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Abstract

Pathogen access to host nutrients in infected tissues is fundamental for pathogen growth and virulence, disease
progression, and infection control. However, our understanding of this crucial process is still rather limited because of
experimental and conceptual challenges. Here, we used proteomics, microbial genetics, competitive infections, and
computational approaches to obtain a comprehensive overview of Salmonella nutrition and growth in a mouse typhoid
fever model. The data revealed that Salmonella accessed an unexpectedly diverse set of at least 31 different host nutrients
in infected tissues but the individual nutrients were available in only scarce amounts. Salmonella adapted to this situation
by expressing versatile catabolic pathways to simultaneously exploit multiple host nutrients. A genome-scale computational
model of Salmonella in vivo metabolism based on these data was fully consistent with independent large-scale
experimental data on Salmonella enzyme quantities, and correctly predicted 92% of 738 reported experimental mutant
virulence phenotypes, suggesting that our analysis provided a comprehensive overview of host nutrient supply, Salmonella
metabolism, and Salmonella growth during infection. Comparison of metabolic networks of other pathogens suggested
that complex host/pathogen nutritional interfaces are a common feature underlying many infectious diseases.
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Introduction

Infectious diseases are a major worldwide threat to human health

[1]. The situation is worsening because of rapidly rising antimicro-

bial resistance and insufficient development of new antibiotics. Most

infectious diseases start with a few pathogenic organisms that invade

host tissues, but disease symptoms develop only later when

pathogens exploit host nutrients to grow to high tissue loads.

Despite this crucial role of pathogen nutrition and growth, only a

few host nutrients that are relevant for some pathogens have been

identified [2,3,4,5,6,7,8,9,10,11,12,13,14,15], and comprehensive

quantitative data are lacking. The poor understanding of in vivo

growth conditions can cause major antimicrobial drug development

failures [16,17,18,19] and might compromise antibiotic treatment

[20].

In this study, we investigated Salmonella nutrition and growth in

a mouse infection model mimicking human enteric fever. Enteric

fever is caused by ingestion of food or water contaminated with

Salmonella enterica serovars Typhi and Paratyphi (‘‘typhoid/paraty-

phoid fever’’) [21]. Salmonella invade intestinal tissues and

disseminate to inner organs including spleen, liver, kidney, bone

marrow, and brain, where they proliferate and cause tissue

damages that can result in strong inflammation and organ failure.

Enteric fever causes tremendous morbidity and mortality world-

wide. Current control strategies become increasingly inefficient as

a result of increasing antimicrobial resistance [22,23] and

emergence of Salmonella serovars that are not covered by currently

available safe vaccines [24,25].

In mice, Salmonella enterica serovars that cause human enteric

fever usually do not cause any disease [26], in part because of

expression of Toll-like receptor 11 in mice but not humans [27].

However, serovar Typhimurium, which can cause human

diarrhea, causes in mice a systemic infection with pathology and

disease progression similar to human typhoid fever. Some mouse

strains carry a functional allele Slc11a1 (also called NRAMP) coding

for a Fe2+/Mn2+/Zn2+transporter, and such mice can successfully

control systemic salmonellosis [28]. However, widely used

laboratory mouse strains (i.e., BALB/c, C57BL/6) carry a

dysfunctional Slc11a1 allele which makes them highly susceptible

to lethal systemic Salmonella infections. Salmonella infections in these

genetically susceptible mice thus represent an excellent model for

severe human typhoid (and paratyphoid) fever [26]. This disease

model is particularly suitable for comprehensive experimental and

computational analysis because of facile Salmonella genetics,

availability of genome-scale in silico metabolic reconstructions

[29,30,31], extensive literature, and close similarities between

Salmonella and the prime model organism E. coli.

In this study, we used proteomics, mutant phenotyping, and

computational approaches to investigate Salmonella nutrition and

growth in this mouse typhoid fever model. Our data revealed an

unexpectedly complex Salmonella nutritional landscape in infected

host tissues, where many chemically diverse nutrients were
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available in scarce amounts. Salmonella adapted to this situation by

simultaneously employing versatile nutrient utilization pathways.

Results

Extensive Salmonella nutrient utilization capabilities
during infection

To characterize Salmonella metabolic capabilities during infec-

tion, we sorted Salmonella from infected mouse spleen and

determined copy numbers of 477 metabolic enzymes (among

1182 identified proteins) using the well-established proteomics

iBAQ label-free quantification approach [32] with 30 isotope

labeled AQUA [33] peptides as internal standards (Table S1). This

analysis extended our previous qualitative detection of 178

Salmonella enzymes in the same disease model [34] as a

consequence of improved sorting and proteomics technologies.

The detected enzymes are known to catalyze 925 metabolic

reactions, a remarkably high proportion of all known/inferred

2023 Salmonella metabolic reactions for which catalyzing enzymes

have been annotated [31]. Interestingly, this included 102

transporters and enzymes involved in 77 reactions in 24 pathways

for utilization of various carbohydrates, lipids, nucleosides, and

amino acids (Figure 1). It is important to note that these enzyme

numbers likely underrepresented the entire Salmonella in vivo

proteome as limited material availability and mass spectrometry

detection thresholds likely prevented identification of weakly

expressed enzymes. These data suggested that during infection,

Salmonella mobilized a large part of their diverse metabolic

capabilities. In comparison, closely related E. coli requires only

293 reactions for optimal growth in a minimal in vitro medium

[35]. However, even under such well-defined conditions, E. coli

expresses more than 200 apparently not required enzymes

suggesting that enzyme expression alone is not indicative of

metabolic relevance [36] (see below).

In addition to the qualitative identification of expressed

Salmonella enzymes and associated metabolic reactions, our

proteome data also provided quantitative data on Salmonella

metabolic capabilities. We combined enzyme copy numbers with

available turnover numbers to calculate maximal reaction rates for

469 reactions (Table S2). As an example, we detected

20’00061000 copies per Salmonella cell of glycerol kinase GlpK

that catalyzes MgATP-dependent phosphorylation of glycerol to

yield sn-glycerol 3-phosphate. The closely related E. coli ortholog

(95% amino acid identity) has vmax = 22 mmol min21 mg21 [37]

equivalent to a turnover number of 21 s21. Based on these data, a

single Salmonella cell would have the catalytic capacity to

phosphorylate up to 420’000 glycerol molecules s21. Such results

should be taken as approximate only since turnover numbers

are usually determined for somewhat non-physiological in vitro

conditions (e.g., glycerol kinase was assayed in low osmolarity

buffer at 25uC). Moreover, these data were incomplete because

of undetected enzymes with abundance below the proteomics

detection threshold and missing kinetic data. Nevertheless, the

data yielded an unprecedented large-scale overview of Salmonella

catalytic capacities in an infected host tissue, and provided a

unique quantitative basis for in-depth analysis of metabolic

activities involved in Salmonella virulence (Figure S1; an

interactive map with detailed descriptions is available at

http://www.biozentrum.unibas.ch/personal/bumann/steeb_et_al/

index.html).

As expected [38], central carbon metabolism had particularly

high catalytic power in contrast to biosynthesis pathways for minor

biomass components such as vitamins. Many nutrient utilization

pathways had also substantial catalytic power with especially high

values for glycerol utilization (Figure 1). Together, these data

suggested that Salmonella maintained versatile catabolic capabilities

for diverse nutrients during infection.

