including other G-proteins) the signalling was pro- or anti-inflammatory. The mechanism behind this opposing effects of G-protein interaction remains unknown.

Figure 8: Hypothesized interaction of β2-adrenergic receptor agonist signalling with the signalling of the glucocorticoid receptor.
I.6 Tissue remodeling in asthma:

Tissue remodeling can occur in all organs and is often preceded by inflammation, especially in lung diseases such as fibrosis, asthma, and chronic obstructive pulmonary disease (COPD). Asthma and COPD share several pathologies and it is difficult to distinguish between both diseases. In patients with COPD airway remodeling occurs mainly in the small airways. In asthma patients the changes are significant in the upper and medium size airways (Caramori et al 2011; Contoli et al 2010; Paredi et al 2009; Plopper et al 2008). Summarizing the large number of reports on increased pro-inflammatory cytokines that were linked to airway remodeling in the asthmatic lung it is indicated that IL-1β and TNF-α are two major drivers for airway remodeling (Fujita et al 2011; Lappalainen et al 2005). The mechanism(s) by which the two cytokines-induced remodeling pathologies lead to the loss of the airway cells response to glucocorticoids is not understood (Doerner et al 2009; Turner et al 2009).

TNF-α and IL-1β are potent stimulators of the de novo synthesis and production of pro-inflammatory cytokines including GM-CSF, IL-6 IL-8, CXCL10, TNF-α, and CTGF (Fitzgerald et al 2004; Letuve et al 2006; Nonaka et al 2010; Seidel et al), as well as of extracellular matrix, including collagens, fibronectin and tenascin (Degen et al 2009; Goulet et al 2007) and extracellular matrix regulating enzymes such as ADAM33, and MMPs (Nakamura et al 2004; Goulet et al 2007). Furthermore, stimulation of lung fibroblasts with IL-4 and/or TNF-a increased the expression of adherence proteins that in turn up-regulate cell-cell interactions with immune cells (Sabatini et al 2002). As described in all these studies most often the activation of the pro-inflammatory factors produced by fibroblasts or myofibroblasts involve the activation of mitogen activated kinases (MAPK) Erk1/2, p38 and dephosphorilation of Akt together with the transcription factor NF-κB. Inhibition of the different signal transducers was attempted as a novel asthma therapy target but was not successfully established in clinical trials, while the inhibition of NF-κB, which is the major pro-inflammatory, shows some promising aspects (Seidel et al 2013; Seidel et al 2012; Seidel et al 2011), as summarized in figure 9.
Interestingly the activation of NF-κB involves a proteasomal oxygen radical scavenger glutathione which we have shown to have a potential asthma therapeutic effect as it down-regulates the synthesis and release of most above mentioned pro-inflammatory cytokines by suppressing the activation of the NF-κB signaling cascade in human airway wall fibroblasts and smooth muscle cells (Seidel et al 2009; Seidel et al 2010; Seidel et al 2011).

Tissue remodeling depends on the proper function of the tissue forming cells and therefore it is closely linked to cell differentiation. In asthma several studies reported that airways fibroblasts differentiate into myo-fibroblasts. When compared to their parental fibroblasts, myo-fibroblasts secrete more pro-inflammatory mediators and depose more extracellular matrix. Furthermore, myo-fibroblasts express some characteristics of smooth muscle cells, such as α-smooth muscle actin, and it is controversy discussed whether the two cell types can transform into each other or if they belong to different cell lineages. In regard to tissue remodeling in the asthmatic airways, the local composition of the extracellular matrix regulates the balance between its own deposition, and its degradation, thus an imbalance of this control mechanism will lead to fibrosis (Holgate et al 2008).
I.7 The role of airway smooth muscle cells in asthma associated airway remodeling

Airway smooth muscle cells also contribute to airway wall remodeling in that they increase in number and size. This pathology correlate with the development of a so-called “secretory phenotype” of the airway smooth muscle cells (Dekkers et al 2009). The phenotype change is also characterized by an increased expression of cell adhesion receptors, and receptors for cytokines (Joubert et al 2005). In addition there is increased angiogenesis in the asthmatic airway wall which is assumed to be based on the overproduction of vascular endothelial growth factor (VEGF), which stimulates the formation of new blood vessels in the sub-epithelial cell layers and in addition causes edema formation by loosening the cell-cell contact between endothelial cells. Edema in turn allows the infiltration of more pro-inflammatory cells which secrete remodeling enhancing cytokines in the airway wall (Makinde et al 2006). The increase of the airway smooth muscle cell mass, angiogenesis and fibrosis, contribute to airway wall thickness which restricts airflow (Pepper et al 2005; Benayoun et al 2003).

I.8 The role of airway fibroblast in asthma associated airway remodeling

The involvement of fibroblasts in the airway wall remodeling process in asthma is assumed to be initiated through their activation by various cytokines. Once activated the fibroblasts themselves become a source of more inflammatory cytokines and of more deposed extracellular matrix. The activated fibroblast is often called “myo-fibroblasts” and shares some properties with airway smooth muscle cells (Descalzi et al 2007; Michalik et al 2011; Singh et al 2008).

However, it is difficult to define the border between myo-fibroblasts and smooth muscle cells, and the only reliable differentiation between both cell types is the fibrilar expression of α-smooth muscle cell actin (α-SMA) together with increased the myosin heavy chain (SmMHC), SM22α, and calponin (Descalzi et al 2007; Michalik et al 2011; Shi et al 2013; Wu et al 2008). The most potent stimulus of myo-fibroblast differentiation and epithelial to mesenchymal transition is TGF-β, which also is the most potent stimulus for the production extracellular matrix, and which is furthermore significantly up-regulated in asthma patients samples (Makinde et al 2007; Shi et al 2103; Qin et al 2012; Singh et al 2008). The action of TGF-β in myo-fibroblast differentiation involves MAPKs and may be related to the pro-inflammatory activation cascade shown in figures 3 and 4 (Sabatini et al 2013; Singh et al...
A typical protein expression pattern of markers for myo-fibroblasts is shown in figure 10:

α-Smooth Muscle Actin arrangement in human lung fibroblasts

![Control, IL-1β, PDGF-BB, Carbachol, TGF-β](image)

Fig 10: Myo-fibroblast specific fibrilar α-SMA expression is induced by TGF-β but not by PDGF-BB, IL-1β or carbachol in human airway wall fibroblast within 48 hours.

Sub-epithelial fibrosis is mainly due to the increased deposition of extracellular matrix induced by a wide range of cytokines (Roche et al 1989; McDonald et al 2001). It is often postulated that fibrosis results from the imbalance between extracellular matrix deposition and degradation; however, this mechanism has not been fully confirmed in human asthma (James et al 2006). The transition of epithelial cells into fibroblasts is called epithelial-mesenchymal transition (EMT) and was classified as the major mechanism that increases the number of fibroblasts in chronic lung diseases. In fact, the stimulation of human bronchial epithelial cells (HBEC) with TGF-β1 regulates mesenchymal cell markers, in conjunction with a down regulation of epithelial cell markers. Importantly, when combined with TGF-β other inflammatory mediators such as TNF-α enhance the EMT effect (Camara et al 2010).
Regarding therapies, a large number of studies showed that the combination of corticosteroids and LABA improves lung function, better controls asthma symptoms and improves quality of life. Most of these beneficial therapeutic effects are due to a decrease in inflammation (Greening et al 1994; Pauwels et al 1997; O’Byrne et al 2005).

Inhalation of allergens results increases eosinophils in the lung, which are associated with increased inflammation of the airways. Today it is assumed that eosinophils causes airway wall remodeling in asthma (Brannan et al 2012). Treatment with LABA reduced the inflammatory response and reduced the number of lung infiltrating eosinophils (Kelly et al 2010). Asthmatic airway wall cells incubated with TGF-β 1, and 2 expressed increased markers of myo-fibroblasts (Michalik et al 2009). Furthermore, inflammatory symptoms in asthma were resolved within one week of treatment; the increase of airway hyper-responsiveness (AHR) and markers of extracellular matrix deposition persisted indicating that the pathology of AHR and remodeling are independent pathological events in asthma. It was demonstrated that airway inflammation, airway remodeling, can occur independent of inflammation and importantly remodeling persists after the inflammation has been resolved (Kariyawasam et al 2007).

In human asthmatic volunteers the inhalation of a muscarinic agonist as well as of an allergen caused fast airway wall remodeling within a few days, rather than within weeks and months, as suggested by animal models earlier. Moreover, airway remodeling was independent of inflammation and prevented by inhalation of a short acting β2-agonist (Grainge et al 2011). The asthma typical tissue structural changes of the airway wall after inhalation of a muscarinic receptor activator or of allergens is shown figure 11.

Fig.11: Pathologic changes in the airway wall of asthma patients after inhaled house dust mite or methacholine occurred within 8 days in humans (Grainge et al 2011).
The process of fibrosis may be caused by the inadequate production of inflammatory factors by infiltrated immune cells, or by the inadequate response of fibroblasts to these factors (Portnoy et al 2006). Moore BB et al discovered that PGE 2 (prostaglandin E2) is a potent inhibitor of fibroblast proliferation (Moore et al 2000). In lung fibroblasts, the production of PGE2 is regulated by TGF-β and affects cell proliferation, apoptosis, and differentiation (McAnulty et al 1997; Annu et al 1998).

However, TGF-β is also associated with fibrosis and tissue remodeling in vivo and in vitro (Sagara et al 2002). Primary human epithelial cells regulated fibroblast proliferation through the release of TGF-β which stimulated fibroblasts to produce and secrete PGE 2. This in turn had an antiproliferative feedback mechanism on fibroblasts (Hostettler et al 2008). Using conditioned medium obtained from airway epithelial cells it was demonstrated that cyclosporine provoked fibroblast proliferation only when exposed to epithelial cells before. The fibrogenic potential of cyclosporine was attributed to many different cellular mechanisms, such as, decreased extracellular matrix degradation through increased expression of tissue proteinases and matrix metal-proteinase (Duymelinck et al 1998; Hostettler et al 2004). In a healthy lung, the daily turnover of the extracellular matrix is estimated at 10 - 15 % (Davidson 1990; Stetler -Stevenson et al 1996), and it is controlled by three different mechanisms: extracellular matrix de novo synthesis, extracellular matrix degradation by MMPs and the inhibition of MMP by tissue inhibitor factors (McAnulty & Laurent 1995; Curran & Murray 1999). The balance of these 3 mechanism guarantees the function and integrity of all organs and organisms.

The structure of the extracellular matrix, and the vasculature, control the supply of oxygen to the tissues, which is of specific importance during embryogenesis, fibrosis, and repair of tissue damage and in tumor progression (Norman et al 2000; Tokuda et al 2000; Chen & Aplin 2003; Gebb & Jones 2003). One component of the extracellular matrix, collagen type-IV, is particularly abundant in fibrosis, and it seems specifically increased when there is a low supply of oxygen, assigned as hypoxia (Steinbrech et al 1999). Fibroblasts are the major source of collagen type-I and –IV.

