Targeting canonical BMP signaling:
SMAD4 in limb patterning and differentiation

Inauguraldissertation
zur
Erlangung der Würde eines Doktors der Philosophie
vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultät
der Universität Basel

von

Emanuele Pignatti

Aus Brescia, Italien

Basel, 2014
Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von
Prof. Dr. Rolf Zeller (Dissertationsleiter), Prof. Dr. Markus Affolter (Fakultätsverantwortlicher) und Prof. Dr. Verdon Taylor (Korreferent).

Basel, den 18. Februar 2014

Prof. Dr. Jörg Schibler
Dekan
1. TABLE OF CONTENTS

1. TABLE OF CONTENTS p4
2. LIST OF ABBREVIATIONS p7
3. ABSTRACT p10
4. INTRODUCTION p12
 Limb development p12
 Limb bud outcrop from the embryo flank and specification of the axes p13
 Specification of the D-V axis and formation of the AER p13
 Specification of the P-D axis p14
 Specification of the A-P axis p16
 Limb bud patterning p16
 The BMP signaling pathway p18
 The intracellular BMP signalling transducer SMAD4 p20
 BMP target genes p20
 The BMP signalling pathway during limb bud development p21
 BMP activity during D-V axis specification and AER establishment p27
 BMP activity during limb patterning and outgrowth p28
 Tissue differentiation and initiation of chondrogenesis in the limb p29
 BMP activity during initiation of chondrogenic differentiation p30
 Congenital limb malformations associated with aberrant BMP signalling p32
5. AIMS OF THE THESIS p33
6. MATERIAL AND METHODS p34
 Genetic crosses of mouse strains p34
 Genetic crosses of Smad4 alleles p34
 Inactivation of Smad4 in the mesenchyme p34
 Inactivation of Smad4 in the autopod p35
 Inactivation of Smad4 in the AER in a Grem1-deficient genetic background p35
 Inactivation of Smad4 in the limb bud mesenchyme of Shh-deficient embryos p35
 Genetic crosses of Bmp2 and Bmp4 alleles p35
 Whole Mount in Situ Hybridization (WISH) p36
Embryo trunk culture and limb bud grafting p38
Skeletal preparations p39
Whole mount immunofluorescence (WIF) p40
OPT imaging p40
Cell death detection using lysotracker p41
Quantitative Real-time PCR (RT-qPCR) analysis p41
Limb bud mesenchymal cell culture p42
General cloning protocols p42
Embryonic stem cells (ES cells) and embryonic fibroblasts (EMFI) cultures p43
Embryoid body (EB) culture p45
Statistics p45
Additional and general solutions p45

7. RESULTS p48
Conditional inactivation of Smad4 in the limb bud mesenchyme p48
Smad4 functions as part of the SHH/GREM1/FGF feedback loop p50
Expression of BMP ligands depends on Smad4 in the mesenchyme p52
Analysis of A-P axis development in mouse limb buds lacking mesenchymal Smad4 expression p53
Smad4 inactivation in the autopod primordia p54
Smad4 is necessary for initiating chondrogenic differentiation and formation of digit rays p55
Smad4 is required for cell aggregation and initiation of chondrogenic differentiation p58
Smad4 controls chondrogenic differentiation and restricts non-chondrogenic cell fates p59
Minor alterations in cell death are observed following mesenchymal inactivation of Smad4 p62
Genetic analysis of Smad4 requirements during limb bud initiation p63

8. DISCUSSION p66
9. CONCLUSIONS AND OUTLOOK p70
10. ACKNOWLEDGMENTS p71
11. APPENDIX 1 _ INACTIVATION OF SMAD4 AND GREM1 IN THE AER p72
 Background p72
 Results p72
12. APPENDIX 2 _ ATTEMPTS TO GENERATE A BMP SENSOR MOUSE

Aim of the project and background
Towards a BMP sensor: design of a standard vector to analyze cis-regulatory sequences in ES cells and mice
Choice of cis-regulatory region to construct a BMP activity sensor
Cloning steps for the targeting vector
RMCE-mediated insertion into the Gt(Rosa)26Sor locus
Analysis of ES cell clones
Blastocyst injection

13. APPENDIX 3 _ ESTABLISHMENT OF THE AGGREGATION CHIMERA TECHNIQUE

Introduction and aim of the project
The aggregation procedure
 ES cell handling
 Superovulation of donor females
 Material for collecting and processing embryos
 Notes about embryo handling
 Embryo collection
 Removal of the Zona Pellucida
 ES cells-embryos aggregation
 Solutions for culturing embryos
 Preparation for transfer
 Embryo transfer

Results

14. REFERENCES
2. LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-P</td>
<td>Antero-Posterior</td>
</tr>
<tr>
<td>ACTR</td>
<td>Activin Receptor</td>
</tr>
<tr>
<td>AER</td>
<td>Apical Ectodermal Ridge</td>
</tr>
<tr>
<td>ALK</td>
<td>Activin Receptor-like Kinase</td>
</tr>
<tr>
<td>BABB</td>
<td>Benzyl Alcohol, Benzyl Benzoate</td>
</tr>
<tr>
<td>BAC</td>
<td>Bacterial Artificial Chromosome</td>
</tr>
<tr>
<td>BMP</td>
<td>Bone Morphogenetic Protein</td>
</tr>
<tr>
<td>BMPR</td>
<td>Bone Morphogenetic Protein Receptor</td>
</tr>
<tr>
<td>BRE</td>
<td>BMP-responsive element</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CDS</td>
<td>Coding Sequence</td>
</tr>
<tr>
<td>co-SMAD</td>
<td>common-SMAD</td>
</tr>
<tr>
<td>COL</td>
<td>Collagen</td>
</tr>
<tr>
<td>Cq</td>
<td>Quantification cycle</td>
</tr>
<tr>
<td>Cstd</td>
<td>Cathepsin D</td>
</tr>
<tr>
<td>D-V</td>
<td>Dorso-Ventral</td>
</tr>
<tr>
<td>DIC</td>
<td>Differential Interference Contrast</td>
</tr>
<tr>
<td>dRMCE</td>
<td>dual RMCE</td>
</tr>
<tr>
<td>E</td>
<td>days-post-coitum</td>
</tr>
<tr>
<td>e-m</td>
<td>epithelial-mesenchymal</td>
</tr>
<tr>
<td>EB</td>
<td>Embryoid Body</td>
</tr>
<tr>
<td>EMFI</td>
<td>Embryonic Murine Fibroblasts</td>
</tr>
<tr>
<td>ES cell</td>
<td>Embryonic Stem cell</td>
</tr>
<tr>
<td>FGF</td>
<td>Fibroblast Growth Factor</td>
</tr>
<tr>
<td>Fjx</td>
<td>Four-jointed</td>
</tr>
<tr>
<td>GCR</td>
<td>Global Control Region</td>
</tr>
<tr>
<td>GDF5</td>
<td>Growth and Differentiation Factor 5</td>
</tr>
<tr>
<td>GFP</td>
<td>Green Fluorescent Protein</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank’s Balanced Salt Solution</td>
</tr>
<tr>
<td>hCG</td>
<td>human Chorionic Gonadotropin</td>
</tr>
<tr>
<td>HH</td>
<td>Hamilton-Hamburger</td>
</tr>
<tr>
<td>HLH</td>
<td>Helix-loop-Helix</td>
</tr>
<tr>
<td>i-SMAD</td>
<td>Inhibitory-SMAD</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>WISH</td>
<td>Whole-Mount In Situ</td>
</tr>
<tr>
<td>Wt</td>
<td>Wild-Type</td>
</tr>
<tr>
<td>ZPA</td>
<td>Zone of Polarizing Activity</td>
</tr>
</tbody>
</table>
3. ABSTRACT

The developing limb is an ideal genetic model to investigate basic developmental mechanisms and signaling networks. The Bone Morphogenetic Protein (BMP) signaling pathway has been associated with a number of context-specific functions during limb development, including establishment of the limb signalling domains, regulation of cell proliferation and cell death, digit patterning, differentiation of the endochondral skeleton and the soft tissue.

The present work aimed at providing insights into the roles of canonical BMP signaling in mouse limb bud patterning and tissue differentiation. The canonical BMP pathway includes numerous components, which are often functionally redundant. Conversely, the non-redundant intracellular transducer SMAD4 is essential for gastrulation, such that its inactivation results in an early lethal phenotype and prevents the analysis of its functions during limb development. For the purpose of our investigation, we used the conditional inactivation of the Smad4 gene to generate time- and space-restricted loss-of-function models during limb development.

This approach allowed us to show that mesenchymal SMAD4 is dispensable for establishment of the Apical Ectodermal Ridge (AER), which is an ectodermal source of the Fibroblast Growth Factor (FGF) signalling factors that contribute to proximo-distal (P-D) limb axis extension. However, mesenchymal SMAD4 contributes to the establishment of the SHH/GREM1/AER-FGFs feedback loop that controls limb outgrowth and patterning.

Most importantly, we observed a discrete temporal requirement of SMAD4 for the specification of digit primordia during a developmental period, when high BMP activity is essential to initiate chondrogenesis. Specific inactivation of SMAD4 in the limb mesenchyme at this stage is sufficient to inhibit the initiation of mesenchymal condensations, which represent the first structures committed to endochondral bone formation. In fact, the Smad4 deficiency results in the absence of any limb skeletal elements. Molecular evidence indicates that the discrete pattern of genes that normally specify the chondrogenic fate is replaced by wide-spread up-regulation of genes relevant to tendon and joint development in Smad4 deficient limb bud, but no ectopic tendons or joints are formed. These observations suggest a role for SMAD4 in cell fate restriction and differentiation of lateral plate mesoderm-derived tissues in the limb.

To further analyze the rapid changes in BMP activity during limb development, we sought to generate a mouse model which senses BMP activity in a specific and dynamic fashion. For the purpose of this project, I have established the aggregation chimera
technique to allow for the rapid investigation of cis-regulatory elements in the context of the Gt(ROSA)26Sor locus.
4. INTRODUCTION

Parts of this introduction were used to write a review:

Limb development

The tetrapod limb emerges from the lateral plate mesoderm as a pocket of mesenchymal cells wrapped in an ectoderm monolayer. Three limb axes are specified during the earliest phases of limb outgrowth. The proximo-distal (P-D) axis defines the axis running from the flank of the embryo to the tip of the limb bud; the antero-posterior (A-P) axis goes from the 1st digit (the thumb in humans) to the 5th digit (the pinkie); the dorso-ventral (D-V) axis defines the prospective back and the palm of the hand (Fig. 1a).

Limb patterning and outgrowth are regulated by two signaling centers: the Apical Ectodermal Ridge (AER), an ectodermal structure of the limb bud running along the D-V interface (Fernandez-Teran and Ros, 2008; Saunders, 1948); and the Zone of Polarizing Activity (ZPA), composed of a group of mesenchymal cells located in the posterior limb bud mesenchyme (Saunders, 1968; Zwilling, 1956). The instructive role of the AER along the P-D axis is mediated by FGFs (Niswander et al., 1993), and the A-P patterning activity of the ZPA is mediated by the expression of the Sonic Hedgehog (SHH) morphogen (Fig. 3B; Riddle et al., 1993).

Fig. 1 Limb bud axes. a) Micrograph of a mouse embryo at gestational day 10.5. The enlarged inset shows the forelimb bud which arises from the flank of the embryo at the level of the heart.
Two axes (proximal-to-distal and anterior-to-posterior) are indicated. The green line denotes the apical ectodermal ridge (AER). b) Schematic of the skeleton of a human arm. In blue, the proximal structures of the limb, the stylopod, is here indicated as the humerus. The middle elements are indicated in purple. The zeugopod, i.e. the radius (anterior), and the ulna (posterior) are showed. The distal elements depicted in yellow are the carpals, metacarpals and phalanges, which are the skeletal elements of the autopod domain. Clavicle and scapula do not originate from the limb bud. (adapted from Zeller et al., 2009).

Limb bud outcrop from the embryo flank and specification of the axes

Limb budding from the flank mesenchyme occurs at precise levels and is controlled by the Hox gene expression code along the primary body axis (Burke et al., 1995; Molven et al., 1990). In the mouse, forelimbs are formed at around 8.75 days post coitum (E8.75), whereas hindlimb development is delayed by about 16 hours (see e.g. Saito et al., 2002). The early limb bud is characterized by a positive epithelial/mesenchymal (e-m) feedback loop that is fundamental to initiate limb outgrowth and for the establishment of the AER. *Fgf10*, which is strongly expressed in the limb mesenchyme, triggers the expression of *Wnt3* in the ectoderm, which in turn up-regulates *Fgf8* in the ventral ectoderm in a domain destined to form the AER (Kawakami et al., 2001). Inactivation of *Fgf10* results in limb agenesis (Min et al., 1998). Conversely, ectopic expression of FGF ligands in the embryonic flank mesenchyme results in localized budding and formation of limb structures (Cohn et al., 1995; Crossley et al., 1996; Ohuchi et al., 1997; Ohuchi et al., 1995). Conditional inactivation of *Wnt3* before the AER is established results in a variety of phenotypes, ranging from completely normal limb skeletal structures to limb agenesis. In agreement, the expression and maintenance of *Fgf8* are affected to a variable extent (Barrow et al., 2003). In contrast, inactivation of *Fgf8* in the ectoderm results in the loss of proximal limb skeletal elements (Lewandoski et al., 2000). This relatively mild phenotype, which is an effect of a patterning defect, is likely due to the compensation of the *Fgf8* deficiency by other FGF ligands (*FGF4*, *FGF9*, *FGF17*), which are expressed at later stages by the AER (Moon and Capecchi, 2000).

Specification of the D-V axis and formation of the AER

The D-V axis is specified during initiation of limb outgrowth by factors expressed by the ectoderm. *En1*, expressed by the ventral ectoderm, restricts *Wnt7a* expression to the dorsal ectoderm. *Wnt7a* in turn up-regulates and co-localizes with the LIM-homeodomain transcription factor *Lmx1b* (see e.g. Loomis et al., 1998). Inactivation of WNT7a or LMX1b
produces bi-ventral limbs. Conversely, inactivation of EN1 results in bi-dorsal limbs (Cygan et al., 1997; Dreyer et al., 1998; Parr and McMahon, 1995).

During embryonic day 9 (E9) in mouse embryos, the ectodermal cells at the distal-dorso-ventral interface form a partially stratified epithelium in mouse limb buds and a pseudostratified epithelium in the chick, the AER (reviewed by Fernandez-Teran and Ros, 2008). Ectopic AERs can be induced by juxtaposition of embryonic tissues with dorsal and ventral identities, stressing the importance of early D-V axis specification for AER positioning and formation (Tanaka et al., 1997). Expression of Fgf8 hallmarks AER induction, such that Fgf8 expression reveals AER morphology and intensity of FGF signalling (see e.g., Benazet and Zeller, 2013; Lewandoski et al., 2000).

Specification of the P-D axis

The P-D axis is specified during the earliest phases of limb outgrowth and its polarization is traceable with specific molecular markers. Meis1 and Meis2 mark the proximal limb bud mesenchyme correspondent to the prospective stylopod (the region defined by the humerus in the forelimb), Hoxa11 is expressed by the prospective zeugopod (radius and ulna) and Hoxa13 marks the distal limb domain corresponding to the autopod which gives rise to carpals, metacarpals and phalanges (Fig. 1b, for review see Zeller et al., 2009).

A gradient of retinoic acid (RA) seems to originate from the lateral plate mesoderm and RA production is controlled by the enzyme Retinaldehyde Dehydrogenase 2 (RALDH2). This RA gradient seems responsible for specification of proximal limb identity, but the involvement of RA is still debated due to conflicting evidence (Zhao et al., 2009). Mercader and colleagues performed gain-of-function studies to demonstrate that RA induces Meis1 and Meis2 in the proximal limb while FGF8 from the AER inhibits expression of these markers in the distal mesenchyme (Mercader et al., 2000). In addition, ectopic expression of retinoic acid and MEIS1 in the distal limb induces distal-to-proximal transformations (Mercader et al., 2000; Rosello-Diez and Torres, 2011). More recent evidence from loss-of-function studies show that expression of Meis1 and Meis2 is independent of RALDH2 (Cunningham et al., 2013). In addition, limb inactivation of Meis1 alone results in no P-D axis defects (Hisa et al., 2004). Aldh1a2, which encodes RALDH2, is necessary to initiate limb bud outgrowth but dispensable for P-D axis patterning (Cunningham et al., 2013; Niederreither et al., 1999; Niederreither et al., 2002; Zhao et al., 2009). On the other hand, it is clear that FGF-mediated inhibition of proximal limb markers is exerted by the FGF-dependent RA degrading enzyme CYP26b1 and that
Cyp26b1 inactivation impairs distal progression of limb development (Probst et al., 2011; Yashiro et al., 2004; Zhou and Kochhar, 2004).

Experimental manipulation of the AER in chicken limb buds together with conditional genetic inactivation of single or more FGF ligands in the AER of mouse hindlimbs revealed the instructive role of these ectodermal signalling centers. In 1948, Saunders experimentally removed the AER from chicken wing buds at several progressively later stages of development, which resulted in loss of progressively more distal wing skeletal structures (Rowe and Fallon, 1982; Saunders, 1948). These results were interpreted as the AER influencing the underlying mesenchyme in a time-dependent manner, giving rise to the 'progress zone'. Indeed, older progress zones, but not older AERs, were able to induce more distal structures when grafted to younger wing buds (Summerbell and Lewis, 1975). FGF ligands were found to mediate the instructive role of the AER on the underlying mesenchyme. In particular AER-FGFs can rescue the massive cell death and growth arrest following experimental removal of the AER (Fallon et al., 1994; Niswander et al., 1993). In particular, FGF8 expression is sufficient to sustain the formation of wild-type limb structures in the absence of other AER-FGFs (Mariani et al., 2008). FGF8 is necessary only during AER compaction and temporally correct activation of Shh in the mesenchyme (Lewandoski et al., 2000). FGFs inactivation at these early stages delays activation of Shh and results in loss of the femur together with mild digit phenotypes. FGF8 also restrains FGF4 expression in time and space together with BMP signaling (Lewandoski et al., 2000; Selever et al., 2004). Among the AER-FGFs, FGF8 and FGF4 are essential for limb bud formation as their combined inactivation in the AER causes limb agenesis as a consequence of massive cell death (Moon and Capecchi, 2000).

The analysis of AER-FGFs during mouse limb bud development indicates that the cell survival activity is sufficient to promote maintenance and expansion of mesenchymal progenitors that give rise to the P-D axis (Mariani et al., 2008). In fact, lineage tracing of wing bud cells and transplantation experiments revealed that the progenitors that contribute to different wing compartments are specified early during limb bud development, and that the mesenchymal cells under the influence of FGF signals by the AER are regionalized in a manner that mirrors the prospective contribution to P-D limb structures (Dudley et al., 2002; Pearse et al., 2007; Sato et al., 2007; Suzuki et al., 2008; Tabin and Wolpert, 2007). Moreover, it was reported that Gli3 and Plzf transcription factors interact to specify proximal limb structures during initiation of limb bud development (Barna et al., 2005), pointing to the existence of a transcriptional mechanism that specifies discrete P-D domains during limb bud initiation. However, an
instructive role of AER-FGFs on P-D axis development is still debated (Fernandez-Teran and Ros, 2008).

Specification of the A-P axis

The A-P axis is specified by the mutual antagonistic interaction of Gli3 and Hand2 gene products in the early limb bud mesenchyme (Galli et al., 2010; Ros et al., 1996; Tarchini et al., 2006; te Welscher et al., 2002; Zuniga and Zeller, 1999). Hand2 is initially expressed throughout the early limb bud mesenchyme but is then restricted to the posterior mesenchyme by Gli3 transcriptional repressor (Gli3R), which is constitutively produced prior to activation of SHH signaling (Charite et al., 2000; te Welscher et al., 2002). HAND2 and GLI3R, together with several HOX transcriptional regulators impact on the limb bud cis-regulatory module that restricts activation of Shh expression to the posterior-proximal mesenchyme (Lettice et al., 2003; Sagai et al., 2005).

Limb bud patterning

At about E9.5, the BMP antagonist Grem1 is activated by BMP signaling in the posterior limb mesenchyme to create permissive conditions (low BMP activity, see Fig. 3B) for the activation of FGF4, FGF9 and FGF17 in the AER, which in turn promote the expression of Shh in the underlying limb bud mesenchyme (Fig. 2; Bastida et al., 2009; Khokha et al., 2003; Lewandoski et al., 2000; Mariani et al., 2008; Michos et al., 2004; Nissim et al., 2006; Sun et al., 2002; Zuniga and Zeller, 1999). Grem1 encodes an extracellular BMP antagonist and its inactivation results in fusion of the zeugopod elements and reduction in digit numbers, as a consequence of impaired AER compaction, down-regulation of Fgf8 and Shh expression and massive mesenchymal cell death (Michos et al., 2004). Similarly, inactivation of Shh results in skeletal reductions that result in the loss of posterior zeugopodal elements and digits (Chiang et al., 2001). Shh activation by the ZPA requires several signals in addition to Hand2 (see above), such as Hox genes (Kmita et al., 2005; Knezevic et al., 1997; Tarchini et al., 2006), Bmp4 (Benazet et al., 2009; Michos et al., 2004; Nissim et al., 2006), Fgf8 (Lewandoski et al., 2000), Tbx2 (Nissim et al., 2007). SHH behaves as a morphogen, creating a concentration gradient along the A-P axis (Li et al., 2006; Zeng et al., 2001). Post-translational modifications result in addition of cholesterol and palmitoyl acid moieties to SHH, which modulate its long-range signaling properties, thus ensuring the proper instruction of A-P axis and digit patterning (Chen et al., 2004; Li et al., 2006).
The positive SHH/GREM1/AER-FGF feedback loop established by Grem1 up-regulation coordinates limb bud outgrowth and patterning. During limb bud outgrowth the initially posterior AER-Fgfs and Grem1 expression domains expand progressively anterior (Michos et al., 2004; Panman et al., 2006). The SHH/GREM1/AER-FGF feedback loop is terminated by high levels of FGF signaling, which inhibits Grem1 expression, and by the increasing displacement of the Grem1 expression domain with respect to the posterior mesenchyme as a consequence of Shh descendants being refractory to Grem1 expression (Fig. 3C; Scherz et al., 2007; Verheyden and Sun, 2008). Furthermore, Tbx2 is also involved in active termination of Grem1 expression in the distal limb bud mesenchyme (Farin et al., 2013).

Ectopic expression of SHH in the anterior chick wing bud mesenchyme induces mirror-image duplication of digits (Riddle et al., 1993). In the wild-type autopod primordia, the two posterior-most digits and part of the third digit are derived from progenitors that belonged to the ZPA (Shh-descendants), while anterior digit 2 is likely specified by long-range SHH signaling (Harfe et al., 2004; Sagai et al., 2005). In contrast, the anterior-most digit 1 (thumb) is specified independent of SHH (for review, see Oberg, 2013). The instructive role of SHH provides a temporal distinct order for digit specification and determination, whereby the 4th digit is specified and forms first, while the thumb is the last one to appear (Zhu et al., 2008). The patterning activity of SHH signalling is genetically linked to Hox genes (Galli et al., 2010; Tarchini et al., 2006). During limb development, Hox genes are activated in a collinear fashion, such that 5'Hox genes are activated later than 3'Hox genes and in a more restricted fashion, overlapping with the ZPA in the posterior part of the limb bud. As discussed above, 5'HoxD genes participate in activating Shh and restricting its expression. In turn, Shh promotes the anterior reverse-collinear expansion of the Hoxd10-13 expression domains through a global control region with enhancer activity (Andrey et al., 2013; Spitz et al., 2003; Spitz et al., 2005). While almost all HoxA and HoxD paralogous group genes are expressed in developing limb buds, only the posterior ones (located at the 5’ end of the Hox cluster – named 5’Hox genes -) are required for specification of specific limb skeletal structures. For instance, compound inactivation of Hoxa13 and Hoxd13 results in loss of the autopod (Wellik and Capecchi, 2003). In contrast, deletion of either the HoxA or HoxD gene clusters alone results in only mild autopod malformations, whereas deletion of both clusters causes forelimb agenesis with exception of the scapula and the proximal-most part of the humerus (Kmita et al., 2005). Since Hox genes function in the context of the cluster the instructive roles of single Hox genes with respect to the formation of specific skeletal elements is debated (Kmita et al., 2002). However, misexpression studies and genetic manipulation revealed that
distalized Hoxd11 expression induces polydactyly and increases digit length in the absence of more posterior genes (Goff and Tabin, 1997; Kmita et al., 2002; Sheth et al., 2012).