Functional relevance of diverse host nutrients
To determine the actual relevance of specific nutrients for

supporting Salmonella host tissue colonization, we inactivated

defined utilization pathways. We preferentially deleted transport-

ers to prevent high-affinity nutrient uptake instead of inactivating

degradation enzymes that could result in accumulation of toxic

upstream metabolites such as phosphorylated carbohydrates,

which can cause pleiotropic effects [39,40]. Some nutrients can

permeate membranes without a dedicated transporter (glycerol,

short-chain fatty acids, myo-inositol, ethanolamine). In these cases,

we inactivated enzymes that were unlikely to cause toxic

intermediate accumulation based on available literature

[41,42,43,44].

Utilization defects have previously been used in several studies,

for example to determine the relevance of several carbohydrates

for E. coli growth in the intestinal lumen [2]. As a potential caveat,

an excess supply of alternative nutrients may mask specific

utilization defects. Moreover, some mutations might cause polar

effects on the expression of downstream genes. In most of our

mutants, this would only affect genes coding for subunits in the

same transporters or enzymes involved in the same degradation

pathways as the inactivated gene (Table S3). However, it was still

possible that some such polar effects influenced mutant pheno-

types.

In a complementary second set of Salmonella mutants, we

inactivated well-characterized biosynthesis pathways for essential

biomass components. The resulting Salmonella auxotrophs were

unable to grow unless the missing biomass components were

provided externally (Table S4). Any growth of such mutants in

infected spleen was, therefore, indicative of host supply of the

respective supplement. Similar approaches have previously been

used in various infection models.

To measure tissue colonization capabilities of the various

mutants, we used competitive infections with mixtures of mutant

Author Summary

Infectious diseases are a major health problem worldwide.
To cause disease, pathogens need to acquire host
nutrients for growth in infected tissues and for the
expression of virulence factors. In this study, we investi-
gated Salmonella nutrition and growth in a well-charac-
terized mouse model of human typhoid fever. We used a
panel of Salmonella mutants with metabolic defects to
assess the importance of various nutrient utilization
pathways for Salmonella growth. We derived from these
experimental data a computational model that predicts
nutrient uptake rates, activity of metabolic pathways, and
the effects of Salmonella enzyme defects on in vivo
growth. The vast majority of these predictions were in
close agreement with independent experimental data
suggesting the model provided a consistent overview of
Salmonella metabolism during infection. The data showed
that Salmonella depend on a highly complex diet with
many different host nutrients, but each of these nutrients
is available in only scarce amounts. To grow and cause
disease, Salmonella must simultaneously exploit these
various nutrients with versatile degradation pathways.
Similar complex pathogen diets might also drive many
other infectious diseases.

Salmonella Nutrition in Infected Host Tissues
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and wildtype Salmonella (Figure 2; Table S3). Mutant fitness was

measured as competitive indices (CI = output ratio (mutant/

wildtype)/input ratio (mutant/wildtype)). A CI value of 1

(equivalent to log2(CI) = 0) indicated that a mutant had equal

colonization capabilities as wildtype Salmonella. Complementation

of mutant alleles to verify mutation phenotypes was often difficult

because most strains contained multiple mutations. However, we

independently reconstructed the most attenuated mutant and

confirmed the resulting colonization defect (Figure 2). In the

statistical analysis we avoided the ‘‘multiple comparison problem’’

using the widely accepted Benjamini-Hochberg [45] ‘‘false

discovery rate’’ (FDR) approach to identify the subset of

attenuated mutants (Table S3).

Interestingly, several Salmonella mutants with nutrient utilization

defects had significantly diminished colonization capabilities

(Figure 2; for detailed interpretation see Table S5). This suggested

that there was no large excess of nutrients that would mask any

utilization defects, and no single major nutrient that alone could

support full Salmonella virulence. Instead, Salmonella colonization

depended on utilization of glycerol, fatty acids, N-acetylglucosa-

mine, gluconate, glucose, lactate, and arginine. Glucose was the

only nutrient that had previously been identified to contribute to

systemic Salmonella infection [11].

All seven identified nutrients can serve as a sole carbon source

for Salmonella growth [46] and can be interconverted into each

other. It was thus unlikely that any of these nutrients was required

because it provided a unique chemical structure. Instead, the seven

metabolites seemed to supply individual small nutritional contri-

butions that only together enabled normal Salmonella in vivo

growth (see below). Other utilization mutants had non-significant

colonization phenotypes suggesting limited contributions of the

corresponding nutrients.

Most of our infection experiments used BALB/c mice that carry

a dysfunctional Slc11a1 allele (see Introduction). Such mice are

highly susceptible for systemic salmonellosis providing a useful

model for severe human typhoid fever. For comparison, we also

did some small-scale experiments in 129/Sv mice that carry a

functional Slc11a1 allele and are therefore resistant to lethal

Figure 1. Nutrient utilization capabilities of Salmonella in infected mouse tissues. Colored names represent transporters and enzymes that
were detected in Salmonella purified from mouse spleen (Table S1). The color shows enzyme abundance in copies per Salmonella cell. Grey proteins
were not detected. Arrows represent metabolic reactions. Transport reactions are labeled with cylinders. Arrow colors show maximal catalytic
capacities calculated from enzyme abundance and reported turnover numbers (Table S2). Grey arrows represent reactions, for which enzymes were
not detected and/or turnover numbers were unavailable. Tsx is an outer membrane general nucleoside channel; NupC is a high affinity transporter
for all nucleosides except guanosine and deoxyguanosine. An interactive map with detailed description of all detected metabolic capabilities is
available at http://www.biozentrum.unibas.ch/personal/bumann/steeb_et_al/index.html.
doi:10.1371/journal.ppat.1003301.g001
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salmonellosis. Competitive infections confirmed the importance of

glycerol (or glycerol-3-phosphate) and N-acetyl-glucosamine for

Salmonella growth (Figure S2) suggesting similarities of Salmonella

nutrition in susceptible and resistant mice.

Additional evidence for nutrient availability came from the

substantial colonization capabilities of most tested Salmonella

auxotrophs (Figure 2; Tables S3, S5). In particular, Salmonella

readily accessed sufficient quantities of several (pro-)vitamins and

all tested amino acids (except proline). Similar colonization

phenotypes were obtained for Salmonella mutants with utilization

or biosynthesis defects in infected liver (Table S3) indicating that

similar nutrients supported Salmonella growth in two different host

organs.

Combination of our data with previously reported additional

mutant virulence phenotypes indicated Salmonella access to a large

set of at least 31 chemically diverse host nutrients in infected

mouse spleen (Table S5). This analysis thus revealed a highly

complex host/Salmonella nutritional interface, which is still likely

incomplete because of limited mutant coverage and our inability

to detect small colonization defects.

Salmonella virulence depends on parallel exploitation of
diverse host nutrients

Our data suggested that Salmonella exploited a wide range of

diverse host metabolites. This was initially surprising since most

microorganisms utilize only a single preferred nutrient such as

glucose when exposed to nutrient mixtures [47]. Other nutrients

and their utilization pathways remain irrelevant as long as this

preferred nutrient is available.

This was evidently not the case during infection, as glucose

utilization only partially supported Salmonella growth in agreement

with previous observations [11]. As one possible explanation,

various nutrients including glucose might have been available in

only limited amounts that together just supported Salmonella

growth and tissue colonization. Indeed, colonization defects of

Salmonella utilization mutants (Figure 2) suggested that Salmonella

virulence depended on simultaneous effective exploitation of

several nutrients instead of relying on only one preferred nutrient.