It was early demonstrated by our group that there is a link between hypoxia, local nutrition and secretion of pro-MMP-2. Moreover hypoxia has a distinct effect on different cell types, and in the lung, hypoxia in combination with collagen type expression, alters the secretion of
pro-MMP-2, thereby reducing the chance to properly repair the damaged tissue (Leufgen et al 2005). Late, Goulet et al. (2007) investigated the effect of corticosteroids and LABA on the deposition of extracellular matrix, on collagen gene expression, on cell proliferation, and on IL-6, IL-8, and secretion by primary lung fibroblasts (Goulet et al 2007). Fetal calf serum (FCS, 5%) increased total extracellular matrix synthesis, collagen deposition, cell proliferation as well, IL-6 IL-8 secretion, and TGF-β1 levels. In starving condition (0.3% albumin) corticosteroids reduced the deposition of collagens and of total extracellular matrix, while in 5% FCS, the corticosteroid increased deposition of extracellular matrix (Goulet et al 2007).

In contrast, LABA reduced the deposition of extracellular matrix and collagens in all conditions. In combination, the drugs had an additive effect in thus largely decreasing the deposition of extracellular matrix. The study implied that as soon the inflammation of the airways has been resolved by glucocorticoids the addition of LABA may reduce tissue remodeling in the asthmatic airways (Goulet et al 2007). In asthmatic fibroblasts the most produced extracellular matrix components are: fibronectin and tenascin -C (Chiquet-Ehrismann et al 2003). Both glycoproteins are over expressed in asthma and COPD and contribute to the progression and pathology.

M. Degen et al. (2009) demonstrated in human lung fibroblasts that treatment with corticosteroids reduced the expression of tenasin-C, but increased fibronectin. In contrast LABA did not show a significant effect on either, tenasin-C or fibronectin (Degen et al 2009). Another characteristic of the fibrotic processes in the lung is the modified composition and production of glycosaminoglycans (GAG) by lung fibroblasts (Kneussl et al 1996; Moseley et al 1986). When lung fibroblasts were stimulated by platelet-derived growth factor (PDGF)-BB in normal condition, the cells increased the production of GAGs in a dose-dependent manner. Under hypoxia the GAG production increased through up-regulated synthesis of PDGF-BB. Depending on the composition and the length of the sugar chains different GAG and their degradation products can increase the pro-fibrotic processes in the damaged lung (Papakonstantinou et al 2000).
The epithelial-mesenchymal trophic unit and its role in airway remodeling.

The homeostasis of the airway wall depends on the proper cross talk between epithelial cells and mesenchymal cells. This functional interaction was termed “the epithelial- mesenchymal trophic unit, which is abbreviated as EMTU (Halwani et al 2011; McGee et al 2006). The concept of EMTU was introduced by Evans et al who defined it as a complex of cells those guaranties: (i) the proper development of the lung (ii) regulates cellular repair processes and (iii) regulates the inflammatory response (Evans et al 1999). The focus of the publication was on fibroblasts, positioned under the epithelium and appearing with a stellate phenotype in close proximity to the epithelium and their responses to various stimuli. Fibroblasts have the ability to differentiate into myofibroblasts, which are characterized by the expression of α-smooth muscle actin-non-filamentin increased secretion of pro inflammatory mediators, and deposition of extracellular matrix. The regulation of extracellular matrix accumulation in the tissue of the lung is the net-result of deposition and degradation of different extracellular matrix components. In the airway walls of asthma patients this finely tuned control of extracellular matrix turnover is out of balance and either keeps the EMTU constitutively active or the imbalance is the result of an activated EMTU. The interaction of the different cell types forming the EMTU of the human airway wall is illustrated in figure 12.

Fig 12: The hypothesis of the interaction of epithelial cells with mesenchymal cells forming the EMTU.
Today it is not clear what is the initiating event that deregulates the balance of the EMTU in asthma, however, it leads to hyper-responsiveness, and thickening of the airway wall due to increased extracellular matrix deposition and increased mesenchymal cell number. Together these factors reduce the airway flexibility and the airway lumen which gives the patient the feeling of not being able to breathe (Holgate et al 2000). The healthy epithelium acts as a barrier of the airway wall to the inhaled air which carries a multitude of external factors including allergens, dust etc, and while in sensitive patients cause an asthma exacerbation. There is experimental evidence that the epithelium regulates the homeostasis of the subepithelial tissue, and when its integrity or function is compromise, the EMTU is activated and tries to protect and repair the damaged tissue (Hostettler et al 2008). Damage of the epithelium initiates a repair process including epithelial to mesenchymal transition (EMT) and cell migration. Two important cytokines that regulate the EMT are EGF and TGF-β, which both stimulate myofibroblasts to increase the deposition of extracellular matrix in asthmatics patients (Brewster et al 1990). If the tissue repair process is normal, the fibroblasts-myofibroblasts go in apoptosis or return into the sub mucosa, but this doesn’t occur in asthma and other chronic inflammatory lung diseases (Harold et al 2003). Studies of undifferentiated epithelial cells and fibroblasts, confirmed that a change of the EMTU stimulates the release of TGF-β from both cell types (Thompson et al 2006). TGF-β, not only activated fibroblasts to depose more extracellular matrix, but studying its action led to identify the first genetic pre-condition implicated in asthma which was linked to the development of airway hyper-responsiveness: ADAM33 (Van Eerdewegh et al 2002).

ADAM33 expression was associated with a rapid decline in lung function not only in asthma patients (Jongepier et al 2004), in asthmatics and in subjects with COPD (Gosman et al 2007), and in the general population (van Diemen et al 2005). ADAM33 is a gene consisting of 22 exons that encode a full-length molecule of 813 amino acids containing a metalloprotease domain, a disintegrin domain, an EGF domain and a cytoplasmic domain. ADAM33 belongs to the family of multifunctional membrane glycoprotein-anchors that mediates cell-cell interactions as well as cell-extracellular matrix interaction (Black et al 1998). The discovery of soluble ADAM33 that contain the metalloprotease domain in the broncho-alveolar fluid (BALF) of subjects with asthma, but not in BALF of healthy subjects indicated that levels of sADAM33 are inversely correlated with lung function (Lee et al 2006). The soluble ADAM33 also promoted new blood vessel formation in the airway wall which is pathology of severe asthma (Puxeddu et al 2008).
The function of the healthy epithelium is that of a barrier which protects the airway tissue from inhaled substances such as chemicals, pollen, allergens, and dust. Studies examining bronchial biopsies of subjects with moderate and severe asthma showed that there is an injury of the epithelium colonnade, with the presence of several markers of cellular stress. It was therefore assumed that the stress condition causes incorrect tissue remodeling of the damaged epithelium, resulting in an epithelium cell layer that remains not fully closed at many places. These gaps are permitting exogenous substances to penetrate the airway wall, as is shown in the figure 13 below, resulting in a chronic airway wall inflammatory response (Truong-Tran et al 2002). In fact there is evidence that epithelial cells from subjects with chronic airway inflammation form an incompletely epithelial cell layer (Knight et al 2002; Knight et al, 2003). This condition of a damaged epithelium which is improperly repaired continues to secrete cytokines and other growth factors. This chronic inflammatory condition causes the infiltration of a large number of eosinophils, which are the source of TGF-β, and are responsible for the differentiation of fibroblasts into myo-fibroblasts, which then depose more extracellular matrix. Eosinophils may also interact with the mucus secreted largely by goblet cells, thereby increasing the viscosity of the mucus present in individuals with this asthma (Rose et al 2006).

In summary, the cross talk between the epithelium and the underlying mesenchyme appears to be a central guide for the homeostasis of the healthy lung and is disrupted in asthma. The expression of ADAM33 and its involvement in EMTU function helped to understand airway remodeling in asthma (Jongepier et al 2004). Today we know more than 200 genes which have been associated with different pathologies of asthma, but unfortunately none of them can be used as a marker for asthma diagnosis, or pathogenesis, or as a new therapeutic target. The airway wall can be considered as a complex called EMTU, epithelial mesenchymal trophic unit, which is fully responsible for the cellular homeostasis of the healthy lung and that an imbalance of this system leads to remodeling, sometimes even in the absence of any detectable inflammation (Bousquet et al 2000).
I.10 **Enzymes that deregulate the EMTU.**

Barton et al described a single nucleotide polymorphisms SNPs of the urokinase plasminogen activator receptor (uPAR) were associated with asthma susceptibility, bronchial hyper-responsiveness and a decline in lung function (Barton et al, 2009). In another study the uPAR activated signaling pathway mediated the action of plasminogen, which leads to increased cell migration, activation of matrix metalloproteinase (MMP), and the release of inflammatory cytokines (Blasi et al, 2010). In addition, uPAR acted as a co-receptor for integrins, thereby regulating cell adhesion, migration and proliferation in various human tumor cell lines (Smith et al 2010). Plasminogen activates epithelium repair and therefore affects certain aspects of airway remodeling, which maybe reflected by the high level of uPAR and uPAI-1 mRNA in humans (Heguy et al 2007). Importantly, the role of uPAR in airway remodeling was confirmed by the higher level of uPAR transcript in asthma patients compared to non-asthmatics (Ellis et al 1990).

In addition, the binding of uPA to uPAR activated the intracellular signal cascade of p38 and ERK1 2 MAPK (mitogen activated protein kinase), as well as PI3K (phosphoinositol-3-kinase) and Akt, which are all known to take part in airway remodeling and cell differentiation. Furthermore, PAI-1 (plasminogen activator inhibitor 1) is the best studied inhibitor, which binds uPAR and renders it inactive (Ellis et al 1990). However, this mechanism is contradicted by the observation that in asthma patient’s sputum the level of PAI-1 was significantly higher than in controls (Miyamoto et al 2011). Importantly, house dust mite allergens increased the concentration of uPA and PAI-1 in induced sputum of house dust mite sensitive asthma patients much stronger than in controls. Furthermore, the ratio of
uPA / PAI-1 was lower in asthma patients before and after inhalation of house dust mite allergens (Kowal et al 2010). The results suggest that the reduced ratio of uPA / PAI-1 may promote airway remodeling and play an important role in the development of bronchial hyper-reactivity.

In mice which were genetically deficient for PAI-1 exogenous plasminogen reduced subepithelial bronchial wall thickening, as well as collagen deposition, and α-smooth muscle actin expression (Kuramoto et al. 2009). During the embryonic development of the lung, fibroblast growth factor 10 (FGF10) is expressed by distal epithelial progenitor cells and prevents the cell’s differentiation, while promoting their proliferation (Bellusci et al. 1997). FGF10 is also secreted by mesenchymal progenitor cells when stimulated with β-catenin, suggesting that both cell types regulate lung development and differentiations in a controlled system (De Langhe et al. 2008).

In animal experiments naphthalene activated epithelial progenitor cells through Wnt/FGF10, a process which is usually restricted to embryogenesis. This makes it likely that there are cell types (stem cells) which are able to rejuvenate the lung structure by specific stimuli and thus control airway remodeling in the adult lung (Volckaert et al. 2011).

