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Abstract

Partial order reduction is a state space pruning approach that
has been originally introduced in computer aided verification.
Recently, various partial order reduction techniques have also
been proposed for planning. Despite very similar underlying
ideas, the relevant literature from computer aided verification
has hardly been analyzed in the planning area so far, and it is
unclear how these techniques are formally related.
We provide an analysis of existing partial order reduction
techniques and their relationships. We show that recently pro-
posed approaches in planning are instances of general partial
order reduction approaches from computer aided verification.
Our analysis reveals a hierarchy of dominance relationships
and shows that there is still room for improvement for partial
order reduction techniques in planning. Overall, we provide a
first step towards a better understanding and a unifying theory
of partial order reduction techniques from different areas.

Introduction
Planning as heuristic search is one of the most successful
approaches to domain-independent planning. However, as
heuristics often estimate the distance to a goal state imper-
fectly, a general problem of heuristic search is the existence
of plateaus in the state space. Therefore, additional pruning
techniques are desirable for large state spaces. This is espe-
cially true for optimal planning, where recent results show
that even almost perfect heuristics are not good enough to
make the approach scalable (Helmert and Röger 2008).

Partial order reduction is an approach to reduce the size
of the state space by avoiding a combinatorial blow-up in-
duced by independent operators. Partial order reduction has
first been proposed in the areas of Petri nets and computer
aided verification. The basic idea is to reduce the size of the
state space by selecting in each search state a subset of appli-
cable transitions that is sufficient to preserve completeness.
In this context, Valmari (1991) proposed the notion of stub-
born sets Ts with the property that transitions not occurring
in such a set need not be applied immediately in the cur-
rent state, but can also be applied later as they are indepen-
dent of the transitions in Ts. Moreover, Godefroid (1991;
1996) proposed the notion of sleep sets with the property
that transitions in such a set can be ignored because it is
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guaranteed that the corresponding states can still be gener-
ated through other paths. Sleep sets can have synergy effects
with other partial order reduction techniques such as persis-
tent sets (Godefroid 1996).

Recently, many techniques based on partial order reduc-
tion have also been proposed for planning. In particular,
partial order reduction is the underlying idea of the tech-
niques based on expansion cores (Chen and Yao 2009; Xu et
al. 2011) and stratified planning (Chen, Xu, and Yao 2009;
Xu et al. 2011). Moreover, commutativity pruning (Haslum
and Geffner 2000) prunes paths that are redundant with other
(commutative) paths. However, although these techniques
are based on similar ideas, their formal relationships have
not yet been adequately explored.

In this paper, we shed light on the relationships between
partial order reduction techniques from planning and com-
puter aided verification. As a benefit of our analysis, apart
from a better theoretical understanding of existing tech-
niques, we obtain insights about their pruning power and
therefore, about which technique is likely to perform bet-
ter in practice. As a side effect, our analysis also points us
to problems with existing techniques and shows how these
problems can be fixed. Furthermore, our analysis shows
how existing partial order reduction techniques from plan-
ning can be improved. We give a short summary of the main
results. The first part of the paper considers state reduc-
tion techniques. In this context, we show that (a corrected
version of) the expansion core technique is an instance of
strong stubborn sets. The second part of the paper consid-
ers transition reduction techniques. In this context, we show
that sleep sets dominate commutativity pruning. Further-
more, we show that commutativity pruning dominates strat-
ified planning, which is also a transition reduction technique
rather than a state reduction technique as pointed out by the
authors (Xu et al. 2011).

Preliminaries
For a set V of finite-domain state variables, we define a state
as a total assignment of values to the variables in V . A par-
tial state is defined as a partial assignment of values to vari-
ables in V (i. e., some variables can have an undefined value).
We write vars(sp) for the set of variables for which partial
state sp is defined. The notation s |= sp denotes that state s
agrees with sp on all variables in vars(sp).



Definition 1 (SAS+ Planning Task). An SAS+ planning
task (or planning task for short) is defined as a 4-tuple π =
(V,O, s0, s?) with the following properties. V is a finite set
of finite-domain state variables v with domain D(v). O is
a finite set of operators o = 〈pre(o), eff (o)〉 consisting of
a precondition pre and an effect eff, where pre and eff are
partial states. Moreover, s0 is the initial state, and s? is a
partial state describing the goal states.

The value of a variable v in a partial state s is denoted
with s[v], i. e., s[v] ∈ D(v) ∪ {undefined}. For operators
o, we define prevars(o) = vars(pre(o)) and effvars(o) =
vars(eff (o)) as the sets of variables that o reads and modi-
fies, respectively. We also define the variable set of an op-
erator as vars(o) = prevars(o) ∪ effvars(o). We assume
that operators have non-empty effects (i. e., for all opera-
tors o ∈ O, we have effvars(o) 6= ∅). To distinguish be-
tween preconditions and effects in example planning tasks,
we write preconditions as constraints v = d, and effects as
assignments v := d for a variable v and a value d ∈ D(v).

An operator o is applicable in a state s iff s |= pre(o),
i. e., iff the precondition of o is consistent with s. In this
case, the successor state o(s) is defined as the state that is
obtained from s by changing the effect variables according
to eff (o) and retaining the other values from s. For a plan-
ning task π, a solution is defined as a sequence of operators
that leads from s0 to a state s with s |= s?. More formally,
o1, . . . , on is a solution if on(on−1(. . . (o1(s0)) . . . )) |= s?,
including the requirement that each operator is applicable in
the intermediate state to which it is applied. We say that a
variable v is goal-related if v ∈ vars(s?).