To further test the hypothesis of parallel utilization of different

available nutrients, we used a cell culture infection model where

Salmonella replicated intracellularly in macrophage-like RAW

Figure 2. Mouse spleen colonization of Salmonella mutants with metabolic defects. The data represent competitive indices (CI) of mutants
vs. wildtype Salmonella in spleen of individual mice at three (open symbols) or four days (filled symbols) post infection (Table S3). A log2(CI) value of 0
(equivalent to a CI of 1) represents full virulence. Down triangles represent mutants with utilization defects, up triangles represent auxotrophic
mutants. Grey symbols represent data from a previous study [34] obtained in the same disease model. Red triangles represent data from an
independently reconstructed glpFK gldA glpT ugpB mutant. The data provided evidence for access to a number of host nutrient which are shown in
black (for detailed interpretation see Table S5). Nutrients with apparently low availability are shown in grey. Statistical analysis was carried out with
the Benjamini-Hochberg false discovery rate (FDR) approach for multiple comparisons [45] (***, FDR,0.001; **, FDR,0.01; *, FDR,0.05).
doi:10.1371/journal.ppat.1003301.g002
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PLOS Pathogens | www.plospathogens.org 4 April 2013 | Volume 9 | Issue 4 | e1003301



264.7 cells mimicking conditions during systemic salmonellosis

[48]. In this cell culture model, extracellular metabolites can reach

intracellular Salmonella and contribute to their nutrition

[49,50,51,52]. To test the impact of nutrient availability, we

added external glucose or mannitol at 4 h post infection when

Salmonella had already established their intracellular niche

(Figure 3A). Interestingly, both extracellular nutrients accelerated

subsequent intracellular Salmonella growth (Figure 3B). This growth

promoting effect was dependent on specific Salmonella glucose/

mannitol utilization capabilities, suggesting that external glucose

and mannitol directly contributed to Salmonella growth, whereas

nutrient-induced changes in the host cell had negligible impact

(e.g., moderate changes in osmolarity (2.7 mOsm per added

nutrient, some 1% of the total osmolarity), glucose metabolization

by host cells (mannitol cannot be metabolized by mammalian cells

[53]), or modulation of host cell phagocytosis and oxidative

bursting as observed at much higher mannitol doses [54]). These

data indicated that intracellular Salmonella growth was limited by

nutrient availability, and Salmonella exploited both a typically

preferred (glucose) and a non-preferred carbon source (mannitol)

when available thus supporting our nutrient limitation hypothesis.

Taken together, both mutant colonization defects and cell

culture experiments were consistent with Salmonella growth being

dependent on diverse scarce nutrients during infection.

Estimation of nutrient uptake rates
In addition to these qualitative results on nutrient-limited

Salmonella growth, we were interested to obtain quantitative

nutrient supply rates as a basis for comprehensive understanding

and computational modeling of Salmonella nutrition, metabolism

and growth. Quantitative nutrient supply rates have not yet been

reported for any infection model, but the severity of mutant

colonization defects could provide some hints. As an example, the

strong colonization defect of Salmonella glpFK gldA glpT ugpB

defective for glycerol utilization, compared to Salmonella manX nagE

defective for GlcNAc utilization, could suggest that more glycerol

was available as compared to GlcNAc. This rationale has

previously been used to assess the relative relevance of various

carbohydrates for E. coli gut colonization [2]. However, direct

calculation of the respective nutrient supply rates from such

mutant colonization defects was hampered by the parallel

utilization of many diverse nutrients. Moreover, nutrients such

as glycerol and GlcNAc differ in their nutritional value per

molecule.

To quantitatively assess the availability of multiple host

nutrients and their utilization by Salmonella, we therefore used a

computational approach called Flux-Balance Analysis (FBA) [55].

This approach had been successfully applied to predict nutrient

utilization and growth in a wide variety of organisms in excellent

agreement with large-scale experimental data [56]. As a precon-

dition for the application of FBA to Salmonella, we recently

established together with more than 20 Salmonella experts an in

silico reconstruction of the entire Salmonella metabolic network that

contains all experimentally determined Salmonella metabolic

activities, all enzymes with annotated metabolic activity encoded

in the Salmonella genome, and their catalyzed reactions with all

participating metabolites, stoichiometries, and information on

reaction reversibility [31]. This consensus Salmonella metabolic

reconstruction has been extensively documented and is continu-

Figure 3. Nutrient limitation of intracellular Salmonella growth. A) Schematic representation of external supplementation of intracellular
Salmonella (red) in infected macrophages (grey). B) Increasing external nutrient availability accelerates intracellular Salmonella growth, and this
depends on specific Salmonella nutrient utilization capabilities (open symbols, 0.5 g l21 glucose; filled black symbols, 1 g l21 glucose; filled grey
symbols, 0.5 g l21 glucose 0.5 g l21 mannitol; circles, wildtype Salmonella; upward triangles, Salmonella ptsG manX galP mglB, deficient for high-
affinity glucose transport; downward triangles, Salmonella mtlAD, deficient for high-affinity mannitol transport and degradation). Colony-forming
units (CFU) at 10 h post infection for triplicate wells containing 300’000 RAW 264.7 cells are shown. C) Flux-balance analysis of nutrient excess
scenarios. The computational model was set to incorporate various amounts of excess nutrients (beyond what was needed for cell maintenance and
growth). Model parameters were adjusted to yield predictions that were consistent with experimental mutant and wildtype colonization data.
Simulation of up to 18% nutrient excess was possible but required unrealistically high maintenance costs (shown in multiples of maintenance costs
for axenic conditions). Simulated scenarios with nutrient excess beyond 18% were incompatible with experimental colonization data.
doi:10.1371/journal.ppat.1003301.g003
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ously being updated by manual curation of newly available

literature for Salmonella and closely related E. coli enzyme orthologs

(reconstruction STMv1.1 with 1279 Salmonella enzymes, 1824

metabolites, 2573 reactions; Tables S6, S7, S8; the reconstruction

is available in SBML format at http://www.biozentrum.unibas.

ch/personal/bumann/steeb_et_al/index.html) and in the Sup-

porting Information (Model S1).

Flux-balance analysis can be used to determine if the metabolic

network is capable of producing all components required for

Salmonella biomass generation. Importantly, biomass requirements

can differ between growth conditions [57,58]. To deduce

Salmonella biomass requirements during infection, we analyzed

published informative mutant virulence phenotypes and modified

the biomass function accordingly (for detailed descriptions see

Table S8; for limitations in the in vivo biomass definition see

Discussion). Flux-balance analysis revealed that the metabolic

reconstruction could generate all included biomass components in

the correct stoichiometry under observance of fundamental

thermodynamic laws such as preservation of mass and charge

(‘‘flux-balance’’) [31]. In addition to biomass generation, all cells

have growth-unrelated demands for survival and these are

commonly accounted for as ‘‘maintenance requirements’’ [59].

Such demands could be especially important in pathogens during

infection when they need resources to resist host antimicrobial

defense.

To model Salmonella nutrition and growth in infected spleen, we

provided the in silico reconstruction with all experimentally

identified nutrients and used FBA to compute the resulting

Salmonella biomass generation (which we used as an approximation

for growth throughout this study). We adjusted nutrient uptake

rates to reproduce our experimental Salmonella mutant phenotypes

(for a detailed description of our approach, see Material and

Methods and Figure S3). This yielded supply rates for 31 organic

nutrients (Table S9), as well as 13 inorganic ions (Table S9). To

obtain consistent data we needed to assume enhanced mainte-

nance requirements (145620% of the value for axenic in vitro

cultures). Such enhanced maintenance costs could reflect defense

against hostile host environments (see Discussion).

