Improving coiled-coil stability by optimizing ionic interactions

Burkhard, P. and Ivaninskii, S. and Lustig, A.. (2002) Improving coiled-coil stability by optimizing ionic interactions. Journal of molecular biology, Vol. 318, H. 3. pp. 901-910.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5258515

Downloads: Statistics Overview


Alpha-helical coiled coils are a common protein oligomerization motif stabilized mainly by hydrophobic interactions occurring along the coiled-coil interface. We have recently designed and solved the structure of a two-heptad repeat coiled-coil peptide that is stabilized further by a complex network of inter- and intrahelical salt-bridges in addition to the hydrophobic interactions. Here, we extend and improve the de novo design of this two heptad-repeat peptide by four newly designed peptides characterized by different types of ionic interactions. The contribution of these different types of ionic interactions to coiled-coil stability are analyzed by CD spectroscopy and analytical ultracentrifugation. We show that all peptides are highly alpha-helical and two of them are 100% dimeric under physiological conditions. Furthermore, we have solved the X-ray structure of the most stable of these peptides and the rational design principles are verified by comparing this structure to the structure of the parent peptide. We show that by combining the most favorable inter- and intrahelical salt-bridge arrangements it is possible to design coiled-coil oligomerization domains with improved stability properties.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Structural Biology, associated group (Burkhard)
UniBasel Contributors:Burkhard, Peter
Item Type:Article, refereed
Article Subtype:Research Article
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:20
Deposited On:22 Mar 2012 13:20

Repository Staff Only: item control page