The BMP signaling pathway (see Fig. 2)

BMP ligands were first identified by their ability to induce ectopic bone upon subcutaneous administration in vivo (Urist, 1965). Since, a wealth of studies have established that BMP ligands belong to the TGFβ superfamily and fulfill a multitude of functions during embryonic and postnatal development, homeostasis and disease (see e.g. Miyazono et al., 2010). In mammals, twelve BMP ligands have been identified, which can form homo- and heterodimers with different affinities for their cognate receptors (reviewed in Butler and Dodd, 2003). Upon secretion and activation by cleavage, the extra-cellular BMP ligands can be sequestered by BMP antagonists to prevent binding the receptors and activation of signal transduction. In higher vertebrates, twelve BMP antagonists have been identified, small cysteine-knot proteins with striking structural similarities to BMP ligands (reviewed by Walsh et al., 2010). BMP antagonists modulate BMP activity in a spatio-temporally controlled manner and genetic inactivation or alteration of their expression results in congenital malformations and various diseases such as nephropathies, fibrosis, osteoarthritis and cancer (Walsh et al., 2010).

BMPs activate signal transduction by interacting with their cognate serine/threonine kinase receptors. BMP ligand dimers interact with two distinct types of trans-membrane receptors, which form hetero-tetrameric complexes that activate intracellular signal transduction (Marom et al., 2011). Type I BMP receptors include three of the seven known activin-like receptors (ALK) that belong to the TGFβ superfamily: BMPRIA (or ALK3); BMPRIB (or ALK6) and ALK-2. Type II BMP receptors include BMPRII, activin receptor II (ActRII) and ActRIIB (Murakami et al., 2009). Upon ligand binding and receptor complex formation, type II BMP receptors phosphorylate type I BMP receptors, which activate their cytoplasmic kinase activity and trigger signal transduction by phosphorylation of the receptor associated SMAD proteins (R-SMADs). BMP signal transduction is mediated by association of phosphorylated R-SMADs (SMAD1, SMAD5 and SMAD8) with the common SMAD (co-SMAD: SMAD4); the resulting complex translocates to the nucleus and activates the transcription of BMP target genes (reviewed in Massague et al., 2005). SMAD6 and SMAD7 are inhibitory SMAD (i-SMAD), which interfere with BMP signaling at different levels of the pathway (Afrakhte et al., 1998).
Fig. 2 The canonical BMP signalling pathway. The schematic illustrates the canonical BMP signalling pathway as relevant for limb bud development, from establishment of the AER to long bone formation. BMP homo or heterodimers act as morphogenetic ligands. Extracellular antagonists modulate BMP activity by sequestering BMP ligands and blocking their binding to the receptors. The most relevant BMP antagonists to limb bud development field are GREM1 and NOGGIN, with essential functions in limb bud outgrowth and patterning. BMP receptors are single-transmembrane glycoproteins endowed with a prevalent serine-threonine kinase activity. Type II BMP receptors (BMPR2, ACTR2A, ACTR2B) bind the ligands, recruit and trans-phosphorylate type I BMP receptors (BMPR1A, BMPR1B, ALK2) which in turn activate receptor SMads (R-SMads) in the cytoplasm. R-SMads (SMAD1, -5 and -8) promote BMP signalling. Inhibitory SMads (i-SMads) SMAD6 and -7 inhibit BMP signalling at different levels of signal transduction. Canonical BMP signalling transduction involves heteromerization of R-SMads with the common, non-redundant SMAD transducer SMAD4 (co-SMAD). The resulting heterotrimeric complexes translocate to the nucleus. Together with additional co-factors, these transcriptional complexes activate expression of target genes (*Iid1* and *Msx2* are among the direct targets of the BMP signalling pathway). Genetic experiments provided evidence for SMAD4-independent R-SMAD signal transduction during endochondral bone formation (broken arrow in the graphic).
The intracellular BMP signalling transducer SMAD4

SMAD4 is the non-redundant mediator of the transcriptional response to both the BMP and TGFβ signaling pathways (Massague et al., 2005). Genetic inactivation of SMAD4 results in embryonic lethality during gastrulation due to reduced epiblast proliferation and impaired mesoderm formation (Yang et al., 1998a). SMAD4 is highly homologous to the mammalian R-SMAD proteins and the protein MEDEA in *D. melanogaster* (Wisotzkey et al., 1998). *Smad4* encodes two alternatively spliced protein-coding transcripts, with 11 or 12 exons. Murine SMAD4 is a protein with 551 amino acids, characterized by a N-terminal MAD homology domain 1 (MH1) and a C-terminal MH2 domain; both domains are evolutionarily highly conserved and separated by a central linker sequence. The MH1 domain is globular, binds to DNA and several SMAD binding elements (SBE) have been identified (see e.g. Morikawa et al., 2011). In addition, MH1 interacts with other DNA-binding proteins, is responsible for nuclear translocation and inhibits MH2 function by physical interaction in the absence of protein phosphorylation (Jones and Kern, 2000; Shi et al., 1998). The MH2 domain is phosphorylated by receptors, mediates oligomerization with R-SMAD proteins and with other DNA-binding proteins, and is required for transcriptional activation (Massague et al., 2005). SMAD4 activity is regulated through phosphorylation and mono-ubiquitination of the linker domain (Dupont et al., 2009). Poly-ubiquitination triggers proteosomal degradation of SMAD proteins (Zhang et al., 2001).

BMP target genes

Few direct transcriptional targets of BMP signal transduction during embryonic development are known. The currently best-characterized and widely expressed BMP signalling targets are the i-SMADs, together with the *Id* and *Msx* transcriptional regulators (de Jong et al., 2004; Hollnagel et al., 1999; Pizette and Niswander, 1999). *Id* genes (*Id1-4*) are dominant negative helix-loop-helix (HLH) proteins that lack a basic DNA-binding domain, and are able to oligomerize with and sequester tissue-specific basic HLH transcription factors (e.g. MyoD, see Lingbeck et al., 2008). Single knock-out models of *Id1*, *Id2* and *Id3* are viable and exhibit minor defects. However, compound inactivation of *Id1* and *Id3* results in premature differentiation of neuroblasts and ineffective compaction of endothelial cells and sprouting of vessels (Lyden et al., 1999). BMP2 was shown to trigger the expression of *Id1* and *Id3* in neuroepithelial cells (Nakashima et al., 2001), and BMP antagonists promote formation of neural tissue in *X. laevis* (Lamb et al., 1993). These findings are consistent with a role of BMP2 as gatekeeper in neurogenesis,
with \textit{ld1} and \textit{ld3} as transcriptional targets and downstream effectors of BMP signal transduction (Nakashima et al., 2001). Furthermore, defects in endothelium exhibited by \textit{ld1;ld3} double knock-out mouse embryos resemble the phenotype associated with the inactivation of either \textit{Smad1} or \textit{Smad5} (Chang et al., 1999; Lechleider et al., 2001; Lyden et al., 1999; Yang et al., 1999), suggesting that \textit{ld} genes respond to canonical BMP signal transduction.

In addition, SMAD1/5 BMP-responsive \textit{cis}-regulatory element (BRE; Korchynskyi and ten Dijke, 2002) was identified in the \textit{ld1} proximal promoter. This element or the expression of \textit{ld1} has been used as transcriptional sensor of BMP signal transduction \textit{in vivo} (Blank et al., 2008; Monteiro et al., 2008). \textit{Msx} genes encode basic HLH transcriptional regulators and \textit{Msx2} is regulated specifically by BMP signal transduction. A BMP \textit{cis}-regulatory element is located in the \textit{Msx2} proximal promoter (Brugger et al., 2004) and its expression has been used to sense BMP activity during limb bud development (see e.g. Benazet et al., 2009). In contrast, \textit{Msx1} expression is also regulated by pathways other than BMPs during embryonic development (Medio et al., 2012; Menezes et al., 2012; Pizette and Niswander, 1999).

\textbf{The BMP signalling pathway during limb bud development}

Three BMP ligands, BMP2, BMP4 and BMP7 are expressed in spatio-temporally restricted patterns in the mesenchyme and ectoderm from limb bud initiation onwards and fulfill multiple roles during limb bud initiation, outgrowth and pattern and formation of the cartilage primordia of the limb skeletal elements. While \textit{Bmp2} expression is posteriorly restricted, \textit{Bmp4} and \textit{Bmp7} are expressed more widespread and restricted to the distal mesenchyme during progression of limb bud development (Fig. 3; see e.g. Michos et al., 2004). The activity of BMP ligands is modulated by the extra-cellular BMP antagonists, among them GREM1, NOGGIN, Follistatin-like 1 (Fstl1), whose genetic inactivation results in limb phenotypes. In particular, \textit{Grem1} is expressed in the posterior mesenchyme that responds to SHH signaling, but its initially posterior-restricted expression expands distal-anterior during progression of limb bud outgrowth and becomes restricted to the interdigital domains during formation of the digit primordia (Zuniga et al., 2012). The expression of \textit{Noggin} is only activated during formation of the digit primordia, concurrent with down-regulation of \textit{Grem1} (Brunet et al., 1998; Danesh et al., 2009; Zuniga et al., 2012). \textit{Bmpr1a} and \textit{Bmpr2} are expressed at high levels by the limb bud mesenchyme (Danesh et al., 2009). As \textit{Bmpr1a} is required to transduce mesenchymal BMP activity in the AER (see below), it must be expressed in the ectoderm; but its
ectodermal expression has not been described. *Bmpr1b* is expressed uniformly in both limb bud compartments. *Smad4* is co-expressed with *Smad1, Smad5* and *Smad8* in both mesenchyme and ectoderm from early limb bud stages onward (Wong et al., 2012). In chicken limb buds, Smad6 and Smad7 are co-expressed in two proximal domains during early stages, while expression shifts to the sub-AER mesenchyme at later stages (Vargesson and Laufer, 2009). Finally, the direct transcriptional targets of BMP signaling *Id1, Id3, Msx1* and *Msx2* are expressed in spatio-temporally dynamic patterns, which reflect the changes in BMP activity during limb bud development (Hollnagel et al., 1999; Pizette and Niswander, 2001). The main limb phenotypes resulting from loss-of-function studies in mouse embryos are summarized in Table 1 and the functional relevance of the dynamics of BMP signaling interactions is discussed below.

Fig. 3 Expression pattern of BMP ligands and genetic interactions of BMP activity during limb bud development. (A) Early polarization of the dorso-ventral (D-V) axis and establishment of AER require high BMP activity. Genetic evidence suggests that mesenchymal BMP4 signals through BMPR1A receptors in the ventral ectoderm to: 1) polarize the D-V axis through EN1 and 2) establish the AER. (B) During initiation of limb patterning, BMPs trigger the expression of the BMP antagonist *Grem1* in the posterior mesenchyme. This creates conditions permissive to activation of FGF4, FGF9 and FGF17 in the posterior AER (low BMP activity), which in turn results in up-regulation of *Shh* in the posterior mesenchyme. In addition, SHH sustains *Grem1* expression...
and drives its distal-anterior expansion. (C) To initiate chondrogenesis, high BMP activity is required. This is achieved by 1) down-regulation of Grem1 by AER-FGFs and GLI3R and 2) the refractoriness of Shh descendants to Grem1 expression. Timely down-regulation of AER-Fgf expression by BMP activity restricts the limb bud to pentadactyly. Color code for the upper panels. Orange: BMP ligand expression; Blue: Grem1; Red: AER-FGF; Yellow: Shh; Green: GLI3R.
Table 1. Limb phenotypes associated with inactivation/aberration in BMP pathway components

<table>
<thead>
<tr>
<th>Gene</th>
<th>Type of inactivation</th>
<th>Phenotype</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bmp2</td>
<td>Early limb mesenchyme</td>
<td>Dysplastic scapula; syndactyly between digit 3 and 4 with incomplete penetrance</td>
<td>(Bandopadhay et al., 2006)</td>
</tr>
<tr>
<td></td>
<td>Chondrocytes</td>
<td>Impaired chondrocyte differentiation and apoptosis; severe chondrodysplasia</td>
<td>(Shu et al., 2011)</td>
</tr>
<tr>
<td>Bmp4</td>
<td>Early limb mesenchyme</td>
<td>Occasional limb agenesis due to impairment in AER establishment; milder phenotype exhibits delay in AER induction and delayed termination of Fgf8 expression; AER is flatter and less compact than in the wild-type; variable degree of anterior and posterior polydactylies</td>
<td>(Benazet et al., 2009; Selever et al., 2004)</td>
</tr>
<tr>
<td></td>
<td>Chondrocytes</td>
<td>Minor skeletal defects over gross morphological observation</td>
<td>(Shu et al., 2011)</td>
</tr>
<tr>
<td>Bmp7</td>
<td>Constitutive null</td>
<td>Anterior polydactyly with incomplete penetrance in the hindlimb</td>
<td>(Luo et al., 1995)</td>
</tr>
<tr>
<td></td>
<td>Early limb mesenchyme</td>
<td>Normal limb</td>
<td>(Tsuij et al., 2010)</td>
</tr>
<tr>
<td>Bmp2:Bmp4</td>
<td>Limb ventral ectoderm and AER</td>
<td>Limb dorsalization; up-regulation and delayed inactivation of AER-Fgf8; increased cell proliferation and reduced cell death during tissue differentiation; polydactyly, digit bifurcation, interdigital webbing</td>
<td>(Maatouk et al., 2009)</td>
</tr>
<tr>
<td></td>
<td>Early limb mesenchyme</td>
<td>Severe chondrodysplasia, one zeugopod element and two posterior-most digits missing in the forelimb; interdigital webbing</td>
<td>(Bandopadhay et al., 2006)</td>
</tr>
<tr>
<td></td>
<td>Chondrocytes</td>
<td>Impaired chondrocyte differentiation and apoptosis; severe chondrodysplasia</td>
<td>(Shu et al., 2011)</td>
</tr>
<tr>
<td>Bmp4:Bmp7</td>
<td>Early limb mesenchyme (Bmp4); Constitutive null (Bmp7)</td>
<td>Dysplastic scapula, shortened fibula; absence of distal-most phalange of the 3rd digit</td>
<td>(Bandopadhay et al., 2006)</td>
</tr>
<tr>
<td>Bmp2:Bmp4:Bmp7</td>
<td>Limb ventral ectoderm</td>
<td>Down-regulated and patched AER-Fgf8 expression domain; broad, flat, short-lived AER; polydactyly, digit bifurcation, ocdrodactyly; interdigital webbing</td>
<td>(Choi et al., 2012)</td>
</tr>
<tr>
<td></td>
<td>AER</td>
<td>Down-regulated AER-Fgf8; polydactyly, digit bifurcation; interdigital webbing</td>
<td>(Choi et al., 2012)</td>
</tr>
<tr>
<td>Greml1</td>
<td>Constitutive null</td>
<td>Disruption of AER morphology; failure to induce AER-Fgf4,9,17; Massive cell death by E11.0; zeugopod is reduced to one element and three digits form</td>
<td>(Kokhko et al., 2003; Michos et al., 2004)</td>
</tr>
<tr>
<td>Gene</td>
<td>Condition</td>
<td>Phenotype</td>
<td>Reference</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>--</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Noggin</td>
<td>Constitutive null</td>
<td>Skeletal hyperplasia; joints are not formed</td>
<td>(Brunet et al., 1998)</td>
</tr>
<tr>
<td></td>
<td>Overexpression in the AER</td>
<td>Limb dorsalization; delayed termination of AER-Fgf; syndactyly, post-axial polydactyly; prolonged interdigital webbing (until E16.5)</td>
<td>(Wang et al., 2004)</td>
</tr>
<tr>
<td>BmpR1b</td>
<td>Constitutive null</td>
<td>Impaired formation of the proximal phalanges</td>
<td>(Baur et al., 2000)</td>
</tr>
<tr>
<td>BmpR1a</td>
<td>Limb ventral ectoderm</td>
<td>Limb agenesis; AER does not form</td>
<td>(Pajni-Underwood et al., 2007)</td>
</tr>
<tr>
<td></td>
<td>Limb ventral ectoderm during AER formation</td>
<td>Variable phenotype: occasional limb agenesis; variably impaired AER-Fgf expression; oligodactyly, syndactyly, rare polydactyly, occasional additional phalanges</td>
<td>(Ahn et al., 2001)</td>
</tr>
<tr>
<td></td>
<td>AER</td>
<td>Soft tissue syndactyly, occasional polydactyly, occasional additional phalanges; interdigital webbing</td>
<td>(Ahn et al., 2001; Pajni-Underwood et al., 2007)</td>
</tr>
<tr>
<td></td>
<td>Early limb mesenchyme</td>
<td>Minor D-V and A-P axes defects; shortened skeletal structures, almost complete agenesis of the autopod</td>
<td>(Ovchinnikov et al., 2006)</td>
</tr>
<tr>
<td></td>
<td>Chondrocytes</td>
<td>Mild generalized chondrodysplasia; delay in ossification</td>
<td>(Yoon et al., 2005)</td>
</tr>
<tr>
<td>BmpR1a; BmpR1b</td>
<td>Chondrocytes ((BmpR1a); Constitutive null ((BmpR1b))</td>
<td>Increased apoptosis and reduced proliferation during endochondral bone formation; impaired Sox9 expression; severe generalized chondrodysplasia</td>
<td>(Yoon et al., 2005)</td>
</tr>
<tr>
<td>BmpR2</td>
<td>No limb phenotype</td>
<td></td>
<td>(Gamer et al., 2011)</td>
</tr>
<tr>
<td>ActRIIA</td>
<td>No limb phenotype</td>
<td></td>
<td>(Mizuk et al., 1995)</td>
</tr>
<tr>
<td>ActRIIB</td>
<td>No limb phenotype</td>
<td></td>
<td>(Oh and Li, 1997)</td>
</tr>
<tr>
<td>Tak1</td>
<td>Early limb mesenchyme</td>
<td>Delayed onset and progression of chondrocyte maturation</td>
<td>(Gunnell et al., 2010)</td>
</tr>
<tr>
<td></td>
<td>Chondrocytes</td>
<td>Reduced proliferation, increased cell death during endochondral bone formation; late onset of hypertrophic differentiation; shortened skeletal element; humero-radial joint fusion</td>
<td>(Gunnell et al., 2010)</td>
</tr>
<tr>
<td>Smad4</td>
<td>Limb ventral ectoderm</td>
<td>Up-regulated, broad and patchy AER-Fgfs domain; delayed inactivation of Fgf4, Fgf8, Shh expression; occasional one-element zeugopod, common ectopic outgrowths and ectrodactyly in the autopod; interdigital webbing</td>
<td>(Benazet and Zeller, 2013)</td>
</tr>
<tr>
<td></td>
<td>AER</td>
<td>Normal skeletal structure; interdigital webbing</td>
<td>(Benazet and Zeller, 2013)</td>
</tr>
<tr>
<td>Condition</td>
<td>Description</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Early limb mesenchyme</td>
<td>Up-regulated AER-Fgf8 expression; delayed inactivation of Fgf4, Fgf8, Shh expression; impaired expression of Sox9 and Col type II; no skeletal elements are formed</td>
<td>Benazet et al., 2012</td>
<td></td>
</tr>
<tr>
<td>Handplate before tissue differentiation</td>
<td>Failed specification of anterior-most digit primordia by Sox9; no skeletal elements are formed in the autopod</td>
<td>Benazet et al., 2012</td>
<td></td>
</tr>
<tr>
<td>Chondrocytes</td>
<td>Dwarfism</td>
<td>Zhang et al., 2005</td>
<td></td>
</tr>
<tr>
<td>Smad1</td>
<td>Chondrocytes</td>
<td>Normal limb</td>
<td>Retting et al., 2009</td>
</tr>
<tr>
<td>Limb ventral ectoderm during AER formation</td>
<td>Normal limb</td>
<td>Wong et al., 2012</td>
<td></td>
</tr>
<tr>
<td>Smad5</td>
<td>Chondrocytes</td>
<td>Normal limb</td>
<td>Retting et al., 2009</td>
</tr>
<tr>
<td>Limb ventral ectoderm during AER formation</td>
<td>Normal limb</td>
<td>Wong et al., 2012</td>
<td></td>
</tr>
<tr>
<td>Smad8</td>
<td>Chondrocytes</td>
<td>Reduced proliferation, increased cell death during endochondral bone formation; impaired hypertrophic differentiation; severe chondrodysplasia with remnants of limb skeleton</td>
<td>Retting et al., 2009</td>
</tr>
<tr>
<td>Limb ventral ectoderm during AER formation</td>
<td>Delayed inactivation of AER-Fgf8; interdigital webbing</td>
<td>Wong et al., 2012</td>
<td></td>
</tr>
<tr>
<td>Smad1: Smad5</td>
<td>Chondrocytes</td>
<td>Reduced proliferation, increased cell death during endochondral bone formation; impaired hypertrophic differentiation; severe chondrodysplasia with remnants of limb skeleton</td>
<td>Retting et al., 2009</td>
</tr>
<tr>
<td>Limb ventral ectoderm during AER formation</td>
<td>Reduced proliferation, increased cell death during endochondral bone formation; impaired hypertrophic differentiation; severe chondrodysplasia with remnants of limb skeleton</td>
<td>Retting et al., 2009</td>
<td></td>
</tr>
<tr>
<td>Smad1, Smad5, Smad8</td>
<td>Chondrocytes (Smad1; Smad5); Constitutive null (Smad8)</td>
<td>Reduced proliferation, increased cell death during endochondral bone formation; impaired hypertrophic differentiation; severe chondrodysplasia with remnants of limb skeleton</td>
<td>Retting et al., 2009</td>
</tr>
<tr>
<td>Constitutive null</td>
<td>Delayed hypertrophic differentiation; no alteration of limb skeleton over gross morphological analysis</td>
<td>Estrada et al., 2011</td>
<td></td>
</tr>
<tr>
<td>Overexpression in chondrocytes</td>
<td>Delayed chondrocyte hypertrophy, dwarfism, osteopenia</td>
<td>Horiki et al., 2004</td>
<td></td>
</tr>
<tr>
<td>Smad7</td>
<td>Constitutive null</td>
<td>Increased cell death, reduced cell proliferation during endochondral bone formation; delayed hypertrophic differentiation; dwarfism</td>
<td>Estrada et al., 2013</td>
</tr>
<tr>
<td>Overexpression in the early limb mesenchyme</td>
<td>Impairment in Sox9 expression and formation of mesenchymal condensations</td>
<td>Iwai et al., 2008</td>
<td></td>
</tr>
<tr>
<td>Id1, Id3</td>
<td>Constitutive null</td>
<td>No limb phenotype reported</td>
<td>Lyden et al., 1999</td>
</tr>
<tr>
<td>Mxe2</td>
<td>Constitutive null</td>
<td>Reduced thickness of growth plate and hypertrophic zone; osteopenia; interdigital webbing</td>
<td>Satokata et al., 2000</td>
</tr>
<tr>
<td>Mxe1, Mxe2</td>
<td>Constitutive null</td>
<td>Limb dorsalization; broadened AER; loss of anterior skeletal elements (in the forelimb: radius, anterior carpal, 1st digit); lost of distal phalanges; occasional normodactyly; rare polydactyly; interdigital webbing</td>
<td>Lallemand et al., 2005</td>
</tr>
</tbody>
</table>
BMP activity during D-V axis specification and AER establishment

In early mouse limb buds, BMP2 is expressed by the ventral ectoderm and mesenchyme, while BMP4 and BMP7 are more widely expressed (Fig. 3A; Danesh et al., 2009; Yi et al., 2000). In chicken limb buds, BMP ligands, Msx1 and Msx2 target genes are expressed by the ventral ectoderm and mesenchyme before AER formation (Pizette and Niswander, 2001).

Misexpression of the BMP antagonist Noggin in the limb bud ectoderm abolishes En1 expression, results in ectopic Wnt7a and Lmx1b expression in the ventral ectoderm and may result in induction of ectopic AER-like structure expressing Fgf8 (Pizette and Niswander, 2001; Wang et al., 2004). In contrast, misexpression of constitutive active BMP receptors (BMPR1A and BMPR1B) results in dorsalization of AER, ectopic dorsal expression of En1 and reduction of the Wnt7a and Lmx1b expression domains (Pizette and Niswander, 2001). These studies indicate that high BMP activity in the ventral ectoderm is required for definition of the D-V boundary and AER establishment.

En1, which functions in dorsal restriction of Wnt7a and Lmx1b, does not act downstream BMP signaling to specify the D-V axis and the AER, because En1 deficient mouse limb buds still form an AER and Fgf8 is activated correctly, although the AER structure fails to compact subsequently (Loomis et al., 1998; Pizette and Niswander, 2001). Conversely, MSX1, which is a BMP target in the early limb bud mesenchyme acts downstream BMP signaling to mediate its ventralization effect. This was shown as ectodermal misexpression of Msx1 results in formation of ectopic dorsal AER (Pizette and Niswander, 2001). However, D-V axis specification is not affected in Msx1 deficient limb buds, suggesting that the Msx1 deficiency is compensated (Satokata and Maas, 1994).

