Malaria ecotypes and stratification

Schapira, A. and Boutsika, K.. (2012) Malaria ecotypes and stratification. Advances in parasitology, Vol. 78. pp. 97-167.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A6124690

Downloads: Statistics Overview


To deal with the variability of malaria, control programmes need to stratify their malaria problem into a number of smaller units. Such stratification may be based on the epidemiology of malaria or on its determinants such as ecology. An ecotype classification was developed by the World Health Organization (WHO) around 1990, and it is time to assess its usefulness for current malaria control as well as for malaria modelling on the basis of published research. Journal and grey literature was searched for articles on malaria or Anopheles combined with ecology or stratification. It was found that all malaria in the world today could be assigned to one or more of the following ecotypes: savanna, plains and valleys; forest and forest fringe; foothill; mountain fringe and northern and southern fringes; desert fringe; coastal and urban. However, some areas are in transitional or mixed zones; furthermore, the implications of any ecotype depend on the biogeographical region, sometimes subregion, and finally, the knowledge on physiography needs to be supplemented by local information on natural, anthropic and health system processes including malaria control. Ecotyping can therefore not be seen as a shortcut to determine control interventions, but rather as a framework to supplement available epidemiological and entomological data so as to assess malaria situations at the local level, think through the particular risks and opportunities and reinforce intersectoral action. With these caveats, it does however emerge that several ecotypic distinctions are well defined and have relatively constant implications for control within certain biogeographic regions. Forest environments in the Indo-malay and the Neotropics are, with a few exceptions, associated with much higher malaria risk than in adjacent areas; the vectors are difficult to control, and the anthropic factors also often converge to impose constraints. Urban malaria in Africa is associated with lower risk than savanna malaria; larval control may be considered though its role is not so far well established. In contrast, urban malaria in the Indian subcontinent is associated with higher risks than most adjacent rural areas, and larval control has a definite, though not exclusive, role. Simulation modelling of cost-effectiveness of malaria control strategies in different scenarios should prioritize ecotypes where malaria control encounters serious technical problems. Further field research on malaria and ecology should be interdisciplinary, especially with geography, and pay more attention to juxtapositions and to anthropic elements, especially migration
Faculties and Departments:09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH)
09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH) > Former Units within Swiss TPH > Infectious Disease Modelling > Epidemiology and Transmission Dynamics (Smith)
UniBasel Contributors:Boutsika, Konstantina
Item Type:Article, refereed
Article Subtype:Research Article
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:19 Jul 2013 07:43
Deposited On:19 Jul 2013 07:38

Repository Staff Only: item control page