Most exacerbations in asthma are due to infections, bacterial or viral, which first destroy the epithelium and then penetrate the airway wall into the mesenchymal cell layers. To effectively combat infection, the epithelium requires the assistance of neutrophils recruited from the peripheral circulation. Activated neutrophils migrate through the epithelium towards the tissue lesion. To achieve this, the neutrophils have to produce and release proteolytic enzymes and after reaching the tissue lesion they produce oxygen radicals in order to destroy the pathogens. Unfortunately, radical oxygen’s, if produced into large quantities attenuate chronic inflammation and recruitment more neutrophils into the respiratory tract which further increases the inflammation in asthma (Tam et al. 2011). An overview of EMTU regulating enzymes and their relevance of asthma and airway wall remodeling is provided in figure 14.
The Epithelial-Mesenchymal Trophic Unit (EMTU)

Epithelial mediators such as TGF-β alter fibroblast function

HYPOTHESIS

Asthma susceptibility genes in EMTU will contribute to risks of impaired lung function & asthma

Fig 14: EMTU regulating enzymes and their relevance for asthma pathologies

I.11 Mast cells and other immune activated cell types:

In addition to neutrophils, activated mast cells infiltrate the airway wall and adhere to fibroblasts where they trigger IL-6 secretion, and activate lymphocytes which interact with airway smooth muscle cells through I-CAM.

Similarly, eosinophils, and neutrophils bind and interact to airway smooth muscle cells through I-CAM (Brightling et al 2002; Lazaar et al 1994; Lee et al 2006; Panettieri et al 1998; Ramos-Barbon et al 2005). Eosinophils also can release TGF-β and thereby promote the differentiation of fibroblasts into myo-fibroblasts, and regulate the production and destruction of the extracellular matrix, and TGF-β also activates kinases which stimulate cell proliferation. Rhinovirus infection is the most frequent cause for asthma exacerbation and increased the inflammatory response by releasing IL-6 and IL-8 which further trigger airway wall remodeling (Contoli et al 2006; Bedke et al 2009; Oliver et al 2006, Oliver et al 2008; Wark et al 2005).

Cytokines, chemokines, and growth factors which are released by lung infiltrated inflammatory cells, and also by tissue forming structural cells, create a condition that drives airway remodeling in asthma through synthesis and secretion of TGF-β, IL-11, Th17, IL-17, and IL-25 (Doherty et al 2007). As shown in figure 9, increased numbers of Th2 cells release so-called “Th2 cytokines” which include IL-4, IL-5, IL-9 and IL-13, and which play a central role in allergic asthma (Barnes et al 2011). Th2 cells are also essential for the production of...
IgE, eosinophil activation and the secretion of granular proteins. A major remodeling stimulating factor released by eosinophils is TGF-β, which occurs in three isoforms TGF-β1 – 3 and which is the strongest known trigger for extracellular matrix production and deposition (Harrington et al 2005; Harrington et al 2006). In the lung, many immune cells are capable of producing TGF-β, but the predominant source is represented by eosinophils (Flood-Page et al 2003; Minshall et al 1997; Redington et al 1997) and fibroblasts (Kelley et al 1991). In patients with asthma, the role of TGF-β is to guide cellular remodeling, but with little result, because the process is dysregulated (Davies et al 2009); in addition TGF-β drives the differentiation of fibroblasts into myo-fibroblasts, and directs their proliferation.

IL-17 is another strong attractor of neutrophils into the airways, and also induces airway smooth muscle cells to express receptors for chemokines such as CCR3, CCR1. It also induces cell migration through the epithelium and up-regulates airway wall remodeling (Roussel et al 2010; Tang et al 1996). Together IL-17 and IL-6 are involved in cellular remodeling of the airway wall and contribute to the induction of extracellular matrix deposition (Chang et al 2009). IL-6 also affects airway smooth muscle cell activity if its soluble receptor is present as it usually occurs under inflammatory conditions (Ammit et al 2007). A hypothesis that shows the progression between inflammation and remodeling is in figure 15.

![Fig.15](image)

Fig.15: The current idea how inflammation and the immune-response causes remodeling of the airway in asthma (Galli S et al 2008).
I.12 Asthma relevant cytokines that are produced by airway fibroblasts:

I.12.a Platelet-derived growth factor-BB (PDGF-BB)

During the development of most mammals several growth factors play important roles as regulators of cell differentiation and are released by specific cell types in response to changes in their close environment which most often consists of extracellular matrix. In this regard fibroblasts are the most important cell type that contributes to form the connective tissue of the airway wall and the lung.

Fibroblasts produce proteins that act as scaffold controllers as well as proteins that form the extracellular matrix (McAnulty et al 2007). However, later in life the same proteins are essential for wound repair and if produced uncontrolled they might contribute to the pathogenesis of inflammation as seen in chronic obstructive pulmonary disease (COPD) and asthma. Both diseases have been related to the malfunction of fibroblasts, which do not respond the same way as they would do under physiological conditions (Lewis et al 2005; McAnulty et al 2007).

One of the inflammation related growth factors in asthma is the platelet-derived growth factor (PDGF), which was initially discovered as a signaling protein for the mitogen activity of fibroblasts and vascular smooth muscle cells (Kohler & Lipton 1974; Ross et al. 1974). Later PDGF was described to control a number of patho-physiological events in the development of fibro-proliferative diseases including lung fibrosis, inflammatory disorders, and tissue remodeling (Donovan et al 2013; Heldin & Westermark 1996). PDGF is present in three isoforms which form either homo- or heterodimers which consist of either two A-chains forming PDGF-AA, or a hetero-dimer of one A- and one B-chain forming PDGF-AB, which is the most abundant form in healthy humans; or as two B-chains forming PDGF-BB which is highly expressed in fibro-proliferative tissue and in tumors (Hammacher et. al 1988; Bowen-Pope et al 1989).

All three PDGFs signal through two different receptor called PDGFR-α, and PDGFR-β. Like their ligand the two PDGF receptors form dimers with specific binding capacities for the different PDGF-dimers. Both PDGF-receptors are transmembrane proteins with tyrosine kinase activity (Matsui et al 1989). PDGF receptor activation is followed by a downstream signal transduction of Grb2, Grb7, ERK1/2 mitogen activated protein kinase (MAPK), the
Jak/-STAT signaling cascade or the PI3-kinase/Akt signaling (Heldin et al 1998; Ball et al 2010).

As was previously described, PDGF modulates a lot’s of physiological events, but in an inflammatory environment, such as asthma or COPD, there is an imbalance between the different PDGF-isoforms. The action of PDGF on fibroblasts- myo-fibroblasts proliferation and on the differentiation of this cell type as it increased fibrilar α-SMA expression and formation, which characterizes fibroblasts as myo-fibroblast (Malmstrom et al 2003), discovered an intermediate form of myo-fibroblast, which is different from the differentiated because has more compact form compared to the intermediate that has form with more stretched cell shape and lamellipodia protrusion, indicate an active process of remodeling.

Other asthma relevant cytokines, such as IL-13, might achieve parts of their pathological effects through the induction of PDGF-BB, thereby activating airway remodeling (Ingram et al 2004). Moreover, was shown that PDGF-BB significantly increased the $[^3]H$-thymidine incorporation in asthmatic bronchial fibroblasts compare to healthy fibroblasts. Taken together these data indicate that PDGF-BB can modulate the inflammatory environment and the remodeling process in asthma and in other chronic inflammatory airway diseases (Dube et al 1998). The known effects of PDGF-BB in asthma are summarized in figure 16.

![Diagram](PDGF-BB contributes to several pathologies in asthma.)

It is surprising how little is known about the effect of β2-agonists and muscarinic receptor inhibitors on airway wall remodeling and on the action of PDGF-BB mainly acting through NF-κB (Lewis et al 2005). Therefore we investigated the effect of the two drugs alone and in
combination on PDGF-BB induced proliferation by human primary diseased and non-diseased airway wall fibroblasts in this thesis.

1.12.b Tumor necrosis factor (TNF)-α:

Another factor implied in asthma and COPD pathology is the “Tumor necrosis factor-alpha” (TNF-α), which is produced by inflammatory active cell types such as by macrophages. TNF-α is synthesized as a 26-kDa precursor inactive, which needs to be activated, by an enzyme named TNF-α converting enzyme (TACE) (Gearing et al 1994).

Inflammatory cells produce TNF-α in response to their activation by membrane surface proteins of bacteria (Medzhitov et al 2000). TNF-α activates the pro-inflammatory transcription factor NF-κB, leading to amplified transcription of many pro-inflammatory genes, and results in the synthesis of more pro-inflammatory cytokine, chemokine and proteases. Furthermore, TNF-α mediates the release of histamine from mast cells (Coward et al 2002; van Overveld et al 1991), and it has been demonstrated that TNF-α is a chemoattractant for neutrophils and eosinophils which are important cell types in different forms of asthma (Lukacs et al 1995). TNF-α also is responsible for the increased cytokine release from T-cells (Scheurich et al 1987), and leads to the hyper-expression of adhesion molecules that are important for drive T-cell adherence in the lung during inflammation (Lasalle et al 1991).

TNF-α is also known to stimulate fibroblasts to release eotaxin (Teran et al 1999). This was confirmed in asthma where asthmatic lung fibroblasts under TNF-α, released more eotaxin than healthy control cells in a dose- and time dependent manner, which was preceded by increased mRNA production (Sato et al 2001) Moreover TNF-α modulated the expression of adhesion molecules by fibroblasts which acts together with eotaxin as a strong chemoattractant for eosinophils (Sabatini et al 2002). Increased numbers of eosinophils are often found in the airways of asthmatics TNF-α together with GM-CSF inhibited eosinophil apoptosis (Esnault et al 2003).

Regarding airway wall remodelling in bronchial asthma there is usually a deregulated deposition and degradation of extracellular matrix through TNF-α. Furthermore, TNF-α was found to increase MMP-9 expression which is the enzyme that degrades extracellular matrix (Nakamura et al 2004). In asthma it was assumed that the imbalance of the deposition and degradation of extracellular matrix is a major reason for airway wall thickening and therefore
of airway lumen reduction. The known effects of PDGF-BB in asthma are summarized in figure 17.

\[\text{Fig 17: The known effects of TNF-\textalpha in asthma are summarized in figure 11.} \]

Surprisingly not much is known about the effect of \(\beta_2 \)-agonists and muscarinic receptor inhibitors on airway wall remodelling and on the action of TNF-\(\alpha \). Therefore we investigated the effect of the two drugs alone and in combination on TNF-\(\alpha \) release by human primary diseased and non-diseased airway wall fibroblasts in this thesis.

I.12.c Interleukin-1\(\beta \):

IL-1\(\beta \) is one of the most important cytokines that is assumed to initiate lung inflammation in asthma and COPD and also plays an important part in the maintenance of inflammatory conditions (Dinarello et al. 1996). IL-1\(\beta \) is synthesized as a precursor, which is activated by the interleukin-1 converting enzyme (ICE), which limits its biological availability of IL-1\(\beta \) (Wilson et al. 1994). IL-1\(\beta \) is produced by many different cell types, including fibroblasts, monocytes, tissue and alveolar macrophages, smooth muscle cell, vessel wall endothelial cells, neutrophils, and airway epithelial cells (Ackerman et al. 1994; Wagner et al. 1985; Chung et al. 2001).