Genetic inactivation of BMP signaling pathway at different levels has provided new insights into its early functions during limb field and AER formation. The Prx1-Cre transgene (Logan et al., 2002) drives Cre recombinase expression into the forelimb mesenchyme around the time when the AER is established. Inactivation of Bmp4 in the forelimb bud using the Prx1-Cre transgene results in severe truncations of the forelimb and AER agenesis (Benazet et al., 2009). The same phenotype is observed when BMP4 is inactivated using a tamoxifen-inducible Cre prior to AER formation, whereas inactivation after AER formation results in polydactyly (Benazet et al., 2009; Selever et al., 2004). These results reveal the transient requirement of BMP4 for AER formation and its subsequent role in restricting the autopod to pentadactyly (Benazet et al., 2009). Inactivation of either BmpR1a, BmpR1b, BmpR2, Bmp2 or Bmp7 does not impair AER formation (Bandyopadhyay et al., 2006; Gamer et al., 2011; Yoon et al., 2005). These results suggest that BMP4 signals to the ectoderm to establish the AER.
Brn4-Cre-driven early inactivation of Bmpr1a in the ventral limb bud ectoderm results in partial limb agenesis and/or severe skeletal truncations due to impaired AER formation. This phenotype phenocopies the mesenchymal deletion of Bmp4, suggesting that BMP4 signals through ectodermal BMPR1A to instruct AER establishment (Fig. 3A). Conversely, the mutant forelimb only displays subtle malformations (Ahn et al., 2001). Msx2-Cre-driven inactivation of BmpR1a in the ventral limb bud ectoderm results in partial limb agenesis and/or severe skeletal truncations due to impaired AER formation. This phenotype phenocopies the mesenchymal deletion of Bmp4, suggesting that BMP4 signals through ectodermal BMPR1A to instruct AER establishment (Fig. 3A). Conversely, the mutant forelimb only displays subtle malformations (Ahn et al., 2001).

Msx2-Cre-driven inactivation of BmpR1a in the ventral limb bud ectoderm disrupts AER induction and results in limb agenesis (Pajni-Underwood et al., 2007). As delayed inactivation results in normal development, these results point to a time-restricted requirement of BmpR1a in the ventral ectoderm during AER establishment. Msx2-Cre-driven conditional deletion of Smad4 in the limb bud ectoderm at early stages disrupts AER formation and results in dysmorphism and bifurcation of the phalanges, ectrodactyly and occasional loss of zeugopod elements (Benazet and Zeller, 2013). Similarly, inactivation of Bmp2 and Bmp4 in the ectoderm results in dysmorphism and bifurcation of phalanges (Maatouk et al., 2009). Interestingly, all cases of diminished ectodermal BMP signaling still permissive to AER formation, resulted in impaired AER compaction, elongation along the A-P axis and failure in correct formation of AER-FGF signalling. In particular, AER-Fgf8 expression was increased and prolonged, which is likely the cause of the alterations in autopod development (Ahn et al., 2001; Choi et al., 2012; Maatouk et al., 2009; Pajni-Underwood et al., 2007; Selever et al., 2004; Wang et al., 2004). These results indicate that: 1) ectodermal Smad4 is required for AER formation downstream of BMP2 and BMP4 ligands, to restrain AER-FGF signaling and prohibit excessive autopod outgrowth; 2) after AER establishment, ectodermal BMP2 and BMP4 act independently of SMAD4 to modulate AER-FGF activity and restrict the autopod to pentadactyly. In all cases, reduction of BMP-signaling activity in the ectoderm impairs interdigital cell death, which results in interdigital webbing. This webbing is due to increased and delayed shutdown of AER-FGF signalling: indeed, the combined inactivation of BmpR1a, Fgf4 and Fgf8 in the limb ectoderm rescues interdigital cell death (Pajni-Underwood et al., 2007).

BMP activity during limb patterning and outgrowth

As mentioned above, GREM1-mediated antagonism of BMP activity is necessary for the establishment of the positive e-m feedback loop that in turn sustains the expression of Shh and AER-Fgf during distal progression of limb bud development (Fig. 3B). Grem1 inactivation disrupts A-P polarity, induces cell death and reduces the mesenchymal progenitors. Heterozygosity for the Bmp4 gene partially rescues Grem1 deficiency and
further genetic reduction of Bmp4 rescues cell death and limb skeletal elements (Benazet et al., 2009). This study also revealed the higher genetic relevance of Bmp4 with respect to the other BMP ligands during limb bud development.

During limb bud outgrowth and patterning, the posterior localization of the Grem1 domain together with the anterior expression of GLI3R, which down-regulates Grem1, likely produces an anterior limb domain characterized by high BMP activity (Khokha et al., 2003; Lopez-Rios et al., 2012). Indeed, genetic analysis shows that BMP ligands cooperate with GLI3 to reduce the size of the anterior limb domain and restrict the autopod to pentadactyly (Bandyopadhyay et al., 2006; Hui and Joyner, 1993; Selev et al., 2004).

Tissue differentiation and initiation of chondrogenesis in the limb
Between E11.5 and E12, mesenchymal condensations in the limb bud core begin to form and outline the future skeletal elements that form subsequently by endochondral bone formation (for review see Long and Ornitz, 2013). In parallel, the connective tissue differentiates to give rise to tendons, ligaments, perichondrium, loose connective tissue, dermis, muscle and endothelium (see ten Berge et al., 2008). While most of the limb structures derive from the lateral plate mesoderm, muscle and endothelium precursor cells originate from progenitors that migrate from the somites into the limb bud, where they expand and commit to their respective fates (Buckingham et al., 2003; Chevallier et al., 1977; Yvernogeau et al., 2012).

The specification of these tissues is revealed by the activation of molecular markers, such as Sox9 for osteo/chondroprogenitors, Scleraxis (Scx) for tendons, Growth and differentiation factor 5 (Gdf5) and Four-jointed (Fjx) for joints, MyoD and Myf5 for muscle precursors (Francis-West et al., 1999; Francis-West et al., 2003; Rock et al., 2005; Schweitzer et al., 2001; Wright et al., 1995). Molecular cues from the ectoderm (in particular the AER) orchestrate tissue differentiation such that e.g. condensations occur predominantly in the limb core mesenchyme. In particular, WNT signaling by the ectoderm inhibits chondrogenesis and promotes cell proliferation in the underlying mesenchyme (Hartmann and Tabin, 2001; Rudnicki and Brown, 1997; Solursh, 1984; ten Berge et al., 2008). WNT3a commits mesenchymal cells to different connective tissue fates, depending on the time of exposure. Conversely, combined exposure to WNT3a and FGF8 preserves the chondrogenic potential of mesenchymal progenitors (ten Berge et al., 2008).
FGF signaling, by the AER and mesenchyme, promotes cell survival and proliferation, which ultimately control the length of skeletal primordia and number of digit ray primordia (Davidson et al., 2005; Yu and Ornitz, 2008; Yu et al., 2003). FGF and BMP signaling up-regulate the expression of the Sry-related SOX9 transcription factor (Bi et al., 1999; Murakami et al., 2000; Pan et al., 2008; Wright et al., 1995). The Sox9 haploinsufficiency is associated with severe forms of chondrodysplasia in mice and results in campomelic dysplasia in humans (OMIM Entry # 114290; Bi et al., 1999). Complete inactivation of Sox9 in the limb bud mesenchyme results in skeletal agenesis (Akiyama et al., 2002). Furthermore, Sox9 drives the expression of Sox5 and Sox6, and interacts with them to control chondrogenesis (Akiyama et al., 2002; Lefebvre et al., 2001). Sox9 also interacts genetically with Scx to control the cartilage-tendon interface (Blitz et al., 2013; Sugimoto et al., 2013). In vitro analysis using high-density micromass cultures provided evidence that Sox9 is dispensable for cell compaction during condensation of mesenchymal progenitors. Rather, SOX9 is necessary to maintain the cellular aggregates, possibly by promoting their chondrogenic differentiation. In contrast, BMP signaling is required for compaction of mesenchymal progenitors (Barna and Niswander, 2007). The molecular interactions initiating cell aggregation and compaction of mesenchymal progenitors are not known. Moreover, several signaling pathways inhibit aggregation and/or chondrogenic differentiation, such as the WNT, NOTCH and RA signaling pathways (for review see Long and Ornitz, 2013). However, limb mesenchymal progenitors exhibit an inherent property to initiate chondrogenic differentiation in high-density cultures under the influence of BMP and TGFβ signaling (Barna and Niswander, 2007).

BMP activity during initiation of chondrogenic differentiation

During initiation of chondrogenic differentiation Bmp2 and Bmp7 become expressed by the prospective interdigital cells, while the Bmp4 expression domain gets restricted to the distal-most mesenchyme at E12.0 (Benazet et al., 2009; Dunn et al., 1997; Dupe et al., 1999; Laufer et al., 1994; Yang et al., 1998b). In parallel, phosphorylated forms of SMAD1, -5 and -8 are strongly expressed in the distal-most mesenchyme and, to a lesser extent, in the prospective interdigital mesenchyme and at the tip of digit condensations (Suzuki et al., 2008; Witte et al., 2010). BmpR1b is expressed by the digit condensations, while BmpR1a remains diffuse throughout the mesenchyme, with higher levels in the distal-most mesenchyme (Degenkolbe et al., 2013; Zou et al., 1997). The Msx2 and Id1 target genes are also expressed by the interdigital mesenchyme (Evans and O’Brien, 1993;
however, whereas a single functional allele of BmpR1b rescues all the skeletal elements, which are however shorter with a dysplastic scapula and loss of phalanges (Yoon et al., 2005; Yoon 31

In general, BMP signaling promotes outgrowth of skeletal elements to the detriment of joint formation. For instance, genetic inactivation of the BMP antagonist Noggin results in fewer and larger cartilage elements and failure of joint formation (Brunet et al., 1998). In contrast, compound mesenchymal inactivation of both Bmp2 and Bmp4 induces a severe chondrodysplastic phenotype (Bandyopadhyay et al., 2006).

Mesenchymal condensation is characterized by the transient up-regulation of proteoglycans such as tenascin, syndecan and versican and of adhesion molecules like NCAM and N-cadherin. During chondrogenic differentiation, molecular evidence indicates that BMP signaling up-regulates Sox9, which in turn functions by activating Collagen type II (COL type II), COL type IX, COL type XI and aggrecan in chondrocytes (Bell et al., 1997; Gao et al., 2013; Lefebvre et al., 2001; Sekiya et al., 2000; Yoon et al., 2005). N-cadherin mediates calcium-dependent homotypic cell-cell interactions. In an in vitro system, BMP2-stimulated condensation results in N-cadherin re-distribution to adherens junctions (Haas and Tuan, 1999). Moreover, N-cadherin at adherens junctions modulates the nuclear activity of the transcription factor β-catenin (Fischer et al., 2002; Modarresi et al., 2005).

What is known about contribution of BMP signaling inducing chondrogenic differentiation steps mainly comes from in vivo limb manipulation and gene misexpression experiments or from the used of micromass cultures. Pizette and Niswander (2000) showed a dual role for BMP ligands in mesenchymal aggregation and induction of chondrogenesis (Pizette and Niswander, 2000). When BMP ligands are sequestered by misexpression of NOGGIN, the prospective chondrogenic progenitors undergo a cell fate switch towards loose connective tissue. When NOGGIN is misexpressed over condensing tissue, Gdf5 expression domain is expanded.

GDF5 belongs to the TGFβ superfamily, is structurally related to BMP2 and BMP4 ligands and shares the same receptors (Mueller and Nickel, 2012). GDF5 is expressed by joint primordia and its genetic inactivation results in brachypodia characterized by loss of joints, and hypoplasia of metacarpal and carpal bones in mouse embryos (Storm and Kingsley, 1999; Yi et al., 2000).

Conditional inactivation of BmpR1a in chondrocytes (using the Col2-Cre transgene), results in overall shorter limb skeletal elements with a major dysplasia of the scapula. Instead, inactivation of BmpR1b results in loss of the proximal-most phalanges. The compound inactivation of the type I BMP receptors results in agenesis of limb skeleton, whereas a single functional allele of BmpR1b rescues all the skeletal elements, which are however shorter with a dysplastic scapula and loss of phalanges (Yoon et al., 2005; Yoon 31
et al., 2006). The compound conditional inactivation of Smad1 and Smad5 in the COL2-expressing chondrocytes phenocopies the Bmp receptor type I phenotypes. (Retting et al., 2009). These limb skeletal defects are a consequence of reduced proliferation and increased cell death in growth plate and impaired terminal differentiation of chondrocytes (Yoon et al., 2006). Surprisingly, conditional inactivation of Smad4 using the Col2-Cre transgene results in dwarfism and delayed ossification, suggesting that the chondrogenic steps that follow the activation of COL2 in chondrocytes are mostly driven by Smad4-independent, Smad1/5-dependent mechanisms (Zhang et al., 2005).

Congenital limb malformations associated with aberrant BMP signaling

Limb phenotypes associated with impaired expression of BMP signaling-related molecules in the mouse often mirror the contribution of BMP signaling pathway during human limb development (for review see Zuniga et al., 2012). Congenital human limb malformations include several types of autosomal-dominant brachydactylies (OMIM Ref #112600, #611377 and #113100) associated with mutations affecting the coding sequence (CDS) or regulatory regions of BMP pathway genes such as BmpR1b, Gdf5, Noggin and Bmp2 (Dathe et al., 2009; Lehmann et al., 2006; Lehmann et al., 2007; Ploger et al, 2008). Human cases of brachydactyly sometimes exhibit additional occurrence of proximal symphalangism (OMIM Ref #615298) and carpal synostosis (OMIM Ref #186400; Degenkolbe et al., 2013; Lehmann et al., 2007). Homozygous disruption of the limb-specific cis-regulatory region of Grem1 is associated with the rare autosomal recessive Cenani-Lenz syndactyly syndrome (OMIM Ref #212780; Dimitrov et al., 2010). In contrast mutations in the Sclerostin gene, which encodes another BMP antagonist, result in sclerostosis characterized by syndactyly and bone over-growth (OMIM Ref #269500; Collette et al, 2012). Mutations in Bmp4 reading frame cause the Anophthalmia-microphthalmia multi-systemic disorder that includes polysyndactyly (OMIM Ref #607932; Bakrania et al., 2008).
5. AIMS OF THE THESIS

I started my doctoral studies in developmental biology under the supervision of Prof. Dr. Rolf Zeller with the intent to widen my knowledge and technical skills with respect to the immunology background I acquired during my master’s thesis. Indeed, the investigation of developmental processes has helped me to face the high complexity of gene behaviors, signal interactions and tissue dynamics.

The aim of this thesis is to dissect the genetic contribution of canonical signaling at different stages of limb development with the use of several limb-conditional inactivations of Smad4, alone or in the context of mutant backgrounds. In addition, I was expected to: 1) generate an in vivo sensor of the BMP activity, for a detailed temporal analysis of the signaling dynamics and perturbations upon pharmacological treatments or genetic defects; 2) implement new techniques in the laboratory, including the three-dimensional embryo/tissue optical projection tomography (OPT) scanning and the complementation assay for fast generation of cis-regulatory element reporter embryos/mice.

The genetic analysis of the Smad4 mutation in the limb was accomplished at the beginning of my third year in this laboratory, contributing a co-first author paper (Benazet et al., 2012). On the other hand, the generation of the BMP activity sensor was delayed by several pitfalls, including problems in targeting and germ-line transmission. I have managed to successfully implement the OPT scanning technique in the lab with the help of Frédéric Laurent and Erkan Uenal, and the setting up of the aggregation chimera protocols is almost finalized.

6. MATERIAL AND METHODS

Genetic crosses of mouse strains
All strains are kept in C57BL/6 genetic background unless otherwise stated. All mice and embryos were genotyped by PCR amplification of diagnostic biopsies (primers are listed in Table 1).

Genetic crosses of Smad4 alleles
The Smad4flox conditional allele (Yang et al., 2002) was inactivated either using the Prx1-CreTg in the mouse limb bud mesenchyme from about 9.5 days post coitum (E9.5; Logan et al.), or using the Hoxa13-CreTg knock-in allele during autopod development from about E10.75 onwards (Lopez-Rios et al., 2012; Scotti and Kmita, 2012). The Smad4flox was crossed to the Hoxb6-CreTg to inactivate Smad4 in the hindlimb field and the posterior forelimb mesoderm (Lowe et al., 2000). The Msx2-Cre allele (Sun et al., 2000) was used to inactivate the Smad4flox allele in the limb bud ectoderm from about E9.5 onward in the presence of two Grem1 null alleles (Grem1Δ; see Michos et al., 2004). The Smad4 null allele (Smad4Δ) was obtained by crossing Smad4flox allele with a CMV-Cre deleter mouse strain (Schwenk et al., 1995). Smad4Δ/Δ embryos are lethal between E6.5 and E8.5 due to defective epiblast proliferation and impaired mesoderm induction, whereas heterozygous animals are phenotypically normal (Yang et al., 1998a).

Inactivation of Smad4 in the mesenchyme
Prx1-CreTg-positive mice were crossed with mice carrying the Smad4Δ allele to generate the Prx1-CreTg/+; Smad4Δ/+ compound heterozygous males. These males were crossed with Smad4flox/flox females to obtain experimental embryos that carried a constitutive deleted and a conditionally inactivated allele (Smad4Δ/ΔM). A similar procedure was used to generate Hoxb6-CreTg/+; Smad4Δ/+ males and Smad4Δ/ΔHb6 experimental embryos. Moreover, mice carrying the conditional β-Actin-GFP locus in a Balb/c background were mated to Hoxb6-Cre transgene to generate reporter embryos to monitor the Cre-mediated recombination (Jagle et al., 2007). Smad4Δ/ΔM; Smad4ΔHb6/+ or Prx1-CreTg/+ embryos were used as controls and are collectively referred to as 'Wt'.

34
Inactivation of Smad4 in the autopod

Hoxa13-Cre\(^{\text{Tg}}\) knock-in transgene was crossed either with Smad4\(^{\Delta/-}\) or Smad4\(^{\text{flox/flox}}\) mice to get Hoxa13-Cre\(^{\text{Tg}/+}\); Smad4\(^{\Delta/-}\) and Hoxa13-Cre\(^{\text{Tg}/+}\); Smad4\(^{\text{flox/flox}}\) males. These males were crossed with Smad4\(^{\text{flox/flox}}\) females to obtain a total of 180 embryos. In Hoxa13-Cre\(^{\text{Tg}/+}\); Smad4\(^{\text{flox/flox}}\) males, the Hoxa13-Cre\(^{\text{Tg}}\) transgene failed to ectopically recombine the Smad4\(^{\text{flox}}\) allele in the germ-line approximately 25% of all cases, thus providing the progeny with two conditional alleles to be inactivated. Thus, either Smad4\(^{\Delta/-\Delta\text{M}}\) or Smad4\(^{\Delta\text{A13/-\DeltaA13}}\) embryos were used as experimental samples. Smad4\(^{+/+}\), Smad4\(^{\Delta/\text{flox/flox}}\), Smad4\(^{\Delta/-\text{flox/flox}}\), Smad4\(^{\Delta\text{M}/+}\) or Hoxa13-Cre\(^{\text{Tg}/+}\) embryos were used as controls and collectively referred to as 'Wt'.

Inactivation of Smad4 in the AER in a Grem1-deficient genetic background

In order inactivate Smad4 in the AER of mouse embryos deficient for Grem1 (Grem1\(^{\Delta/-}\); Smad4\(^{\Delta/-\Delta\text{ER}}\)), the following genetic crosses were done: Msx2-Cre\(^{\text{Tg}/+}\) males were mated with Grem1\(^{\Delta/-}\) females to generate Msx2-Cre\(^{\text{Tg}/+}\); Grem1\(^{\Delta/-}\) mice, and to Smad4\(^{\Delta/-}\) females to generate Msx2-Cre\(^{\text{Tg}/+}\); Smad4\(^{\Delta/-}\) mice. The compound mutant mice were inter-crossed to get Msx2-Cre\(^{\text{Tg}/(\text{Tg}/+)}\); Grem1\(^{\Delta/-}\); Smad4\(^{\Delta/-}\) males. Compound Grem1\(^{\Delta/-}\); Smad4\(^{\text{flox/flox}}\) females were obtained by crossing Grem1\(^{\Delta/-}\) males with Smad4\(^{\text{flox/flox}}\) females and inter-crossing the progeny that exhibited a Grem1\(^{\Delta/-}\); Smad4\(^{\text{flox/flox}}\) genotype. Grem1\(^{\Delta/-}\); Smad4\(^{\Delta/-\Delta\text{ER}}\) embryos were compared with Grem1\(^{+/+}\); Smad4\(^{\Delta/-}\); Grem1\(^{+/+}\); Smad4\(^{\Delta/-}\); Grem1\(^{+/+}\); Smad4\(^{\Delta/-\text{L}}\) (overall referred to as Wild-type controls 'Wt').

Inactivation of Smad4 in the limb bud mesenchyme of Shh deficient embryos

Shh\(^{\Delta/-}\); Smad4\(^{\Delta/-\Delta\text{M}}\) compound mutant embryos were obtained with the same kind of crosses as for Grem1\(^{\Delta/-}\); Smad4\(^{\Delta/-\Delta\text{ER}}\) embryos (Shh\(^{\Delta}\) allele comes from St-Jacques et al., 1998).

Genetic crosses of Bmp2 and Bmp4 alleles

Prx1-Cre\(^{\text{Tg}}\) allele was used to inactivate both Bmp2\(^{\text{flox}}\) (Ma and Martin, 2005) and Bmp4\(^{\text{flox}}\) (Liu et al., 2004) conditional alleles to generate compound mutant embryos.

Briefly, Prx1-Cre\(^{\text{Tg}/(\text{Tg}/+)}\) mice were crossed with Bmp2\(^{\text{flox/flox}}\) and Bmp4\(^{\text{flox/flox}}\) conditional alleles to get Prx1-Cre\(^{\text{Tg}/+}\); Bmp2\(^{\text{flox/flox}}\) and Prx1-Cre\(^{\text{Tg}/+}\); Bmp4\(^{\text{flox/flox}}\) compound transgenic mice, respectively. These mice were further mated to generate Prx1-Cre\(^{\text{Tg}/(\text{Tg}/+)}\); Bmp2\(^{\text{flox/flox}}\);
Bmp4(flox/+ males. Females were generated by mating Bmp2flox/flox to Bmp4flox/flox mice and the progeny was inter-crossed to get the Bmp2flox/flox; Bmp4flox/flox genotype. Prx1-CreTg/+; Bmp2ΔM/ΔM; Bmp4ΔM/ΔM embryos were compared to control embryos (Bmp2flox/+; Bmp4flox/+, Bmp2flox/flox; Bmp4flox/+ or Bmp2flox/+; Bmp4flox/flox).

Table 1. Genotyping primers

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward primer</th>
<th>Reverse primer</th>
<th>Allele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cre</td>
<td>5'-GCTGCTATACGGCTGACGGCA-3'</td>
<td>5'-CGTGCAATCGGGGCGAGAAATT-3'</td>
<td>Tg</td>
</tr>
<tr>
<td>Prx1-Cre</td>
<td>5'-GGGGCTCTCTCTCTAGCTCCC-3'</td>
<td>5'-CCTGGGCAATCGGAGAACATC-3'</td>
<td>Tg</td>
</tr>
<tr>
<td>Msx2-Cre</td>
<td>5'-AACAATCTCTGACTGCTCTGT-3'</td>
<td>5'-CCTGGGCAATCGGAGAACATC-3'</td>
<td>Tg</td>
</tr>
<tr>
<td>Hoxa13-Cre</td>
<td>5'-CGTAAATCTGGGATTTTCTGGGATTC-3'</td>
<td>5'-CCAGAGTTCACTGGTTGGCGCGTAAA-3'</td>
<td>Tg (knock-in)</td>
</tr>
<tr>
<td>Hoxb6-Cre</td>
<td>5'-GCTAAAACCAATCTGGCTAT-3'</td>
<td>5'-AGCAATTTTGGAGTACGTCAG-3'</td>
<td>Tg</td>
</tr>
<tr>
<td>Smad4</td>
<td>5'-GGCCAGGGAGTGGCATAAGAG-3'</td>
<td>5'-CCTGGCAGAACACCTTC-3'</td>
<td>Wt/Flx allele</td>
</tr>
<tr>
<td></td>
<td>5'-AAGAAGCAGAGCTGCAAGAC-3'</td>
<td></td>
<td>Null allele</td>
</tr>
<tr>
<td>Grem1</td>
<td>5'-ATGAAGTGCCACGGCTATAGCGA-3'</td>
<td>5'-TCCGGAATCAGATACGGAAGC-3'</td>
<td>Wt allele (Michos et al., 2004)</td>
</tr>
<tr>
<td></td>
<td>5'-GGCAAGAAGCTGCTAATTGCAAGCC-3'</td>
<td>5'-AAGCCGCTCCGCTACCCGCTATA-3'</td>
<td>Null allele (Michos et al., 2004)</td>
</tr>
<tr>
<td>Bmp2</td>
<td>5'-GGCTGCTCTGTGATAATCTTCTGC-3'</td>
<td>5'-AGGAGATCGCTGTCTTGACA-3'</td>
<td>Wt/Flx allele</td>
</tr>
<tr>
<td></td>
<td>5'-AAGCCGCTCCGCTACCCGCTATA-3'</td>
<td></td>
<td>Null allele</td>
</tr>
<tr>
<td>Bmp4</td>
<td>5'-CTGATTTTCTGCTGTGTCGGA-3'</td>
<td>5'-GCCGATGAGCTTTCTCGAGA-3'</td>
<td>Wt/Flx allele (Liu et al., 2004)</td>
</tr>
<tr>
<td>Shh</td>
<td>5'-GAAGAAGCTTCAAGGGCCACGTCGGG-3'</td>
<td>5'-ATGCTGCGCGTGGGCTGGTGAA-3'</td>
<td>Wt allele</td>
</tr>
<tr>
<td></td>
<td>5'-GGACACATTCTATGGAGG-3'</td>
<td></td>
<td>Null allele</td>
</tr>
</tbody>
</table>

Whole Mount In Situ Hybridization (WISH)

The protocol for WISH was previously described (Probst et al., 2013) and is an adaptation of the original protocol from Wilkinson (1992).

