Dysferlin interacts with histone deacetylase 6 and increases alpha-tubulin acetylation

Di Fulvio, S. and Azakir, B. A. and Therrien, C. and Sinnreich, M.. (2011) Dysferlin interacts with histone deacetylase 6 and increases alpha-tubulin acetylation. PLoS ONE, Vol. 6, H. 12 , e28563.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A6006575

Downloads: Statistics Overview


Dysferlin is a multi-C2 domain transmembrane protein involved in a plethora of cellular functions, most notably in skeletal muscle membrane repair, but also in myogenesis, cellular adhesion and intercellular calcium signaling. We previously showed that dysferlin interacts with alpha-tubulin and microtubules in muscle cells. Microtubules are heavily reorganized during myogenesis to sustain growth and elongation of the nascent muscle fiber. Microtubule function is regulated by post-translational modifications, such as acetylation of its alpha-tubulin subunit, which is modulated by the histone deacetylase 6 (HDAC6) enzyme. In this study, we identified HDAC6 as a novel dysferlin-binding partner. Dysferlin prevents HDAC6 from deacetylating alpha-tubulin by physically binding to both the enzyme, via its C2D domain, and to the substrate, alpha-tubulin, via its C2A and C2B domains. We further show that dysferlin expression promotes alpha-tubulin acetylation, as well as increased microtubule resistance to, and recovery from, Nocodazole- and cold-induced depolymerization. By selectively inhibiting HDAC6 using Tubastatin A, we demonstrate that myotube formation was impaired when alpha-tubulin was hyperacetylated early in the myogenic process; however, myotube elongation occurred when alpha-tubulin was hyperacetylated in myotubes. This study suggests a novel role for dysferlin in myogenesis and identifies HDAC6 as a novel dysferlin-interacting protein.
Faculties and Departments:03 Faculty of Medicine > Departement Biomedizin > Department of Biomedicine, University Hospital Basel > Neuromuscular Research (Sinnreich)
UniBasel Contributors:Sinnreich, Michael
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Public Library of Science
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:31 Aug 2018 06:40
Deposited On:27 Feb 2014 15:45

Repository Staff Only: item control page