Moreover, we need the notion of active states and active
operators. A state s′ is active in state s if s′ is reachable
from s (i. e., there is a sequence of operators that leads from
s to s′) and a goal state is reachable from s′. An operator o
is active in state s if there is an active state s′ in s in which
o is applicable and such that o(s′) is active in s.

Furthermore, we need the notion of domain transition
graphs. For a planning task π = (V,O, s0, s?) and vari-
able v ∈ V , the domain transition graph DTG(v) is defined
as a directed graph (V,E) with V = D(v) such that there is
an edge e from w to w′ iff there is an operator o ∈ O with
eff (o)[v] = w′ and either pre(o)[v] = w or v /∈ prevars(o).
Note that o induces an edge in DTG(v) iff v ∈ effvars(o).

Furthermore, we introduce different notions of operator
dependencies that partial order reduction techniques rely on.

Definition 2 (Dependencies Between Operators). Let π =
(V,O, s0, s?) be a planning task. Let o1, o2 ∈ O be opera-
tors and let s be a state of π. We say that

• o1 disables o2 in s if o1 and o2 are both applicable in s,
and o2 is not applicable in o1(s),

• o1 enables o2 in s if o1 is applicable in s, o2 is not appli-
cable in s, and o2 is applicable in o1(s),
• o1 and o2 conflict in s if they are applicable in s in either

order, but the two orders result in different states,
• o1 and o2 interfere if there exists a state in which they

conflict or one disables the other, and

• o1 and o2 are commutative if they do not interfere and
neither enables the other in any state.

Informally, two operators o and o′ do not interfere if for
all states where both o and o′ are applicable, their applica-
tion in both possible orders is possible and leads to the same
state. Specifically, o and o′ do not interfere if there is no
state where both o and o′ are applicable. Commutativity is
a stronger property than non-interference as it also requires
operators not to enable one another.

We remark that in the SAS+ formalism, interference and
commutativity can be tested in polynomial time since the
definition refers to syntactic states, not reachable or active
states. We omit the technical details for brevity.

In the following, we discuss a number of techniques for
reducing the search space of a planning task. We assume
that the reader is familiar with planning based on heuristic
forward search using algorithms such as A∗ and IDA∗. The
objective of all discussed techniques is to reduce the search
space of such algorithms while maintaining completeness of
the search.

State Reduction Techniques
Stubborn sets (Valmari 1991) and expansion core (Chen and
Yao 2009; Xu et al. 2011) are partial order reduction tech-
niques that have been proposed in the areas of Petri nets
and planning, respectively. We briefly introduce these tech-
niques and show that the expansion core technique is in fact
an instance of strong stubborn sets.

Stubborn Sets
Stubborn sets describe a partial order reduction technique
that has been introduced in the area of Petri nets. The stub-
born sets method only applies a subset of applicable opera-
tors in any search state, but chooses this subset in a way that
preserves completeness of the search. The original approach
has been proposed by Valmari (1991).

Valmari provides two variants of stubborn sets, strong
stubborn sets and weak stubborn sets. Strong stubborn sets
can be defined and implemented in an easier way than weak
stubborn sets, but weak stubborn sets provide more pruning
power. We introduce strong stubborn sets because they are
most relevant for this paper. For the rest of this paper, when
we refer to stubborn sets, the corresponding statement is true
for both strong and weak stubborn sets.

Stubborn sets are defined over constraints that must hold
for a set of operators. To compactly define these constraints,
we first need the notion of necessary enabling sets for an
operator o and a state s. We adapt the definition of Gode-
froid (1996).

Definition 3 (Necessary Enabling Set). Let π =
(V,O, s0, s?) be a planning task. Let s be a state, and let
o ∈ O be an operator that is not applicable in s. A neces-
sary enabling set for o and s is a set N of operators such
that all operator sequences σ that include o and lead from s
to some goal state contain some operator from N before the
first occurrence of o.



A necessary enabling set for o and s contains operators
of which at least one must be applied before o. Disjunc-
tive action landmarks (Helmert and Domshlak 2009) for the
planning task (V,O, s, pre(o)) are examples of necessary
enabling sets for o.1 Strong stubborn sets can now be defined
as follows. We adapt the definition of Godefroid (1996).

Definition 4 (Strong Stubborn Set). Let π =
(V,O, s0, s?) be a planning task, and let s be a state.
A set of operators Ts ⊆ O is called a strong stubborn set in
s if the following conditions hold.

1. For all operators o ∈ Ts not applicable in s, Ts contains a
necessary enabling set for o and s.

2. For all operators o ∈ Ts applicable in s, Ts contains all
operators o′ that are active in s and interfere with o.

3. Ts contains a disjunctive action landmark for (V,O, s, s?)
(i. e., a set of operators including at least one operator
from each path from s to a goal state).2

Note that strong stubborn sets in a state s may (and usu-
ally do) contain operators that are not applicable in s.

Apart from requirement 3, Def. 4 is slightly more per-
missive than the definition of Godefroid because for a given
state s, we do not consider operators that are not active in s.
For all operators o1, . . . , on that are active in s, strong stub-
born sets Ts have the following property. If o1, . . . , on−1 /∈
Ts, on ∈ Ts, and on(on−1(. . . (o1(s)) . . . )) is defined, then
on−1(. . . o1(on(s)) . . . ) is defined as well and leads to the
same state. We further remark that, in contrast to the defini-
tion of Godefroid, Def. 4 does not explicitly require an (ac-
tive) applicable operator to be included in Ts if such an op-
erator exists because this requirement already follows from
our requirements 1. and 3.