We also explored scenarios of excess nutrient supply (see

Materials and Methods). The results revealed that the computa-

tion model could accommodate only modest nutrient excess up to

118% of the minimal nutrient supply values, and this would

require improbably high maintenance costs for consistency with

our experimental colonization data (Figure 3C). These data

provided additional in silico support for nutrient-limited Salmonella

growth (see above).

It is important to note that our computational approach had

several caveats (see Discussion). On the other hand, the resulting

model provided a first comprehensive quantitative approximation

to the host nutritional landscape and its exploitation by Salmonella

that could serve as a basis for subsequent improvements (Figure 4;

the model is available in SBML format at http://www.

biozentrum.unibas.ch/personal/bumann/steeb_et_al/index.html)

and in the Supporting Information (Model S1).

Experimental validation of the model of Salmonella
metabolism

To assess how well the current computational model captured

relevant aspects of Salmonella nutrition and growth during

infection, we compared model predictions with large-scale

experimental data sets on Salmonella mutant phenotypes, enzyme

expression, and metabolic capabilities.

To validate functional aspects of the computational model, we

systematically predicted in vivo growth phenotypes for all 1279

model enzymes, and compared these predictions to reported

experimental Salmonella mutant colonization phenotypes (Table

S10; Figure 5A; interactive maps for predicted and experimental

mutant phenotypes are available at http://www.biozentrum.

unibas.ch/personal/bumann/steeb_et_al/index.html).

Inactivation of most enzymes had no impact on predicted

growth rate. Only few, mostly biosynthetic, enzymes were essential

for Salmonella virulence (predicted mutant growth rate below 60%

of wildtype ), while some genes contributed to virulence (predicted

mutant growth between 60% and 98% of wildtype), and the vast

majority of enzymes had non-detectable effects (mutant growth

rate higher than 98% of wildtype) in agreement with our previous

experimental data [34]. Detailed analysis of 738 single mutants

with available experimental data revealed an overall prediction

accuracy of 92% (Figure 5A; Table S10) similar to accuracies

achieved for the best computational models for E. coli in vitro

cultures [59]. This analysis included 14 mutant phenotypes that

we had used to deduce the biomass function (Table S8) and 69

mutation phenotypes that we had used to deduce nutrient supply

(Table S5). Consistency of model predictions for these mutants

and additional mutants with linked phenotypes (such as enzymes

in the same pathways) was, therefore, unsurprising. Moreover,

gene selection for mutant testing in our and other labs was likely

influenced by previous knowledge. Mutant phenotypes thus did

not provide truly independent validation, but they demonstrated

that the model yielded consistent quantitative explanations for the

function of hundreds of Salmonella genes during infection. On the

other hand, there were 61 discrepancies between computational

predictions and experimental data that could help to identify

remaining errors and knowledge gaps (Figure 5B; for detailed

analysis, see Table S10 and Discussion).

We also compared model predictions with our protein

identification data. Specifically, we used a recently developed

approach called parsimonious enzyme usage FBA (pFBA) [36] to

predict enzyme classes with differential functional relevance for

efficient Salmonella biomass generation. These enzyme classes

included, in order of decreasing relevance, (i) essential enzymes, (ii)

enzymes required for optimal growth with minimal overall flux

(‘‘optima’’), (iii) enzymatically less efficient enzymes (which could

sustain optimal growth but would require more total flux), (iv)

metabolically less efficient enzymes (which could sustain only

suboptimal growth), and (v) genes with no contribution to

Salmonella growth (zero flux in the associated reactions). Compar-

ison with our proteome data for ex vivo sorted Salmonella revealed

that there was a statistically highly significant relationship between

relevance and the proportion and abundance of detected Salmonella

enzymes in the various classes (Figure 5C; Figure S4), similar to

what has been observed for computational models of well-

characterized E. coli in vitro cultures [36]. On the other hand,

we still detected only some 50% of the relevant enzymes (classes

‘‘essential’’ and ‘‘optima’’). Many non-detected enzymes were

associated with rather low predicted reaction rates (Figure S5),

suggesting that these enzymes might have been present in small

quantities below our ex vivo proteome detection threshold.

Incomplete proteome coverage of important enzymes has also

been observed for E. coli in vitro cultures [36].

On the other hand, we detected several enzymes that were

predicted to mediate no flux, again similar to observations for in

vitro cultures [36]. Many such enzymes were involved in amino

acid biosynthesis, nutrient utilization, gluconeogenesis, glycogen

metabolism, and other pathways that all had experimentally non-

detectable mutant phenotypes, consistent with their predicted non-

functionality. It is possible, however, that these pathways were

actually active, but accounted for minor contributions to Salmonella

Salmonella Nutrition in Infected Host Tissues
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virulence that were undetectable with current in vivo methods.

Alternatively, Salmonella might have prepared themselves for

subsequent environments in their life cycle where these pathways

would offer fitness benefits. Finally, Salmonella might be unable to

optimally regulate its enzyme expression to shut down all dispensable

enzymes (as it is likely the case in E. coli in vitro cultures). Further

research is required to test these and other hypotheses.

We also compared our in vivo model with a model for Salmonella

growth in minimal medium with glucose as sole source of carbon

and energy. Interestingly, there was a large overlap between

enzymes that were important for optimal growth of Salmonella

under these two conditions. We detected 30 proteins that were

predicted to be specifically required in vivo but not in vitro,

providing some support for our in vivo model. On the other hand,

we also detected 15 proteins that should be required only in the in

vitro minimal medium but not in vivo. Interestingly, eleven of

these 15 proteins were involved in amino acid biosynthesis

suggesting that Salmonella maintained such biosynthetic capabilities

in vivo despite access to host amino acids (see above). It is possible

that the amino acid supply was just marginally sufficient and

Salmonella prepared itself for future amino acid starvation. Further

work is required to clarify this issue.

In addition to predicting enzyme relevance, the model also

provided quantitative predictions for fluxes through hundreds of

metabolic reactions. For some reactions, a large range of reaction

rates was possible whereas others had more restricted rates

(Figure 5D) as previously observed in other systems (‘‘flux

variability’’ [60]). We determined the state with the lowest overall

metabolic activity corresponding to economical use of costly

enzymes. Such states have shown to correspond well with

experimental flux data in other systems [36,61].

To determine the feasibility of these predicted reaction rates, we

compared them to Salmonella catalytic capacities calculated from

experimentally determined enzyme concentrations and turnover

numbers (see above; Table S2; Figure S1; http://www.

biozentrum.unibas.ch/personal/bumann/steeb_et_al/index.html).

Interestingly, 459 out of 469 analyzed reactions had feasible

predicted rates (Figure 5D). Three reactions had clearly infeasible

reactions rates in the most economical computational state with

lowest overall metabolic activity (.3 fold above the corresponding

catalytic capacities; these reactions are labeled in Figure 5D: 1,

formyltetrahydrofolate dehydrogenase; 2, phosphoserine amino-

transferase; 3, glycerol dehydrogenase). However, all these reactions

could be restrained to feasible rates without compromising

Figure 4. A quantitative genome-scale model of Salmonella nutrition, metabolism, and growth in infected mouse spleen. This
schematic map shows available host nutrients, their respective uptake rates represented by color and font size, and their conversion to new
Salmonella biomass through the Salmonella metabolic network (see text and Tables S6, S7, S8, S9 for detailed explanation and quantitative values).
Symbols represent metabolites (squares, carbohydrates; pointing up triangles, amino acids; vertical ellipses, purines; horizontal ellipses, pyrimidines;
pointing down triangles, cofactors; tees, tRNAs; circles, other metabolites; filled symbols, phosphorylated metabolites) and proteins (diamonds). The
connecting lines present metabolic reactions. The brown lines represent the inner and outer membranes. An interactive map with detailed
annotation of all reactions and the computational model in SBML format are available at http://www.biozentrum.unibas.ch/personal/bumann/steeb_
et_al/index.html. The model is also available in the supporting information (Model S1).
doi:10.1371/journal.ppat.1003301.g004
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predicted Salmonella growth or making other reactions infeasible.