Embryos were dissected, phenotyped and number of somites recorded (counted up to E12.0) and fixed overnight (ON) at 4°C in 4% paraformaldehyde (PFA) in phosphate buffer saline (PBS). The day after they were dehydrated in progressively higher methanol concentration in PBS and 0.1% Tween-20 (PBT), and stored at -20°C for further use. Unless stated, all steps were performed with gentle rocking for mixing.

The first day of WISH, experimental and control embryos were age-matched by somite number and limb shape, re-hydrated through progressively lower methanol concentration into PBT and cleared in 6% hydrogen peroxide (AppliChem) in PBT for 15 min. Embryos were washed with PBT (3 times) and digested with 10 μg/ml Proteinase K (PK, Merck) for a time period ranging from 15 min and 1 h according to embryos size and sample thickness. For ectodermal probes, a 4-min digestion with 5 μg/ml PK was used. From PK treatment until re-fixation, samples are kept still – i.e. not rocking -. The PK digestion was stopped using freshly prepared 2 mg/ml glycine in PBT and embryos were.
washed twice in PBT. Embryos were re-fixed with 0.2% glutaraldehyde, 4% PFA in PBT for 20 min at Room-Temperature (RT) and washed twice with PBT. Embryos were then equilibrated into pre-warmed pre-hybridization mix at 70°C for 1 hr or longer and pre-hybridization mix was then replaced by probe solution (10 μl of probe in 1 ml of pre-hybridization mix) ON at 70°C. Digoxigenin-labelled antisense riboprobes were prepared from linearized and transcribed plasmid containing the cloned cDNA of interest. The riboprobes were purified using two steps of ethanol precipitation, the first with and the second without adding linearized polyacrylamide. Probes were heated 5 min at 85°C in pre-hybridization mix and equilibrated at 70°C before use. Probes were re-used several times and stored at -20°C.

The second day of WISH, embryos were brought through several steps (100%, 75%, 50%, 25%) of pre-hybridization solution/ 2x SSC (pH 4.5) at 70°C. Embryos were then washed twice in 2x SSC, 0.1% CHAPS (Sigma) for 30 min at 70°C and treated with 20 μg/ml RNase A (Sigma) in 2x SSC, 0.1% CHAPS for 25 min at 37°C. Embryos were then washed twice with maleic acid buffer (10 min at RT) and twice for 30 min at 70°C. Embryos were washed further in TBST (3 times for 5 min RT) and blocked in 10% goat serum in TBST (blocking buffer) for at least 1 h. Blocking buffer was replaced with antidigoxigenin fragment antigen-binding conjugated with alkaline phosphatase (Roche) diluted 1:5000 in 1% goat serum in TBST. Samples were incubated ON at 4°C.

The third day of WISH, embryos were washed RT several times with TBST over the day and left in TBST ON at 4°C.

The fourth day of WISH, embryos were equilibrated in NTMT for 3 times, 10 min each at RT and then moved into 1 ml of BM Purple (Roche cat. No 11442074001). Samples were developed in the dark, then washed with PBT at least 3 times and moved into PBS. Results were documented using a Leica stereomicroscope with digital camera.

Alternatively, WISH was performed for OPT imaging. To this end, the following modifications were used in order to ensure a better penetrance of the chromogenic substrate into the embryos:

First day WISH: hydrogen peroxide treatment was kept for 1 hr instead of 15 min; glycine step was not used; re-fixation was performed at 4°C for 1 hr; incubation with pre-hybridization solution was performed 1 x 20 min RT and 1 x 3 hr at 70°C.

Second day WISH: embryos were moved in post-hybridization solution and, from here, to progressively higher concentration of 2x SSC. After SSC equilibration, embryos were washed twice in 2x SSC + 0.1% CHAPS at 70°C for 30 min, then once with 0.2x SSC + 0.1% CHAPS at 70°C for 30 min and finally once with 0.2x SSC + 0.1% CHAPS while cooling down to RT for 30 min; samples were then washed with TNT once for 10 min and
blocked in blocking solution at 4°C for 4 hr. Antibody was diluted 1:2000 in blocking solution and incubation was performed ON at 4°C.

Third day WISH: washes were performed with TNT + 0.1% bovine serum albumin (BSA).

Fourth day WISH: embryos were equilibrated in NMT + 0.1% Triton x-100 twice for 30 min, then washed 3 times 10 min in NMT and stained with a mix of nitro-blue tetrazolium and 5-bromo-4-chloro-3-indolyphosphate: BCIP (3.5 μg/ml) + NBT (0.3 μg/ml) in NMT.

Embryo trunk culture and limb bud grafting

Embryos were isolated either at E10.5 – E10.75 (34-39 somites) or E11.5 (45 – 50 somites) in tissue culture-grade PBS in plastic Petri dishes, then moved into 6-well plates containing pre-equilibrated culture medium (see below) and kept inside the incubator (37°C, 5% CO₂). Embryos were then processed individually: the head and the hindlimb together with the posterior-most part were removed and the remaining trunk was further cleaned of the heart and the ventral tissue. Then, a small hole was made into the right forelimb with a sharpened tungsten needle and the customized heparin-coated beads (see below) were placed into the hole. The trunks were positioned on a V-shaped metal grid in a 24-well plate at the interface between culture medium and air, with the help of thin pins. Trunks were cultured for the indicated time at 37°C, 6.5% CO₂. After the incubation period, pins were removed and the trunks were washed 3 x 5 min in PBS before imaging. An ON fixation with 4% PFA in PBS at 4°C followed if the samples were to be processed for WISH.

Culture Medium for embryo trunk culture

(prepared freshly on the day of use):

- 500 ml Dulbecco’s Modified Eagle Medium (1x), liquid (high glucose) (Cat. 41966-029, Gibco)
- 5 ml L-glutamine (Cat. 25030-024, Gibco)
- 2.5 ml penicillin-streptomycin (Cat. 15140-122, Gibco)
- 5 ml non-essential amino acids (Cat. 11140-035, Gibco)
- 5 ml sodium pyruvate (Cat. 11360-039, Gibco)
- 5 ml D-glucose (45% solution) (Cat. G8769, Sigma)
- 0.5 ml L-ascorbic acid (Cat. A4034, Sigma)
• 5 ml lactic acid (Cat. L4388, Sigma)
• 0.5 ml d-biotin/vitam B12 (Cat. B4639 and V6629 respectively, Sigma)
• 0.5 ml PABA (Cat. A9878, Sigma)

L-ascorbic acid and lactic acid were dissolved in PBS and DMEM, respectively, and filtered through a 0.22 μm sieve on the day of use.

Stocks:
• d-biotin: 0.2 mg per ml DMEM. Filter through 0.22 μm filter, 0.5 ml aliquots stored at -20°C;
• Vitamin B12: 40 μg per ml DMEM. Filter through 0.22 μm filter, 0.5 ml aliquots stored at -20°C;
• PABA: 2 mg per ml PBS. Filter through 0.22 μm filter, make 0.5 ml aliquots stored at -20°C.

Loading of beads with proteins
Heparin-Acrylic beads (Cat. H5263, Sigma) were washed in a drop of PBS before moving them in a drop of hrBMP4 (R&D, 0.1 mg/ml) and incubated on ice in a humidified environment for 30 min. After incubation, beads were left on ice in a drop of culture medium before implantation.

Skeletal preparations
Embryos older than E14 were isolated and placed in ice-cold PBS for anesthesia. Then they were euthanized by exsanguination. Subsequently the carcass was eviscerated and macerated ON in tap water, and dehydrated in 95% ethanol from one to several days. Liver biopsies were taken for genotyping. Alcian blue staining (30 mg Alcian Blue 8GX – Sigma -, 85% (v/v) ethanol, 20% (v/v) glacial acetic acid) was performed ON and was followed by one-day washing with 95% ethanol. Embryos were then cleared in 1% (w/v) potassium hydroxide (KOH) in distilled water for about 10 min, counterstained with Alizarin Red (50 mg Alizarin Red – Sigma -, in 1% (w/v) KOH) for 1 hr and cleared in 1% KOH for an additional hour. Embryos were then moved through progressively higher ratio of glycerol/1% KOH solutions according to the speed of the clearing process till a final stocking solution (80% glycerol in water). Embryos were pictured on a Leica stereomicroscope.
Whole mount immunofluorescence (WIF)

Embryos were dissected and processed for fixation and dehydration the same way as for WISH. The first day of WIF, embryos were rehydrated through decreasing methanol/PBT ratio solutions, washed once in PBT for 5 min and once in H₂O for 5 min. Embryos were further permeabilized in pre-chilled acetone at -20°C for 15-20 min, washed in PBT and moved in Immunoblock solution (5% goat serum in Immunowash solution) for at least 2 hr. Embryos were incubated for 4 days at 4°C in Immunoblock solution containing rabbit-monoclonal SMAD4 antibody (Abcam, ab40759) diluted 1:100 and 0.1% Na Azide. After primary antibody incubation, embryos were washed 7 x 15 min followed by 1 x 2 hrs in Immunowash solution and blocked in Immunoblock solution for about 2 hrs. Embryos were moved into Immunoblock solution containing Alexa Fluor 594 Goat-anti-Rabbit (Life Technologies) diluted 1:250 and 0.1% Na Azide, and were incubated ON at 4°C in the dark for additional 4 days. After incubation, embryos were washed 8 x 15 min in Immunowash solution and 2 x 5 min in PBT. After this step, samples were processed for OPT imaging.

OPT imaging

The OPT scanner (Bioptonics, MRC, Edinburgh) allows three dimensional (3D) imaging of tissue up to 15 mm in depth by picturing several projection of fluorescent or colored biological specimen and reconstructing the 3D signal (Sharpe et al., 2002). Processed biological specimen are embedded in a low-melting point agarose (Sigma) and glued on a magnet suited for OPT scanning (Bioptonics). Specimens were dehydrated in methanol ON and cleared in one part Benzyl Alcohol and two parts Benzyl Benzoate (BABB, Sigma) ON. Specimens were scanned at either high (1024x1024 pixels) or intermediate resolution (512x512 pixels) using Skyscan software (Bioptonics, MRC Technology). Auto-fluorescence in the GFP1 filter (425/40 nm, 475 nm LP) was used to detect sample anatomy. Bright field or the TXR filter (560/40 nm, 610 nm LP) was used to image NBT/BCIP stainings or fluorescent signals, respectively. Projection reconstruction was performed using NRecon software (SkyScan) and analyzed using Bioptonics Viewer (Bioptonics, MRC Technology). Rendering images were either taken using the maximum intensity projection function or creating iso-surfaces with Bioptonics Viewer (parameters: 25% iso-surface quality and 50% gaussian smoothing). Iso-surfaces were always compared to the strength and distribution of the original signal to exclude overt manipulation of the result.
Cell death detection using lysotracker

Lysotracker Red DND-99 (Invitrogen) is a fluorescent probe (max absorption 577 nm, max emission 590 nm) conjugated to a weak base. It is highly permeable to membranes and is trapped and accumulates in acidic organelles (mostly lysosomes), providing a specific and sensitive tool for cell death detection. Embryos were dissected in Hank's balanced salt solution (HBSS) and incubated in a pre-warmed solution of HBSS. Lysotracker probe was diluted 1:200, at 37°C in the dark for 45 min. Embryos were incubated in the Lysotracker solution and then washed 5 x 10 min with RT HBSS and fixed ON with 4% PFA in PBS at 4°C in the dark. The day after, samples were dehydrated in methanol through solutions of increasing methanol/PBT ratio, cleared in BABB and imaged at a Leica stereomicroscope. Auto-fluorescence was also captured and used to outline the limb profile with a white dotted line (image processing was performed in Adobe Photoshop®).

Quantitative Real-time PCR (RT-qPCR) analysis

Forelimb pairs were collected and stored in RNAlater (Ambion). Alternatively, embryoid bodies (EBs) were trypsinized and stored in RNAlater. RNA isolation was performed using the RNeasy Micro kit (Qiagen) or by phenol/chloroform extraction with addition of LPA carrier. cDNA was synthetized using Superscript III (Invitrogen). For quantification of transcript levels, the ABI Prism 7000 real time PCR machine and Power SYBR Green PCR Master Mix (Applied Biosystems) were used. Primers are listed in Table 2. The relative quantification cycle values (Cq) were normalized over Cq values of the ribosomal protein L19 (RPL19), which was used as internal standard. The values obtained for samples of mutant limb bud were calculated relative to the mean value obtained from controls set for 100%. Statistical significance was assigned using Mann-Whitney tests and results are reported as mean ± Standard Variation (SD). At least eight samples were used per experiment and each one is represented by a dot.
Table 2. Primers for RT-qPCR

<table>
<thead>
<tr>
<th>cDNA</th>
<th>Forward primer</th>
<th>Reverse primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bmp2</td>
<td>5'-ATGTGGAGACTCTCTCAATG-3'</td>
<td>5'-ACGCTGAAGACACAGGCTC-3'</td>
</tr>
<tr>
<td>Bmp4</td>
<td>5'-ACCGACGCAACACTCTGTA-3'</td>
<td>5'-GTTCTCGAAGATGCTCTGGTG-3'</td>
</tr>
<tr>
<td>Bmp7</td>
<td>5'-TGTTGCCAGAAGAAACGACCA-3'</td>
<td>5'-TCAGGTCAAATGATCCAG-3'</td>
</tr>
<tr>
<td>Dcn</td>
<td>5'-GCTAAAACCCAATCTCGGCTAT-3'</td>
<td>5'-AGCATTTTCCAGGTATGCTCAG-3'</td>
</tr>
<tr>
<td>Fgf8</td>
<td>5'-GCTAAAACCCAATCTCGGCTAT-3'</td>
<td>5'-AGCATTTTCCAGGTATGCTCAG-3'</td>
</tr>
<tr>
<td>Lgals8</td>
<td>5'-TACAAAAGCCAGGCAAGCTCCA-3'</td>
<td>5'-TCGGGCATTGGTCTTTCACTTCC-3'</td>
</tr>
<tr>
<td>Ncam1</td>
<td>5'-GATATTGTTCCCAGCCAAGGA-3'</td>
<td>5'-TTGGGGCAATTGGTCTCTTCC-3'</td>
</tr>
<tr>
<td>RhoC</td>
<td>5'-GGCGATCCGAAAGAAGCTGGTG-3'</td>
<td>5'-CCATCCACTTCGATGTCGGCTA-3'</td>
</tr>
<tr>
<td>Rpl19</td>
<td>5'-ACCCTGGCCCGACGGAGGATGTT-3'</td>
<td>5'-AACCTGGCCCGACGGAGGATGTT-3'</td>
</tr>
<tr>
<td>Scx</td>
<td>5'-AACACCCAGGCAAGACAGAT-3'</td>
<td>5'-TTCTGTCAGGCTCTTCTTCCA-3'</td>
</tr>
<tr>
<td>Smad4</td>
<td>5'-TTCCTACTCTCTTCTTCTCTGTA-3'</td>
<td>5'-AACCTCTCTCTTCTTCTTCTCTGTA-3'</td>
</tr>
<tr>
<td>Sox9</td>
<td>5'-TCGAGCTCAATGAGTTGAGCCA-3'</td>
<td>5'-ATGCCGCTAACTTGCCAGTCTGAGG-3'</td>
</tr>
</tbody>
</table>

Limb bud mesenchymal cell culture

Forelimbs were dissected in ice-cold PBS and digested with 2% trypsin-EDTA for 30 min at 4°C mildly shaking. Single-cell suspension was obtained by pipetting up-and-down in DMEM/F12 medium supplemented with 100 Units/ml penicillin, 100 μg/ml streptomycin and 10% FBS (Gibco-BRL). Cells were centrifuged at 1200 rpm for 5 min, re-suspended at 7.5 x 10⁵ cells/ 300μl and seeded into eight-well chamber slides (Ibidi, 300μl per well). Cells were cultured for 48 hr, washed in PBS and fixed in 4% PFA in PBS for 30 min RT. After fixation, cells were washed 3 x 5 min in PBS RT and permeabilized with 0.3% Triton x-100 in PBT, 15 min RT. Blocking was performed in 10% goat serum, 0.3% Triton x-100 in PBT, 1 hr RT. Cells were incubated with rabbit polyclonal anti-SOX9 (Millipore) 1:500 and mouse monoclonal anti-collagen type II (Thermo Scientific) 1:200 in 1% goat serum in PBS, ON at 4°C. The day after, cells were washed 3 x 5 min in PBT at RT and incubated with secondary antibody goat anti-mouse Alexa Fluor 488 diluted 1:500 or goat anti-rabbit Alexa Fluor 594 diluted 1:500 in 1% goat serum in PBS, 1 hr at RT in the dark. Cells were washed 3 x 5 min in PBT, counterstained with Hoechst (1 μg/ml) 5 min and washed again, then stored at 4°C in PBS in the dark. Samples were analysed using a SP5 Leica confocal microscope.
General cloning protocols

Restriction digestions of vectors and inserts were performed with restriction enzymes either from Roche or New England Biolabs (NEB). Digestion products were gel-extracted and purified with the QIAquick Gel Extraction Kit (QIAGEN). For vector de-phosphorylation, the rAPID alkaline phosphatase kit (Roche) was used. The T4 ligase (NEB) was used for ligation reaction at RT for 10-15 min or ON at 4°C. Dialysis was accomplished using nitrocellulose MFTM-Membrane Filters (Millipore) for 30 min at RT. Electroporation was performed in chemical or electrical competent bacteria (XL1 blue or HB101) using a MicroPulser™ (BioRad). Purification of plasmid DNA from bacteria was performed using the QIAGEN Plasmid Midi Kit or the NucleoBond® Xtra Midi Kit (Macherey Nagel).

Embryonic stem cells (ES cells) and embryonic fibroblasts (EMFI) cultures

ES cell lines were cultured at 37°C in 7.5% CO₂ and checked daily under the microscope for morphological assessment. Medium was replaced every day and cells were split every second day at 1:4, 1:5 or 1:6 according to necessity and type of cell line. ES cells were grown on a layer of EMFIs prepared in the laboratory. An EMFI vial was thawed at 37°C in 10 ml of EMFI medium, spun at 1200 rpm for 5 min and re-suspended in 3 ml of EMFI medium. Cells were then diluted and seeded onto 5 x 10 cm cell culture dishes (BD). They were kept in culture for 2-3 days till they reached confluence and either passaged or mitomycin-treated. For passaging, cells were washed with 4 ml pre-warmed trypsin, 0.05% EDTA (Millipore) and incubated for 5 min at 37°C, collected with 7 ml of EMFI medium, spun and seeded between 1:2 to 1:8 according to necessity. EMFI were passaged maximum twice. EMFIs were growth-arrested by Mitomycin treatment using 10 μg/ml Mitomycin C (Sigma) in EMFI medium for 2 hr. Mitomycin C-treated dishes of confluent EMFIs were used no longer than one week. ES cells were split using pre-warmed trypsin-EDTA (0.05%; Sigma): a first wash was followed by a 15 min incubation at 37°C (3 ml for 10 cm dishes and 2 ml for 6 cm dishes). ES cells were then pipetted up-and-down (7-10 times) to prepare a single-cell suspension, ES cell medium added (7 ml for 10 cm dishes and 4 ml for 6 cm dishes) and cells pipetted up-and-down 4-5 times for blocking the trypsin digestion. Pre-plating for 15 min allowed most EMFIs to attach to the dish. Cells in suspension were collected and spun 1200 rpm for 5 min. Cells were re-suspended in fresh media and plated.

Alternatively gelatin-coated plates were used. To this end, a 0.1% solution of gelatin in water (Sigma) was autoclaved and stored sterile for up to 4-5 months at RT. Cell culture
dishes were treated with gelatin for 5-10 min at RT and left to dry for an additional 5-10 min before use. ES cells were frozen in freshly-prepared pre-cooled ES cell freezing media; about 5-6 1.5 ml pre-cooled NUNC Cryovials were filled with 1.5 ml of ES cell suspension collected from a 10 cm culture dish, stored ON at -80°C and moved to liquid nitrogen the day after. ES cells were thawed at 37°C in a water bath; cells were then resuspended in 10 ml ES cell medium, spun and resuspended in fresh ES cell medium for seeding onto culture dishes.

Media for ES cell and EFMI:

-ES cell medium

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMEM + 4.5g/l Glucose (Gibco 41966029)</td>
<td>500 ml</td>
</tr>
<tr>
<td>Hyclone Fetal Calf Serum (FCS)</td>
<td>94 ml</td>
</tr>
<tr>
<td>(15%)</td>
<td></td>
</tr>
<tr>
<td>Penicillin-Streptomycin (100u-0.1mg/ml) (Gibco 15140-122)</td>
<td>6.25 ml</td>
</tr>
<tr>
<td>L-Glutamin (200mM) (Gibco 25030-024)</td>
<td>6.25 ml</td>
</tr>
<tr>
<td>β Mercapto-Ethanol (Gibco 31350-010)</td>
<td>1.25 ml</td>
</tr>
<tr>
<td>Leukemia Inhibitory Factor (LIF) (10^7 U/ml) (EsGRO LIF™ Gibco 13275-029)</td>
<td>62.5 μl</td>
</tr>
<tr>
<td>Non Essential Amino Acids (100X) (Gibco 11140-035)</td>
<td>10 ml</td>
</tr>
<tr>
<td>Sodium Pyruvate (100mM) (Gibco 11360-039)</td>
<td>10 ml</td>
</tr>
</tbody>
</table>

FCS (tested for germ-line transmission) was 0.22 μm filtered (NOT heat-inactivated).

-EFMI medium

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMEM + 4.5g/l Glucose (Gibco 41966029)</td>
<td>500 ml</td>
</tr>
<tr>
<td>FCS (same as for ECS medium)</td>
<td>58 ml</td>
</tr>
<tr>
<td>(10%)</td>
<td></td>
</tr>
<tr>
<td>Penicillin-Streptomycin (100U-0.1mg/ml) (Sigma P-0781)</td>
<td>5.8 ml</td>
</tr>
<tr>
<td>L-Glutamin (200mM) (Sigma G-7513)</td>
<td>5.8 ml</td>
</tr>
</tbody>
</table>
- ES cell freezing medium

40% FCS (cold)

10% DMSO (Sigma D-8418)

Cold 50% ES medium (-LIF; cold)

Filtered with syringe and kept cold until use.

Embryoid body (EB) culture

2x10^4 ES cells were incubated in a loosened-cap conical polypropylene 1.5ml screw cap micro tube (Sarstedt) in 1ml of differentiation medium (ES cell medium – see above - without LIF) for 5 days at 37°C, 5% CO₂ to obtain EBs according to the established protocol (Kurosawa et al., 2003). The EBs were then transferred to a gelatin-coated IBIDI chamber (suited to confocal imaging) and cultured in differentiation medium for up to 12 days at 37°C, 5% CO₂.

Statistics

The statistics used to quantitatively assess the experimental results are specified in the relative sections or in the Figure legends. Prism (GraphPad) and/or Excel (Microsoft) were used for statistical analysis and graphic design.

Note: the reproducibility of all results was assessed in at least (i.e. minimally) three independent experiments.