When combined with optimal search algorithms, strong
stubborn sets preserve optimality: for every optimal path
to the goal that is pruned, a permutation of this path is not
pruned. (We omit a formal proof due to space limitations.)

Expansion Core (EC)
The expansion core technique (Chen and Yao 2009; Xu et
al. 2011) is a partial order reduction technique that has been
introduced in planning. It is based on reducing the number
of applied operators in a state using dependency closures
of variables. We give a brief introduction to this technique
using a simplified notation.

Definition 5 (Potential Precondition). Let π =
(V,O, s0, s?) be a planning task, let v, v′ ∈ V be
variables, let s be a state. Then v is a potential precondition
of v′ in s if there is o ∈ O such that pre(o)[v] = s[v],
v′ ∈ effvars(o) and there is a path in DTG(v′) (to the goal

1However, not all necessary enabling sets are of this form since
they are defined with respect to o and the original goal.

2The original definition of stubborn sets applies to a setting
without goals, where the objective is to find a dead-end state. It
does not include this third requirement. However, goal reachability
can be easily reduced to dead-end detection by introducing a few
helper variables and operators. If we do this, the original require-
ments for the new operators lead to the new requirement 3.

vertex if v′ is goal-related) from s[v′] that includes an edge
induced by o.

Informally, v is a potential precondition of v′ in state s
if there is an operator o that requires v to have the value
pre(o)[v] in s (i. e., o reads v) and that modifies v′. To some
extent, this is a state-dependent variant of dependency which
extends the (state-independent) notion of dependency used
in common definitions of causal graphs (e. g., Jonsson and
Bäckström 1995; Williams and Nayak 1997). The additional
requirement of the existence of a path in DTG(v′) strength-
ens the definition by ruling out some operators that cannot be
applicable in any state reachable from s or that lead to a dead
end. More precisely, this condition is an overapproximation
of active operators that rules out some, but not necessarily
all operators that are not active in s. Furthermore, Chen and
Yao give the definition of potential dependency.

Definition 6 (Potential Dependent). Let π =
(V,O, s0, s?) be a planning task, let v, v′ ∈ V be
variables, let s be a state. Then v is a potential dependent
of v′ in s if there is o ∈ O such that v′ ∈ prevars(o),
v ∈ effvars(o), o induces an edge in DTG(v) with source
vertex s[v], and there is a path in DTG(v′) from s[v′] (to
the goal vertex if v′ is goal-related) that contains pre(o)[v′].

Informally, v is a potential dependent of v′ in state s if
there is an operator o that reads v′ and modifies v. The mo-
tivation to require s[v] to be the source of an edge induced
by o in DTG(v) is to rule out some operators that are not
applicable in s. The motivation for the requirement of the
existence of a path in DTG(v′) is analogous to Def. 5. Po-
tential preconditions and dependents are related, but subtly
different notions: v′ being a potential precondition of v in s
does not imply that v is a potential dependent of v′ in s, nor
vice versa. Based on these notions, the potential dependency
graph PDG(s) in a state s is defined as follows.

Definition 7 (Potential Dependency Graph). Let π =
(V,O, s0, s?) be a planning task, let s be a state. The po-
tential dependency graph PDG(s) in s is defined as the di-
rected graph (V,E) with V = V and edge set E ⊆ V × V
with (v, v′) ∈ E iff v 6= v′ and v is a potential precondition
of v′, or v is a potential dependent of v′, or there is o ∈ O
with {v, v′} ⊆ effvars(o).3

The EC algorithm is based on potential dependency
graphs and works as follows. Given a non-goal state s, EC

3The last condition, forcing edges between variables modified
by the same operator, extends the original definition of potential de-
pendency graphs (Chen and Yao 2009; Xu et al. 2011). The orig-
inal definition causes incompleteness of the expansion core tech-
nique due to missed interactions between effects. To see this, con-
sider a task with V = {a, b, c}, O = {o1, o2} with o1 = 〈c =
0; a := 1〉 and o2 = 〈>; b := 1, c := 1〉, s0 |= (a = b = c = 0),
and s? |= (a = b = 1). The task has the solution o1o2. With
the original definition of PDGs, {b} forms a dependency closure
causing EC to only apply operator o2 in s0, causing a dead end.

The original paper (Chen and Yao 2009) uses a non-standard def-
inition of domain transition graphs and defines operators slightly
differently. The counterexample also applies there because “un-
known” is not considered in the definition of need(o) used there.



first identifies a goal-related variable v that does not yet have
the required value (i. e., s[v] 6= s?[v]) and then computes a
dependency closure dc(s) (i. e., a subset C of variables in
PDG(s) such that there is no edge from a variable in C to
a variable not in C) that contains v. The set of operators
expand(s) applied by the search algorithm in s then con-
tains exactly those operators o which are applicable in s and
modify a variable in the dependency closure (i. e., for which
effvars(o) ∩ dc(s) 6= ∅).

Expansion Core Instantiates Strong Stubborn Sets
In this section, we show that the expansion core technique is
in fact an instance of strong stubborn sets. In contrast to the
work of Xu et al. (2011), we address the corrected version of
the expansion core technique based on Def. 7 (the originally
proposed EC technique cannot produce stubborn sets; see
Footnote 3).

For a state s, a dependency closure dc(s) and an operator
o, we write o ∈ dc(s) iff effvars(o)∩dc(s) 6= ∅. To see that
EC is an instance of strong stubborn sets, we need the fol-
lowing definition. For a state s, we define DTGactive(s) as
an overapproximation of the set of operators that are active
in s. The overapproximation is based on domain transition
graphs as suggested by the EC technique.