In regard to asthma IL-1\(\beta \) stimulates leukocytosis by inducing neutrophils to infiltrate the lung. IL-1\(\beta \) also stimulates the secretion of other pro-inflammatory cytokines, such as IL-6, IL-8, GM-CSF and TNF-\(\alpha \) from many cell types. IL-1\(\beta \) stimulates specifically granulocytes,
B and T lymphocytes, and hematopoietic cells which all are very important in asthma pathology (Oppenheim et al. 1986). Moreover, IL-1β stimulates the expression of the adhesion molecules (ICAM-1), which facilitates the attachment of neutrophils in the vascular endothelium thereby increasing lung infiltration of inflammatory cells, and ICAMs in the respiratory epithelium which increases the attachment of inflammatory cells to the epithelial cells which may lead to the disruption of the protective epithelium in the airways (Chung et al. 2001).

The expression of IL-1β is very high in the lung of patients affected by asthma, COPD or idiopathic pulmonary fibrosis, where it was demonstrated that higher concentration of IL-1β correlate with an increase of cellular cAMP levels and a subsequent deregulation of fibroblast proliferation (Selige et al 2010). IL-1β is also found to be a co-stimulatory factor together with IL-13 which determinates the release of mitogen factor like PDGF-AA, because IL-13 stimulates the release of PDGF-AA, but the presence of IL-1β enhance the release of this factor (Ingram et al 2004); Moreover, IL-1β is also a positive inducer for eotaxin which is a potent eosinophil-specific chemotactic factor (Sato et al 2001). In bronchial epithelial cells, TGF-β stimulate their de-differentiation from the epithelial into a more mesenchymal phenotype; and this process was enhanced by IL-1 β. Thus confirming the contribution of IL-1β in the differentiation regulating process called epithelial to mesenchymal transition (EMT). It had recently been indicated that prevention of EMT might be very important therapeutic option in asthma (Doerner et al. 2009). In figure 18 the known actions of IL-1b on asthma and tissue forming mesenchymal cells is summarised.

Fig 18: Summary Action of IL-1β regulated mesenchymal cell activities which are relevant to asthma.
Only little data have been reported for the effect of β₂-agonists and muscarinic receptor inhibitors on IL-1β stimulated airway wall remodeling suggesting a central role of cAMP (Selige et al 2010). Therefore we investigated the effect of the two drugs alone and in combination on IL-1β release by human primary diseased and non-diseased airway wall fibroblasts in this thesis.
II. MATERIALS and METHODS:

II.1 Primary human lung fibroblasts.

Lung tissue specimens were obtained from the Department of Internal Medicine, Pneumology, University Hospital Basel, Basel, Switzerland, with the approval of the local Ethnical Committee (EK:05/06) and written consent of each patient.

Primary human lung fibroblasts were isolated from tissue of non-asthma and asthma patient lung biopsies as previously described and maintained and expanded under standard cell culture conditions (37 °C, 100% humidity, 5% CO₂, 95% air) [Tamm M et al 2001]. Fibroblast growth medium consisted of RPMI 1640 supplemented with 8 mM L-Glutamine, 25 mM HEPES, 1x anti-biotic/anti-mycotic, 1x MEM vitamin, and 10% fetal bovine serum (FBS) (all: Gibco/Invitrogen Corp., Grand Island, NY).

II.2 Primary human lung fibroblasts characterization.

We have characterized primary human lung fibroblasts for the expression of α-smooth muscle actin (SMA) immuno-staining as shown in figure 5. Cells were grown to 80% confluence and than fixed with 2 x 5 minutes incubation in 2% formalin (in PBS), followed by blocking unspecific antibody binding with 1% bovine serum albumin in PBS for 20 minutes. The first rabbit anti-body, specific to α-smooth muscle actin was diluted 1:1000 and incubated over night (4oC) before being washed off with 3 x 5 minutes blocking buffer, followed by 1 hour incubation with a species specific FITC labeled antibody (all Santa Cruz Biotechnology, CA). Unbound antibodies were washed off by 3 x 5 minutes blocking buffer and 1 x PBS. The Fluorescence was monitored by microscopy and the arrangement of α-SMA in filaments was used as indicator for myo-fiborblasts, while diffuse cytosolic staining was the indicator for fibroblasts (Fig. 5).

II.3 Drug treatment.

Fibroblasts were seeded (10⁴ cells/cm²) into 12 and 24 well plates and grown until 90% confluence. The cells were deprived of serum for 24 hours before being incubated for 24 hours in the presence of increasing concentration of the LABA olodaterol (10⁻⁹ to 10⁻⁶ M), or with the LAMA tiotropium bromide (10⁻⁸ to 10⁻⁵ M), and/or carbachol (10⁻⁸ to 10⁻⁵ M) in the
following combinations: (i) carbachol + tiotropium followed by stimulation with IL-1β; or (ii) olodaterol + tiotropium for 30 min followed by stimulation with IL-1β (10 ng/mL).

Recombinant human platelet-derived growth factor (PDGF)-BB (R&D Systems Europe, Abingdon, United Kingdom) was dissolved in sterile 4 mM HCL to a stock concentration of 100µg/mL; Recombinant human TNF-α (R&D Systems Europe Ltd.) was dissolved to a concentration of 100µg/mL in sterile PBS (Dulbecco’s PBS 1x, PAA-Laboratories GmbH) containing 0.1% human or bovine serum albumin; Recombinant Human IL-1β (R&D Systems Europe Ltd.), was reconstituted at 25 µg/mL in sterile phosphate buffered saline (PBS 1x, PAA-Laboratories), containing 0.1% bovine serum albumin. Carbachol and olodaterol (BI 1744 CL) were dissolved in RPMI 1640 medium. Tiotropium bromide (Ba 679 BR) was dissolved in ethanol. Olodaterol and tiotropium bromide were provided by Boehringer Ingelheim Pharma GmbH & Co. KG (Biberach, Germany).

II 4 Cytokine secretion.

Sub-confluent fibroblasts (90%) in 12 well plates were serum starved for 24 hours before treatment. PDGF-BB, TNF-α, or IL-1β, were added to fibroblasts (0.1, 1, 10 ng/mL) in the presence or absence of the drugs as described in the previous chapter. After 24 hours, cell culture medium samples were collected. IL-6 and IL-8 levels in the cell culture media were determined by commercial enzyme-linked immune sorbent assays (ELISA) following the distributors instruction (Ani Biotech Oy, Orgenium Laboratories, Vantaa, Finland).

II.5 Protein expression.

Cellular proteins were isolated from confluent cells by dissociation in lysis buffer, (62.5 mM Tris-HCL, pH 6.8; 2% sodium dodecylsulfate, 2% β-mercapto-ethanol, 10% glycerol) and analyzed by immuno-blotting as described earlier [Roth M et al 2004] for the expression of cAMP response element binding protein (CREB), phosphorylated CREB (P-CREB) and α-tubulin (all: Cell Signaling Technology).
II.6 CREB EMSA

A non radioactive commercial available CREB EMSA was used to determine CREB DNA binding following the instruction of producer. Cells were grown to sub-confluence and after incubation with different drug, were treated for the nuclear protein extraction.

Cell were washed with 10 ml ice-cold PBS7PIB; 10 ml ice-cold PBS/PIB were added and cells were scraped and transferred into a pre-chilled 15 ml tube and spin at 300 x g for 5 minutes at 4°C.

The pellet was placed in 1 ml ice-cold HB buffer by gentle pipetting and transferring the cells into a pre-chilled 1.5 ml tube.

Cells were left to swell on ice for 15 minutes; 50 microl 10% Nonidet P-40 (0.5% final) and vortex the tube vigorously for 10 seconds.

The homogenate was centrifuged for 30 seconds at 4°C; the supernatant (cytoplasmic fraction) was removed and stored in another tube at -80°C.

The nuclear pellet was re-suspended in 50 microl Complete Lysis Buffer and rock the tube gently on ice for 30 minutes on a shaking platform.

After centrifuge for 10 minutes at 14000 x g at 4°C we saved the supernatant (nuclear extract).

Protein concentration was determined by using a Bradford-based assay.

II.7 cAMP detection.

Sub-confluent fibroblasts (90%) grown in 24 well plates were serum deprived for 24 hours. To block phosphodiesterase activity, cells were pretreated with iso-butyl-methylxantine (IBMX, Sigma) for 10 minutes, then stimulated as follows: (i) serum-free medium, (ii) IL-1β (10 ng/ml), (iii) carbachol 10^{-5} M, (iv) tiotropium 10^{-6} M, (v) olodaterol 10^{-6} M, (vi) IL-1β + olodaterol 10^{-6} M, (vii) IL-1β + olodaterol 10^{-6} M + carbachol 10^{-5} M (added 30 minutes prior to all other stimuli), (viii) IL-1β + olodaterol 10^{-6} M + carbachol 10^{-5} M + tiotropium 10^{-6} M (added 30 minutes prior to all other stimuli). After 10 minutes cells were lysed and cAMP levels were determined by ELISA following the instruction of the producer (R&D Systems Europe Ltd.).
To mimic the activity of tiotropium, cells were 30 minutes pretreated with Pertussis toxin (ENZO), then stimulated as follows: (i) serum-free medium, (ii) olodaterol 10^6 M, (iii) olodaterol 10^6 M + IL-1β (5 ng/ml), (iv) carbachol 10^5 M + olodaterol 10^6 M + IL-1β (5 ng/ml), (v) carbachol 10^5 M + olodaterol 10^6 M + IL-1β + Pertussis toxin (added 30 minutes prior to all other stimuli). After 10 minutes cells were lysed and cyclic AMP levels were determined by ELISA following the instruction of the producer (R&D Systems Europe Ltd.).

II.8 Statistics.

Cytokine data has been calculated as percent change compared to the release of IL-1β stimulated cells and the data are presented as mean ± SEM. After checking the data for normal distribution, paired or unpaired, two-tailed student’s t-test was performed and p-values < 0.05 were considered significant.
III. Effect of muscarinic receptors and b2-adrenergic receptors on fibroblast proliferation.

III.1 Control of fibroblast proliferation in asthma and COPD by muscarinic receptors and β2 receptors

Asthma and COPD are characterised by increased mass of sub-epithelial mesenchymal cells including fibroblasts, myo-fibroblasts and smooth muscle cells. The origin of these cells is discussed controversially and several scenarios have been suggested: a) cell migration from surrounding tissues (Kohan et al 2012), b) cell phenotype change (b.1) from fibroblasts to myo-fibroblast (Milara et al 2012) or (b.2) epithelial to mesenchymal transition (EMT) (Crosby & Waters 2010), 3) infiltration of circulating fibrocytes that originate from the bone marrow (Mehrad & Strieter 2012; Tsai et al 2013), or 4) proliferation of resident tissue cells (Zhang et al 2012).