All seven other reactions had only moderate discrepancies

between simulated and feasible rates, and four of them could

again be restrained without compromising growth.

The remaining three reactions had simulated reaction rates

that remained slightly infeasible in all states (simulated fluxes

1.2 to 2.5 fold too high). Interestingly, all three reactions

were aminoacyl tRNA ligations (for proline, alanine, and

threonine). Possible causes for these discrepancies included

inaccurate biomass assumptions for proline, alanine, and

threonine protein content, experimental errors in protein

quantification, and/or suboptimal assay conditions for tRNA

ligase turnover number measurements. Moreover, the com-

putational model disregards important processes outside

metabolism such as macromolecular expression [58], which

could contribute to discrepancies between feasible and

simulated reaction rates.

Despite these three minor discrepancies, the overwhelming

feasibility of reaction rates indicated that Salmonella had sufficient

in vivo enzyme amounts and catalytic power to mediate nutrient

utilization, metabolization, and biomass generation as predicted

by the computational model.

Figure 5. Large-scale experimental data are consistent with computational model predictions. A) Validation of mutant phenotype
predictions. The colors show the predicted gene relevance for spleen colonization (red, essential; orange, contributing; blue, non-detectable; see text
for definitions). Comparison of model predictions with 738 experimental Salmonella mutant phenotypes revealed 92% prediction accuracy (inner
dark colors) but also 61 discrepancies (pale outer colors). Numbers (correct/total number of experimentally validated predictions) are also given. B)
Potential reasons for inaccurate phenotype predictions (redu, unrealistic redundancy; biom, incomplete biomass/maintenance issues; part, partially
contributing functions; toxic, accumulation of toxic upstream metabolites; gap, missing enzyme; or exp, possibly inaccurate experimental data). For
detailed descriptions see Table S10. C) Detection of enzymes with predicted differential relevance for optimal Salmonella in vivo growth. Enzyme
relevance was classified by parsimonious enzyme usage flux-balance analysis (pFBA) (ess, essential enzymes; optima, enzymes predicted to be used
for optimal in vivo growth; ELE, enzymatically less efficient enzymes that will increase flux if used; MLE, metabolically less efficient enzymes that will
impair growth rate if used; zeroFlux, enzymes that cannot be not used in vivo). Filled bars represent enzymes that were detected by Salmonella ex
vivo proteomics, open bars represent enzymes that were not detected. Statistical significance of the relationship between enzyme classes and the
proportion of detected proteins was determined using the Chi square trend test. D) Feasibility of predicted reaction rates. For each reaction, the
range of flux rates compatible with full Salmonella growth was determined using Flux-Variability Analysis. The circles represent the most economical
state with minimal total flux (see text). Predicted reaction rates are compared to corresponding catalytic capacities calculated form experimental
enzyme abundance and turnover numbers (Table S2). The reddish area represents infeasible fluxes. Reactions with substantial infeasible fluxes in the
most economic simulated state are labeled (1, formyltetrahydrofolate dehydrogenase; 2, phosphoserine aminotransferase; 3, glycerol
dehydrogenase). E) Predicted flux ranges and corresponding catalytic capacities after constraining all reactions to feasible fluxes (except for the
three aminoacyl tRNA ligations mentioned in the text). F) Relative flux ranges of the initial unrestrained (straight line) and the enzyme capacity-
restrained (dotted line) models. For each reaction, the flux range was divided by the respective flux value in the most economical state. Reactions that
carried no flux in the most economical state were not considered. Statistical significance of the difference between both distributions was tested
using the Mann-Whitney U test.
doi:10.1371/journal.ppat.1003301.g005
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Although almost all reactions had entirely plausible reaction rates

in the computational state with lowest overall metabolic activity, the

entire flux solution space also included many reaction fluxes that

exceeded plausible rates. In a next step, we prevented such

implausible fluxes by setting upper/lower limits according to the

maximum experimental enzyme capacities (except for the prob-

lematic three tRNA ligations, see above). Interestingly, these large-

scale constraints still allowed normal Salmonella in silico growth, but

resulted in a dramatically reduced flux solution space (Figure 5E, F).

Specifically, the vast majority (80%) of reactions had narrowly

defined flux ranges (relative flux variability below 10%), whereas in

the initial unrestrained model only a small minority (16%) had such

narrowly defined reaction rates (Figure 5F). This enzyme capacity-

based model might thus provide a much better defined approxi-

mation to the actual in vivo flux state.

Together, these data revealed that the model predicted (i)

largely correct mutant virulence phenotypes, (ii) predicted enzyme

relevance that correlated with experimental protein detection, and

(iii) predicted reaction rates that were biologically plausible. This

large-scale consistency with experimental data suggested that the

computational model captured major aspects of Salmonella

nutrition, metabolism, and growth in infected host tissues.

A common nutritional signature for mammalian
pathogens

To investigate if Salmonella conditions during mouse typhoid

fever might be generally representative for pathogen nutrition in

infected host tissues, we compared pathogen metabolic networks

based on genome pathway annotations [62]. We analyzed 154

different mammalian pathogens (Table S11) for presence of 254

nutrient utilization pathways and 118 biosynthetic pathways

(Figure 6A). Most pathogens shared the capability to utilize

glycerol, fatty acids, various carbohydrates, nucleosides, and

amino acids that could serve as N-sources (such as arginine),

suggesting a general preference for nutrients that Salmonella used in

the mouse typhoid fever model. Additional genome comparisons

for 316 non-pathogenic species revealed that they might also

preferentially utilize similar nutrients (Figure S6).

On the other hand, many pathogens have smaller genomes

compared to related non-pathogenic species as a result of

reductive genome evolution [63] resulting in loss of many

pathways. To identify biosynthesis pathways that were commonly

lost during this process, we determined a ‘‘biosynthesis depletion

frequency’’ (DF) as follows. For each biomass component, we

determined the fractions of pathogenic (P) and non-pathogenic

(NP) species that encoded corresponding biosynthesis pathways in

their genomes. The ‘‘biosynthesis depletion frequency’’ was

calculated as the difference of the respective frequencies

DF = NP2P. As an example, 89% of environmental bacteria but

only 47% of mammalian pathogens had an apparently functional

tyrosine biosynthesis pathway yielding a ‘‘depletion frequency’’ of

89%247% = 42%. The results revealed that many pathogens lost

biosynthesis pathways for several amino acids, nucleosides, and

(pro)vitamins indicating that these pathogens - like Salmonella -

might obtain such biomass components from their respective host

environments (Fig. 6B).

Together, these genome comparisons suggested that many

pathogens share with Salmonella access to a common large set of

diverse host metabolites in infected mammalian tissues.

Discussion

Host nutrients are essential for pathogen proliferation, disease

progression, and efficacy of antimicrobial treatments. However,

only few relevant nutrients have been identified and quantitative

data on nutrient supply rates are lacking. In this study, we

combined experimental enzyme abundance data, previously

reported enzyme kinetic parameters, competitive infections with

metabolic mutants, and computational modeling, to build and

validate a comprehensive genome-scale model of Salmonella

nutrition, metabolism, and growth in infected mouse tissues.