Additional and general solutions

- **Pre-hybridization mix**

 50% formamide (deionized, extra pure)

 5x SSC pH 4.5

 2% Blocking Powder (Roche Cat. No. 1096176)

 0.1% Tween-20

 0.5% CHAPS (Sigma)

 50 μg/ml yeast RNA (Sigma R-8759)

 5 mM EDTA

 50 μg/ml heparin (Sigma H5515)
- Post-hybridization mix
 50% formamide (deionized, extra pure)
 5x SSC pH 4.5
 0.1% Triton x-100
 0.5% CHAPS (Sigma)

- 20x SSC, pH 4.5
 3M NaCl
 0.3 M Na₃citrate:2H₂O
 Adjust pH to 4.5 with 1M HCl

- Maleic Acid Buffer
 100 mM maleic acid
 150 mM NaCl
 Adjust pH to 7.5

- TBST
 140 mM NaCl
 2.7 mM KCl
 25 mM Tris HCl, pH 7.5
 1% Tween-20

- NTMT (prepared fresh)
 100 mM NaCl
 100mM Tris 9.5
 50 mM MgCl₂
 1% Tween-20

- TNT
 50 mM Tris HCl pH 7.5
 150 mM NaCl
 0.1% Triton x-100
- NMT
 100 mM Tris HCl pH 9.5
 100 mM NaCl
 50 mM MgCl₂

- Blocking solution for OPT-oriented protocol
 6.5 % goat serum
 2% (w/v) BSA
 50 mM Tris HCl pH 7.5
 150 mM NaCl
 0.1% Triton x-100

- Immunowash solution
 1% (w/v) BSA
 1% dimethyl sulfoxide (DMSO)
 1% Triton x-100
 0.1% Tween-20
 Bring to volume with PBS
7. RESULTS

Some of the results contained in this section have been published in:

Conditional inactivation of Smad4 in the limb bud mesenchyme

Space- and time-restricted inactivation of Smad4 allowed us to study BMP signaling requirements in a focused manner and, at the same time, to target the canonical BMP pathway in a global fashion, avoiding complex genetic experiments based on inactivating multiple ligands or receptors.

Prx1-Cre-mediated inactivation of Smad4 in the limb mesenchyme (Smad4Δ/ΔM) led to the formation of stunted paddle-like limb structures (Fig. 1A). In addition, gross morphological analysis of Smad4Δ/ΔM mutant embryos revealed reduced liver size and the formation of a sub-epithelial edema dorsally to the neural tube at E14.5 (Fig.1A). Skeletal preparations showed that both forelimbs and hindlimbs were devoid of skeletal elements, with the exception of a remnant of the pelvis at E14.5 (Fig. 1B), whereas the axial skeleton was unaffected. The residual pelvis skeletal element was likely a consequence of the delayed activation of the Prx1-Cre transgene in the hindlimb mesenchyme (between E9.5 and E10.5) in comparison to the forelimb mesenchyme (E9.25; Logan et al., 2002). Since this initial analysis suggested a late-onset phenotype, we looked at the clearance of Smad4 transcripts and products. We noted that recombination of Smad4 occurs around E9.5 in the forelimb mesenchyme, whereas levels of Smad4 in the paraxial mesoderm are also reduced due to the presence of a constitutive null allele (Fig. 1C). Whole-mount immunofluorescence revealed that SMAD4 protein was cleared from the forelimb mesenchyme at about E9.75 (Fig. 1D). As expected, recombination of Smad4 did not occur in the ventral ectoderm and SMAD4 proteins maintained in the ectoderm (Fig. 1D, arrowheads in central and right-most panels). In addition, the expression of Msx2, which is a well-established BMP signaling readout (see Introduction), was down-regulated in the mesenchyme by E10.0 (Fig. 1E); the residual Msx2 expression is likely due to long-lived transcripts.
Fig. 1. *Smad4* inactivation in the limb mesenchyme driven by *Prx1-Cre* transgene. (A) Dark-field picture of whole embryo at day E14.5 allows gross morphological analysis of *Smad4Δ/ΔM* phenotype; stunted paddle-like structures replace the elongated wild-type limb and no finger primordia appear in the mutant (experiment by J.D.B.). (B) Alcian blue-stained skeletal preparations at E14.5 reveal the absence of any forelimb and hindlimb skeletal structure in the *Smad4Δ/ΔM* mutant embryos, apart from a remnant of pelvis skeleton (experiment by J.D.B.). (C) WISH with a *Smad4* probe covering exon 8, which is deleted in the adopted *Smad4Δ* allele. At 23-24 somites, amounts of *Smad4* transcripts in the forelimbs correlate with the number of wild-type alleles (experiment by J.D.B.). (D) OPT rendering of a whole-mount immunofluorescence experiment on forelimbs at 29 somites (wild-type) and 27 somites (*Smad4Δ/ΔM*), showing deletion of SMAD4 proteins in the mutant mesenchyme and persistence of proteins in the ventral ectoderm (white arrowheads) with respect to the wild-type limb. The dotted line in the central panel indicates the approximate position of the OPT virtual section shown in the right-most panel. (E) *Msx2* gene transcripts are detected as readout of BMP signaling activity in the *Smad4Δ/ΔM* mutant in
Smad4 functions as part of the SHH/GREM1/FGF feedback loop

Previous studies revealed that the expression of Grem1 depends on both Bmp4 and Shh (see Introduction and Benazet et al., 2009). In light of this, we sought to understand whether BMP4-driven signaling was mediated by canonical SMAD4-transduced pathway during patterning of the forelimb. Conditional inactivation of Smad4 in the limb mesenchyme led to down-regulation of Grem1 transcripts, and particularly impaired the anterior expansion of its expression (Fig. 2A, panels on the left). Grem1 expression levels were also down-regulated upon constitutive inactivation of Shh (see Chiang et al., 2001). In addition, ShhΔ/Δ forelimbs exhibited ectopic expression of Grem1 in the proximal posterior-most forelimb domain, partially overlapping the Shh and Tbx2 expression domains (see e.g. Farin et al., 2013 for Tbx2 expression domain). We found that compound inactivation of Shh and Smad4 results in loss of Grem1 expression, revealing that Smad4 is required for the Shh/Grem1/Fgf4 feedback loop (Fig. 2A, left-most panel).

The AER-Fgf4/8 domains in the Smad4Δ/ΔM limb buds are enlarged along the D-V axis in comparison to wild-type controls (Fig. 2A, right panels), which points to a defect in AER compaction. Quantitative transcript analysis revealed the up-regulation of Fgf8 expression in Smad4Δ/ΔM limbs at E10.5 (Fig. 2E). Shh inactivation results in down-regulation of Fgf8 expression levels and clearance of Fgf4 transcripts (Chiang et al., 2001). The additional inactivation of Smad4 in the mesenchyme did not further alter AER-Fgf8 and Fgf4 expression in the ShhΔ/Δ genetic background.

We also noticed that the Shh transcription domain was expanded proximally in the Smad4Δ/ΔM limb bud mesenchyme (Fig. 2B, black arrowhead), likely as a consequence of the proximal expansion of AER-FGF domain (Fig. 2A, dorsal view of Fgf8 expression in the Smad4Δ/ΔM mutant background).

Analysis of later stages (E11.75 and E12.5) showed that Shh, Fgf4 and Fgf8 transcripts were maintained in the Smad4Δ/ΔM limb for longer than in the wild-type controls (Fig. 2C,D; see arrowheads). This is indicative of delayed termination of the SHH/GREM1/AER-FGF feedback loop. Indeed, Shh expression was stronger in the Smad4Δ/ΔM mutant forelimb buds with respect to wild-type controls at E11.75 (Fig. 2C, upper panels); at E12.5, Smad4Δ/ΔM limb buds showed a residual posterior-proximal domain of Shh expression (Fig. 2C, lower panels, see black arrowhead). Similarly, expression of Fgf4 transcripts, which was terminated around E11.75 in the wild-type,
persisted in an anterior domain in mutant forelimb buds (Fig. 2D, upper panels). Furthermore, Fgf8 expression was also prolonged in comparison to matched wild-type forelimb buds (Fig. 2D, lower panels).

Fig. 2. Genetic involvement of mesenchymal Smad4 in the SHH/GREM1/AER-FGF feedback loop. (A) (From left to right) Grem1, Fgf8, Fgf4 transcripts expression in wild-type, Smad4Δ/ΔM, ShhΔ/Δ and Smad4Δ/ΔM; ShhΔ/Δ forelimbs at E10.25 (31-35 somites). For Fgf8 probe, a dorsal and AER-oriented view are reported. Fgf4 signal is only depicted from the AER. (B) Shh expression in wild-type and Smad4Δ/ΔM forelimbs at 35 somites. The arrowhead points at proximal expansion of Shh domain in the mutant limb. (C) Shh expression at E11.75 (50 somites, upper panel) and E12.5 (60 somites, lower panel) in wild-type and Smad4Δ/ΔM mutant forelimbs. The black arrowhead points at the delayed termination of Shh transcripts in the mutant limb. (D) Delayed termination of Fgf4 and Fgf8 transcripts (upper panel – 50 somites - and lower panel – 60 somites -, respectively) in wild-type and Smad4Δ/ΔM forelimbs. Black arrowhead points at residual Fgf4
transcripts in the anterior-proximal region of mutant forelimb. (E) Fgf8 transcript levels quantified by RT-qPCR in E10.5 (~35 somites) forelimbs from wild-type and Smad4Δ/ΔM mutant embryos. Expression is significantly higher in the mutant samples (P≤0.01). Data are shown as mean ± SD. All the experiments of this figure were performed by J.D.B. apart from Fgf4 and Fgf8 panels shown in (A).

Expression of BMP ligands depends on Smad4 in the mesenchyme

We wondered whether Smad4 is required in the mesenchyme to modulate the expression of BMP ligands. We then used WISH and RT-qPCR quantification on E10.5 forelimbs to analyze the expression of BMP ligands. We observed that Bmp2 transcripts were up-regulated in the posterior domain and down-regulated in the AER of Smad4Δ/ΔM limb buds (Fig. 3A). Both Bmp4 and Bmp7 were slightly up-regulated in mutant limb buds, although their spatial distribution was unchanged. RT-qPCR quantification revealed significant up-regulation of Bmp7 transcripts, while Bmp4 levels were not significantly altered (Fig. 3B,C). Altogether, these results point to the possible presence of a Smad4-dependent feedback loop regulating the expression of BMP ligands.

Fig. 3. Effects of mesenchymal inactivation of Smad4 on BMP ligands. (A,B,C) BMP ligands were quantified in wild-type versus Smad4Δ/ΔM mutant forelimbs by WISH (upper panels) and by RT-qPCR (lower panels) at E10.5 (~35 somites). RT-qPCR results are reported as mean ± SD. Three-stars indicate significance at P≤0.001. S4Δ/ΔM, Smad4Δ/ΔM.
Analysis of A-P axis development in mouse limb buds lacking mesenchymal Smad4 expression

Mesenchymal inactivation of Bmp4 by Prx1-Cre^{Tg} results in anterior expansion of posterior genes and down-regulation of anterior genes in mutant limb buds (Selever et al., 2004). Thus, we wondered to which extent the mesenchymal Smad4 deficiency would phenocopy the Bmp4 inactivation. We looked at the SHH-dependent Gli1 and Ptc1 transcripts in the posterior-most limb region and at Alx4 transcripts in the anterior-most region in Smad4 mutant limb buds at E10.5 (Fig. 4A,B). We noted that the Gli1 expression pattern was unchanged, while Ptc1 and Alx4 transcripts were slightly down-regulated. Ptc1 transcripts were also more distally restricted (Fig. 4A). In the hindlimb, both posterior markers were more distally restricted, whereas Alx4 transcripts were extended slightly more posterior (Fig. 4B). Altogether, molecular analysis revealed minor alterations, but failed to show major alterations in A-P axis development.

![Fig. 4. Analysis of A-P axis upon mesenchymal inactivation of Smad4. SHH-dependent Gli1 and Ptc1 genes associated with posterior limb compartment and Alx4 in the anterior compartment were analyzed in wild-type and Smad4^{Δ/ΔM} mutant limb buds (at 37, 36 and 35 somites, respectively). (A) In the forelimbs, Gli1 expression pattern (upper panel) is unchanged. Conversely, Ptc1 transcript levels in the posterior and Alx4 transcripts in the anterior limb are slightly down-regulated (middle and lower panels). (B) In hindlimb buds both Gli1 and Ptc1 transcript levels are slightly reduced while Alx4 expression is slightly expanded. FL: forelimb; HL: hindlimb.](image-url)
Smad4 inactivation in the autopod primordia

The *Hoxa13-Cre* knock-in transgene (*Hoxa13-Cre^{Tg}*) drives Cre recombinase expression in the prospective forelimb autopod starting at about 36 somites (see Material and Methods). The activity of the *Hoxa13-Cre^{Tg}* is restricted to the autopod in forelimb buds, whereas it is also active in the lateral mesoderm at the level of the hindlimb bud (see Material and Methods; see Scotti and Kmita, 2012). Therefore, only forelimb buds were analyzed. *Hoxa13-Cre^{Tg}*-mediated inactivation of *Smad4* was used to temporally uncouple the patterning phase of low BMP signaling (between ~28 to ~38 somites) from a later phase in which BMP signaling rises to induce mesenchymal condensations and modulate (see Introduction). We generated two mutant embryo models that either carry one or two conditionally inactivated alleles (*Smad4^{Δ/ΔA13}; *Smad4^{ΔA13/ΔA13}*, respectively). Apart from a glove-like handplate, no additional abnormalities were detected in *Smad4^{Δ/ΔA13}* embryos at E14.5 (Fig. 5A). *Smad4^{ΔA/ΔA13}* and *Smad4^{ΔA13/ΔA13}* embryos at E14.5 showed no carpal, metacarpal and phalangeal bones (Fig. 5B) and no additional differences were detected between the two mutant genotypes.

We found that *Smad4* expression was cleared slightly before 38-somite stage in the distal and posterior mesenchyme (Fig. 5C, left-most panel). This clearance of *Smad4* transcripts expanded anteriorly in the distal mesenchyme, eventually encompassing the entire autopod primordia by 50 somites (Fig. 5C, central and right-most panels). As expected, *Smad4* transcripts remained expressed in the proximal limb bud mesenchyme, where the *Hoxa13-Cre^{Tg}* allele is not expressed (Fig. 5D). Because two conditional alleles have to be inactivated in *Smad4^{ΔA13/ΔA13}* autopod primordia, we expected the SMAD4 clearance to be slower than in the *Smad4^{ΔA/ΔA13}* handplates. This should allow us to study the potential differential requirements of *Smad4* over a narrow time window during limb bud development.
Fig. 5. Smad4 inactivation in the limb autopod at late stages driven by Hoxa13-Cre knock-in transgene. (A) Bright-field picture of whole embryo at E14.5 reveals the absence of finger-like appendages in the Smad4Δ/ΔA13 mutant handplates (experiment by J.D.B.). (B) Alcian-blue and Alizarin-red stained skeletal preparations at E14.5 show that carpal, metacarpal and phalangeal bones are missing in the Smad4Δ/ΔA13 and Smad4ΔA13/ΔA13 mutant forelimbs (lower panels). (C) WISH with Smad4 probe outlines the kinetics of Hoxa13-Cre-driven recombination in the forelimb at the stage of 39 somites (left-most panel), 41 somites (central panel) or 50 somites (right-most panel) in the Smad4Δ/ΔA13 genetic background. (D) Smad4 transcripts in the prospective autopod (distal-most part of the limb) are cleared in both Smad4Δ/ΔA13 and Smad4ΔA13/ΔA13 mutant forelimbs at the stage of 50 somites (central and right-most panels). Smad4 transcript levels in the proximal part of the limb, where Hoxa13-CreTg is not active, are dependent on the absence or presence of a constitutive null Smad4 allele. 1-5: digit identities.

Smad4 is necessary for initiating chondrogenic differentiation and formation of digit rays

Since Smad4Δ/ΔM mutant forelimbs did not develop any skeleton, we determined if Sox9-expressing chondrogenic progenitors were affected at early stages of limb bud development. In Smad4Δ/ΔM mutant forelimbs, the Sox9 expression pattern was mostly unchanged in comparison to the wild-type controls until E11.0 (Fig. 6A, two left-most panels). At E11.5 the donut-like expression of Sox9 in wild-type limb buds was broken into a proximal element and a distal half-moon shape in Smad4Δ/ΔM mutant forelimb buds.
This altered pattern remained at E12.25, while the Sox9 transcripts outlined the digit primordia in wild-type controls (Fig. 6A, two right-most panels). Moreover, the Sox9 expression pattern was overall proximalized in the absence of mesenchymal Smad4, likely due to increased FGF signaling by the AER (Fig. 6A, second-last images from the right, white brackets). OPT image analysis showed the increase of Sox9-positive chondrogenic precursors in the prospective stylopod element and the concurrent thinning of the distal-most Sox9 domain in the mutant forelimbs (Fig. 6B, white arrowheads and brackets). In the absence of mesenchymal Smad4, Sox9 transcripts never extended to the distal limb bud where the digit primordia appear by E12.0 (Fig. 6B, right-most panels).

To gain further insight, we used the Hoxa13-CreTg knock-in transgene to study the Smad4 requirement directly during handplate development and specification of digit primordia between around 36- to 40-somites (E10.75 – E11.0). We first established that the knock-in Hoxa13-CreTg transgene did not result in a phenotype on its own or in combination with one conditional Smad4 allele (Fig. 6C, two left-most panels). In Smad4Δ/ΔA13 mutant limb buds, four Sox9-positive digit primordia formed, while only the two posterior-most digit primordia formed in the Smad4Δ/ΔA13 limb buds (Fig. 6C, two right-most panels). We inferred that the two posterior digit primordia are either specified earlier than the anterior primordia, or require Smad4 for a shorter time. This analysis reveals the tight time frame in which digit primordia depend on Smad4 for specification of their chondrogenic fate.

In Bmp2ΔM/ΔM; Bmp4ΔM/ΔM double mutant limb bud, the Sox9-positive primordia for the two posterior-most digits fail to form (see Bandyopadhyay et al., 2006). We reproduced this result, looking at 50-somite forelimbs. Consistently with previous results, Sox9 was not expressed in the posterior forelimb domain and only anterior Sox9-positive digit rays formed (Fig. 6D, panels on the left). Moreover, Decorin (Dcn) transcripts, which encode a small leucine-rich proteoglycan that regulates the assembly of non-chondrogenic collagen fibers (Danielson et al., 1997), label the region of the posterior digit primordia in the Bmp2ΔM/ΔM; Bmp4ΔM/ΔM mutant forelimb, whereas in the anterior digit rays Dcn is no longer expressed (Fig. 6D, two right-most panels).

To understand whether the autopod was specified in the absence of mesenchymal Smad4 we analysed the expression of Hoxa13. The spatial distribution of the Hoxa13 transcripts (labeling the prospective autopod) was not altered in Smad4 mutant limb buds, but digit and interdigit domains (labeled by Cyp26b1 and Dlx5, respectively) were lost (Fig. 6E), consistent with the failure to form digits in Smad4Δ/ΔM mutant limb buds.
Fig. 6. Smad4 regulates Sox9-mediated chondrogenic specification in digit primordia. (A) WISH time-course (from E10 to E12.25) for Sox9 transcripts in wild-type and Smad4Δ/ΔM mutant forelimbs. White bars span the distance between the distal-most Sox9 expression domain and the AER. Experiment performed by J.D.B. (B) Iso-surface OPT rendering of the Sox9 expression domains in wild-type and Smad4Δ/ΔM mutant forelimbs at E11 (41 somites), E11.5 (44 somites) and E12 (52 somites). White brackets mark the length of the arch that Sox9 expression pattern outlines in the limb core. White arrows point at a proximal element specified by Sox9 expression, most likely corresponding to the prospective stylopod. (C) Spatial distribution of Sox9 in the digit primordia of E12.5 forelimbs from Hoxa13-CreERT2-positive embryos carrying different combinations of conditional or constitutive Smad4 alleles. The two left-most pictures were taken by J.D.B. (D) On the left panels, Sox9 expression pattern in wild-type and Bmp2ΔM/ΔM;Bmp4ΔM/ΔM forelimbs at E11.75 (50 somites); in the middle panels, OPT-captured expression pattern of Dcn on wild-type and Bmp2ΔM/ΔM;Bmp4ΔM/ΔM mutant forelimbs at about 50 somites from a dorsal view. The white broken line represents the approximate levels at which the artificial sections from an AER-oriented view are taken in the panels on the right. Brackets indicate the posterior-most part of the limb, to highlight the differences in Dcn expression between wild-type and Bmp2ΔM/ΔM;Bmp4ΔM/ΔM limbs. (E) Spatial distribution of Hoxa13, Cyp26b1 and Dlx5 transcripts in wild-type and Smad4Δ/ΔM mutant forelimbs at E12.5 (experiment performed by J.D.B.). s: scapula; h: humerus; r: radius; u: ulna; 1,2,3,4,5: identities of the digit primordia.
Smad4 is required for cell aggregation and initiation of chondrogenic differentiation

We established a high-cell density *in vitro* culture system for an in-depth analysis of the dynamic properties and molecular features of limb bud mesenchymal cells lacking *Smad4*. Wild-type limb bud cells cultured for 48 hrs (obtained from E11.5 embryos), formed cellular aggregates that express the SOX9 protein and COL type II in the core (Fig. 7A). In contrast, *Smad4*-deficient cells did not form aggregates and did not produce COL type II protein. Furthermore, mutant cells did not maintain the expression of SOX9, which appeared down-regulated in comparison to wild-type controls (Fig. 7B). Next, we treated wild-type derived high-density cultures with two small molecule inhibitors, dorsomorphin and SB431542, that specifically block either BMP- or TGFβ-specific receptor activity, respectively (Yu et al., 2008; Inman et al., 2002). Both treatments resulted in phenotypes similar to the ones of limb bud mesenchymal cells lacking *Smad4* (compare results in Fig. 7 and Fig. 8). Taken together, this analysis shows that both BMP and TGFβ receptor-driven pathways are fundamental for cell aggregation, early chondrogenic differentiation (COL type II expression) and maintenance of SOX9 expression (Fig. 8A,B,C).

![Immunofluorescence using high-density cultures at 48 hrs (mesenchymal cells obtained from limbs at E11.5) reveals aggregates outlined by SOX9 (red) and marked by COL type II (green) expression in wild-type samples.](image)

Fig. 7. Mesenchymal Smad4 is fundamental for formation of aggregates, chondrogenic differentiation and maintenance of SOX9 in a cell-based model. (A) Immunofluorescence using high-density cultures at 48 hrs (mesenchymal cells obtained from limbs at E11.5) reveals aggregates outlined by SOX9 (red) and marked by COL type II (green) expression in wild-type samples. **(B)** High-density culture performed using *Smad4Δ/ΔM* cells results in reduced SOX9 expression, impaired cell aggregation and differentiation. White rectangles indicate the positions of the enlargements shown below. (Experiment performed by Frédéric Laurent).
Small-molecule treatment of a high-density culture system reveals the importance of both BMP and TGFβ receptors for initiation of chondrogenesis. (A) Immunofluorescence on 48-hours high-density culture (mesenchymal cells obtained from limbs at E11.5) reveals aggregates outlined by SOX9 (red) and marked by COL type II (green) expression in the wild-type samples in the presence of 0.1% DMSO (same solvent concentration used for experiments in panels B and C). (B,C) When high-density cultures are treated either with Dorsomorphin (10μM, inhibitor of BMP receptors) or SB431542 (10μM, inhibitor of TGFβ receptors), aggregation and chondrogenic differentiation are impaired, and SOX9 expression is not maintained. White rectangles indicate the positions of the enlargements shown below.

