edoc

Naturally acquired immune responses to P. vivax merozoite surface protein 3α and merozoite surface protein 9 are associated with reduced risk of P. vivax malaria in young Papua New Guinean children

Stanisic, Danielle I. and Javati, Sarah and Kiniboro, Benson and Lin, Enmoore and Jiang, Jianlin and Singh, Balwan and Meyer, Esmeralda V. S. and Siba, Peter and Koepfli, Cristian and Felger, Ingrid and Galinski, Mary R. and Mueller, Ivo. (2013) Naturally acquired immune responses to P. vivax merozoite surface protein 3α and merozoite surface protein 9 are associated with reduced risk of P. vivax malaria in young Papua New Guinean children. PLoS neglected tropical diseases, Vol. 7, H. 11 , e2498.

[img]
Preview
PDF - Published Version
Available under License CC BY (Attribution).

417Kb

Official URL: http://edoc.unibas.ch/dok/A6212293

Downloads: Statistics Overview

Abstract

Plasmodium vivax is the most geographically widespread human malaria parasite. Cohort studies in Papua New Guinea have identified a rapid onset of immunity against vivax-malaria in children living in highly endemic areas. Although numerous P. vivax merozoite antigens are targets of naturally acquired antibodies, the role of many of these antibodies in protective immunity is yet unknown.; In a cohort of children aged 1-3 years, antibodies to different regions of Merozoite Surface Protein 3α (PvMSP3α) and Merozoite Surface Protein 9 (PvMSP9) were measured and related to prospective risk of P. vivax malaria during 16 months of active follow-up. Overall, there was a low prevalence of antibodies to PvMSP3α and PvMSP9 proteins (9-65%). Antibodies to the PvMSP3α N-terminal, Block I and Block II regions increased significantly with age while antibodies to the PvMSP3α Block I and PvMSP9 N-terminal regions were positively associated with concurrent P. vivax infection. Independent of exposure (defined as the number of genetically distinct blood-stage infection acquired over time (molFOB)) and age, antibodies specific to both PvMSP3α Block II (adjusted incidence ratio (aIRR) = 0.59, p = 0.011) and PvMSP9 N-terminus (aIRR = 0.68, p = 0.035) were associated with protection against clinical P. vivax malaria. This protection was most pronounced against high-density infections. For PvMSP3α Block II, the effect was stronger with higher levels of antibodies.; These results indicate that PvMSP3α Block II and PvMSP9 N-terminus should be further investigated for their potential as P. vivax vaccine antigens. Controlling for molFOB assures that the observed associations are not confounded by individual differences in exposure.
Faculties and Departments:09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH)
09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH) > Department of Medical Parasitology and Infection Biology > Molecular Diagnostics (Felger)
UniBasel Contributors:Felger, Ingrid and Köpfli, Christian
Item Type:Article, refereed
Article Subtype:Research Article
Bibsysno:Link to catalogue
Publisher:Public Library of Science
ISSN:1935-2727
Note:Publication type according to Uni Basel Research Database: Journal article
Language:English
Related URLs:
Identification Number:
Last Modified:31 Dec 2015 10:54
Deposited On:27 Feb 2014 15:45

Repository Staff Only: item control page