Virulence phenotypes of nutrient utilization mutants and

auxotrophic mutants revealed that Salmonella accessed a surpris-

ingly large number of chemically diverse host nutrients including

lipids, carbohydrates, amino acids, nucleosides, and various

(pro)vitamins. Surprisingly, this included facile availability of all

three aromatic amino acids based on full virulence of auxotrophic

Salmonella pheA tyrA trpA. This was also consistent with common

tryptophan auxotrophy of Salmonella enterica serovar Typhi

clinical isolates from human typhoid fever patients [64]. On the

other hand, aromatic amino acids were previously thought to be

unavailable in infected mouse tissues based on strongly attenuating

mutations in chorismate biosynthesis [65,66], a precursor for

aromatic amino acids. However, such mutants are not informative

for aromatic amino acid availability since chorismate is also a

precursor for ubiquinone which is essential for Salmonella virulence

[34]. Similar conditions might exist for intracellular Listeria [67].

The large diversity of accessible host nutrients posed complex

challenges to Salmonella metabolism but, in addition, also relieved

Salmonella dependence on any particular nutrient and its corre-

sponding utilization pathway, thus enabling Salmonella to maintain

high virulence even when biosynthesis pathways for important

biomass components such as amino acids were defective. This

buffering capacity of the complex nutritional landscape signifi-

cantly contributed to the remarkable robustness of Salmonella

metabolism against internal perturbations during infection [34].

Proteome analysis of Salmonella purified from infected tissues

revealed in vivo expression of enzymes involved in degradation of

the major nutrients glycerol, fatty acids, and N-acetylglucosamine,

glucose, lactate, and arginine suggesting that Salmonella allocated

major enzyme resources to relevant pathways in agreement with

earlier observations [68]. Exceptions included mannose-6-phos-

phate isomerase (ManA) and UDP-glucose 4-epimerase (GalE)

that can participate in degradation of mannose and galactose,

respectively. Both enzymes were present in concentrations that

would sustain high reaction rates (Figure 1), yet neither mannose

nor galactose had a detectable nutritional contribution during

infection (Figure 2; Table S5). However, both enzymes can also

operate in reverse direction for biosynthesis, and corresponding

mutant phenotypes [69,70] support this as their dominant role in

Salmonella virulence. Together, the proteome data revealed

versatile Salmonella adaptation to a complex nutritional landscape.

To deduce quantitative in vivo supply rates for the various

nutrients, we used a genome-scale computational approach based

on Salmonella mutant colonization phenotypes. Specifically, we

updated a genome-scale reconstruction of the Salmonella metabolic

network and established a modified in vivo biomass composition.

We then determined which nutrient uptake rates would support

Salmonella biomass production consistent with experimental colo-

nization data for wildtype and mutant Salmonella. This approach

yielded uptake rates for 31 organic and 13 inorganic nutrients. For

consistency with the experimental wildtype Salmonella in vivo

generation time, we had to increase the non-growth associated

ATP maintenance requirements to some 145% of their original

value for axenic in vitro cultures [31]. Increased maintenance costs

might be expected for hostile host environments compared to

axenic in vitro cultures, but accurate experimental validation of

maintenance requirements is generally challenging [59,71].
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It is important to note that our entire computational approach

relied on several simplifying assumptions. (i) We disregarded

nutrient utilization for purposes other than biomass generation or

maintenance/virulence. (ii) We disregarded additional non-meta-

bolic functions of the various mutated Salmonella genes (‘‘moon-

lighting functions’’ [72]). Such additional functions are possible

although they have not yet been observed for any of the specific

transporters/enzymes that we had inactivated. (iii) We assumed

similar in vitro and in vivo biomass composition (except for a few

components for which informative mutant phenotypes had been

reported) disregarding well-documented effects of differential

growth rates on biomass composition [58,73,74]. (iv) We deduced

average nutrient supply rates but conditions might change during

infection and could also differ between various Salmonella

subpopulations. Some kinetic information could be obtained from

competitive infection time series but this would require an

extensive number of experimental animals.

Because of all these caveats, the predicted nutrient supply rates

and maintenance costs should be regarded only as rough estimates

providing order-of-magnitude information as an approximation to

the actual in vivo situation. On the other hand, the resulting model

provided a first comprehensive quantitative approximation to the

host nutritional landscape and its exploitation by Salmonella that

could serve as a basis for subsequent improvements.

To assess how well the current stage of this model reflected

Salmonella nutrition and metabolism during infection, we extensively

validated model predictions with large-scale experimental data.

Interestingly, enzymes with predicted high relevance for optimal

Salmonella growth were experimentally detected at higher rates

compared to non-functional enzymes. Moreover, rate predictions

for hundreds of reactions were consistent with experimentally

determined enzyme levels. This indicated that the simulated

metabolic flux distribution was fully feasible with the amounts of

enzymes that are actually present in Salmonella during infection.

Figure 6. A common nutritional pattern for mammalian pathogens. A) Presence of 254 nutrient utilization pathways in genomes of 153
mammalian pathogens (excluding all Salmonella serovars). Data were based on pathway annotations available in MetaCyc [62]. Degradation
pathways for nutrients that support Salmonella in mouse spleen were highly overrepresented among pathogen genomes (P,0.001; Mann-Whitney U
test) suggesting similar nutritional preferences (filled circles; 1, purine nucleosides; 2, pyrimidine nucleosides; 3, fatty acids; 4, glycerol; 5, arginine; 6,
N-Acetylglucosamine; 7, glucose; 8, gluconate). B) Depletion frequency of 118 biosynthesis pathways in mammalian pathogens. The values represent
differences in pathway frequency in sets of 153 pathogens and 316 environmental bacteria (see text for explanation). Biosynthesis pathways for
biomass components that Salmonella could obtain from the host were selectively depleted among pathogen genomes (P,0.0001; Mann-Whitney U
test) suggesting similar host supplementation patterns (filled circles; 1, tyrosine; 2, histidine; 3, arginine; 4, cysteine; 5, methionine; 6, tryptophan; 7,
threonine; 8, valine; 9 leucine; 10, isoleucine; 11, proline; 12, pyridoxal; 13, purine nucleosides; 14, pyrimidine nucleosides; 15, glutamine; 16, thiamin;
17, pantothenate).
doi:10.1371/journal.ppat.1003301.g006
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The model predicted hundreds of mutant virulence phenotypes

with an accuracy of over 90% thus indicating large-scale

consistency with experimental data. The few remaining discrep-

ancies may provide hints for further model improvements and

targeted research to close knowledge gaps. Detailed examination

suggested various typical limitations of our computational

approach including (i) overestimated redundancies due to

neglected regulation of isozyme/alternative pathway expression

and/or differential substrate affinities (e.g., possibly poor expres-

sion of the sodium transporter NhaB which might fail to

compensate for a nhaA defect in contrast to model predictions;

low affinity zinc uptake through YgiE, which might be insufficient

to compensate a defective ZnuABC zinc high-affinity transporter),

(ii) incomplete biomass/maintenance functions that neglect

signaling and detoxification needs (e.g., SpoT-dependent ppGpp

homeostasis), (iii) inappropriate treatment of biomass components

that contribute to virulence but are not absolutely essential (e.g.,

enterobacterial common antigen), (iv) neglect of continuous uptake

of nutrients despite accumulation of toxic downstream intermedi-

ates (e.g., accumulation of GlcNAc-phosphate in absence of N-

acetylglucosamine-6-phosphate deacetylase NagA [75]), and (v)

knowledge gaps (e.g., bypass of dihydropteroate synthase FolP)

(Figure 5B; for detailed analysis see Table S10). Subsequent model

versions might overcome some of these limitations to further

improve prediction accuracy. In addition, a few experimental data

might possibly be wrong based on inconsistencies between

different studies.