Smad4 controls chondrogenic differentiation and restricts non-chondrogenic cell fates

The potential role of *Smad4* in regulating limb cell fates was assessed by analyzing the distribution of specific markers for different cell lineages specification. *Col2a1* is activated downstream *Sox9* and marks cells that undergo chondrogenic differentiation (e.g. during formation of digit primordia), whereas *Col1a2* expression marks connective tissues such as skin, tendons, ligaments and muscle-associated connective tissues (Fig. 9A, upper panels; see Introduction). Upon mesenchymal inactivation of *Smad4*, *Col2a1* transcripts were down-regulated in the forelimbs. At E12.5 and E13.5, the *Col2a1* expression was very much reduced. Conversely, *Col1a2* expression was strongly up-regulated from E11.5 onwards in mutant limb buds in comparison to wild-type controls. In particular, the *Col1a2* expression domain extended into the limb distal mesenchyme of mutant limb buds by E13.5, pointing to the absence of restrictive cues. The same applies to the expression domains of *Dcn*, *Scx* and *Fjx1*, the latter being a marker for ligament
progenitors. Dcn expression in Smad4Δ/ΔM mutant limb buds was up-regulated and spread throughout the limb, including the distal region normally occupied by mesenchymal condensations (compare Fig. 9C with Fig. 6D). The Scx expression domain, which was localized in the sub-ectoderm at the level of the digit primordia in wild-type limb buds, expanded throughout the entire sub-ectodermal region in the Smad4Δ/ΔM mutant limb (Fig. 9D). The Fjx1 domain, which localized to the prospective joints in the wild-type limb buds, was also spread throughout the mutant mesenchyme (Fig. 9E). Interestingly, for all three molecules expression levels were up-regulated already at E11.5 (between 47- and 50-somite stage), before the differentiation of mesenchymal cells took place in wild-type limb buds (Fig. 9C,D,E). Dcn and Scx transcripts were found up-regulated also by RT-qPCR, whereas Sox9 transcripts were significantly reduced (Fig. 9G). We then looked at the progenitors of the skeletal muscles (marked by MyoD1 transcription factor), which migrate from the somites into limb buds (reviewed in Buckingham et al., 2003). The spatial distribution of MyoD1 transcripts was unchanged at E11.5 (Fig. 9F, left-most panel). We found that MyoD1-labeled migrating progenitors could not organize properly in the Smad4Δ/ΔM mutant limb at E12.5-E13.5 (Fig. 9F, right-most panels). This phenotype is likely caused by the lack of cartilaginous structures and tendon progenitors, which are responsible for organizing muscle precursors during tissue differentiation (Blitz et al., 2009).
Fig. 9. Smad4 controls a switch in chondrogenic cell fate while restricting alternative lineages. (A,B) Spatial distribution of Col2a1 (A) and Col1a2 (B) transcripts in wild-type and Smad4Δ/ΔM mutant forelimbs at E11.5 (~47-50 somites), E12.5 and E13.5. (C,D) Distribution of Dcn (C) and Scx (D) transcripts in wild-type and Smad4Δ/ΔM mutant forelimbs at E11.5 (left panel) or with OPT rendering at E12.5 (middle and right panels). Middle panels show a dorsal view. The white broken line represents the approximate levels at which the artificial sections from an AER-oriented view are taken in the right-most panels. OPT scans in these panels were performed by Erkan Uenal. (E,F) Distribution of Fjx1 (E) and MyoD1 (F) transcripts in wild-type and Smad4Δ/ΔM mutant forelimbs at E11.5 (~47 somites), E12.5 and E13.5 (G) RT-qPCR quantification. Dcn and
Scx transcripts are up-regulated in Smad4Δ/ΔM mutant limb buds (P≤0.06 and P≤0.05, respectively), whereas Sox9 transcripts are down-regulated in comparison to wild-type controls. RNA was obtained from E11.75 (about 50 somites) forelimb buds; 8 Smad4Δ/ΔM limb buds were processed and compared to stage-matched controls. Results are reported as mean ± SD. Significance, one star: P≤0.05. See Material and Methods for additional information.

Minor alterations in cell death are observed following mesenchymal inactivation of Smad4

As part of our analysis we checked for possible alteration in cell death and proliferation. In the Smad4Δ/ΔM mutant limb we detected an ectopic/enhanced spot of cell death in the limb core around E10.5 and E11.5 (Fig. 10A,B; white and black arrowheads on left-most panels). As expected, interdigital cell death was suppressed in Smad4Δ/ΔM mutant limb buds at E13.5 (Fig. 10A,B; right-most panels). Cell death was assessed using the fluorescent probe Lysotracker® and by analysis of the Cathepsin D (Cstd) expression pattern (Zuzarte-Luis et al., 2007). No differences where apparent in comparing the two methods (Fig. 10, compare panels A and B).

Concomitantly, cell proliferation was addressed by Dr. Ashleigh Nugent with a Ki67 immunostaining on limb sections (see Benazet et al., 2012), but no alterations in proliferation were observed up to E12.5.

Fig. 10. Cell death is not significantly altered by inactivation of mesenchymal Smad4.
(A) Detection of cell death in wild-type and Smad4Δ/ΔM mutant forelimbs with Lysotracker® tracer in a time-course experiment from E10.5 to E13.5. White arrowheads point at cell death domains in the limb core at E10.5 and E11.5. (B) Cathepsin D (Cstd) probe labels active lysosomes and describes cell death pattern in a less sensitive fashion with respect to Lysotracker® tracer. Black arrowheads point at the cell death domains in the limb core at E11.5. Stages of analysis are indicated in the panels.
Genetic analysis of Smad4 requirements during limb bud initiation (unpublished results).

Smad4 was inactivated in the hindlimb field using the Hoxb6-Cre transgene to study potential roles of Smad4 during limb bud initiation. While recombination in the hindlimb is complete, recombination in the forelimb occurs only in the posterior limb domain at about E10.0 (Fig. 11A). This early Smad4 inactivation resulted in a high degree of developmental arrest by about E8.5 associated with heart hypertrophy (Fig. 11B). Mutant embryos that survived this early arrest developed to E10.25/E10.5. At this stage, dead embryos were recognized as they no longer expressed Sox9 and Grem1 in somites (Fig. 11C). In Smad4Δ/ΔHb6 mutant forelimbs Smad4 remained expressed in the anterior limb bud mesenchyme, consistent with the posterior activity of the Hoxb6-Cre transgene (Fig. 11D, arrowhead). Grem1 expression was either unaltered or appeared more diffuse in both fore- and hindlimb buds of Smad4Δ/ΔHb6 mutant embryos (Fig. 11E, left and central panels). Preliminary results indicated that mutant Smad4Δ/ΔHb6 embryos failed to activate Sox9 expression in the core mesenchyme of early limb buds (Fig. 11E, right panel).
Fig. 11 Inactivation of Smad4 in the hindlimb field and the posterior forelimb bud at early stages. (A) β-Actin-GFP reporter transgene is recombined and activated upon expression of the Hoxb6-Cre transgene (see Material and Methods). In the upper panels, one embryo was imaged at E9.0 (18 somites; n=1); dark-field image is overlapped to the green fluorescent signal. In the lower panels, only the fluorescent signal in the forelimbs (left) and hindlimbs (right) is reported at E10.0 (31 somites; n=3; contributed by Marco Osterwalder). Recombination only occurs in the hindlimb field and the correspondent axial mesodermal segment of the embryo at E9.0, whereas recombination extends to the posterior region of the forelimbs at E10.0. (B) Dark-field micrographs of representative wild-type and retarded Smad4Δ/ΔHb6 embryos collected at E11.5. Smad4Δ/ΔHb6 embryos were retrieved with mendelian ratios. However, more than half showed an arrest in development at around E8.5 and limb agenesis. Therefore, only embryos of the expected age were collected from each litter. (C) Sox9 transcripts detected in wild-type and Smad4Δ/flox embryos at E9.75 (26 somites; n=2). The absence of signal in all tissues of mutant embryos indicates that developmental arrest occurred before collection. (D) Detection of transcripts of Smad4 exon 8 in forelimbs of wild-type, Smad4Δ/flox and Smad4Δ/ΔHb6 at E10 (30 somites, n=2). The Hoxb6-Cre transgene is expressed in the posterior forelimb mesenchyme, which explains the residual anterior expression of Smad4 transcripts (black arrowhead). (E) Grem1 and
Sox9 transcripts (n=3 and n=1, respectively). On the left, forelimbs from wild-type and Smad4Δ/Δ embryos are shown at E9.75 (28 somites). Mutant forelimb buds show more diffuse Grem1 expression in comparison to wild-type controls. At E10.5, Grem1 expression is similar in wild-type and mutant hindlimbs (36 somites). On the right, Sox9 transcripts are expressed in somites (black arrowheads) but are absent from the posterior mutant forelimb mesenchyme at E10.25 (32 somites). FL, forelimb; HL, hindlimb; S4, Smad4.
8. DISCUSSION

In the present study, we used a genetic approach to investigate the roles of SMAD4-mediated canonical BMP signal transduction during limb development. We found that SMAD4 is involved in specification of digit primordia and initiation of chondrogenesis.

Inactivation of Smad4 in the limb mesenchyme during AER formation and compaction (E9.5- E9.75) ultimately results in agenesis of the limb skeleton. Similarly, inactivation of Smad4 in the prospective handplate at later stages (E10.75-E11.0) leads to loss of autopod skeletal structures. These results provide genetic evidence for a role of SMAD4, and likely canonical BMP signal transduction, in initiation of chondrogenesis. Moreover, using Hoxa13-Cre-mediated Smad4 inactivation we obtain evidence for a narrow time window for the SMAD4 to induce digit primordia. Previous genetic analysis focused mainly on BMP functions in AER formation or in maintenance of chondrocyte proliferation and differentiation failed to uncover roles of BMP signalling in initiating chondrogenic differentiation. For instance, inactivation of BmpR1a in the ventral ectoderm results in limb agenesis due to impaired AER formation (Ahn et al., 2001; Pajni-Underwood et al., 2007); and compound inactivation of BmpR1b and BmpR1a in chondrocytes results in severe chondrodysplasia due to increased cell death and impaired chondrocyte differentiation (Yoon et al., 2005).

Experiments with mesenchymal progenitors in culture show that Smad4-deficient mesenchymal cells do not initiate aggregation, which is the first step during formation of the cartilage primordia. This Smad4 requirement is the first obvious defect observed in limb buds lacking mesenchymal Smad4, as, in contrast to other BMP pathway-related molecules, AER establishment is not impaired and only minor defects in endochondral bone formation are observed (Benazet et al., 2012; Pajni-Underwood et al., 2007; Zhang et al., 2005). This points to SMAD4-independent BMP signal transduction during limb development. Besides non-canonical BMP signal transduction, evidence supporting SMAD4-independent, SMAD-dependent signaling transduction exists (Liu et al., 1997). Previous analysis of high-density limb bud mesenchymal cell cultures defined several steps of mesenchymal condensation: sorting, aggregation, cluster formation and compaction, the last of which was shown to require BMPs (Barna and Niswander, 2007).

We show that mesenchymal Smad4 is required for Sox9-specification of digit primordia around the time when the autopod is shaped. In the early stages, Sox9 expression is unaffected by loss of mesenchymal Smad4 (E9.75 to E10.75), which is consistent with
BMP activity being low due to GREM1 antagonism during this phase of limb patterning and outgrowth (Benazet et al., 2009). However, when the increase of BMP activity is required for mesenchymal progenitors to undergo chondrogenesis (Lopez-Rios et al., 2012), Smad4 is required to propagate the expression of Sox9 in the prospective digit primordia in the forming autopod. In the absence of Smad4, Sox9-positive chondrogenic precursors accumulate proximally (likely at the level of the prospective stylopod) while the distal expression is disrupted. This could be attributed to a cell-autonomous mesenchymal defect or to high and prolonged AER-FGF signalling in distal Smad4 mutant limb buds, which inhibits differentiation of the mesenchyme (Benazet and Zeller, 2013). These results indicate that SMAD4 could be part of the novel molecular circuitry that had to evolve during formation of the autopod and digits in tetrapods (Woltering and Duboule, 2010).

The impact of Smad4-mediated signal transduction on Sox9 expression was further addressed in high-density mesenchymal progenitor cell cultures, which provide evidence that Smad4 is necessary to sustain SOX9 expression downstream BMP (and TGFβ) receptors. In addition, I have obtained genetic evidence in support of a role for BMP signalling in activation of Sox9 in the limb bud mesenchyme at very early stages. My genetic evidence corroborates cell-based studies that show that Sox9 is a direct transcriptional target of both canonical and non-canonical BMP signal transduction (Gao et al., 2013; Pan et al., 2008).

Furthermore, conditional inactivation of Smad4 in the autopod unveiled its differential requirement for formation of anterior and posterior digit primordia. The mesenchymal progenitors giving rise to the posterior digits 4/5 requires canonical BMP signalling for a shorter time, or activate BMP signalling earlier than the anterior compartment as a possible consequence of the progressive anterior displacement of Grem1 expression domain (Michos et al., 2004). In light of these results, the loss of the posterior primordia in the Bmp2; Bmp4 mutant mesenchyme shows that BMP2 and BMP4 mediate up-regulation of BMP activity in the posterior limb mesenchyme prior to its increase in the anterior mesenchyme (Bandyopadhyay et al., 2006). In addition, this study shows that BMP7 is required to specify the digit primordia in the anterior limb bud mesenchyme. Genetic inactivation of Smad4 in the autopod also revealed a posterior-to-anterior order of specification of digit primordia, which apparently contrast with the results obtained by temporal conditional inactivation of Shh (Zhu et al., 2008). Zhu and colleagues proposed that digit determination and formation follows a specific sequence: namely 4, 2, 5 and 3, and the Shh-independent digit 1 appearing last (Zhu et al., 2008). These results can be
reconciled with our results by proposing that the anterior digit 2/3 and the posterior digit 4/5 primordia arise from single Sox9-positive condensation that branches subsequently during limb bud development.

We demonstrate that mesenchymal Smad4 is also required during limb bud outgrowth and patterning in the context of the positive feedback loop SHH/GREM1/AER-FGF. Despite not being essential for the establishment of the limb signalling centers, Smad4 modulates AER-FGF and Shh expression. Indeed, upon mesenchymal removal of Smad4, Fgf8 is up-regulated and its expression is prolonged, while Shh expression pattern is extended proximally. Notably, similar alterations were detected following inactivation of BMP ligands (Bandyopadhyay et al., 2006; Sellever et al., 2004), indicating that SMAD4 transduces the low levels of BMP activity during limb bud outgrowth and patterning.

The roles of BMP signalling in initiation of chondrogenesis at a molecular level are not clear. I have obtained evidence for a role for Smad4 in regulating the small GTPase RhoC (data not shown), which is known to be involved in cell rearrangements and motility by acting on the cytoskeleton (Kitzing et al., 2010). Indeed, RhoC is expressed by the cells of the perichondrium and is supposed to inhibit chondrogenesis and define the boundary between condensing and non-condensing tissues (Montero et al., 2007). Moreover, parallel experiments run in the lab indicate that expression of N-cadherin is dependent on mesenchymal Smad4. Altogether, these data point at a possible role of Smad4 in rearranging the actin cytoskeleton during initiation of chondrogenesis. These rearrangements are known to involve β-catenin as a structural component and as transcriptional modulator (Modarresi et al., 2005; Ouyang et al., 2013). This is relevant as canonical Wnt signalling, which is mediated by β-catenin, inhibits chondrocyte differentiation (Rudnicki and Brown, 1997).

Smad4 inactivation in the limb mesenchyme results in soft, non-organized tissues that lack bone and any differentiated structures. Further molecular analysis revealed the up-regulation and wide-spread expression of markers for non-chondrogenic lineages. In particular, Col type I, its downstream target Scx (Cserjesi et al., 1995; Schweitzer et al., 2001), Fjx1 (Rock et al., 2005) and Dcn (Danielson et al., 1997) were up-regulated and co-expressed in regions that would normally undergo chondrogenesis. This is consistent with the results obtained by Pizette and Niswander following misexpression of Noggin in the chicken wing buds. In such wing buds Gdf5, which marks tendon progenitors, was up-regulated in regions of chondrogenic condensations (Pizette and Niswander, 2000).
Altogether, these results point to a role of SMAD4 in restraining non-chondrogenic versus chondrogenic cell fates, and reveal that this is fundamental prerequisite to initiate chondrogenic differentiation. This conclusion is of particular interest since experimental evidence indicates that BMP activity in the limb bud mesenchyme down-regulates Wnt signalling in the ectoderm to prevent tendon and connective soft tissue differentiation of core mesenchymal cells (Collette et al., 2012; Collette et al., 2010; Kamiya et al., 2010; ten Berge et al., 2008). Together these results suggest that the modulation of BMP and WNT activities and signal transduction define chondrogenic and non-chondrogenic territories.

Inactivation of SMAD4 in the limb bud mesenchyme interferes with both canonical BMP and TGFβ signal transduction, but does not allow discrimination between single pathways. However, genetic analysis has not provided evidence for essential roles of TGFβ signaling in onset of chondrogenesis. Instead, TGFβ ligands and receptors have been associated with the organization of muscles and tendons, which in turn affects organization of skeletal elements (Pryce et al., 2009; Sanford et al., 1997). Inactivation of TGFβR2, which is a common type II receptor for all TGFβ ligands, results in dwarfism (Spagnoli et al., 2007), but the underlying alterations are unknown. Inhibition of TGFβ receptor activity in mesenchymal cell cultures causes a block in mesenchymal condensations and COL type II expression similar to inhibition of BMP receptors activity by small molecules and to genetic inactivation of Smad4. Therefore, shedding light on the spatio-temporal requirements of both pathways will be of vital importance for cartilage and bone engineering (see e.g. Jiang et al., 2010; Sanchez-Adams and Athanasiou, 2012). Experimental evidence suggests that TGFβ may prime mesenchymal cells for BMP-mediated induction of chondrogenesis (see e.g. Karamboulas et al., 2010; Leonard et al., 1991; Roark and Greer, 1994).

The high dynamic modulation of BMP activity can account for the various morphoregulatory properties of BMP signalling pathway throughout limb development. BMP activity in the limb is high during establishment of the AER, low during limb patterning and outgrowth, and is increased again to function in initiation of chondrogenesis (see Introduction). Furthermore, the discrete and regular fashion by which skeletal primordia are laid down along the A-P limb axis (Newman and Bhat, 2007) and the tight regulation of digit identity by BMP activity (Suzuki et al., 2008) suggest that classical morphogen gradients alone cannot explain the dynamic modulation of BMP signalling activity. Therefore, a real-time analysis of the dynamics of BMP activity is required to reveal the for sure highly dynamic exposure of progenitors to BMP signalling.
9. CONCLUSIONS AND OUTLOOK

The present study on the multiple roles of BMP signalling and in particular SMAD4 requires much more in-depth analysis. Here I report only two considerations:

1. SMAD4-mediated BMP signalling is fundamental to initiate chondrogenesis, as it has been established in several cell-based studies, see e.g. Barna and Niswander (2007) and in the genetic studies during my PhD. However, the mechanisms that underlie the initiation of chondrogenesis by cell condensation events are still largely unknown. Evidence suggests that SOX9 acts downstream of BMP signalling to mediate its function in initiating chondrogenesis by the up-regulation of early chondrogenic markers such as Col type II (reviewed in Hall and Miyake, 2000). Indeed, Sox9 inactivation results in skeletal agenesis similar to Smad4 inactivation (Akiyama et al., 2002, and my studies). Some studies report that BMPs can also directly activate early chondrogenic factors (Haas and Tuan, 1999; Inai et al., 2013; Morgan et al., 2011). Therefore genetic analysis in combination with high-throughput RNA/protein profiling is necessary to gain insight into the complex cell and tissue rearrangements that occur during initiation of chondrogenesis. In addition, direct visualization of cell behavior during formation of aggregates has to be used to investigate the early steps of aggregation of chondrocytic progenitors in combination with molecular analysis (Barna and Niswander, 2007).

2. The present study also opens several questions on how and when digits are specified and determined during limb bud development. As discussed in the previous chapter, discrete temporal requirement of Shh for patterning unveils an order of digit specification (Zhu et al., 2008) that differs from the posterior-to-anterior progression of specification suggested by inactivation of Smad4 (my studies). Independently of the order of digit specification, it is important to clarify the genetic interactions occurring between SHH and BMP morpho-regulatory signals, especially in the light of their dynamic activities with respect to the A-P limb axis formation and their requirement for final determination and shaping of digits (Dahn and Fallon, 2000; Suzuki et al., 2008; Suzuki et al., 2004).
10. ACKNOWLEDGMENTS

I first thank Rolf Zeller for being my enthusiastic mentor and having so much patience with me, and Aimée Zuniga for co-supervision.

I thank Prof. Markus Affolter and Prof. Verdon Taylor for being members of my thesis committee.

I thank Jean-Denis Bénazet, who taught me how to take a ‘tough line’ with research. A great part of this study would not have been possible without of him.

I thank Javier Lopez-Rios and Gretel Nusspaumer for their great support and advice, on how to ‘tackle’ pipettes and human beings as well.

I thank all my former colleagues, and especially Alexandre Gonçalves and Simone Probst, for all their teachings.

Frédéric Laurent, Dario Speziale and Ashleigh Nugent, Erkan Uenal, Sumit Jaiswal, Marco Osterwalder, I thank you all because you shaped me the way I am now (including, first of all, food; then scientific and moral support, then... each one of you knows).

I thank all the people I have met during these years, with whom I have shared words, feelings and thoughts; or whom I have just passed by: sometimes, the most negligible event is also the most important.
11. APPENDIX 1 _ INACTIVATION OF SMAD4 AND GREM1 IN THE AER

Background
Ablation of BMP activity in the established AER results in a variety of phenotypes that include interdigital webbing, polydactyly, phalanx bifurcation and ectrodactyly (Pajni-Underwood et al., 2007). On the other hand, inactivation of Grem1 and reduction of Bmp4 in the mesenchyme restores the limb skeleton for a large extent (Benazet et al., 2009), indicating that GREM1 is the main extracellular antagonist of BMPs in the limb bud mesenchyme. Therefore, we sought to understand if reduction of BMP activity through Smad4 from the AER could compensate for the at least the sub-ridge mesenchymal cell death phenotype associated with inactivation of Grem1.

Results
To this aim, we inactivated Smad4 (using a Msx2-Cre transgene) in a Grem1 deficient genetic background to get Grem1Δ/Δ; Smad4Δ/AER embryos (n=3, see Material and Methods). We found that the compound mutants retain the interdigital soft tissue webbing to the extent of Smad4Δ/AER embryos (Fig. 1A). Grem1 deficient forelimbs have three rudimentary digits, while Grem1Δ/Δ; Smad4Δ/AER forelimbs exhibit between 3 and 4 digits which are however thickened and in some cases bifurcated (Fig. 1B, compare the forelimbs 'FL' in the lower panels). This phenotype is indicative of a minor distal rescue with respect to the Grem1 loss-of-function. In addition, 2 of 3 hindlimbs of the compound mutant embryos showed a variable phenotype characterized by oligodactyly, ectrodactyly and ectopic sprouting of phalanges, which are associated with the Smad4Δ/AER deficiency (Fig. 1B, hindlimb ‘HL’ in the lower-right panels). In all cases, fore- and hindlimb buds show variable degrees of bifurcations of the distal phalanges, which is likely due to excessive AER-FGF signalling (Pajni-Underwood et al., 2007).

The fusion of the zeugopodal elements in forelimbs of Grem1Δ/Δ; Smad4Δ/AER is strikingly similar to Grem1Δ/Δ forelimbs. In contrast, the double mutant zeugopod in hindlimbs is more affected and a unique ossification forms proximally (arrowed in Fig. 1C).
Fig. 1. (A) Allele series of compound mutants for constitutive Grem1 inactivation and AER-Smad4 inactivation (using Msx2-CreTg). E14.5 forelimbs (FL, upper panels) and hindlimbs (HL, lower panels) are pictured on dark field. Note that the interdigital webbing is retained whenever Smad4 is cleared from the AER. (B) Skeletal preparations at E18.5 are stained with Alcian Blue (cartilage) and Alizarin Red (bone matrix) to detect alterations in digit number and morphology in forelimbs (FL) and hindlimbs (HL). Red asterisks mark bifurcation of the last phalanges typical of the AER-Smad4 removal; blue asterisks point at ectopic sprouting of phalanges; black arrows indicate a ectrodactyly phenotype. Double Grem1; AER-Smad4 limbs are compared to stage-matched controls, either Wt or single mutants (Grem1Δ/Δ; Smad4Δ/+ phenotype is comparable with
a single $Grem1^{1/4}$ mutant). (C) Skeletal preparations at E18.5 of zeugopod are stained like in (B). Both FL and HL are pictured. In total, 3 double mutant embryos were collected. 1-5: digit/metacarpal identities.
12. APPENDIX 2 ATTEMPTS TO GENERATE A BMP SENSOR MOUSE

Aim of the project and background

The establishment of a BMP-sensor mouse model would be ideal to study the spatio-temporal dynamics of BMP signaling. For the analysis during limb development, a reporter that is rapidly induced and degraded would be important for detecting the postulated variations in BMP activity during initiation, outgrowth and differentiation during limb bud development (Benazet et al., 2009). The BMP sensor models generated so far have some drawbacks that impair either sensitivity or dynamic properties of the readout with respect to the original signal.

Mostly, the BMP-responsive element (BRE; Korchynskyi and ten Dijke, 2002) was used to trace BMP signalling activity. The BRE is a minimal enhancer activated by pSMAD1 and pSMAD5, and the element is constituted of two head-to-head copies of the regions -1105 bp to -1080 bp and -1052 bp to -1032 bp upstream the Id1 gene transcriptional start site (TSS; Korchynskyi and ten Dijke, 2002). Id1 is a well-characterized BMP target gene that is activated by both BMP and TGFβ signalling (Hollnagel et al., 1999; Lopez-Rovira et al., 2002; Ogata et al., 1993; Ying et al., 2003). The CMVe-(BRE)3-MLP-EGFP mouse line generated in Christine Mummyry's laboratory (Monteiro et al., 2008) consists of cytomegalovirus immediate early promoter (CMVe) placed upstream three copies of the BRE cassette that controls the expression. The cassette is followed by an enhanced version of the green fluorescent protein (GFP). We imported this mouse strain and tested it for sensing BMP signaling in limb bud, but expression that mirrored the expression pattern of the BMP signaling targets Msx2 and Id1 was not detected (Fig. 1A; compare with the expression pattern in Fig. 3A). This result, together with the analysis of additional transgenic mouse models based on the BRE cassette (Blank et al., 2008; Collery and Link, 2011) suggested that the BRE minimal enhancer does not sense BMP activity during mouse limb bud development.