Recent studies in volunteering asthma patients have challenged the hypothesis that asthma is caused by an over reacting immune system (Grainge et al 2011; Bossley et al 2012). Not only that airway remodelling is one of the first pathologies recognised even in children with wheezing and asthma (Bossley et al 2012; O’Reilly et al 2012); in addition, it has been shown that either the stimulation of the muscarinic receptors or the administration of allergens lead to remodelling of the airway within 8 days (Grainge et al 2011). Remodelling occurred without any sign of inflammation and was significantly reduced if the patients were pre-treated with a muscle relaxant. These findings are well in line with studies in non-human primates (rhesus monkeys), in which it has been impressively shown that the arrangement of the smooth muscle bundles around the airways is completely different in animals who grew up in filtered sterile air compared to those growing up with exposure to allergens or ozone (Plopper et al 2012; 2008; 2007; Evans et al 2010). There is no other animal model in mouse, rat or sheep which reflects the human disease (asthma). We and others have reported earlier that human airway cells maintain pathologies which reflect remodelling and inflammation under cell culture conditions. In some of these studies, it was shown that the regulation of intracellular signalling and activity is deregulated in asthma.

In 2004, we reported that proliferation control is deregulated in asthmatic smooth muscle cells and lead to the hyperplasia which is well documented in clinical studies (Roth et al 2004). In subsequent studies, we have shown that this deregulated proliferation is explained by a faulty translation of cell differentiation factor specifically in airway smooth muscle cells of asthma.
patients (Borger et al 2009) and that well known asthma triggers such as house dust mite can induce the down regulation of this cell differentiation factor, C/EBP-α (Migliino et al 2011). We have also shown that non allergic asthma and COPD triggers such as cigarette smoke affect the expression of C/EBP-α and β in fibroblasts of smoker and respective controls, thereby increasing cell proliferation and secretion of pro-inflammatory cytokine (Migliino et al 2012).

In vitro experiments suggested that proliferation of mesenchymal cell types can be reduced or blocked by both β2-adrenergic receptor agonists and M2 receptor inhibitors (Milara et al 2012, Tsai et al 2013, Zhang et al 2012). However, there is only little evidence that this effect of the drugs also occurs in the diseased lung. Investigating the interaction of MRs with β2 adrenergic receptors, we discovered that the release of cAMP (anti-proliferative, anti-inflammatory) is lower in fibroblast of asthma patients. A similar disease specific low cAMP level was reported by our collaborator from Sydney in airway smooth muscle cells of asthma patients (Niimi et al 2012, Trian et al 2011). The lower level of cAMP in asthma fibroblasts and smooth muscle cells may also explain the increase activity of mitochondria (cells power supply) which has been described by one of our collaborator from Bordeaux (Trian et al 2007).

Comparing the proliferative and inflammatory effect of different asthma relevant growth factors, we observed that fibroblast of asthma patients respond with faster proliferation to PDGF-BB and this effect is further enhanced when the cells are stimulated by a muscarinic receptor activator in parallel. Importantly, muscarinic receptor activation alone did not significantly increase proliferation and inflammation of fibroblasts. It would be of great importance to understand the pathology of asthma as well as to find new diagnostic and therapeutic targets by characterising the molecular biological difference of the underlying signalling pathway, especially for the combination of MR activation with other asthma relevant cytokines, such as PDGF-BB.

Based on the existing literature, we postulated that muscarinic and tyrosine kinase receptor signalling may merge and support each other through the activation (phosphorylation) of a protein complex formed by Shc/Grb2/SOS. In other cells, it has been shown that the M2 receptor activated this complex through PI3 kinase, while the same complex was directly bound to the PDGF-BB receptor (Sharma et al 2005; Lopez-Ilasaca et al 1997). When activated, this complex stimulated a signalling cascade which was both pro-proliferative and
pro-inflammatory (see Fig. 19). The reason why M2 receptor activation alone is insufficient to trigger proliferation and inflammation is unclear.

Therefore we further studied the interaction between the M2 receptors with tyrosine kinase receptors which will give better understanding and hopefully will provide new targets for diagnosis and therapy. Importantly, the expected results may enable us to develop a test system which can be used for so called “personalised medicine” for asthma, which would be the first in the world.

III.2 On going studies and preliminary results:

Currently we investigate which of the above listed six factors is essential for the supportive proliferative effect of M2 receptor activation when combined with PDGF-BB on the stimulation of fibroblast proliferation. To test the role of each of the named signalling proteins cells were treated for 24 hours with either a chemical well characterised inhibitor or with corresponding small inhibitory RNAs.

Our preliminary results suggest that only β2-adrenergic agonists have a significant anti-proliferative effect which is linked to cAMP activity (figure 20). In contrast to the additive anti-inflammatory effect of combined β2-adrenergic agonists and M2 receptor inhibitors, described above, we did not observe any such beneficial effect of the combined drugs. On the
contrary, our data suggest that M2 receptor inhibitors seem to counteract the anti-proliferative effect of β2-adrenergic agonists (figure 20).

Figure 20: The dose-dependent effects of tiotropium (M2 receptor inhibitor) and olodaterol (β2-adrenergic agonist) on PDGF-BB-induced fibroblast proliferation. Bars represent mean ± S.E.M of triplicate experiments in 13 asthmatic cell lines and in 6 non-asthmatic control cell line.

In a second set of experiments we determined the effect of M2 receptor inhibitors and β2-adrenergic agonists on the activation of their signalling cascades in human lung fibroblasts and airway smooth muscle cells from controls and asthma patients. Fibroblasts were activated with 10^{-6} M carbachol (M2 receptor activator) and 5 ng/ml PDGF-BB (tyrosine kinase receptor) alone or in combination. Both concentrations have been shown to be effectively up-regulating fibroblast proliferation in previous experiments and the effect of the stimulation was monitored for the following end-points at 5, 10, 15, 30 and 60 minutes:

1.a) Shc
1.b) Grb2
1.c) SOS
1.d) Ras
1.e) MEK
1.f) Erk1/2
We hope that the expected results may explain the surprising counteractive effect of combined M2 receptor inhibitors and β2-adrenergic agonists on proliferation.
References

Câmara J, Jarai G. Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-alpha. Fibrogenesis Tissue Repair. 2010 Jan 5;3(1):2.

Doerner AM, Zuraw BL. TGF-beta1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1beta but not abrogated by corticosteroids. Respir Res. 2009,10.1186/1465-9921-10-100.

Esnault S, Malter JS. Hyaluronic acid or TNF-alpha plus fibronectin triggers granulocyte macrophage-colony-stimulating factor mRNA stabilization in eosinophils yet engages

Holgate ST. Pathophysiology of asthma: what has our current understanding taught us about new therapeutic approaches? J Allergy Clin Immunol. 2011 Sep;128(3):495-505

Holgate ST. The airway epithelium is central to the pathogenesis of asthma. Allergol Int 2008;57:1-10.

Kelly NM, Effect of budesonide and formoterol on allergen-induced airway response, inflammation, and airway remodelling in asthma. J Allergy Clin Immunol. 2010 Feb)

Kowal K, Moniuszko M, Zukowski S, Bodzenta-Lukszyk A. Concentrations of plasminogen activator inhibitor-1 (PAI-1) and urokinase plasminogen activator (uPA) in induced sputum of asthma patients after allergen challenge. Folia Histochem Cytobiol. 2010 Dec;48(4):518-23.

Lappalainen U, Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol. 2005 Apr;32

McDonald DM: Angiogenesis and remodeling of airway vasculature in chronic inflammation. Am J Respir Crit Care Med 2001

Qin XJ, Zhang GS, Zhang X, Qiu ZW, Wang PL, LiYW, Li W, XieQM, Ke YH, Lee JJ, Shen HH. Protein tyrosine phosphatase SHP2 regulates TGF-β1 production in airway epithelia and asthmatic airway remodeling in mice. Allergy. 2012 Dec;67(12):1547-56

Redhu NS, Gounni AS. The high affinity IgE receptor (FceRI) expression and function in airway smooth muscle. Pulm Pharmacol Ther. 2013 Feb;26(1):86-94.

Shalaby KH, Martin JG. Overview of asthma; the place of the T cell. Curr Opin Pharmacol. 2010 Jun;10(3):218-25.

Tam A, Wadsworth S, Dorscheid D, Man SF, Sin DD. The airway epithelium: more than just a structural barrier. Ther Adv Respir Dis. 2011 Aug

Van Schayck OC. Global strategies for reducing the burden from asthma. Prim Care Respir J. 2013 Jun;22(2):239-43.

IV. RESULTS and PUBLICATIONS

Role of cyclic AMP in the interaction of muscarinic receptors and β2-adrenergic receptors

IV.1 Publication # I
(accepted for Pulmonary Pharmacology & Therapy Nov. 2013)

Introduction: In asthma fibroblasts are indicated as an important source of pro-inflammatory cytokines which regulate remodeling. Second, fibroblasts are the major source of extracellular matrix deposited in the airway wall. Together the two events increase the airway wall thickness and reduce the airway lumen, thereby causing the restricted breathing capacity in an asthma attack. In the first study we assessed the possible effect of muscarinic receptors by activating them through carbachol together with other asthma relevant cytokines (PDGF-BB, TNF-α, IL-1β). We also determined the effect of a muscarinic receptor inhibitor, tiotropium, alone and in combination with a long acting β2-agonist, olodaterol. Both drugs in combination are approved by the European Union to be used for the treatment of chronic obstructive pulmonary disease (COPD) and are in the pre-clinical phase for asthma therapy.

In the Mesenchymal cells (fibroblasts) of the airway wall respond to cholinergic stimulation by releasing pro-inflammatory and chemotactic cytokines and may thus contribute to chronic inflammation of the lung. Here, we studied the anti-inflammatory potential of olodaterol, a long acting β2-adrenergic receptor agonist, and tiotropium, a long-acting muscarinic receptor antagonist, and whether they interact at the level of the cyclic AMP dependent signaling pathway. Pulmonary fibroblasts of asthmatic (n=9) and non-asthmatic (n=8) subjects were stimulated with the muscarinic receptor agonist carbachol and interleukin-1β (IL-1 beta) in presence or absence of tiotropium or olodaterol alone, or their combination. We also measured cAMP levels and phosphorylation of the cAMP response element binding protein (CREB). As single components, carbachol, olodaterol and tiotropium did not affect IL-6 and IL-8 release. Carbachol concentration-dependently enhanced the production of IL-1β-induced IL-6 and IL-8, which was blocked by the simultaneous addition of tiotropium. The combination of olodaterol plus tiotropium further reduced IL-6 and IL-8 release. Olodaterol induced cAMP and the phosphorylation of CREB, an effect counteracted by carbachol, but rescued by tiotropium. We conclude that olodaterol plus tiotropium cooperate to decrease the inflammatory response in pulmonary fibroblasts in vitro.
A respective manuscript has been accepted for publication in “Pulmonary Pharmacology & Therapeutics” in 2013.

“Tiotropium sustains the anti-inflammatory action of olodaterol via the cyclic AMP pathway”.
Luigi Costa1, Michael Roth2, Nicola Miglino1, Laura Keglowich1, Jun Zhong1, Didier Lardinois3, Michael Tamm2, Pieter Borger1.

1Pulmonary Cell Research, Department of Biomedicine, University Basel,
2Pulmonology, Department of Internal medicine, University Hospital Basel,
3Department of Thoracic Surgery, University Hospital Basel, CH-4031 Basel, Switzerland

Corresponding address:
Dr. P. Borger, Pulmonary Cell Research, Lab 305, Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 CH, Basel, Switzerland.
Tel: +41 61 265 3254
Fax: +41 61 265 2350
Email: pieter.borger@unibas.ch

Supported by the Swiss National Foundation (grant number SNF320030-124905), the Nora van Meeuwen-Häfliger Stiftung and Boehringer Ingelheim (Biberach an der Riss).

