Dating polygenic metamorphic assemblages along a transect across the Western Alps

Villa, I. M. and Bucher, S. and Bousquet, R. and Kleinhanns, I. C. and Schmid, S. M.. (2014) Dating polygenic metamorphic assemblages along a transect across the Western Alps. Journal of Petrology, 55 (4). pp. 803-830.

PDF - Published Version

Official URL: http://edoc.unibas.ch/dok/A6243395

Downloads: Statistics Overview


Multichronometric analyses were performed on samples from a transect in the French-Italian Western Alps crossing nappes derived from the Brianconnais terrane and the Piemonte-Liguria Ocean, in an endeavour to date both high-pressure (HP) metamorphism and retrogression history. Twelve samples of white mica were analysed by 39Ar-40Ar stepwise heating, complemented by two samples from the Monte Rosa nappe 100 km to the NE and also attributed to the Brianconnais terrane. One Sm-Nd and three Lu-Hf garnet ages from eclogites were also obtained. White mica ages decrease from c. 300Ma in the westernmost samples (Zone Houille're), reaching c. 3008C during Alpine metamorphism, to 548Ma in the internal units to the east, which reached c. 5008C during the Alpine orogeny. The spatial pattern of Eocene K-Ar ages demonstrates that Si-rich HP white mica records the age of crystallization at 47-48Ma and retains Ar at temperatures of around 5008C. Paleocene-early Eocene Lu-Hf and Sm-Nd ages, recording prograde garnet growth before the HP peak, confirm eclogitization in Eocene times. Petrological and microstructural features reveal important mineralogical differences along the transect. All samples contain mixtures of detrital, syn-D1 and syn-D2 mica, and retrogression phases (D3) in greatly varying proportions according to local variations in the evolution of pressure-temperature-fluid activity-deformation (P-T-a-D) conditions. Samples from the Zone Houille're mostly contain detrital mica. The abundance of white mica with Si46·45 atoms per formula unit increases eastward. Across the whole traverse, phengitic mica grown during HP metamorphism defines the D1 foliation. Syn-D2 mica is more Si-poor and associated with nappe stacking, exhumation, and hydrous retrogression under greenschist-facies conditions Syn-D1 phengite is very often corroded, overgrown by, or intergrown with, syn-D2 muscovite. Most importantly, syn-D2 recrystallization is not limited to S2 schistosity domains; micrometrescale chemical fingerprinting reveals muscovite pseudomorphs after phengite crystals, which could be mistaken for syn-D1 mica based on microstructural arguments alone. The Cl/K ratio in white mica is a useful discriminator, as D2 retrogression was associated with a less saline fluid than eclogitization. As petrology exerts the main control on the isotope record, constraining the petrological and microstructural framework is necessary to correctly interpret the geochronological data, described in both the present study and the literature. Our approach, which ties geochronology to detailed geochemical, petrological and microstructural investigations, identifies 47-48Ma as the age of HP formation of syn-D1 mica along the studied transect and in the Monte Rosa area. Cretaceous apparent mica ages, which were proposed to date eclogitization by earlier studies based on conventional ‘thermochronology’, are due to Ar inheritance in incompletely recrystallized detrital mica grains. The inferred age of the probably locally diachronous, greenschist-facies, low-Si, syn-D2 mica ranges from 39 to 43Ma. Coexistence of D1 and D2 ages, and the constancy of non-reset D1 ages along the entire transect, provides strong evidence that the D1 white mica ages closely approximate formation ages. Volume diffusion of Ar in white mica (activation energy E=250 kJ mol 1; pressure-adjusted diffusion coefficient D’050·03 cm2 s 1) has a subordinate effect on mineral ages compared with both prograde and retrograde recrystallization in most samples.
Faculties and Departments:05 Faculty of Science > Departement Umweltwissenschaften > Ehemalige Einheiten Umweltwissenschaften > Tektonik (nn)
UniBasel Contributors:Schmid, Stefan M.
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Oxford University Press
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
edoc DOI:
Last Modified:02 Oct 2017 12:18
Deposited On:25 Apr 2014 08:01

Repository Staff Only: item control page