Definition 8 (DTGactive). Let π = (V,O, s0, s?) be a
planning task and let s be a state. DTGactive(s) is the set
of operators o ∈ O that satisfy the following conditions:

1. For every variable v ∈ prevars(o), there exists a path in
DTG(v) from s[v] to pre(o)[v].

2. For every goal-related variable v, if v ∈ effvars(o), then
there exists a path in DTG(v) from eff (o)[v] to the goal
value s?[v].

This definition captures the path existence criterion in
Def. 5 and Def. 6 to rule out some operators that are not ac-
tive. More precisely, we obtain an overapproximation of the
operators that are needed to reach a goal state from s: oper-
ators that do not belong to DTGactive(s) cannot be applied
in any state reachable from s, or they lead to a state from
which no goal is reachable. In other words, operators that do
not belong to DTGactive(s) are not active in s, but not vice
versa. The definition of DTGactive(s) is needed to show
the following lemma. It states that, under certain conditions,
operators that work on common variables “belong to” the
same dependency closure. As a side remark, this would not
hold under the original definition of potential dependency
graphs.
Lemma 1. Let π = (V,O, s0, s?) be a planning task. Let s
be a state and dc(s) be a dependency closure. Let o, o′ ∈ O
be operators for which at least one of the following condi-
tions holds:

1. o and o′ modify a common variable.
2. o modifies a variable that o′ reads,

and s[v] = pre(o′)[v] for such a variable v.
3. o reads a variable that o′ modifies,

and o is applicable in s.
If o, o′ ∈ DTGactive(s) and o ∈ dc(s), then o′ ∈ dc(s).

Proof. We distinguish the following three cases.

1. o and o′ modify a common variable. Let v′ be such
a variable. Since o ∈ dc(s), there exists a variable
v ∈ effvars(o) ∩ dc(s). Because all variables modified
by the same operator are connected in PDG(s) and dc(s)
is closed under outgoing edges of PDG(s), this implies
that v′ ∈ dc(s) and hence v′ ∈ effvars(o′)∩dc(s), which
proves o′ ∈ dc(s).

2. omodifies a variable v that o′ reads, i. e., v ∈ effvars(o)∩
prevars(o′), and s[v] = pre(o′)[v] for this variable. Con-
sider a variable v′ ∈ effvars(o′) (such a variable must
exist because operators have non-empty effects). We can
assume v 6= v′; otherwise Case 1 applies. We show that
v is a potential precondition of v′. There is an edge e in
DTG(v′) that is induced by o′ such that there is a path
in DTG(v′) (that reaches the goal vertex if v′ is goal-
related) from s[v′] that includes e. To see this, consider
the following cases.
• If v′ ∈ prevars(o′), then there is a path from s[v′] to

pre(o′)[v′] in DTG(v′) because o′ ∈ DTGactive(s).
Therefore, there is a path from s[v′] that includes e. If
v′ is goal-related, then there is a path from eff (o′)[v′] to
s?[v

′] because o′ ∈ DTGactive(s). Therefore, in this
case, there is a path from s[v′] to s?[v′] that includes e.
• If v′ /∈ prevars(o′), then by definition of domain

transition graphs, o′ induces an edge from every node
in DTG(v′) to eff (o′)[v′]. Therefore, trivially there
is a path from s[v′] that includes e, namely the path
from s[v′] to eff (o)[v′]. If v′ is goal-related, then
there is a path from eff (o)[v′] to s?[v′] because o′ ∈
DTGactive(s). Therefore, in this case, there is a path
from s[v′] to s?[v′] that includes e.

Overall, we observe that s[v] = pre(o′)[v], v′ ∈
effvars(o′), and there is a (goal related) path in DTG(v′)
from s[v′] that includes an edge induced by o′. Therefore,
v is a potential precondition of v′ and hence, there is an
edge in PDG(s) from v to v′. From v ∈ dc(s) and the
closure of dc(s) we get v′ ∈ dc(s) and hence o′ ∈ dc(s).

3. o reads a variable that o′ modifies, i. e., there is a vari-
able v ∈ prevars(o) ∩ effvars(o′). Let v′ be a vari-
able with v′ ∈ effvars(o) (such a variable must exist
because operators have non-empty effects). As in Case
2 we can assume v 6= v′. We show that v′ is a po-
tential dependent of v. First, according to our assump-
tion, v ∈ prevars(o). Furthermore, we observe that there
is an edge e = (s[v′], eff (o)[v′]) in DTG(v′) because
v′ ∈ effvars(o). To see this, consider the following cases.
• v′ ∈ prevars(o). Then pre(o)[v′] = s[v′] because
o is applicable in s, and therefore, there is the edge
(pre(o)[v′], eff (o)[v′]) induced by o in DTG(v′).
• v′ /∈ prevars(o). Then there is an edge in DTG(v′)

from every vertex in DTG(v′) to eff (o)[v′], specifi-
cally from the vertex s[v′].

Moreover, there trivially exists a path in DTG(v) from
s[v] to pre(o)[v], namely the empty path because s[v] =
pre(o)[v]. If v is goal-related, then there is also a path
from eff (o)[v] to the goal vertex in DTG(v) because o ∈



DTGactive(s). Overall, this shows that v′ is a potential
dependent of v, and therefore, there is an edge from v′

to v in PDG(s). From o ∈ dc(s) and v′ ∈ effvars(o)
we get v′ ∈ dc(s); due to the edge from v′ to v we get
v ∈ dc(s); with v ∈ effvars(o′) we get o′ ∈ dc(s).