Abstract
Mesenchymal cells (fibroblasts) of the airway wall respond to cholinergic stimulation by releasing pro-inflammatory and chemotactic cytokines and may thus contribute to chronic inflammation of the lung. Here, we studied the anti-inflammatory potential of olodaterol, a long acting β2-adrenergic receptor agonist, and tiotropium, a long-acting muscarinic receptor antagonist, and whether they interact at the level of the cyclic AMP dependent signaling pathway. Pulmonary fibroblasts of asthmatic (n=9) and non-asthmatic (n=8) subjects were stimulated with the muscarinic receptor agonist carbachol and interleukin-1β (IL-1 beta) in presence or absence of tiotropium or olodaterol alone, or their combination. We also measured cAMP levels and phosphorylation of the cAMP response element binding protein...
(CREB). As single components, carbachol, olodaterol and tiotropium did not affect IL-6 and IL-8 release. Carbachol concentration-dependently enhanced the production of IL-1β-induced IL-6 and IL-8, which was blocked by the simultaneous addition of tiotropium. The combination of olodaterol plus tiotropium further reduced IL-6 and IL-8 release. Olodaterol induced cAMP and the phosphorylation of CREB, an effect counteracted by carbachol, but rescued by tiotropium. We conclude that olodaterol plus tiotropium cooperate to decrease the inflammatory response in pulmonary fibroblasts in vitro.

1. Introduction

Asthma is a heterogenic respiratory disease and represents a public health problem with increasing prevalence worldwide. It manifests as chronic airway inflammation associated with bronchial hyper-responsiveness, recurrent episodes of respiratory depression, wheezing, chest tightness and cough. Asthma exacerbation can be caused by a wide range of environmental factors, including exposure to airborne or food-contained allergens, temperature changes, humidity, as well as by physical and psychological stress [1]. Several cell types of the immunological compartment have been studied to understand and/or explain the inflammatory conditions of the airways, most prominently T-lymphocytes, macrophages and eosinophils [2, 3]. Recent studies showed, however, that the observed airway inflammation is more than an activation and infiltration of immune cells into the airways, but also involves the activity of tissue forming airway resident cells, such as fibroblasts, smooth muscle cells and epithelial cells [4].

In an inflammatory environment, such as the asthmatic lung, fibroblasts become activated and secrete pro-inflammatory mediators and cytokines including platelet derived growth factor-BB (PDGF-BB), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) which can stimulate each other’s synthesis and action [5 - 7]. Pulmonary fibroblasts have been found to produce IL-6, IL-8, and CCL2 (chemokine c-c motif ligand 2) [8-10], and are an important source of pro-inflammatory and chemotactic cytokines of the lung [11]. The activity of pulmonary fibroblasts can be modulated by β2-adrenergic receptor agonists, as well as by glucocorticoids [12]. In addition, fibroblasts express muscarinic receptors which, upon triggering, exert pro-inflammatory, pro-proliferative and pro-fibrotic actions in the airways [13, 14]. Muscarinic receptors (M1, M2 and M3) present on lung tissue regulate airway smooth muscle contraction and mucus secretion through binding of locally produced
acetylcholine – the endogenous ligand of muscarinic receptors. After allergen exposure, inflammatory, neuronal and epithelial cells release acetylcholine, which triggers bronchoconstriction through M3 receptors present on airway smooth muscle cells [15]. This mechanism explains why anti-cholinergic drugs are well known for their beneficial bronchodilatory effect.

Currently, most common drugs used in asthma treatment are a combination of glucocorticoids (GC) and long-acting β2-adrenergic receptor agonists (LABAs) [16]. GCs have an overall immuno-suppressive effect, which is partly mediated via a transcription inhibitory effect of the glucocorticoids receptor. LABAs bind to β2-adrenergic receptors and induce intracellular cAMP levels leading to the phosphorylation of the cAMP response element binding protein (CREB). In addition to GCs and LABAs, the long-acting muscarinic receptor antagonist (LAMA) tiotropium has been clinically tested in patients with difficult to treat or poorly controlled asthma [17-19]. Tiotropium, however, is currently not approved for the use in asthma. Although the aforementioned clinical data clearly demonstrated additional (or supportive) effects of tiotropium to control asthma symptoms, which may extend beyond inducing bronchodilation, the underlying mechanism is largely unknown.

In this study we investigated the effect of the LABA olodaterol in combination with the LAMA tiotropium on the secretion of pro-inflammatory cytokines (IL-6, IL-8) by human bronchial fibroblasts obtained from asthma and non-asthma patients. In addition, we studied the effects of these drugs on the cAMP dependent signaling pathway.

2. Methods

2.1 Primary human lung fibroblasts

Lung tissue specimens were obtained from the Department of Internal Medicine, Pulmonology, University Hospital Basel, Basel, Switzerland, with the approval of the local Ethnical Committee (EK:05/06) and written consent of each tissue donor (non-asthmatic n=10, asthmatics n=12). The information of the fibroblast donors (gender, age, FEV1, therapy) is shown in table I.

Primary human lung fibroblasts were isolated from tissue of non-asthma and asthma patient lung biopsies as previously described at standard cell culture conditions (37 °C, 100% humidity, 5% CO2, 95% air). Fibroblast growth medium consisted of RPMI 1640 supplemented with 8 mM L-Glutamine, 25mM HEPES, 1x anti-biotic/anti-mycotic, 1x MEM
vitamin, and 10% fetal bovine serum (FBS) (all: Gibco/Invitrogen Corp., Grand Island, NY). All sub-sequently described experiments were performed in fibroblasts between passages 2 – 8.

Table 1:

<table>
<thead>
<tr>
<th>Gender</th>
<th>age</th>
<th>FEV1</th>
<th>FEV1 %</th>
<th>treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 female</td>
<td>54</td>
<td>0.62</td>
<td>72.5</td>
<td>LABA, ICS, LAAC</td>
</tr>
<tr>
<td>C2 male</td>
<td>36</td>
<td>2.64</td>
<td>97</td>
<td>None</td>
</tr>
<tr>
<td>C3 male</td>
<td>32</td>
<td>2.59</td>
<td>91</td>
<td>None</td>
</tr>
<tr>
<td>C4 female</td>
<td>75</td>
<td>1.2</td>
<td>74</td>
<td>LABA, ICS, LAAC</td>
</tr>
<tr>
<td>C5 female</td>
<td>78</td>
<td>1.8</td>
<td>135</td>
<td>LABA, ICS</td>
</tr>
<tr>
<td>C6 male</td>
<td>73</td>
<td>2.7</td>
<td>87</td>
<td>None</td>
</tr>
<tr>
<td>C7 male</td>
<td>72</td>
<td>0.9</td>
<td>77</td>
<td>LABA, ICS, LAAC</td>
</tr>
<tr>
<td>C8 female</td>
<td>62</td>
<td>1.7</td>
<td>78</td>
<td>Oral CS</td>
</tr>
<tr>
<td>C9 female</td>
<td>57</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C10 male</td>
<td>61</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Asthmatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1 female</td>
<td>46</td>
<td>2.89</td>
<td>107</td>
<td>LABA, ICS, LTRA</td>
</tr>
<tr>
<td>A2 female</td>
<td>57</td>
<td>1.27</td>
<td>68</td>
<td>LABA, ICS, LTRA</td>
</tr>
<tr>
<td>A3 male</td>
<td>36</td>
<td>2.8</td>
<td>83</td>
<td>None</td>
</tr>
<tr>
<td>A4 female</td>
<td>54</td>
<td>1.8</td>
<td>93</td>
<td>None</td>
</tr>
<tr>
<td>A5 male</td>
<td>26</td>
<td>3.5</td>
<td>97</td>
<td>LABA, oral CS,</td>
</tr>
<tr>
<td>A6 female</td>
<td>48</td>
<td>2.8</td>
<td>94</td>
<td>LABA, ICS, LTRA, oral CS</td>
</tr>
<tr>
<td>A7 male</td>
<td>39</td>
<td>2.7</td>
<td>77</td>
<td>LABA, ICS, oral CS,</td>
</tr>
<tr>
<td>A8 female</td>
<td>77</td>
<td>0.8</td>
<td>84</td>
<td>LABA, ICS</td>
</tr>
<tr>
<td>A9 female</td>
<td>62</td>
<td>1.5</td>
<td>80</td>
<td>ICS, oral CS</td>
</tr>
<tr>
<td>A10 male</td>
<td>31</td>
<td>4.7</td>
<td>92</td>
<td>None</td>
</tr>
<tr>
<td>A11 male</td>
<td>66</td>
<td>2.8</td>
<td>101</td>
<td>None</td>
</tr>
<tr>
<td>A12 female</td>
<td>78</td>
<td>0.7</td>
<td>69</td>
<td>LABA, ICS, LAAC</td>
</tr>
</tbody>
</table>

Table I: Further information of fibroblast donors: non-asthma: NA; asthma: A, forced expiratory volume in 1 second: FEV1; percentage of FEV1 predicted: FEV1 %; Long acting β2-agonists: LABA, inhaled corticosteroids: ICS; long acting anti-cholinergic: LAAC, leukotriene receptor antagonist: LTRA.

2.2 Fibroblast treatment

Fibroblasts were seeded (104 cells/cm2) into 12 and 24 well plates and grown until 90% confluence. The cells were deprived of serum for 24 hours before being incubated for 24 hours in the presence of increasing concentration of the LABA olodaterol (10-9 to 10-6 M), or with the LAMA tiotropium bromide (10-8 to 10-5 M), and/or carbachol (10-8 to 10-5 M) in the following combinations: (i) carbachol + tiotropium followed by stimulation with IL-1β; or
Recombinant human platelet-derived growth factor (PDGF)-BB (R&D Systems Europe, Abingdon, United Kingdom) was dissolved in sterile 4 mM HCL to a stock concentration of 100µg/mL; Recombinant human TNF-α (R&D Systems Europe Ltd.) was dissolved to a concentration of 100µg/mL in sterile PBS (Dulbecco’s PBS 1x, PAA-Laboratories GmbH) containing 0.1% human or bovine serum albumin; Recombinant Human IL-1β (R&D Systems Europe Ltd.), was reconstituted at 25 µg/mL in sterile phosphate buffered saline (PBS 1x, PAA-Laboratories), containing 0.1% bovine serum albumin. Carbachol and olodaterol (BI 1744 CL) were dissolved in RPMI 1640 medium. Tiotropium bromide (Ba 679 BR) was dissolved in ethanol. Olodaterol and tiotropium bromide were provided by Boehringer Ingelheim Pharma GmbH & Co. KG (Biberach, Germany).

2.3 Cytokine secretion

Sub-confluent fibroblasts (90%) in 12 well plates were serum starved for 24 hours before treatment. PDGF-BB, TNF-α, or IL-1β, were added to fibroblasts (0.1, 1, 10 ng/mL) and after 24 hours, cell culture medium samples were collected. IL-6 and IL-8 levels in the cell culture media were determined by commercial enzyme-linked immune sorbent assays (ELISA) following the distributors instruction (Ani Biotech Oy, Orgenium Laboratories, Vantaa, Finland).