We also tested the predictive power of an enzyme capacity-

restrained model that might more closely reproduce the wildtype

flux state. Single gene deletion analysis of this model had very

similar accuracy with three additional discrepancies (too severe

predicted growth defects for thrB, thrC, and aceA) while resolving

only one discrepancy (detectable growth defect of zwf) as

compared to the unrestrained model. The enzyme capacities that

we used as constraints in this model were based on protein profiles

of wildtype Salmonella. Mutant Salmonella might have somewhat

different protein profiles and enzyme capacities, and this might

explain why the restrained model was not superior to the

unrestrained model in predicting mutant colonization phenotypes.

Taken together, the excellent agreement of model predictions

and large-scale experiment data suggested that the model

accurately captured major aspects of Salmonella nutrition, metab-

olism, and growth during infection in a comprehensive and

quantitatively consistent way.

Experimental mutant phenotypes and cell culture experiments

suggested that despite Salmonella access to many host nutrients,

these nutrients were available in only scarce amounts that

individually would be insufficient to support full Salmonella

virulence. This was also supported by modeling results that were

incompatible with any substantial nutrient excess. Salmonella thus

seemed to depend on simultaneous exploitation of several

chemically diverse host nutrients through versatile utilization

pathways. This apparent nutrient limitation inside infected host

cells was initially surprising, since host cells contain numerous

abundant metabolites that could provide rich carbon, nitrogen,

and energy sources for Salmonella. However, intracellular Salmonella

are separated from the nutrient-rich host cell cytosol by a vacuolar

membrane that might restrict nutrient access. Further studies are

required to better characterize this membrane and to test various

hypotheses on host control of nutrient supply to Salmonella.

This study extends previous work on metabolic host/pathogen

interactions. In particular, combinations of transcriptome data,

mutant phenotypes, and genome-scale computational metabolism

models have been used to analyze metabolism and growth of

Neisseria meningitidis in serum [76], and Mycobacterium tuberculosis

[57,77] and Listeria monocytogenes [78] in macrophages. One study

even incorporated the metabolic networks of both Mycobacterium

tuberculosis and its infected host macrophage cell in one integrated

model that describes the entire host/pathogen metabolic interac-

tion [57]. These studies identified several relevant host nutrients

such as amino acids driving pathogen growth and provided the

first genome-scale descriptions of pathogen metabolism as a basis

for a system-level understanding of metabolic host/pathogen

interactions.

On the other hand, previous studies were limited to in vitro/cell

culture conditions, included only a moderate number of host

nutrients, and lacked quantitative data on nutrient supply rates

and absolute enzyme levels. Our integrated experimental and

computational approach addressed some of these limitations and

yielded a comprehensive quantitative analysis of the highly

complex nutritional in vivo landscape for Salmonella in infected

host tissues. These data enabled us to generate a genome-scale

model that accurately predicted enzyme requirements for Salmo-

nella virulence in an important animal disease model.

However, there still remain important issues that should be

addressed in future studies. (i) We interpreted net Salmonella

colonization phenotypes always as division rate differences (similar

to what has been done in most other studies). However, this is

probably an oversimplification as some colonization defects might

be caused by increased Salmonella killing by host antibacterial

defenses, instead of differential Salmonella proliferation rates. In

such cases, a simple metabolic interpretation in terms of

diminished biomass production might be misleading. Future

studies using methods such as Fluorescence Dilution [79] and

direct detection of killed Salmonella [80] could provide suitable

experimental data to address this issue. (ii) This and previous

studies were based only on bulk measurements (transcriptomics,

proteomics, mutant colonization phenotypes) that fail to account

for any pathogen subpopulations. However, heterogeneous

Salmonella subpopulations with different growth characteristics

exist in vivo [79,81]. So far, nothing is known about possible

metabolic differences among distinct subpopulations, and future

studies should address this issue since subpopulations might play

important roles in virulence, transmission, persistence, and

treatment failures [82]. (iii) A complete picture should include

host metabolic processes that provide nutrients for Salmonella. An

impressive study on tuberculosis already revealed some aspects of

the interplay between host and pathogen metabolic networks in

Mycobacterium tuberculosis-infected macrophages [57], and this

approach might be extended to Salmonella as well. For Salmonella

infections, analysis is complicated by the fact that the Salmonella-

containing vacuole (SCV) communicates with late endosomes,

from where it receives some incoming endocytosis cargo from the

extracellular environment [51] thereby bypassing the metabolic

network of the infected host cell. In addition, Salmonella might

access some metabolites of the infected cell but additional

experimental data will be needed to clarify the relative importance

of the various nutrient supply routes. Another important aspect of

metabolic host/Salmonella interactions is the question how Salmo-

nella metabolism might influence host cell physiology. As an

example, the capture by Salmonella of various host amino acids and

nucleosides, as observed in this study, could modulate host cell

functions that depend on these metabolites including antibacterial

defense such as generation of nitric oxide [83]. Some indications

for infection-induced changes in Salmonella-infected macrophages

was already obtained in recent transcriptome and proteome

studies [84,85]. Increasingly accurate modeling of all these aspects

might ultimately provide a complete quantitative description of the
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host/Salmonella metabolic interactions that enable Salmonella

growth and enteric fever disease progression.

In addition to salmonellosis, the findings of this study also have

some implications for infectious diseases in general. In particular,

metabolic network comparisons suggested that many mammalian

pathogens might share access to similar complex host nutrients

that reflect general biochemical features of mammalian tissues.

These results might provide a basis to establish in vitro culture

conditions that closely mimic relevant in vivo conditions, helping

to avoid drug development failures and to facilitate successful

development of novel control strategies.

On the other hand, the actual relevance of individual nutrients

can vary. As an example, ethanolamine is an important nutrient

for Salmonella in inflamed intestine [13] but not in our systemic

infections. As another example, Mycobacterium tuberculosis access

fatty acids and proline (like Salmonella in mouse spleen), but

glycerol is not a major nutrient, and lysine, tryptophan, and

leucine are apparently available in insufficient amounts to meet

mycobacterial biomass needs [19,86,87,88,89].

Interestingly, some of the commonly encountered nutrients are

predominantly present as part of high molecular weight com-

pounds such as glycans/glycoproteins (GlcNAc), proteins (most

amino acids), or lipids (glycerol, fatty acids) suggesting that

macromolecule hydrolysis might be an important aspect of

pathogen nutrition in infected tissues. Indeed, many pathogens

express hydrolases that degrade macromolecules such lipases,

proteases, carbohydratases, etc., as part of their virulence

program.

It might also be interesting to compare the common pathogen

nutritional signature to the metabolism of commensal bacteria that

inhabit body parts such as skin, genital mucosa, the oral cavity, or

the intestine. Indeed, previous studies have already revealed

commonalities among commensal gut bacteria such as the ability

to digest complex carbohydrates [90]. Future studies might

consider food components such as dietary plant sugars, host

nutrients such as mucus, and waste products from other gut

microbes. Moreover, such an analysis should also account for

striking inter-individual differences in commensal microbial

communities such as the recently described distinct enterotypes

[91].

In conclusion, this study provided a comprehensive quantitative

description of the Salmonella nutritional landscape during systemic

salmonellosis and established a genome-scale model of Salmonella

metabolism that explains major aspects of Salmonella infection

biology. The results revealed an unexpectedly complex host/

Salmonella nutritional interface that Salmonella exploited with

versatile catabolic pathways. Similar complex host nutrients and

versatile pathogen utilization pathways appear to be general

features of many infectious diseases.