The main theorem of this section shows that, for a state
s, the set of operators to be applied in s identified with
the expansion core technique offers the same pruning power
as a strong stubborn set. To see this, we consider the set
EC (s) = expand(s) ∩ DTGactive(s) consisting of the set
of operators identified with the expansion core technique
that are also in DTGactive(s). Again, note that exclud-
ing operators that are not in DTGactive(s) (i. e., in this
case, some operators that lead to a state from which no goal
state is reachable) does not change the goal-reachable state
space from s. Considering EC (s) instead of expand(s) is
a straight-forward optimization of the expansion core tech-
nique, which has not been used in the original approach al-
though the basic ideas have already been given there.

In the following, we construct a strong stubborn set Ts
with the same pruning power as EC (s). Before describing
the construction, we prove the following lemma.

Lemma 2. Let π = (V,O, s0, s?) be a planning task, s be a
state. Let dc(s) be the dependency closure that is selected by
the EC reduction technique in s. Let o be an operator such
that o ∈ DTGactive(s), o ∈ dc(s), and o is not applicable
in s. Then

en(o, s) = {o′ | o′ ∈ dc(s), o′ ∈ DTGactive(s),∃v :
eff (o′)[v] = pre(o)[v] 6= undefined}

is a necessary enabling set for o and s.

Proof. We show that for every sequence σ = o1, . . . , on of
operators that leads from s to a state s′ where o is applicable
and from which a goal state is reachable, there is an operator
oi ∈ {o1, . . . , on} such that oi ∈ en(o, s). Consider such a
sequence of operators σ = o1, . . . , on. First, we observe that
all operators in σ are also in DTGactive(s) because they
are applied in σ and lead to a state from which a goal state is
reachable. Furthermore, we observe that for every variable v
with v ∈ prevars(o) and pre(o)[v] 6= s[v], there is an opera-
tor oi ∈ {o1, . . . , on} such that eff (oi)[v] = pre(o)[v] (oth-
erwise, o cannot be applicable after σ is applied). Consider
such a variable v and such an operator oi. We distinguish
two cases.

1. v ∈ effvars(o). Then o and oi both modify v. Hence,
oi ∈ dc(s) because o ∈ dc(s). Therefore, oi ∈ en(o, s).

2. v /∈ effvars(o). Then there is another variable v′ such
that v′ ∈ effvars(o) because operators have non-empty
effects. We distinguish the following two cases.

(a) v′ ∈ prevars(o) and pre(o)[v′] 6= s[v′]. Then there
is oj in σ such that eff (oj)[v

′] = pre(o)[v′]. We ob-
serve that oj and o both modify v′. Hence, oj ∈ dc(s)
because o ∈ dc(s). Therefore, oj ∈ en(o, s).

(b) Otherwise, v′ is a potential dependent of v and we have
an edge in PDG(s) from v′ to v. As v′ ∈ effvars(o)
and v ∈ effvars(oi), we have that oi ∈ dc(s). There-
fore, oi ∈ en(o, s).

The above reasoning shows that it suffices to consider en-
abling operators from the same dependency closure to obtain
necessary enabling sets. Therefore, en(o, s) is a necessary
enabling set for o and s.

We are now ready to construct a strong stubborn set Ts
with the same pruning power as EC (s).

Theorem 1. Let π = (V,O, s0, s?) be a planning task,
let s be a non-goal state, and let EC (s) = expand(s) ∩
DTGactive(s). Let

T dc
s := {o ∈ O | o ∈ dc(s), o ∈ DTGactive(s)}

T int
s := {o′ ∈ O | o′ interferes with o ∈ EC (s),

o′ ∈ DTGactive(s)} \ T dc
s .

Then Ts := T dc
s ∪ T int

s is a strong stubborn set in s, and
the set of operators in Ts that are applicable in s is equal to
EC (s).

Proof. We first observe that all o′ ∈ T int
s are inapplicable in

s. To see this, assume that o′ ∈ T int
s were applicable. Let

o ∈ EC (s) be an operator it interferes with. By definition
of EC (s), o is applicable. Moreover, o, o′ ∈ DTGactive(s)
and o ∈ dc(s), and because o and o′ interfere, one of the
three cases of Lemma 1 applies. Thus we get o′ ∈ dc(s),
which implies o′ ∈ T dc

s , contradicting o′ ∈ T int
s .

Since all operators in T int
s are inapplicable, the applicable

operators of Ts are the applicable operators of T dc
s , which

are exactly the operators EC (s), proving the second part of
the theorem.

To prove the first part of the theorem, we have to verify
the three conditions for strong stubborn sets (Def. 4).

The second condition is easy to show: the applicable op-
erators in Ts are EC (s), and Ts clearly contains all active
operators interfering with operators in EC (s).

The third condition is also easy: by construction dc(s)
contains a variable which is not yet at goal value, and T dc

s
contains all active operators that can change this variable.
These operators form a disjunctive action landmark.