2.4 Protein expression

Cellular proteins were isolated from confluent cells by dissociation in lysis buffer, (62.5 mM Tris-HCL, pH 6.8; 2% sodium dodecylsulfate, 2% β-mercapto-ethanol, 10% glycerol) and analyzed by immuno-blotting for the expression of cAMP response element binding protein (CREB), phosphorylated CREB (P-CREB) and α-tubulin (all: Cell Signaling Technology) as described earlier for other proteins [20].

2.5 cAMP detection.

Sub-confluent fibroblasts (90%) grown in 24 well plates were serum deprived for 24 hours. To block phosphodiesterase activity, cells were pretreated with iso-butyl-methylxantine (IBMX, Sigma) for 10 minutes, then stimulated as follows: (i) serum-free medium, (ii) IL-1β (10 ng/ml), (iii) carbachol 10-5 M, (iv) tiotropium 10-6 M, (v) olodaterol 10-6 M, (vi) IL-1β + olodaterol 10-6 M, (vii) IL-1β + olodaterol 10-6 M + carbachol 10-5 M (added 30 minutes prior to all other stimuli), (viii) IL-1β + olodaterol 10-6 M + carbachol 10-5 M + tiotropium 10-6 M (added 30 minutes prior to all other stimuli). After 10 minutes cells were lysed and
cAMP levels were determined by ELISA following the instruction of the producer (R&D Systems Europe Ltd.). In order to investigate the role of G-proteins fibroblasts were pre-incubated with pertussis toxin (10 ng/ml) for 30 minutes prior to all other treatments.

2.6 Primary human lung fibroblasts characterization

We characterized primary human lung fibroblasts for the expression of α-smooth muscle actin (α-SMA) and fibronectin in immune-chemical staining as described earlier [21] 2.7 Statistics. Cytokine expression was calculated as percent change of IL-1β stimulated cells and the data are presented as mean ± SEM. After checking the data for normal distribution, paired or unpaired, two-tailed student’s t-test was performed and p-values < 0.05 were considered significant.
3. **Results**

3.1 **Fibroblast characterization:**

Fibroblasts were characterized by immunostaining for the expression of α-SMA, with fibrillar α-SMA as indicator for myo-fibroblast phenotype. Non-stimulated fibroblasts showed a diffuse cytoplasmic expression of α-SMA (Fig. 1A), and treatment with either 5 ng/ml IL-1β (Fig 1B), or 1 x 10^{-5} M carbachol (Fig 1C), or 1 x 10^{-6} M tiotropium (Fig. 1D), or 1 x 10^{-6} M olodaterol (Fig. 1E), or 1 x 10^{-6} M tiotropium plus 1 x 10^{-6} M olodaterol (Fig. 1F). In contrast, treatment with either 10 ng/ml PDGF-BB (Fig. 1G), or 5 ng/ml TGF-β1 (Fig.1H) stimulated the fibrillar arrangement of α-SMA typical for myo-fibroblasts, with the effect being most prominent in TGF-β1 stimulated cells.

![Figure 1: Representative immune-chemical characterisation of α-SMA in human lung fibroblasts treated for 24 hours with different stimuli and drugs investigated in this study: (A) non-stimulated serum starved fibroblasts, (B) 5 ng/ml IL-1β, (C) 1 x 10^{-5} M carbachol, (D) 1 x 10^{-6} M tiotropium, (E) 1 x 10^{-6} M olodaterol, (F) 1 x 10^{-6} M tiotropium plus 1 x 10^{-6} M olodaterol, (G) 10 ng/ml PDGF-BB, or (H) 5 ng/ml TGF-β1. Similar results were obtained in four additional fibroblast lines.]

The expression of M1-3 receptor was analyzed by PCR and observed that fibroblasts mainly expressed M2 receptor, and little of M3 receptor, while none of fibroblast lines expressed M1 receptor (data not shown) which is in line with other reports [14].
3.2 Dose-dependent induction of IL-6 and IL-8 by PDGF, TNF-α and IL-1β

Primary fibroblasts released IL-6 and IL-8, while GM-CSF and eotaxin levels were below the detection level. PDGF-BB significantly increased IL-6 release by fibroblasts of asthma and non-asthma patients, with no difference between the groups (Fig.2A). TNF-α also increased IL-6 release, however, the effect was more pronounced in fibroblasts from asthma patients (Fig.2B). IL-1β induced the release of IL-6 in both asthma and non-asthma fibroblasts, with no significant difference between the groups (Fig.2C). As shown in figure 2D, PDGF-BB also significantly increased IL-8 release with the effect being stronger in cells from asthma patients. TNF-α and IL-1β concentration-dependently increased the release of IL-8 release from both asthma and non-asthma fibroblasts (Fig 2E, F). Compared to each other and with regard to asthma fibroblast specific action IL-1β was the most potent cytokine, therefore we focused on its modification by the drugs. Based on direct cell counts we did not observe any significant increase of fibroblast numbers within the observation period thus the increase of cytokines cannot be explained by cell numbers (data not shown).

Figure 2: Release of IL-6 and IL-8 by fibroblasts of asthmatic (n≥5) and non-asthmatic (n≥5) subjects incubated with different concentrations (0.1, 1, 10 ng/ml) of PDGF-BB (A, D), TNF-α (B, E) and IL-1β (C, F). Bars represent the mean ± S.E.M. of independent experiments in lung fibroblasts obtained from asthmatic and non-asthmatic subjects. *p<0.05 asthma or non-asthma compared to un-stimulated cells; † p<0.05 asthma compared to non-asthma.
3.3 Tiotropium counteracts the IL-1β and carbachol-induced release of IL-6 and IL-8

To simulate an inflammatory environment, which is one of the characteristics of the lungs of asthma patients, and to optimally induce both IL-6 and IL-8, fibroblasts were stimulated IL-1β (10 ng/ml) with and without carbachol (10-8 to 10-5 M). As shown in figure 3A carbachol alone had no effect, but concentration-dependently enhanced the IL-1β-induced IL-6 release by fibroblasts of asthma patients, whereas only a trend was observed in fibroblasts of non-asthma donors (p=0.064).

![Figure 3](image-url)

Figure 3: Effect of 10-5M carbachol (A, D), tiotropium (B, E), and their combination (C, F) on the release of IL-6 and IL-8 by fibroblasts of asthmatic (n≥5) and non-asthmatic (n≥5) subjects. Bars represent the mean ± S.E.M. of independent experiments in lung fibroblasts obtained from asthmatic and non-asthmatic subjects. *p<0.05 compared to IL-1β (10 ng/ml); #p<0.05 carbachol compared to carbachol plus tiotropium. †p<0.05 asthma compared to non-asthma.
Tiotropium alone did not affect IL-1β-induced IL-6 secretion (Fig. 3B), but it significantly counteracted the additive effect of carbachol on IL-1β induced IL-6 secretion (Fig. 3C). Only high concentrations of carbachol (10-5 and 10-6 M) significantly enhanced IL-1β-induced release of IL-8, and alone it had no effect (Fig. 3D). Surprisingly, tiotropium (10-6 M) significantly reduced IL-1β-induced IL-8 secretion by asthma fibroblasts, but not in control cells, alone the drug had no effect (Fig 3E). In addition, tiotropium (10-8 and 10-6 M) completely reversed the additive effect of carbachol on IL-1β induced IL-8 secretion in fibroblasts from asthmatic and non-asthmatic patients (Fig 3F).

3.4 The combination of olodaterol plus tiotropium reduces IL-1β-induced IL-6 and IL-8 secretion

Figure 4: Effects of olodaterol (A, C) and the combination of olodaterol plus tiotropium (B, D) on the release of IL-1β-induced IL-6 and IL-8 release by fibroblasts of asthmatic (n≥5) and non-asthmatic subjects (n≥5). Bars represent the mean ± S.E.M. of independent experiments in lung fibroblasts obtained from asthmatic and non-asthmatic subjects. *p<0.05 compared to IL-1β (10 ng/ml); # p<0.05 olodaterol alone compared to olodaterol plus tiotropium.
As shown in figure 4A, olodaterol concentration-dependently inhibited the release of IL-6 in IL-1β-stimulated cells of asthma and non-asthma subjects significantly, but the drug alone had no effect on IL-6 secretion. The combination of olodaterol (10-5 M) plus tiotropium (10-6 and 10-8 M) induced a further significant reduction of IL-6 release in fibroblasts of asthma patients, but not in cells obtained from non-asthmatic subjects (Fig 4B). As presented in figure 4C, olodaterol alone had no effect on IL-8 secretion, but significantly reduced IL-1β-induced IL-8 release by fibroblasts obtained from non-asthmatic subjects, whereas a trend was observed for the highest concentration (10-6 M) in fibroblasts of asthmatic origin (p=0.071). The combination of olodaterol (10-5 M) plus tiotropium (10-6 and 10-8 M) also induced a further significant reduction of IL-1β induced IL-8 release (Fig 4D).

3.5 Tiotropium restores olodaterol-induced cAMP formation

Finally, we investigated the effects of olodaterol, tiotropium and combinations of these compounds on intracellular cAMP levels and the phosphorylation status of the cAMP-responsive element-binding protein (CREB). IL-1β, carbachol or tiotropium present in the culture medium as individual compounds did not affect basal (control) levels of intracellular cAMP (data not shown). Olodaterol significantly enhanced intracellular cAMP levels in IL-1β-stimulated cells of both asthma and non-asthmatic subjects (n=8, p<0.05), which were almost completely blocked by the simultaneous addition of carbachol (Fig. 5A, n=8, p<0.05). In the presence of tiotropium, the olodaterol-induced cyclic AMP formation was completely restored in fibroblasts of both asthmatic (n=8, p<0.05) and non-asthmatic subjects (n=8, p<0.05). In addition, we observed that asthma-patients accumulated significantly less cAMP compared to non-asthmatic subjects (n=8, p<0.05). In figure 5B we provide evidence, that the G-protein inhibitor pertussis toxin did not have a significant rescuing effect on carbachol dependent reduction of olodaterol-induced cAMP.