Another approach is based on inserting a reporter into the endogenous regulatory sequences responding to BMP signal transduction (Bensoussan et al., 2008; Nam and Benenezra, 2009; Perry et al., 2008). We imported a mouse line generated by Benoît Robert's laboratory (Bensoussan et al., 2008). In these mice an IRES-GFP transgene is placed downstream of the endogenous Msx2 allele. The mouse strain faithfully recapitulated Msx2 expression pattern in the limb bud from E10.5 onwards (Fig. 1B). Next, beads loaded with hrBMP4 were implanted into limb buds to assess the sensitivity and dynamic regulation of the GFP transgene. We found that the GFP reporter signal
could not be detected after 3-4 hours of limb culture, whereas Msx2 transcripts were already activated. Beads were implanted in different location to assess the ectopic activation of the Msx2 target gene in limb buds (Fig. 1B). The ectopic GFP induction was visible about 6 hrs after bead implantation, when Msx2 transcripts already begun to be down-regulated again (Fig. 1C, left panel). After 22 hours of culture, Msx2 transcripts and GFP protein were mostly cleared around the bead in most of the experimental limb bud analysed (n=7, not shown). However, when the hrBMP4-loaded beads were implanted into the anterior limb bud mesenchyme (i.e. into the region corresponding to the strongest Msx2 expression), GFP was detected up to 22 hrs of limb culture (Fig. 1C, right panel, n=2). This result suggests that the GFP protein (about 20 hours, see Nagai et al., 2002) is too stable to allow detection of rapid dynamic alterations in BMP activity. This reveals the need to generate a novel type of BMP sensor transgene.
Fig. 1 Existing BMP-sensor mouse models are not specific or have insufficient dynamics to detect rapid changes in BMP activity (A) Epi-fluorescence images in the GFP channel of the mouse right forelimb at E11.5 (left panel) and E12.5 (right panel) of the BMP-sensing mouse strain generated by Monteiro et al. (2008). Note that GFP outlines the vasculature. GFP signal was transposed into golden color using the Photoshop Hue/Saturation tool, to achieve higher signal-to-noise ratio in printouts (parameter: Hue, -100).

(B,C) Bright-field in situ images with the probes indicated (upper panels) and the corresponding epi-fluorescence images to detect GFP expression (lower panels) using the Msx2-GFP mouse strain generated by Bensoussan et al. (2008). (B) In the upper panel, heparin beads coated with 0.1 mg/ml hrBMP4 were implanted either into the anterior-distal Msx2 expression domain (left panel) or the core mesenchyme (right panel) of the right forelimbs. Limb bud trunks were cultured for 3-4 hrs. Note that ectopic Msx2 expression was triggered upon bead implantation either in the anterior Msx2 expression domain (left-upper panel) or in the core mesenchyme in a domain located distally to the bead (right-upper panel; see arrowheads). Left limb buds serve as controls. Lower panels show that GFP corresponding to Msx2 induction was not detectable after 3-4 hrs. Arrowheads point to the same region in both panels. (C) Heparin beads loaded with 0.1 mg/ml hrBMP4 were implanted in the anterior-distal Msx2 expression domain into right forelimb buds, and cultured for either 6-7 hr (left panels) or 22 hrs (right panels) to assess changes in Msx2 expression (upper panel, bright-field WISH images) and GFP fluorescence (lower panels). Left limbs served as controls. Black arrowheads point to the Msx2 expression, which was reduced around the bead by 6-7 hr and cleared around 22 hr (upper panels). White arrowheads point to
GFP triggered by a hrBMP4-loaded bead at both 6-7 hr and 22 hr in the anterior Msx2 domain (lower panels).

Toward BMP sensor: design of a standard vector to analyze cis-regulatory sequences in ES cells and mice

In order to generate a standard vector to test sequences for their potential enhancer activity, the pIGNA vector was generated at GeneArt® (Life Technologies, Fig. 2A, sequence available upon request). pIGNA vector contains a sequence encoding an enhanced version of the yellow fluorescent protein named Venus. Venus has reduced sensitivity for chloride ions and for low pH and is induced faster than the standard YFP (Aulehla et al., 2008; Nagai et al., 2002). To allow a better quantification of fluorescence signal in a tissue context, a Nuclear Localization Signal (NLS; sequence: PKKKRKV) was added downstream Venus Coding Sequence (CDS). Also, a protein degradation domain (PEST sequence) was added downstream the NLS to reduce the half-life of Venus from ~20 hr (Nagai et al., 2002) to less than 2 hr (Aulehla et al., 2008). The PEST sequence used was HGFPP**AA**QDDGTLPMSCAQESGMDRH, and the three underlined alanine residues replace three glutamic acid residues that characterize the original PEST sequence derived from mouse ornithine decarboxylase (Li et al., 1998). A polyadenylation signal (polyA) derived from the pCI-neo mammalian expression vector (Promega) was synthetized downstream the PEST sequence. Just upstream the Venus CDS, a chimeric intron cut-and-copied from the pCI-neo vector (Promega) was synthetized in order to facilitate the expression of the downstream reporter gene and prevent utilization of possible cryptic 5‘-donor splice sites within the reporter (see Promega website; Gross et al., 1987; Huang and Gorman, 1990). The sequence block spanning from the chimeric intron to the polyA was flanked by two Cre recombination sites for lox511 (upstream Venus) and loxP (downstream the polyA) to allow targeting the conditional Gt(Rosa)26Sor locus (Tchorz et al., 2012) by Recombinase-Mediated Cassette Exchange (RMCE; Schlake and Bode, 1994). An FRT site was placed just upstream the loxP site to allow for eventual flippase-driven RMCE. Unique restriction sites (5‘-3‘ order ClaI, KpnI, Apal, HindIII, NheI, Sall, PacI, AatI) were placed in a Multiple Cloning Site (MCS) downstream the lox511 site and upstream the Venus CDS to insert the regulatory sequences of interest. Other unique restriction sites (FseI, BclI upstream lox511 and Pmel downstream loxP site) were placed outside the construct to allow excision of the entire sequence (Fig. 2A). The whole construct (1494bp) was cloned into
the pMA-RQ (ampR) backbone (GeneArt®) and propagated in *E. coli* K12 (dam+ dcm+ tonA rec-) bacteria.

Neomycin resistance coding gene (*NeoR*) was subcloned with Xbal from the pLoxpNeo-2 vector into a pBlueScript II KS(+) vector to generate the pBSNeoR vector. In order to maintain the NheI restriction site unique in the pIGNA MCS, the NheI site upstream the pGK promoter driving the expression of the *Neo* resistance was eliminated by blunting the protruding sequences of the cut restriction site with a T4 polymerase (NEB). A full-length chicken β-globin insulator sequence (Chung et al., 1997) was subcloned from the pXCHG3fwd vector (Dr. Alexander Aulehla) into a blunted EcoRI restriction site in the pIGNA vector, just upstream the FRT recombination site. The insulator was used to shield the transcriptional activity of the sensor from any unwanted activity of *cis*-acting regulatory element and from the promoter of the *Gt(Rosa)26Sor* locus. A second insulator was cloned from the pXCHG3fwd vector into a Clal-Asp718 restriction locus downstream the lox511 site into the pIGNA vector. Then, the NeoR cassette was removed from the pBSNeoR vector with a single Xbal restriction digestion and cloned into the pIGNA vector taking advantage of the single-cutting Xbal site present in the sequence of the FRT recombination site. The obtained vector was named pIGNA(2xins)NeoR (Fig. 2B). This vector was supposed to be an easy-to-customize shuttle vector for analyzing the activity of *cis*-regulatory elements by inserting them into the *Gt(Rosa)26Sor* locus (Tchorz et al., 2012).

However, three targeting attempts were performed and consistently failed to contribute antibiotic-resistant ES cell colonies. Therefore, another ES cell line carrying a replaceable *Gt(Rosa)26Sor* locus was adopted from Andrew McMahon laboratory (Tsanov et al., 2012), and the targeting vector was modified accordingly (see the following sections).
Fig. 2 Schematics of intermediate, targeting vectors and RMCE-mediated recombination process during ES cell targeting. (A) plIGNA vector as synthetized at GeneArt®. Two lox sites (lox511 and loxP, in a head-to-head orientation) enclose a multiple cloning site (MCS), a chimeric intron from the pCI-neo vector (Promega), a Venus reporter gene endowed with a nuclear localization signal, a degron element and a polyadenylation signal obtained from the pCI-Neo...
vector (Promega). Two NotI restriction sites flank the Venus reporter, so that the cassette including *Venus-NLS-PEST* can be easily customized. An FRT site including a unique XbaI restriction site allows easy insertion of neomycin resistance cassette (NeoR) from an in-house vector. Unique sites are placed outside the lox sites to allow the excision of the whole sequence.

(B) pIGNA(2xins)NeoR as an easy-fitting platform for the study of cis-regulatory elements. Two insulators from the chicken β-globin gene (~1.2 kb) and a NeoR cassette (~1.8 kb) were cloned into the pIGNA vector, destroying the original FRT recombination site.

(C) pIGNA(2xins)NeoR vector was customized with a genomic sequence segment spanning 7874 bp upstream the *ld1* TSS and cloned into two separate blocks upstream the chimeric intron sequence, resulting in the pIGNA(2xins)NeoRId1 vector (see Results of this Appendix).

(D) The panel shows a schematic of the wild-type *Gt(Rosa)26Sor* locus *(D,1).* Below, the RMCE-mediated recombination of the pXCHG3Id1 vector *(D,2)* into the conditional locus *(D,3),* and the obtained recombined locus *(D,4).* Black arrows indicate relative position and orientation of the primers used for PCR screening.

(E) Schematics of the Evolutionary Conserved Regions (ECR) obtained at the ECRBrowser (http://ecrbrowser.dcode.org) on the cis-regulatory region upstream *ld1* TSS (~7.8 kb), chosen for driving the reporter expression. Conserved regions are displayed on the vertical axis from the genomes of Zebrafish, Frog, Chicken, Cow and Human (from the top to the bottom). Conserved regions above the 70% of similarity were colored in red. Blue bars at exonic regions, Salmon at intronic regions, Green at untranslated region on the *ld1* gene. Five blocks of conserved regions were identified (named a, b, c, BRE-containing region, mp = minimal promoter). MCS, multiple cloning site; Insul, chicken β globin insulator; NeoR, Neomycin resistance cassette; *ld1* Enh, *ld1* enhancer (from -7874 bp to -720 bp upstream *ld1* TSS); *ld1* Pro, *ld1* minimal promoter (from -720 bp to -1 bp upstream *ld1* TSS); int, chimeric intron from pCl-neo mammalian expression vector (Promega); SA, splice acceptor.

Choice of cis-regulatory region to construct a BMP activity sensor

The best characterized BMP target genes in limb buds are *ld1, Msx2* and *Grem1* (see Introduction; Fig. 3A). *ld1* and *Msx2* are expressed from early stages onward in similar patterns. This includes a domain in the anterior limb bud mesenchyme and a smaller domain in the posterior mesenchyme connected by a sub-ectodermal mesenchymal domain (see Introduction and Fig. 3A). The *ld1* expression pattern appeared overall broader than the *Msx2* domain. *ld1* transcripts levels were higher than the ones of *Msx2* when BMP activity was high; this is seen best at early (22-28 somites) and late stages (38 somites onwards) (Fig. 3A; Benazet et al., 2009; Lopez-Rios et al., 2012). During low BMP activity (28 – 38 somites) *ld1* and *Msx2* transcript levels were rather similar. In order to evaluate the target gene that best recapitulates loss or gain of BMP activities, the mesenchymal *Smad4* and *Grem1* loss-of-function were used for analysis. Results showed
that \textit{ld1} transcripts were lost more than \textit{Msx2} in \textit{Smad4} deficient limb buds both at E10.5 and E12.5, pointing to a more specific role of \textit{ld1} in sensing the canonical BMP pathway (Fig. 3B,C). Up-regulation was similar for both \textit{ld1} and \textit{Msx2} in mouse limb buds lacking \textit{Grem1} (Fig. 3B). These results indicated that \textit{ld1} might be better suited as readout for BMP activity.

To choose the \textit{cis}-regulatory region that might most faithfully mirror the dynamics of endogenous \textit{ld1} expression in limb buds, we focused on the \textit{cis}-regulatory regions surrounding the BRE. Since the BRE alone does not recapitulate the endogenous \textit{ld1} expression in limb buds (Fig. 1A), we cloned a much larger fragment of the endogenous \textit{ld1} promoter into the pIGNA(2xins)NeoR vector. The \textit{ld1} \textit{cis}-regulatory region selected (Fig. 2E) encompasses 7874 bp upstream the \textit{ld1} TTS and encodes two regions conserved in human, cattle and chicken genomes (−4895 bp to -4557 bp and -1397 bp to -785), one of which contains the well-characterized BRE (Korchynskyi and ten Dijke, 2002; Fig. 2E, regions b and BRE-containing element). The minimal promoter (mp) and a region spanning 1606 bp at the 5’ limit of the element are conserved in the human and bovine genome (Fig. 2E, regions b and BRE-containing element). In addition, a short third region ‘c’ (−3560 bp to -3422 bp) is conserved between mouse and human genomes only (Fig 15E). These conserved regions were identified using the ECRBrowser server (http://ecrbrowser.dcode.org/) at a threshold of 70% of similarity.

![Fig. 3](image_url)

\textbf{Fig. 3} Assessment of \textit{ld1} and \textit{Msx2} as target genes of BMP signaling through the canonical pathway. (A) Time-course WISH detection of \textit{ld1} transcripts (upper panels) and \textit{Msx2} transcripts (lower panels) at stages ranging from 22 to 43 somites; dorsal and frontal (AER) points of view of...
the expression pattern are reported. (B) *Id1* (upper panels) and *Msx2* (lower panels) transcripts are detected by WISH in wild-type, *Smad4*Δ/ΔM, and *Grem1*Δ/Δ limbs (from left to right), from dorsal and frontal (AER) points of view at E10.5 (33-35 somites; n=2). Results showed that both *Id1* and *Msx2* transcripts levels were responding to the amount of BMP signaling the limb was exposed to in the different genetic backgrounds. However, *Id1* transcripts are better cleared from the limb bud than *Msx2* transcripts when *Smad4* is removed from the mesenchyme in the *Smad4*Δ/ΔM background. (C) As in panel (B), *Id1* and *Msx2* expression patterns are imaged in three genetic backgrounds. Limbs are staged E12.5; only dorsal view is displayed (n=2). As for limbs at E10.5, *Id1* transcripts clearance is more drastic in the *Smad4*Δ/ΔM background than for *Msx2* transcripts.

Cloning steps for the targeting vector

The chosen mouse *Id1* cis-regulatory region was assembled from a bacterial artificial chromosome (BAC), sequenced to exclude alterations and cloned into the plGNA(2xins)NeoRmp vector to generate the plGNA(2xins)NeoRId1 targeting vector (Fig. 2C). In order to target the *Gt(Rosa)26Sor* locus in V6.5 ES cells (Tsanov et al., 2012), the backbone and the recombination sites of the plGNA(2xins)NeoRId1 vector were inserted into a shuttle vector provided by McMahon Lab, which was a prerequisite to obtain the targeting vector pXCHG3Id1 (~17.1 Kb).

RMCE-mediated insertion into the *Gt(Rosa)26Sor* locus

pXCHG3Id1 vector was electroporated in V6.5 ES cells (Eggan et al., 2001; Tsanov et al., 2012) carrying a customized *Gt(Rosa)26Sor* locus, which should provide a permissive environment for transcription (Turan et al., 2011; Zambrowicz et al., 1997). The intronic region between exons 1 and 2 was replaced with two sequences that encode a Puromycin resistance and a FLP recombinase, flanked by F3 and FRT recombination sites. Upstream the F3 site, a splice acceptor and an ATG translation starting codon were placed to allow for a selection cassette to be expressed by the endogenous *Gt(Rosa)26Sor* promoter; in addition, a full-length chicken β-globin insulator was cloned downstream the FRT site (Fig. 2D). The resulting customized and RMCE compatible ES cells were called FLPoC2 (Tsanov et al., 2012). These cells were used for targeting.

A vial of FLPoC2 cells at passage 15 was thawed 11 days before targeting on a monolayer of mitomycin-treated EMFI. Cells were kept in culture and passaged on a new mitomycin-treated EMFI monolayer every two days, whenever ES cell reached 75-80% confluency. On the day of targeting 8 x 10 cm dishes of ES cell on EMFI were treated with trypsin as
for passaging and pre-plated for 12 min to let most of the EMFI cells to attach to the plate surface. Cells were pulled into two 50 ml falcon tubes; 10 µl were saved for counting cells and the rest was centrifuged at 2000 rpm for 5 min and the pellet was re-suspended in 2.6 ml of pre-warmed PBS without calcium and magnesium (GIBCO). The content of the two falcon tubes was pulled to get a total volume of 5.2 ml and a cell concentration of 18.75 x 10⁶ cells/ml pXCHG3Id1 targeting vector to a final concentration of 1 µg/µl in a total of 35 µl of water (GIBCO) was added to two cuvettes (Biorad Gene Pulser 165-2088). One cuvette carried 35 µl of water alone and was used as negative ‘water’ control. 800 µl of cell suspension in PBS was added to each cuvette and the content was gently mixed. Electroporation was achieved with 475 µF of capacitance and 0.24 KV of voltage on a BioRad Gene Pulser II. Cuvettes were incubated 20 min on ice and the content of each cuvette was resuspended in 9 ml of pre-warmed ES cell medium (see Material and Methods). The content of the two experimental cuvettes was pulled and plated 1:10 on 10 x 10 cm gelatin-coated dishes and 1:5 on 5 x 10 cm gelatin-coated dishes. ‘Water’ control was plated 1:10 on 2 x 10 cm dishes and 1:5 on 2 x 10 cm dishes. 800 µl of cells in PBS were not electroporated; they were re-suspended in 4.5 ml ES cell medium and plated the same way as the ‘water’ control.

The second day after targeting, ES cell were cultured in the presence of G418 (Life Technologies) at a concentration of 200 µg/ml (Tsanov et al., 2012). Medium was changed every day. On the fourth day from targeting, all plates showed massive cell death. On the sixth day from targeting, ES cell clones appeared. No ES cell clones were visible on the control dishes containing the ‘water’ control cells.

Nine days after electroporation, 14 clones on the experimental dishes were picked with a p200 Gilson pipette and single colonies were moved into a 48-well plate containing EMFI cells and ES cell medium without selection.

The medium was changed every day. ES cell clones were either tryplated or passaged 1:3 into a progressively larger plate (24-, 6-well plate, 6 cm plate, 10 cm plate). When cells were into a 24-well plates, were also passaged on a gelatin-coated plate for DNA retrieval for Southern Blot analysis (not shown). The rest of the pellet was used for PCR screening. ES cell clones were frozen in three vials when they displayed 75-80 % confluency either from a 6 cm or a 10 cm dish. 12 out of 14 clones were successfully expanded and frozen.

All 12 ES cell clones were screened by PCR and all of them showed correct integration at the F3 recombination site and the presence of an internal transgene sequence spanning the Id1 minimal promoter and the Venus coding sequence. The frequency of recombinant colonies was about half the one reported by Tsanov et al. 2012 (~1 colony per 10⁶ cells). This is likely due to the relatively large size of the targeting vector (~17
kb). Out of 12 ES cell clones, 7 were of mixed composition and were excluded from further analysis. The other 5 ES cell clones (whose screening by PCR is showed in Fig. 4A), were expanded and used for blastocyst injection. Screening conditions and primer sequences are reported in Table 1.

<table>
<thead>
<tr>
<th>Target amplicon</th>
<th>Forward primer</th>
<th>Reverse primer</th>
<th>Annealing temp.</th>
<th>Cycle number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rec. F3 site (F3-R1)</td>
<td>5’- CAGATGGGATACCTTCTGG-3’</td>
<td>5’- GTGATCTGGCAACTCAGTC-3’</td>
<td>50°C</td>
<td>31</td>
</tr>
<tr>
<td>Transgene (F11-R8)</td>
<td>5’- GGACACGGCTGAATTCTGC-3’</td>
<td>5’- GTCCTGAGTCACGTGGCAG-3’</td>
<td>57°C</td>
<td>30</td>
</tr>
<tr>
<td>Cond. Locus (F5-R5)</td>
<td>5’- CTAGAAAGCTGTCATCAG-3’</td>
<td>5’- CATCAAGGAGATCGTGTGCTC-3’</td>
<td>58°C</td>
<td>32</td>
</tr>
<tr>
<td>Wt allele (F3-R1)</td>
<td>5’- GGTATGAAATCGGCGCTC-3’</td>
<td>5’- GTGATCTGGCAACTCAGTC-3’</td>
<td>58°C</td>
<td>36</td>
</tr>
</tbody>
</table>

Table 1. **PCR screening strategy.** From the top to the bottom, efficient recombination of the conditional Gt(Rosa)26Sor locus in FLPoC2 cells was tested by amplification over the F3 recombination site, by checking the presence of the transgene, of the conditional locus (for incomplete recombination), and the wild-type allele. Primer sequences are reported and their position in the recombined locus is depicted in the schematics in Figure 15D. A standard PCR amplification protocol was used, with 1 minute of elongation at 72°C. Annealing temperature and cycle number are reported for each reaction.

Analysis of ES cell clones

Potential and dynamics of Venus expression in the different ES cell clones were tested initially in embryoid bodies (EB). In order to assess which EB differentiation stage exhibited the highest expression of *Id1*, R1 cells were differentiated into EBs and harvested at different time points (5, 8, 12, 16 days) for a PCR analysis. The levels of *Id1* and *Msx2* expression were quantified in comparison to *Hand2*, whose expression rises progressively during EB differentiation (PhD thesis by Marco Osterwalder). This analysis showed that the *Id1* transcriptional activity peaked between day 8 and 12 of differentiation, whereas *Msx2* transcripts remained constant (Fig. 4B). This analysis was used for further EB-based experiments, which were then conducted either at day 10 or day 12 of differentiation. Venus fluorescence and anti-GFP antibody staining were assessed in clone 1A1 (Fig. 4C,D; n=3) and on other clones (1A3, 1A6, 1C2; data not shown). Ubiquitous Venus expression driven by the histone H2B promoter in the context of the *Smad4* conditional locus served as a positive control (Osterwalder et al., 2010), whereas parental FLPoC2 cells as negative controls (Fig. 4C,D, right-most pictures). This analysis showed that the activity of *Id1-Venus* in clone 1A1 correlates well with the *Id1* transcript levels upon short-time (7 hr) stimulation with hrBMP4 protein (Fig. 4E, F).
Unexpectedly, ld1 was not permanently induced by hrBMP4 treatment, but rather varied over time (Fig 16F; n=1). This experiment was repeated with similar results using clone 1A3 (n=1; data not shown). These results indicate that the ld1-Venus reporter construct is able to sense changes in BMP activity with good temporal resolution (below 1 hr).

Fig. 4 (A) PCR screening of selected non-mixed ES cell clones. DNA samples from 1A8 mixed clone, FLPoC2 parental ES cells and EMFI cells were used as controls. From the top to the bottom, the PCR reactions were used to test: effective recombination over the F3 recombination site; presence of the transgene; presence of the conditional Gt(Rosa)26Sor locus (from FLPoC2 cells); presence of the wild-type Gt(Rosa)26Sor locus. The PCR screening reveals 5 successfully and
completely targeted clones, heterozygous for the ld1-Venus transgene in the Gt(Rosa)26Sor locus.

(B) ld1, Msx2, Hand2 transcripts were quantified by RT-qPCR on embryonic bodies (EBs) generated from R1 ES cells at day 5, 8, 12, 16 of differentiation. Time point 0 (days) is equivalent to non-differentiated ES cell. Values are reported as normalized fold expression ± SD (bars) calculated on the experiment replicates. The experiment was performed one time. Samples, either as EB pellets or purified RNA samples were provided by Dr. Marco Osterwalder. (C) Confocal fluorescence images (63x, oil immersion objective) of EB at day 10 of differentiation. EBs were obtained from clone 1A1 ES cell; H2B-Venus ES cell (Osterwalder et al., 2010) were used as positive control and FLPoC2 parental ES cell were used as negative control (from left to right, respectively). For the left-most panel, three sections from different fields-of-view were juxtaposed to indicate the variation in fluorescence intensity encountered in the samples. EBs from clone 1A1 were treated with 10 ng/ml hrBMP4 for 4 hours before cell harvesting to trigger Venus expression.