To show the first condition, we must show that Ts contains
a necessary enabling set for all inapplicable operators o ∈ Ts
and s. If o ∈ T dc

s , Lemma 2 implies that T dc
s ⊆ Ts is such a

necessary enabling set for o and s.
We conclude the proof by showing that for o′ ∈ T int

s , T dc
s

is also a necessary enabling set in s. Let o′ be such an op-
erator, and let o ∈ EC (s) be an operator it interferes with.
Because o ∈ dc(s), effvars(o) ⊆ dc(s). (This is true for
at least one effect variable by definition of o ∈ dc(s) and
for the others because effect variables of the same operator
are connected in PDG(s).) Because o is applicable in s and
contained in DTGactive(s), Def. 6 then implies that also
prevars(o) ⊆ dc(s), and hence vars(o) ⊆ dc(s). There
are three possible reasons why o′ could interfere with o: o′
and o may modify a common variable v; o′ may modify a



variable v read by o; or o′ may read a variable v modified
by o. Because vars(o) ⊆ dc(s), in all three cases we have
v ∈ dc(s). Hence, in the first two cases we immediately get
that o′ modifies a variable in dc(s), which implies o′ ∈ T dc

s ,
a contradiction. The remaining case is that o′ reads a vari-
able v ∈ dc(s) which o modifies. If s[v] = pre(o′)[v], then
by Lemma 1 (part 2) we again get o′ ∈ dc(s) leading to
contradiction. Therefore, we must have s[v] 6= pre(o′)[v],
which means that v must change for o′ to become applica-
ble. Because v ∈ dc(s), all active operators changing v are
in T dc

s , and thus T dc
s is a necessary enabling set for o′, which

concludes the proof.

The theorem shows that in a state s, the operators in s
identified with a corrected version (and a straight-forward
optimization) of EC are the same as the applicable operators
identified with a strong stubborn set. Hence, the pruning
power of strong stubborn sets is at least as high as the prun-
ing power of EC. We remark that, as shown by Godefroid,
reducing strong stubborn sets S to the applicable operators
in S yields persistent sets (Godefroid 1996). Hence, Theo-
rem 1 also shows that the expansion core method identifies
persistent sets.

Transition Reduction Techniques
In this section we consider partial order reduction tech-
niques that reduce the number of state transitions considered
during search, but do not reduce the number of reachable
states. Specifically, we consider pruning methods based on
sleep sets (Godefroid 1991; 1996), commutativity pruning
(Haslum and Geffner 2000), and stratified planning (Chen,
Xu, and Yao 2009; Xu et al. 2011). Sleep sets have been
proposed in the area of computer aided verification, whereas
commutativity pruning and stratified planning have been
proposed in the area of planning.4

The pruning decisions of these algorithms are path-
dependent: whether a given applicable operator o is explored
in state s depends not just on s but also on the search path
via which swas reached. Hence these techniques are not im-
mediately applicable to graph search algorithms performing
duplicate elimination such as A∗. However, they can be very
useful in the context of tree search algorithms such as IDA∗

(e. g., Haslum and Geffner 2000). Due to the dependency on
paths, in this section we must carefully distinguish between
states s of the world and paths σ (operator sequences origi-
nating in the initial state). Tree search algorithms search in
the space of paths, starting from the empty path ε. Where
this makes sense, we apply state terminology to paths: for
example, an operator is applicable in path σ if it is applica-
ble in the state reached after following path σ.

4All pruning techniques in this section are goal-independent,
i. e., make their pruning choices without considering the goal s?
of the planning task. Goal-independent pruning algorithms cannot
prune reachable states without losing completeness: if they pruned
a reachable state s, then they would be incomplete for a modified
task where s? = s. Stratified planning, one of the techniques we
consider, was originally motivated as a technique for reducing the
number of reachable states (Chen, Xu, and Yao 2009), but this is
corrected in a later publication (Xu et al. 2011).

We show that the sleep sets technique strictly dominates
commutativity pruning. Furthermore, we show that commu-
tativity pruning strictly dominates stratified planning.

Sleep Sets Dominate Commutativity Pruning
Sleep sets (Godefroid 1991; 1996) is a partial order reduc-
tion technique from computer aided verification. Trans-
formed to the planning setting, a sleep set for a path σ is a set
of operators that are applicable after path σ but skipped dur-
ing search. Godefroid provides a simple algorithm to com-
pute sleep sets on the fly. We follow the version of the sleep
set algorithm presented in his monograph (Godefroid 1996),
simplified for a setting without duplicate elimination:

1. Search begins with an empty sleep set: sleep(ε) := ∅.
2. When expanding path σ, only generate successors for

the applicable operators that are not in sleep(σ). Let
o1, . . . , on be these operators, ordered in the same way
as they are considered by the search algorithm. For
each successor path σoi, set sleep(σoi) := (sleep(σ) ∪
{o1, . . . , oi−1}) \ {o | o and oi are not commutative}.
Commutativity pruning (Haslum and Geffner 2000) is a

simple partial order reduction technique that has been intro-
duced in AI planning in the context of IDA∗ search. The idea
is to impose an (arbitrary) total order <c on the operators,
and to subsequently apply commutative operators only if the
order of application is consistent with <c. More precisely,
when expanding a path σ whose last operator is o, a succes-
sor path σo′ is only generated if o <c o

′ or o and o′ are not
commutative. The following considerations show that under
suitable ordering choices, sleep sets prune all paths pruned
by commutativity pruning.

Proposition 1. Let π = (V,O, s0, s?) be a planning task,
and let < be the total order on O used for commutativity
pruning. If the sleep set method considers the applicable
operators for each path in the order defined by <, then all
paths pruned by commutativity pruning are also pruned by
the sleep set method.

Proof. First, note that with the given operator ordering
for the sleep set method, the definition of sleep sets
for successor paths can be rewritten as sleep(σoi) =
(sleep(σ) ∪ {ô | ô < oi and ô applicable in σ}) \ {ô |
ô and oi are not commutative}.