In a parallel set of identical experiments, total protein extract was isolated and used to determine the phosphorylation status of CREB. As is shown in figure 5C, IL-1β-stimulated fibroblasts expressed low levels of phosphorylated CREB (P-CREB), and olodaterol (10-6 M) increased the phosphorylation of CREB, which was counteracted by the simultaneous addition of carbachol (10-6 M). Tiotropium (10-6 M) reversed the inhibitory effect of carbachol on the phosphorylation of CREB.
Figure 5: (A) Absolute cAMP (pg/ml) produced by lung fibroblasts of asthma patients (n=8) and controls (n=8). Cells were stimulated for 10 minutes either with IL-1β alone or in the presence of the drugs. Bars represent the mean ± S.E.M. of independent experiments. * and ** p<0.05 effect of olodaterol compared to IL-1β + IBMX-treated cells; # and ## p<0.05 effect of carbachol compared to olodaterol + IL1β + IBMX-treated cells; φ and φφ effect of tiotropium compared to carbachol + olodaterol + IL1β + IBMX-treated cells; @ p<0.05 intra group comparison asthma versus non-asthma. (B) relative changes of olodaterol induced cAMP levels (100%) in the presence or absence of drugs, carbachol or pertussis toxin. (n=3 each group), bars represent the mean ± S.E.M. of independent experiments. * indicate significant difference of the drugs effect compared to IL-1β + olodaterol with p<0.05 (Student’s t-test, paired); n.s.: not significant. (C) The effect of IL-1β (5 ng/ml), olodaterol (10-6 M), carbachol (10-6 M), tiotropium (10-6 M) and combinations of these compounds on the phosphorylation of CREB (p-CREB) at 30 minutes after the addition of the stimuli or drugs. The immune-blots are representative examples of four independent experiments.)
4. Discussion

There is abundance of evidence that the signaling systems triggered by muscarinic- and β2-adrenergic receptors are integrated in an intricate interacting network [12]. Although both systems are triggered by distinctly different receptors, they affect the activity of the same pool of G proteins [13]. This may explain why tiotropium and olodaterol cooperate, and why they -- when added together -- have beneficial effects in the treatment of asthma and COPD [17, 18, 22, 23]. In a recent paper, it was shown that add-on therapy with tiotropium provided sustained bronchodilation and resulted in reduced asthma exacerbations in patients who were symptomatic and had persistent airflow limitation on top of the use of LABAs and inhaled GCs [19]. These observations suggest a role of muscarinic receptor antagonists that extends beyond their properties as bronchodilators. Indeed, in a guinea-pig model of asthma tiotropium was found to counteract remodeling- and inflammatory responses [24-26]. In addition, in vitro studies showed that stress-activated airway smooth muscle cells exposed to carbachol secreted increased levels of pro-inflammatory cyclooxygenases, as well as IL-1β, IL-6 and IL-8 [27]. In airway smooth muscle cells, muscarinic receptor stimulation induced the secretion of IL-6 and IL-8 and this effect was significantly greater in the presence of cigarette smoke and inhibited by tiotropium [28, 29].

In our present study, separately IL-1β and carbachol elicited the release of IL-6 and IL-8 by fibroblasts of asthmatic and non-asthmatic origin, and their combination further enhanced IL-6 and IL-8. This shows that in an inflammatory environment, such as in the asthmatic lung, endogenous acetylcholine may further aggravate the inflammation. Our in vitro data with primary human lung fibroblasts demonstrate that tiotropium exerted clear anti-inflammatory effects by reducing carbachol-induced IL-6 and IL-8 protein levels. Likewise, tiotropium may counteract the increased acetylcholine levels reported in asthma patients [30-32], thus relieving pulmonary inflammation.

The cAMP-dependent signaling pathway, which is triggered by olodaterol, provides a negative signal for inflammatory responses, including the production and release of pro-inflammatory cytokines and chemokines [33, 34]. How the signaling pathway(s) coupled to the muscarinic receptor system are integrated and/or interact with those initiated by the β2-adrenergic receptor is still largely unclear. It has been shown, however, that the airways of mice deficient in a cAMP-specific phosphodiesterase-4D (PDE4D) are no longer responsive to cholinergic stimulation [35]. In addition, Chinese Hamster ovary cells transfected with the M3- and β2-adrenergic receptor, muscarinic (M3) receptor stimulation resulted in β2-
adrenergic receptor phosphorylation and subsequent desensitization [36]. The desensitization of the β2-adrenergic receptor system had been shown earlier in cells of asthma patients, including peripheral blood cells [37, 38] and airway smooth muscle cells [39]. An intriguing observation is that lung fibroblasts of asthma patients also produce significantly lower levels of cAMP in contrast to fibroblasts of non-asthma patients, demonstrating this to be a general phenomenon of cells of asthma patient. Although G-protein-coupled kinase-2 (GRK2) [37, 38] and PDE4 [39] have been implicated, the mechanism to explain the reduced cAMP levels in cells of asthma patients is still elusive. Drugs that help to increase intracellular cAMP levels – either directly or indirectly – would be helpful to treat inflammatory and bronchial obstructive lung diseases.

Our present study also underpinned the importance of the cAMP-dependent signaling pathway in M2- and β2-adrenergic receptor cross talk: tiotropium significantly restored cAMP levels in fibroblasts of both asthmatic and non-asthmatic subjects and it reversed the inhibitory effect of carbachol on the phosphorylation of CREB. In the presence of tiotropium, intracellular cAMP levels were restored beyond levels induced by olodaterol alone. The muscarinic M3 receptor subtype is predominantly expressed in the bronchus and is absent in lung parenchyma. On the other hand, the M1 subtype only occurs in the lung parenchyma, whereas the M2 subtype is distributed ubiquitously in the bronchus and lungs [40]. The dominating muscarinic receptor present on primary human lung fibroblasts is the M2 receptor [41]. Therefore, the M2 receptor was most likely mediating the carbachol-induced inhibitory effects on cAMP accumulation and phosphorylation of CREB. A well-known protein regulating the activity of β2-adrenergic receptors is the GRK2, which facilitates the binding of β-arrestins, thus desensitizing the β2-adrenergic receptor by uncoupling it from the Gs protein [42]. Although β2-adrenergic receptor phosphorylation has been reported after M3 activation in CHO cells, the phosphorylation was independent of GRK2 [36]. Muscarinic receptor activation can reduce cAMP levels through mobilization of intracellular calcium (predominantly via M3), PLC (phospholipase C) and of calmodulin-dependent phosphodiesterase which is enhanced in asthmatic subjects [43]. Furthermore, the muscarinic receptor was found to be "negative coupled" to adenylate cyclase by the Gβi subunit of the G protein [44]. However, our data show that the G-protein inhibitor pertussis toxin did not have the same rescuing effect on olodaterol induced cAMP as observed for tiotropium. Thus, it might indicate that the rescue effect of tiotropium be largely independent of G-protein activity through the M2-receptor. Although the precise mechanism remains unclear, the observed
cross-talk between the muscarinic- and β2-adrenergic receptor in our primary pulmonary fibroblasts must act upstream of cAMP formation, i.e. upstream of adenylyl cyclase as summarized in figure 6.

In conclusion, our study demonstrates for the first time in primary human lung fibroblasts that the muscarinic receptor signaling system counteracts the β2-adrenergic receptor system upstream of the formation of cAMP. Our study provides a bio-molecular rationale to treat inflammatory lung diseases (asthma and COPD) with a combination of olodaterol plus tiotropium.

![Figure 6](image_url)

Figure 6: Schematic presentation of the observed cross-talk mechanism between M2-cholinergic and β2-adrenergic signalling pathways.

References

Curriculum Vitae

Luigi Costa, Ph.D.

Address RYFFSTRASSE 11
BASEL - CH- 4056
Telephone +41787796327
E-mail luigi.costa@unibas.ch
Nationality Italian
Date of birth 19 September 1977
Languages Italian, English, German
Civil Status Married
Swiss Work Permit B

Educational Qualifications

January 2014- till date- Postdoctoral fellow (50%). Pneumology (University Hospital Basel, Switzerland).
Technical skills: Cell culture, ELISA, PCR, DNA, RNA extraction, Western Blot, Proliferation assay.

September 2009- December 2013
PhD in Cellular Biology (Basic medical research, cell biology, signaling, pharmacology
PhD student Dept. Pneumology (University Hospital Basel, Switzerland)
Title of the thesis: “The interaction of Tiotropium with long lasting beta2-agonist on lung cell function”
Technical skills: Cell culture, ELISA, PCR, DNA, RNA extraction, Western Blot, Proliferation assay.

May 2009 – September 2009
Institute of Pathology (University Hospital Basel, Switzerland)
RNA-isolation & analysis, pathology
Technical skills: Immunohistochemistry (IHC), FISH, Special Stain, IHC evaluation, Tissue micro-array.

April 2009 – May 2009
Lab. Mol. Diagnostic, Inst. Pathology (Locarno, Switzerland), Medical diagnostics
Technical skills: DNA extraction, RNA extraction, PCR, Sequencing, Agarose gel.

Master thesis Dept. Neuroscience, “Federico II” University Medical School, University of Naples (Italy)
Title of thesis: Functional Characteristics of Microvasculature in Hamster Skeletal Muscle
Research topic: Research on micro-vascular network in hamster skin muscle and on rat microcirculation. Technical skills: Western Blot, cell culture.

March 2006 – March 2007
Internship at Dept. Biomorphological and Functional Sciences, “Federico II” University Medical School, University of Naples (Italy)
Technical skills: Dissection of small rodents, PCR, microscopy, molecular biology.

October 2002 - March 2007
Bachelor’s degree in Biotechnology Sciences
Title of thesis: Molecular Characteristics of Neuroblastoma
“Federico II” University Medical School, University of Naples (Italy)
Faculty of Biotechnology

Publication:

Presentations at International congress:

1. ERS Barcelona 2010 Poster session:

2. ERS Amsterdam 2011 Poster session:
“Tiotropium reduced Carbachol-induced expressions of IL-6 & IL-8 by primary human lung fibroblasts of asthma and non-asthma subjects”. Costa L, Roth M, Casarosa P,Tamm M, Borger P.
3. ERS Amsterdam 2011 Poster session:
“Disease and stimuli specific pro-inflammatory cytokine secretion by human fibroblast of asthma patients”. Costa L, Borger P, Casarosa P, Tamm M, Roth M.

4. ERS Vienna 2012 Poster session:
“Tiotropium enhances the inhibitory effect of the long acting β2-agonist olodaterol on the release of IL-6 and IL8 by primary human lung fibroblasts of asthma patients”. Costa L, Roth M, Tamm M, Borger P.

Social skills:
I have very good communication skills and am a good team player. I am dedicated to my work and always eager to extend my knowledge. I have no difficulties to adapt to new environment.

IT skills: MS-Word, Power Point, Excel.

Driving license(s): Swiss A-B

REFERENCES:
Prof. Dr. Roth Michael (PhD), Head Pulmonary Cell Research, Department of Biomedicine, University Hospital Basel, Petersgraben 4, 4031-CH-Basel (Switzerland)
E-mail: Michael.Roth@usb.ch Tel.+41 61 265 23 37

Prof. Dr. Michael Tamm (MD), Head Div. Pneumology, University Hospital Basel, Petersgraben 4, 4031-CH-Basel (Switzerland)
E-mail: Mtamm@usb.ch, Tel.: +41 61 5184

Prof. Dr. Luigi Terracciano (MD), Head of Molecular Pathology, Institute of Pathology, Basel (Switzerland)
E-mail: lterracciano@uhbs.ch Tel.+41 61 265 28 49

Dr. Milo Frattini, Head of Laboratory Molecular Diagnostic, Institute of Pathology, Locarno (Switzerland)
E-mail: milo.frattini@ti.ch Tel. 0041 918160806

Prof. Dr. Antonio Colantuoni, Department of Neuroscience “Federico II” University Medical School of Naples, (Italy)
E-mail: colantuo@unina.it Tel. 0039 0817463212

Prof. Dr. Stefania Montagnani, Department of Biomorfoligical and Functional Sciences “Federico II” University Medical School of Naples, (Italy)
E-mail: montagna@unina.it Tel.0039 0817463422