Strategies for detection of Plasmodium species gametocytes

Wampfler, Rahel and Mwingira, Felistas and Javati, Sarah and Robinson, Leanne and Betuela, Inoni and Siba, Peter and Beck, Hans-Peter and Mueller, Ivo and Felger, Ingrid. (2013) Strategies for detection of Plasmodium species gametocytes. PLoS ONE, Vol. 8, H. 9 , e76316.

PDF - Published Version
Available under License CC BY (Attribution).


Official URL: http://edoc.unibas.ch/dok/A6212262

Downloads: Statistics Overview


Carriage and density of gametocytes, the transmission stages of malaria parasites, are determined for predicting the infectiousness of humans to mosquitoes. This measure is used for evaluating interventions that aim at reducing malaria transmission. Gametocytes need to be detected by amplification of stage-specific transcripts, which requires RNA-preserving blood sampling. For simultaneous, highly sensitive quantification of both, blood stages and gametocytes, we have compared and optimized different strategies for field and laboratory procedures in a cross sectional survey in 315 5-9 yr old children from Papua New Guinea. qRT-PCR was performed for gametocyte markers pfs25 and pvs25, Plasmodium species prevalence was determined by targeting both, 18S rRNA genes and transcripts. RNA-based parasite detection resulted in a P. falciparum positivity of 24.1%; of these 40.8% carried gametocytes. P. vivax positivity was 38.4%, with 38.0% of these carrying gametocytes. Sensitivity of DNA-based parasite detection was substantially lower with 14.1% for P. falciparum and 19.6% for P. vivax. Using the lower DNA-based prevalence of asexual stages as a denominator increased the percentage of gametocyte-positive infections to 59.1% for P. falciparum and 52.4% for P. vivax. For studies requiring highly sensitive and simultaneous quantification of sexual and asexual parasite stages, 18S rRNA transcript-based detection saves efforts and costs. RNA-based positivity is considerably higher than other methods. On the other hand, DNA-based parasite quantification is robust and permits comparison with other globally generated molecular prevalence data. Molecular monitoring of low density asexual and sexual parasitaemia will support the evaluation of effects of up-scaled antimalarial intervention programs and can also inform about small scale spatial variability in transmission intensity.
Faculties and Departments:09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH)
09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH) > Former Units within Swiss TPH > Molecular Parasitology and Epidemiology (Beck)
09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH) > Former Units within Swiss TPH > Molecular Diagnostics (Felger)
UniBasel Contributors:Beck, Hans-Peter and Felger, Ingrid
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Public Library of Science
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
edoc DOI:
Last Modified:31 Aug 2018 06:39
Deposited On:31 Jan 2014 09:49

Repository Staff Only: item control page