edoc

Transient population dynamics of mosquitoes during sterile male releases : modelling mating behaviour and perturbations of life history parameters

Stone, Christopher M.. (2013) Transient population dynamics of mosquitoes during sterile male releases : modelling mating behaviour and perturbations of life history parameters. PLoS ONE, Vol. 8, H. 9 , e76228.

[img]
Preview
PDF - Published Version
Available under License CC BY (Attribution).

1085Kb

Official URL: http://edoc.unibas.ch/dok/A6184023

Downloads: Statistics Overview

Abstract

The release of genetically-modified or sterile male mosquitoes offers a promising form of mosquito-transmitted pathogen control, but the insights derived from our understanding of male mosquito behaviour have not fully been incorporated into the design of such genetic control or sterile-male release methods. The importance of aspects of male life history and mating behaviour for sterile-male release programmes were investigated by projecting a stage-structured matrix model over time. An elasticity analysis of transient dynamics during sterile-male releases was performed to provide insight on which vector control methods are likely to be most synergistic. The results suggest that high mating competitiveness and mortality costs of released males are required before the sterile-release method becomes ineffective. Additionally, if released males suffer a mortality cost, older males should be released due to their increased mating capacity. If released males are of a homogenous size and size-assortative mating occurs in nature, this can lead to an increase in the abundance of large females and reduce the efficacy of the population-suppression effort. At a high level of size-assortative mating, the disease transmission potential of the vector population increases due to male releases, arguing for the release of a heterogeneously-sized male population. The female population was most sensitive to perturbations of density-dependent components of larval mortality and female survivorship and fecundity. These findings suggest source reduction might be a particularly effective complement to mosquito control based on the sterile insect technique (SIT). In order for SIT to realize its potential as a key component of an integrated vector-management strategy to control mosquito-transmitted pathogens, programme design of sterile-male release programmes must account for the ecology, behaviour and life history of mosquitoes. The model used here takes a step in this direction and can easily be modified to investigate additional aspects of mosquito behaviour or species-specific ecology.
Faculties and Departments:09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH)
09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH) > Former Units within Swiss TPH > Health Systems and Policies (de Savigny)
UniBasel Contributors:Stone, Chris
Item Type:Article, refereed
Article Subtype:Research Article
Bibsysno:Link to catalogue
Publisher:Public Library of Science
e-ISSN:1932-6203
Note:Publication type according to Uni Basel Research Database: Journal article
Language:English
Related URLs:
Identification Number:
Last Modified:31 Aug 2018 06:39
Deposited On:18 Jul 2014 09:09

Repository Staff Only: item control page