(D) Confocal fluorescence images (20x) detecting Venus protein by use of the cross-reacting anti-GFP antibody in EBs. From left to right: EBs at day 12 of differentiation obtained from 1A1 ES cell; H2B-Venus cells (2 days in culture on gelatin-coated dish); parental FLPoC2 cells (also 2 days in culture on gelatin-coated dish). Two segments from different fields-of-view were juxtaposed in the left-most image to display the variety in fluorescent intensity among differently committed groups of cells. (E) RT-qPCR quantification of ld1 (upper panel) and Venus (lower panel) transcripts from differentiated EBs at day 10 from clone 1A1, either treated with hrBMP4 (10ng/ml) at different time-points before harvesting (1 to 7 hr – on the horizontal axis -) – green color – or non-treated related controls – violet color-. (F) Plot of the differences between the ld1 and Venus transcript levels (blue and red line/dots, respectively) of hrBMP4-treated versus non-treated samples reported in panel (E). The green dots labeled as ‘nt’= ‘non-treated’ samples do not represent a difference, but the absolute expression value of the transcripts at t=0. (G) RT-qPCR quantification of ld1 and Venus transcripts from EBs at day 10 of differentiation, derived from FLPoC2 ES cell (left plot) and H2B-Venus ES cell (right plot) (used as negative and positive controls, respectively, for the experiment in panels (E) and (F)).

Blastocyst injection

Blastocyst injection procedure was outsourced at the Transgenic mouse facility at the Biozentrum (Basel), directed by Daniela Klewe-Nebenius. 1A1, 1A3, 1A5, 1A6 ES cell clones were injected in Balb/cxBalb/c, or C57Bl/6 J-Tyr<2j>/j x C57Bl/6 J-Tyr<2j>/j, or C57Bl/6 J x C57Bl/6 J blastocysts. Out of 43 injection attempts, 4 chimeras between 20% and 50% chimerism (based on coat color assessment) were obtained. No germ-line transmission was however obtained.
13. APPENDIX 3 _ ESTABLISHMENT OF THE AGGREGATION CHIMERA TECHNIQUE

Introduction and aim of the project
The necessity of dissecting *cis*-regulatory landscapes to understand developmental processes at a molecular level has become important (see for instance Andrey et al., 2013; Attanasio et al., 2013). To respond to this need, we sought to establish a fast and robust technique to get time- and cost-effective readouts of the activity of *cis*-regulatory regions of interest. Homologous recombination is the standard way to obtain site-specific integration of single-copy transgenes (Capecchi, 1989). Once suitable recombinase target sites are inserted into the genome by homologous recombination, specific targeting into the same locus can be repeatedly achieved by Recombinase-Mediated Cassette Exchange (RMCE) or dual RMCE (dRMCE) (see Osterwalder et al., 2010; Turan et al., 2013). The correctly engineered ES cells are either transferred into blastocoel cavity or aggregated with 8-cell stage embryos (Wood et al., 1993a) and then injected into pseudopregnant mothers (reviewed in Tanaka et al., 2009). On these bases, we sought to implement the ES cell aggregation chimera technique previously established (Wood et al., 1993b), with the technical support of Alexander Auhlela (EBML, Heidelberg) and Jean-Francois Spetz (FMI, Basel).

Fig. 1 Generation of aggregation chimeras. (A) Morula-stage embryos are flushed out of the uterus of donor mothers at E2.5. In the left panel, a good embryo with its cells surrounded by the *zona pellucida* (a glycoprotein membrane). In the right panel, a bad embryo appears translucent cell debris can be seen. These embryos were discarded. (B) The *Zona pellucida* was removed by digestion with Tyrode’s acid. *Zona pellucida*-free embryos appear at morula stage (C) Left panel:
part of an aggregation drop is depicted. Phase contrast is overlapped with red-florescence to show the dsRed of the G4dsRed ES cells. The black arrowhead points at a morula stage embryos in the aggregation drop. After aggregation, morulas are cleaned from excess ES cells. Right panel: G4dsRed ES cells are aggregated with a morula. (D) After aggregation, ON incubation allows the morulas to develop into blastocysts and ES cells are incorporated into the inner cell mass (red fluorescence) giving rise to the embryos proper.

The aggregation procedure

ES cell handling
ES cells are treated according to the general protocol (see Material and Methods). On the day of aggregation, at least one 6 cm dish of ES cell cultured on a monolayer of mitomycin-treated EMFI cells must be ready for passage. The ES cells on this dish will be partly passaged 1:3 and partly used for aggregation. ES cells destined for aggregation are resupended in freshly prepared aggregation medium (18 ml DMEM 4.5 g/L Glucose [the same one used for ES cell], 66 mg Ca-lactate [Sigma Cat. 21185]). Mix well to dissolve. Add 2 ml FCS [Gibco] and filter solution with a 0.22 μm filter) to achieve a final concentration between 1.1 and 1.3 x 10⁶ cells/ml. To make the aggregation plate, cells are pipetted as drops of ~35 μl into a 10 cm Petri dish and drops are covered with mineral oil. The aggregation plate is pre-equilibrated at 37°C, 5% CO₂ for at least 20 min.

The ES cells we have used for aggregation are: R1 (Nagy et al., 1993), FLPoC2-targeted ES cells clone 1A3 (see Appendix 1), H2B-Venus ES cells (Osterwalder et al., 2010), G4dsRed (Vintersten et al., 2004). ‘G4dsRed’ is a 129S6/B6-F1 ES cell line carrying a transgene encoding the dsRed fluorescent protein, and was used to maintain aggregation with non-fluorescent host embryos (Fig. 1).

Superovulation of donor females
Female NMRI mice of 3 to 5 weeks of age are injected intraperitoneally (25G needle) on day 0 with 5 I.U. PMSG (Pregnant Mare Serum Gonadotropin - Pregnyl from Organon). The PMSG powder is reconstituted in sterile PBS w/o calcium and magnesium from Gibco in 1ml aliquots to a final concentration of 50 I.U./ml and stored at -20°C in the dark. Gonadotropin working aliquots are kept at the above conditions for at least 2 months, or until decrease in the efficiency is detected. On day 2 the mice are injected with 5 I.U. hCG (Folligon from Interver). hCG powder is reconstituted in sterile PBS to a final
concentration of 500 I.U./ml, and stored at -20°C in 100μl aliquots in the dark. Just before use, add 900 μl sterile PBS to dilute hCG to 50 I.U./ml. Both injections are performed at 1:30 pm on day 0 and day 2. After injection of hCG, the primed female mice are set to mate with proven stud males.

Material for collecting and processing embryos

- Dissecting microscope
- Forceps: one bent, one straight
- Warming plate set at 37°C close to the microscope
- M2 medium (prepared following the recipe, see below)
- KSOM medium (MR-106-D from Millipore)
- Mouth pipette (A5177-5EA from Sigma)
- Pulled capillaries (7087 45 from BlauBrand); the aspiring hole diameter should be between 110 and 140 μm
- Needle (304000 from BD Microlance, 30G) blunted by scratching the tip over sand paper
- 1 ml syringes for flushing and 2 ml for making drops
- Cell Petri dishes (10 cm and 3.5 cm);
- Mineral oil (M5310 from Sigma – test every bottle before use – keep at RT in the dark)
- Tyrode’s solution (T1788 from Sigma – aliquot in 2ml tubes and store at -20°). Alternatively, prepare the solution as follows (for 500ml):

\[
\begin{align*}
\text{NaCl} & \quad 4 \text{ g} \\
\text{KCl} & \quad 0.1 \text{ g} \\
\text{CaCl}_2\cdot2\text{H}_2\text{O} & \quad 0.13 \text{ g} \\
\text{MgCl}_2\cdot6\text{H}_2\text{O} & \quad 0.05 \text{ g} \\
\text{Glucose} & \quad 0.5 \text{ g} \\
\text{(PVP)-40} & \quad 2 \text{ g}
\end{align*}
\]

Dissolve powders in about 450 ml of water. Adjust to pH 2.5 with 1M HCl. Top up to 500 ml. Sterilize by filtration with 0.22 μm stericup from Millipore, aliquot and store at -20°C. Thawed aliquots can be frozen once.
Notes about embryos handling

1. Mouth pipetting is advised;
2. To better visualize embryos, use light from below and play with the dark field to get the best observation point. When moving the embryos from one drop to the other, use a low magnification, such as you just see dots in place of cells. When observing the embryos, use a high magnification (like for digestion of the zona pellucida);

Embryo collection

On E2.5 (experimental day 5) embryos at morula stage (8-16 blastomeres) are collected (Fig. 1A).

M2 medium (for handling embryos outside the incubator) must be prepared in advance (about 20 ml per experiment); it must pre-equilibrated at 37°C and 5% CO₂.

Procedure:

1. Pre-warm the loaded flushing and drop-making syringes together with some 10 cm and 3.5 cm Petri dishes on the warming plate;
2. Kill superovulated and plugged females at E2.5 and collect the oviduct with about 5 mm of uterus piece attached (the oviduct must be dissociated from the ovary, use thin scissor to this aim). Remove as much fat as you can. Oviduct/uteri fragments are collected in a 3.5 cm Petri dish filled with pre-warmed M2 medium;
3. Embryo flushing: place a oviduct/uterus fragment in a small drop of M2 medium in a 10 cm Petri dish, so that the piece does not float but is hydrated. At this stage of development, embryos are morulas settled in between the ovary and the distal part of the uterus. Two alternative techniques can be used to collect embryos:
4. Use a M2-loaded 1-ml syringe with a blunted 30G needle to flush the medium through the ampulla (the distal-most part of the oviduct) while holding the ampulla and the needle inside it with forceps, in order to prevent medium reflux. Embryos are flushed out at the end of the uterus.
5. Separate the oviduct from the uterus and unravel the distal part of the uterus with forceps, to increase the opening. Flush the embryos out of the uterus with a M2-loaded 1-ml syringe, while clumping the uterus extremity and the needle inside it with blunt forceps, in order to avoid fluid reflux.
6. Collect the embryos and transfer them to a clean drop, preferably on a 3.5cm Petri dish that is kept on the warming plate.
7. Process all the pieces.
8. Select good embryos: good embryos appear opaque in dark field. Blastomeres fill the space and are surrounded by the zona pellucida.
9. Keep embryos and tissue pieces in M2 medium on the 37°C plate whenever are not handling them and while preparing the ES cell for aggregation. Make sure medium does not evaporate.

Removal of the zona pellucida
Note: remember to use a previously coated glass needle for these and all next steps, otherwise embryos will stick to the glass. For this reason, use only bacterial Petri dishes and NOT cell culture dishes.

1. Take a 10 cm Petri dish and dispose 4 drops of M2 at four opposite points at the border of the plate. Place a drop of Tyrode’s acid in the center of the dish, so that each drop is not touching the others. All solutions must be pre-equilibrated at 37°C, 5% CO₂;
2. Rinse the collected embryos in one M2 drop;
3. Move about 20 embryos per time into the drop of Tyrode’s acid; closely look at the zona pellucida to disappear;
4. As soon as the zona pellucida is removed, rinse the embryos in the remaining three drops of medium.
See Fig. 1B

ES cells-embryos aggregation
1. Place from 5 to 15 embryos per drop on the aggregation plate, where ES cell must have formed a monolayer.
2. Incubate the aggregation plate (ES cells and embryos) at 37°C 5% CO₂ during aggregation (1-2 hrs).
3. In the meantime, prepare the dish for ON culture: place several 35 μl drops of KSOM medium on a 10cm petri dish and cover the drops with mineral oil. Equilibrate the plate for at least 15 min at 37°C 5% CO₂ before use.
4. After aggregation period, gently pipette the embryos up and down to detach them from underlying layer of ES cell.
5. Move the embryos to one drop of KSOM and clean them from excess of ES cells by gently pipetting up-and-down.
6. Transfer the embryos to fresh KSOM drop. Pay attention not to put more than 3-4 embryos per drop and place them distant from one another to avoid embryo-embryo aggregation.

7. Incubate the aggregation plate ON at 37°C 5% CO₂.

See Fig. 1C,D.

Current for culturing embryos

M2 medium:

11 stock solutions are prepared and stored at -20°C, ready-made for quick medium preparation:

<table>
<thead>
<tr>
<th>Stock number</th>
<th>Solution</th>
<th>Grams per 100ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10x NaCl (Merck 1064041000)</td>
<td>6.4g</td>
</tr>
<tr>
<td>1</td>
<td>100x NaHCO₃ (Merck 1063290500)</td>
<td>3.49g</td>
</tr>
<tr>
<td>2</td>
<td>100x Na-Pyruvate (Merck 1066190050)</td>
<td>0.36g</td>
</tr>
<tr>
<td>3</td>
<td>100x Streptomycin. Sulf. (Sigma 56501)</td>
<td>0.5g</td>
</tr>
<tr>
<td>4</td>
<td>100x KH2PO4 (Merck 1048731000)</td>
<td>1.62g</td>
</tr>
<tr>
<td>5</td>
<td>100x Ca-Lactate.3H2O (Sigma 44388)</td>
<td>4.65g</td>
</tr>
<tr>
<td>6</td>
<td>100x KCl (Merck 1049361000)</td>
<td>3.56g</td>
</tr>
<tr>
<td>7</td>
<td>100x MgSO4.7H2O (Merck 1058860500)</td>
<td>2.94g</td>
</tr>
<tr>
<td>8</td>
<td>100x Glucose (Sigma G8270)</td>
<td>10g</td>
</tr>
<tr>
<td>9</td>
<td>10x HEPES (Sigma 54457)</td>
<td>see below</td>
</tr>
<tr>
<td>10</td>
<td>100x K-PenG (Sigma P7794)</td>
<td>0.75g</td>
</tr>
</tbody>
</table>

Stocks number 3 and 10 have a shelf life of about 12 months.

Hepes solution: dissolve 24.85 g of HEPES in 400 ml of Aqua ad inject (Braun/Aichele Medico, Cat. 530108) in a sterile plastic bottle. Prepare 25 ml of 2 N NaOH in Aqua ad inject and adjust HEPES solution to pH 7.4 (with about 20 ml 2 N NaOH). Add 1 ml of Phenol Red (Sigma P0290), filter sterilize (with 0.22 μm sterilecup from Millipore, Cat. SGMPU02RE) and store 10.5 ml aliquots at -20°C. When preparing the working medium, add the appropriate amount of each stock solution and bring to volume with Aqua ad inject. Filter sterilize (with 0.22 μm sterilecup from Millipore Cat. SGMPU02RE), add 400 mg BSA (Sigma Cat. A3311) per 100 ml of medium in sterile conditions and let it dissolve.
Shelf life for this medium is 2 weeks at 4°C. Medium can be frozen before adding BSA for long-term storage. Aqua ad inject can also be frozen.

Preparation for transfer

Transfers are generally performed around 2 pm of the day after aggregation. At this point, embryos should be at morula or blastocyst stages. Contribution of ES cell to the inner cell mass should be partial, since too high percentage of ES cell may lead to not-viable mice or not-fertile chimeras. Before transfer, the embryos are rinsed by serial passage through 4 drops of M2 pre-equilibrated medium in a 10 cm petri dish, using 4 different glass needles; each needle has to be coated with medium for at least 10 min before starting.

Embryo transfer

(done by Javier Lopez-Rios)

MATERIAL FOR EMBRYO TRANSFER

- FST 14381-43 (also Moria 8143A): Moria Bonn Scissors
- FST 11151-10 (curved fine forceps, serrated)
- FST 11154-10 (curved tissue forceps 1x2)
- FST 18374-44 (Moria Seraphine Bulldog clamp MC44)
- FST 18025-10 (Suturing forceps; used to hold the upper part of the uterus before punching a hole with the 30G needle)

ANESTHESIA FOR EMBRYO TRANSFER

Ketamine/xylazine/acepromazine anesthesia cocktail to be administer by i.p injection (10 ml):

- Ketamine (100 mg/ml) 1.0 ml
- Xylazine (20 mg/ml) 1.0 ml
- Acepromazine (10 mg/ml) 0.3 ml
- Sterile water or saline 7.7 ml

Store the mix at 4°C for a maximum of two weeks (it can also be frozen).
Mouse body weight Volume cocktail (for surgery)
20 g 0.13 ml
25 g 0.16 ml
30 g 0.20 ml
35 g 0.23 ml

EMBRYO TRANSFER PROCEDURE

1. Three days before the transfer, set 1-2 NMRI females (6-8 weeks of age; older females will be more difficult to use for embryo transfer as they accumulate fat) in plug-check with vasectomized males (proven to be sterile). Plug check the next morning and stop the mating. Non-plugged females can be reused, while pseudopregnant animals that are not transferred can be used again in two weeks of rest.

2. Keep surgical instruments sterile (clean them with Ethanol 70%; heat-sterilize for 10 seconds at >200°C).

3. Anesthetize the mouse.

4. Shave the mouse on both sides between the hindlimb and last rib. Put protective gel on both eyes.

5. Clean the skin with 70% EtOH and cellulose pads in the direction of the hair.

6. Use the curved tissue forceps 1x2 to clip the skin and the Moria Bonn Scissors to cut, make an incision of around 5 mm in the skin, in the region where the ovary is (small depression on the side).

7. Use the same tools as above to detach the skin from the peritoneum on both sides of the wound.

8. Clean the wound again with cellulose pads soaked in 70% EtOH in the direction of the hair.

9. Under the microscope, locate the ovary by moving the wound like a window. Fat is white, while the ovary is orange and can be found close to the kidney (dark red).

10. Using the same tools, pinch and cut the peritoneal wall. Make a small cut, introduce the tip of the closed scissors through it and open the scissors to widen the opening. This helps to prevent bleeding. If bleeding occurs, it can be stopped with absorption pads.

11. Using the serrated and 1x2 curved fine forceps search for the ovary and pull it out by the fat, taking care not to touch the ovary, oviduct or uterus. Use a seraphine clamp on the fat to keep the uterus out of the body wall and in the right orientation for injection, always trying to avoid excessive tension on the uterus.

12. Load 8 (max. 10) embryos into the glass transfer capillary in the minimum amount of
media and make sure that two air bubbles are placed after the embryos, allowing to monitor a successful transfer.

13. Turn the mouse so that the uterus can be accessed with the needle in parallel. Ideally, hold a 30G needle/syringe and the transfer capillary in the same hand, while holding the uterus with suturing forceps. Make a hole with the 30G needle and immediately insert the glass capillary and blow the embryos into the uterus by making sure the bubbles are gone from the capillary.

14. Place the uterus back into the body cavity by holding the wall of the peritoneum with the 1x2 forceps; release the seraphine clamp and use the serrated fine curved forceps. Hold the sides of the peritoneum.

15. Put back the sides of the skin wound so that the inner sides are touching and you see the borders of the wound. Close it using two suture clips.

16. Repeat the whole procedure on the other side. One female can be transferred on both sides in around 20 minutes.

17. Place the mouse in its cage, cover with tissue and put under a heating lamp (or onto heating plate) until it regains consciousness (around 30-40 minutes after the end of the procedure). Provide mouse with analgesics at free will.

18. 10 days after surgery, remove the clips. Weight increase is a reliable sign of pregnancy.

Results
All the transferred pregnant females were allowed to deliver; no embryos were collected during pregnancy. Trial experiments with flushed and re-implanted embryos (without aggregation step) provided 7 and 18 pups from embryos without and with tyrode’s acid treatment, respectively, out of a total 60 embryos transferred. From G4dsRed ES cells we obtained 5 chimeras — 3 males and 2 females - (10%, 30%, 50%, 95%, 100% of chimerism based on the agouti coat color) out of 24 pups from 35 mice transferred. Chimeras and F1 pups were both phenotyped by detection of fluorescence in the red channel and genotyped by PCR (Fig. 2). From the FLPoC2-targeted ES cells clone 1A3 2 male chimeras (both 10% of chimerism) were obtained in a litter of 4 pups out of 10 mice transferred. Germline transmission has been achieved with the highest chimeric grade.
Fig. 2 Screening for the dsRed allele. Chimeras and F1 pups obtained from the transfer of embryos aggregated with G4dsRed cells were screened by PCR and by detection of the dsRed ubiquitous fluorescence directly in the ear biopsy. PCR screening was carried out using the protocol provided by Jackson Laboratory. (A) From left to right, PCR screening of chimera no. 1 (95% chimerism from coat color); F1 pup with black coat obtained from chimera no. 1 was found negative for the dsRed-expressing transgene; a wild-type NMRI biopsy was used as negative control; a biopsy taken from a mouse known to carry the dsRed transgene was used as a positive control; DNA extracted from G4dsRed ES cells (‘dsRed’ in the figure) was used as positive control; DNA extracted from EMFI cells was used as negative control. (B) Epi-fluorescent and bright-field overlapped images show the fluorescent ear biopsy taken from chimera no. 1 (in the center), in comparison with a negative control from a wild-type NMRI mouse (on the left) and the non-fluorescent ear piece taken from F1 pup no. 3 (on the right).

Acknowledgments
Dr. Aimee Zuniga, Dr. Javier Lopez-Rios, contributed to the work shown in Appendix 2. In addition, Dario Speziale, Nathalie Riesen and Julie Leclercq contributed to the work shown in this Appendix 3.
14. REFERENCES

108

CURRICULUM VITAE

EMANUELE PIGNATTI
Florastrasse 26
4057 Basel
Switzerland
everue.pignatti@unibas.ch
Nationality: Italian

Current Position
PhD candidate in Developmental Genetics in the laboratory of Prof. Rolf Zeller, Basel, CH.

Qualifications
- Jan 2010 - Mar 2014, PhD, Developmental Genetics, laboratory of Prof. Dr. Rolf Zeller, University of Basel, Switzerland;
- 2009 Sep-Nov, pre-doc internship, Proteomics, laboratory of Dr. Massimo Alessio, DIBIT2, Milan, Italy;
- 2004 - 2009, Master of Science, Immunology, laboratory of Prof. Dr. Angelo A. Manfredi, DIBIT, Milan, Italy.
- 2004 - 2007, Bachelor of Science, Neuroscience, laboratory of Prof. Dr. Flavia Valtorta, DIBIT, Milan, Italy;
 Bachelor’s thesis title: ‘The role of brain-derived neurotrophic factor in synaptogenesis’.
- 1999 - 2004, Italian high school diploma of classical studies, final mark 100/100 magna cum laude.

Conference talks
- 2nd European Congress of Immunology, Berlin, Germany 2009;
 Iron disposal by inflammatory and alternatively activated macrophages.
- Mouse Molecular Genetics, Wellcome Trust Conference Centre, Hinxton (CA), UK 2011;
 Smad4-mediated BMP Signal Transduction is Key to Maintaining Digit Cell Fate.

Abstracts and Posters
MAKING MUSCLE IN THE EMBRYO AND ADULT
Columbia University, New York, NY
28 May-2 June 2009;
From macrophage polarization to mesangioblast stem cells differentiation:
changing microenviroment strongly modifies myotube formation.
Basel Computational Biology Conference, Basel, CH, June 2011;

The role of Smad4 in initiating chondrogenesis and determination of digits in mouse limb buds.

Publications

Technical skills

Cell culture, primary cell cultures and stem cells:
- Isolation of bone marrow precursors and culture of primary macrophages;
- Isolation and culture of mesenchymal pluripotent cells from embryonic limb buds;
- Maintenance of G4, R1 and V6.5 mouse ESC lines. Homologous recombination, RMCE and dual-RMCE ESC targeting and clones selection, expansion and analysis.

Mouse genetics:
- Maintenance of several mouse strains (conditional and delta alleles of Smad4, Bmp4, Bmp2, Grem1; Prx1-Cre, Msx2-Cre, Hoxa13-Cre, Hoxb6-Cre transgenes; allele crossing for generating up to triple transgenic animals).

Diploid and tetraploid complementation assay and embryo transfer:
- Setting up of an in-house protocol for generation of chimeras for analysis of cis-regulatory sequences and/or establishment of stable mouse strains (this includes ESC maintenance, handling of vasectomized males and pseudopregnant females, embryo flushing and processing according to Nagy's protocol, embryo transfer into foster mothers).

Limb bud culture:
- *ex vivo* culture of embryonic limb buds and grafting of protein-coated beads.

Optical projection tomography (OPT):
- Embedding, dehydration and clearance of embryonic tissues for OPT 3-D scanning.

Molecular cloning:

Whole-mount and section in situ:
Western and Southern blotting;
Immunocyto- and Immunohistochemistry;
FACS analysis;
Real-time quantitative PCR.

Awards
- October 2009, Winner of a position in the PhD Program in Cellular and Molecular Biology at San Raffaele Institute in Milan.

Certifications

Optical Projection Tomography (OPT) training course at MRC in Edinburgh, March 2011

Spoken languages
Italian: native
English: excellent
German: basic