Consider a path τ pruned by commutativity pruning (i. e.,
the path itself is not generated, but its “parent” path, consist-
ing of τ without the last operator, is generated). Then τ is
of the form τ = σoo′ where σ is some path and o and o′ are
commutative operators satisfying o′ < o.5

Consider the behaviour of the sleep sets technique
in σ. Because the path σoo′ was considered, it fol-
lows that o is applicable in σ and o′ is applicable in
σo. Because the two operators are commutative, this
implies that o′ is also applicable in σ. From the
rewritten definition of sleep sets, we get sleep(σo) =
(sleep(σ) ∪ {ô | ô < o and ô applicable in σ}) \ {ô |

5We assume that all search algorithms prune operators that do
not change the state, and hence we can ignore the case o = o′.



ô and o are not commutative }. This set contains o′ since
o′ < o and the two operators are commutative. We con-
clude that o′ ∈ sleep(σo), which means that the sleep sets
technique also prunes the path τ = σoo′.

We now show that the dominance of sleep sets over com-
mutativity pruning based on the same total order is strict:
there exist cases where some paths are pruned by sleep sets
but not by commutativity pruning.
Example 1. Consider a planning task with variables V =
{a, b, c}. All variables have domain {0, 1} and are initially
set to 0. There exist three operators: o1 = 〈a = 1; a := 0〉,
o2 = 〈c = 0; c := 1〉 and o3 = 〈b = 0; a := 1, b := 1〉. The
operators are ordered o1 < o2 < o3.

The path o3o1o2 is pruned by the sleep set method be-
cause all paths τ starting with o3 satisfy o2 ∈ sleep(τ).
However, it is not pruned by commutativity pruning: the
prefix o3o1 is not pruned because the two operators are not
commutative, and appending o2 after o1 is allowed because
o1 < o2.

Overall, Prop. 1 and Ex. 1 show that sleep sets offer more
pruning power than commutativity pruning.
Theorem 2. Sleep sets dominate commutativity pruning.

Under the same ordering of operators, all paths pruned by
commutativity pruning are also pruned by sleep sets, while
the converse is not true.

Commutativity Pruning Dominates Stratified
Planning
In this section, we show that commutativity pruning dom-
inates stratified planning in the sense that more paths are
pruned with commutativity pruning than with stratified plan-
ning. The considerations in this section refer to the updated
version of stratified planning (Xu et al. 2011), not to the
original version (Chen, Xu, and Yao 2009).6 We first give a
short description of stratified planning.

Definition 9 (Causal Graph). Let π = (V,O, s0, s?) be
a planning task. The causal graph of π is defined as the
directed graph CG = (V,E) with V = V which has the
edge (v, v′) ∈ E iff v 6= v′ and there exists an operator
o ∈ O such that v ∈ vars(o) and v′ ∈ effvars(o).

Based on causal graphs, every variable v ∈ V is assigned
a level. Let C1, . . . , Cn be the strongly connected compo-
nents of CG in a topological ordering such that edges from
variables in Ci to variables in Cj only exist if i ≤ j. Then
level(v) = i iff v ∈ Ci.7 Furthermore, levels are also as-
signed to operators o ∈ O according to the levels of the
variables in their effects: level(o) = i iff v ∈ effvars(o)

6The original version (Chen, Xu, and Yao 2009) contains an
error due to the non-standard definition of causal graphs; this error
has been corrected in the updated version (Xu et al. 2011). We
also remark that edge directions in the causal graphs we use here
are inverted compared to the papers on stratified planning. Our
definition follows the usage in the wider planning literature.

7Xu et al. allow combining multiple strongly connected compo-
nents into a single level, but this only serves to reduce the pruning
power of the approach.

and level(v) = i. This is well-defined because Def. 9 im-
plies that variables that occur as effects of the same operator
have the same level. Stratified planning also uses the notion
of follow-up operators.

Definition 10 (Follow-up Operator). Let π =
(V,O, s0, s?) be a planning task, and let o and o′ be
operators. Then o′ is a follow-up operator of o if
vars(o′) ∩ effvars(o) 6= ∅ (i. e., o′ reads or modifies some
variable that o modifies).

The stratified planning algorithm works as follows. When
expanding a path σo in which operator o′ is applicable, the
path σoo′ is pruned if level(o′) > level(o) and o′ is not a
follow-up operator of o.

In the following, we show that stratified planning is dom-
inated by commutativity pruning. To see this, we first show
that an operator that is pruned by stratified planning and the
previous operator are commutative. This is stated in the fol-
lowing lemma.

Lemma 3. Let π = (V,O, s0, s?) be a planning task. Let
σoo′ be a path pruned by stratified planning. Then o and o′
are commutative.

Proof. Let σoo′ be a path pruned by stratified planning. This
implies level(o′) > level(o) and o′ is not a follow-up oper-
ator of o. The latter condition means that o′ does not read
or modify a variable modified by o. Therefore, o and o′ can
only be non-commutative if o reads some variable modified
by o′. We assume that this is the case and derive a contra-
diction.

Let v′ ∈ prevars(o) ∩ effvars(o′). (By the assump-
tion, such a variable exists.) Also, let v ∈ effvars(o).
(Such a variable exists because we required that all oper-
ators have non-empty effects.) We must have v 6= v′;
otherwise o′ would be a follow-up operator of o. From
v′ ∈ prevars(o) and v ∈ effvars(o) we get that (v′, v) is
an edge in the causal graph, which by the definition of lev-
els implies level(v′) ≤ level(v). From v′ ∈ effvars(o′)
we get level(v′) = level(o′); similarly level(v) = level(o).
Putting things together, we have level(o′) = level(v′) ≤
level(v) = level(o). This contradicts level(o′) > level(o),
concluding the proof.

We now show that for suitable operator orders <c, all
paths pruned by stratified planning are also pruned by com-
mutativity pruning.

Proposition 2. Let π = (V,O, s0, s?) be a planning task.
Given a definition of stratified planning operator levels for
O, define a total operator order <c in such a way that
level(o) > level(o′) implies o <c o′. (Operators within
the same level may be ordered arbitrarily by <c.)

Then all paths pruned by stratified planning are pruned
by commutativity pruning using the order <c.

Proof. Let τ be a path pruned by stratified planning. Then
τ is of the form τ = σoo′ where level(o′) > level(o) and
hence o′ <c o. By the previous lemma, o and o′ are commu-
tative. Together, these conditions mean that τ is also pruned
by commutativity pruning based on <c.



Finally, we show that commutativity pruning can prune
operators that are not pruned by stratified planning.

Example 2. Consider a planning task π = (V,O, s0, s?)
with V = {a, b, c, d}, operators O = {o1, o2, o3, o4} with
o1 = 〈a = 0; b := 1〉, o2 = 〈c = 0; d := 1〉, o3 =
〈d = 1; a := 1〉 and o4 = 〈b = 1; c := 1〉 and initial
state s0 |= (a = b = c = d = 0). First, we observe
that the causal graph is strongly connected. Therefore, all
operators have the same level, and stratified planning can-
not prune any paths. Now consider commutativity pruning
with the order o1 <c o2 <c o3 <c o4. (This is compatible
with the requirements in Prop. 2 because operators with the
same level can be ordered arbitrarily). We observe that, for
example, commutativity pruning prunes the path o2o1.

Overall, Prop. 2 and Ex. 2 show that commutativity prun-
ing can prune more operators than stratified planning.

Theorem 3. Commutativity pruning dominates stratified
planning.

In summary, stratified planning can be seen as an instance
of commutativity pruning except for operators with equal
levels. For operators with equal levels, stratified planning
does not offer any pruning power.

We conclude the section with a brief discussion on op-
timality. When combined with optimal search algorithms,
sleep sets preserve optimality: for every optimal path to the
goal that is pruned, a permutation of this path is not pruned.
(We omit a formal proof due to space limitations.) It fol-
lows that commutativity pruning and stratified planning are
optimality preserving as well.

Related Work
Partial order reduction techniques in computer aided veri-
fication have been proposed based on stubborn sets (Val-
mari 1991), persistent sets (Godefroid 1996), and ample sets
(Peled 1993). Stubborn sets in their original form preserve
deadlocks. In contrast to strong stubborn sets, weak stub-
born sets (Valmari 1991) Tw

s allow some operators that inter-
fere with applicable operators from Tw

s to be excluded from
Tw
s . This is a less restrictive condition than the condition

for strong stubborn sets. The concept of ample sets extends
the original definition of stubborn and persistent sets such
that they can be used for model checking LTL−X (i. e., lin-
ear temporal logical without the “next” operator X). Such
extensions have also been proposed for strong stubborn sets
(Valmari 1991; 1992).

There are various algorithms and heuristics how to actu-
ally compute stubborn sets (Valmari 1992; Godefroid 1996;
Geldenhuys, Hansen, and Valmari 2009), persistent sets
(Godefroid 1996), and ample sets (Clarke, Grumberg, and
Peled 2000). In particular, ample sets have also been ap-
plied for directed model checking (Edelkamp, Leue, and
Lluch-Lafuente 2004). Moreover, recent work also includes
investigations about the quality of the reduced sets and the
resulting state space reductions (Geldenhuys, Hansen, and
Valmari 2009; Valmari and Hansen 2010).

These approaches are also relevant for planning, but have
not been studied in depth in this context. To the best of our

knowledge, the only work in planning that relates partial or-
der approaches from computer aided verification and plan-
ning is the paper by Xu et al. (2011). Xu et al. define a set as
stubborn if certain non-interference properties hold. These
properties follow from the definition of strong stubborn sets
as shown by Valmari (1991); as far as we know, the converse
relationship has not been studied.

Conclusion
Partial order reduction is an established approach to tackle
the state explosion problem in computer aided verification
and planning. We have shown that the techniques from com-
puter aided verification are at least as powerful as the tech-
niques proposed in planning. Specifically, we have observed
that the pruning power of the expansion core technique is
at most as high as the pruning power of strong stubborn
sets, for which other algorithms have been suggested (as dis-
cussed in the related work section). Moreover, this result
suggests that more pruning power is achievable when con-
sidering weak stubborn sets. Our analysis also pointed us to
a problem with the expansion core technique and how this
problem can be fixed. Furthermore, we have observed that
sleep sets offer strictly more pruning power than commu-
tativity pruning, which in turn offers strictly more pruning
power than stratified planning.

Overall, we learned that from a planning point of view, we
should not try to reinvent the wheel (which can be tedious
and error-prone), but rather build on and further develop ex-
isting, well-established techniques. As a starting point, one
could adapt and evaluate the algorithms suggested in the
computer aided verification literature to compute stubborn
and ample sets in the planning setting. Many of these al-
gorithms could be adapted in a rather straight-forward way.
Moreover, there is the question whether existing algorithms
can be specialized for (classical) planning to obtain more
pruning power. For example, in planning we do not have to
preserve stuttering equivalence, which is needed for LTL−X
model checking (Clarke, Grumberg, and Peled 2000). Fi-
nally, it would be interesting to investigate the relationships
to other recent partial order reduction techniques from plan-
ning such as bounded intention planning (Wolfe and Russell
2011) and move pruning (Burch and Holte 2011).
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