Materials and Methods

Ethics statement
All animal experiments were approved by Kantonales Veter-

inäramt Basel-Stadt (license 2239) and performed according to

local guidelines (Tierschutz-Verordnung, Basel-Stadt) and the

Swiss animal protection law (Tierschutz-Gesetz).

Bacterial genetics
Salmonella mutants were constructed by lambda red-recombinase

mediated allelic replacement [92] followed by general transduction

using phage P22 int [93]. In multiple mutants, usage of the same

resistance cassettes was enabled by FLP recombinase-mediated

excision of the first cassette [92]. Strains were cultivated on

Lennox LB medium containing 90 mg ml21 streptomycin,

50 mg ml21 kanamycin, 20 mg ml21 chloramphenicol, and/or

100 mg ml21 ampicillin. All auxotrophs required supplementation

for growth as expected (Table S4).

Mouse infections
We infected female, 8 to 12 weeks old BALB/c mice

intravenously with 500–2000 CFU Salmonella from late exponen-

tial LB cultures. For some experiments, we used female, 8–12

weeks old 129/Sv mice. Three to four days post-infection (or five

days for 129/Sv), mice were sacrificed and bacterial loads in

spleen and liver were determined by plating of tissue homogenates

treated with 0.3% Triton Tx-100. In competitive infections,

wildtype and mutant Salmonella carrying different antibiotic

resistance markers were mixed before administration. Individual

strain tissue loads were determined by replica plating on selective

media and competitive indices (CI = output ratio/input ratio) were

calculated. Statistical significance was analyzed using t-test of log-

transformed CI values (a parametric test was appropriate based on

the normal distribution of such values [34]). Our experiments

involved a large set of strains. To avoid the multiple comparison

problem, we used the Benjamini-Hochberg false discovery rate

(FDR) approach [45].

Flow cytometry
For Salmonella ex vivo purification, Salmonella sifB::gfp [94] were

sorted from infected mouse spleen as described [34] using a

FACSAria III sorter (BD Biosciences). We used optical emission

filters (green fluorescence, 499–529 nm; orange fluorescence, 564–

606 nm) that optimally separated Salmonella GFP fluorescence

from host cell autofluorescence. Proteome changes were mini-

mized by preventing de novo synthesis with 170 mM chloram-

phenicol and delaying proteolysis by maintaining the samples at 0–

4uC. Our previous results suggested that these conditions were

effective to largely preserve the in vivo Salmonella proteome during

sorting [34].

Enzyme quantification using mass spectrometry-based
proteomics

Preparation of tryptic peptides and analysis by LC-MS/MS was

done essentially as described [95] with some modifications. Protein

LoBind tubes and pipette tips (Axygen) were used throughout the

procedure to minimize protein loss through adsorption. Frozen

FACS sorted Salmonella pellets were resuspended in 15 ml lysis

buffer (100 mM ammonium bicarbonate, 8 M urea, 0.1%

RapiGest) and sonicated for 26 30 seconds. Released proteins

were reduced and alkylated, and first digested for 4 hrs with

sequencing grade LysC peptidase (10 ng/ml; Promega) before

overnight trypsin digestion. The detergent was cleaved by adding

2 M HCL and 5% TFA to final concentrations of 50 mM and

0.5% respectively, and incubating for 45 min at 37uC. Prior to

centrifugation to remove the cleaved detergent (14,0006g,

10 min, 4uC), a mixture containing 32 heavy labeled reference

peptides were added to the samples (561025 fmoles per Salmonella

for expected ‘‘high’’ abundance proteins, 561026 fmoles per

Salmonella for expected ‘‘low’’ abundance proteins; Table S12).

The recovered peptides were desalted on C18 reverse-phase spin

columns (Macrospin columns, Harvard apparatus), dried under

vacuum and subjected to LC-MS/MS using an LTQ-Orbitrap-

Velos instrument (Thermo-Fischer Scientific). Between 56105 and

26106 Salmonella sorted from individual mice were analyzed in

replicate LC-MS/MS runs. In order to increase the number of

Salmonella protein identifications, MS-sequencing was partially
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focused on previously identified Salmonella peptides using the

recently developed inclusion list driven workflow [95]. Peptides

and proteins were database searched against a decoy database

consisting of the SL1344 genome sequence (ftp://ftp.sanger.ac.

uk/pub/pathogens/Salmonella/), GFP, 204 frequently observed

contaminants, all mouse entries from SwissProt (Version 57.12),

and all sequences in reversed order (total 42502 entries) using the

Mascot search algorithm. The search criteria were set as follows:

full tryptic specificity was required (cleavage after lysine or

arginine residues); 2 missed cleavages were allowed; carbamido-

methylation (C) was set as fixed modification; oxidation (M) as

variable modification. The mass tolerance was set to 10 ppm for

precursor ions and 0.5 Da for fragment ions. The false discovery

rate was set to 1% for protein and peptide identifications. In

addition to Salmonella proteins a substantial number of contami-

nating mouse proteins were identified in the samples as previously

noted [34]. Absolute quantities were determined for those 18–20

‘‘anchor’’ Salmonella proteins that were detected along with a

corresponding labeled AQUA peptide (Table S12) using the

Trans-Proteomic Pipeline (TPP,V4.4.0). We then used the iBAQ

method to establish absolute quantities of all remaining protein

identifications, with a linear model error of between 47 and 60%.

Comparison of samples from four independently infected mice

revealed good reproducibility (Table S1). The data associated with

this manuscript may be downloaded from ProteomeCommons.org

Tranche using the following hash: HaSHrE4Paqa3Io3NARhJsV/

7XeqYsNNvHYX3tt++xYcVYOf47nChKFB9E/PCD+j+xt5me-

J1+4ytJIHVUeXx9Xb+ohBEAAAAAAAACZw = =

Enzyme abundance was combined with reported turnover

numbers for the respective Salmonella enzymes (or closely related E.

coli orthologs) to calculate maximal feasible reaction rates (Table

S2). Data were visualized using the pathway tools package [96].

Macrophage-like cell culture infection
Raw 264.7 macrophage-like cells were cultured in DMEM cell

culture medium containing 10% serum and 0.5 g l21 glucose.

Cells were infected with Salmonella from stationary cultures at a

multiplicity of infection of 30 for 30 min with an initial 5 min

11006g centrifugation step. Medium was exchanged against

DMEM containing 0.5 g l21 glucose and 50 mg l21 gentamycin.

At 4 hours post infection, medium was exchanged with DMEM

containing 0.5 g l21 glucose, 1 g l21 glucose, or 0.5 g l21 glucose

and 0.5 g l21 mannitol. Cells were washed and lysed 10 h after

infection, and aliquots were plated to determine CFU numbers.

Computational modeling of Salmonella metabolism
The consensus genome-scale metabolism reconstruction

STMv1 [31] was updated to STMv1.1 based on recent literature

(Tables S6, S7). For in vivo modeling, we modified biomass

requirements based on published mutant virulence phenotypes in

infected host tissues. As an example, the high virulence of

Salmonella mutants rfbH, rfbJ, rfbV, rfbF, rfbG [97] suggested that

lipopolysaccharide with O-sidechains containing the carbohydrate

abequose was not required in vivo. In total, these biomass

modifications accounted for 14 mutant phenotypes (for detailed

descriptions of all modifications see Table S8).

We generated an in vivo model using Flux-Balance Analysis

(FBA) with the COBRA toolbox [98] in a MATLAB environment.

Nutrient uptake rates were adjusted to yield consistent results with

experimental competitive indices of Salmonella mutants and

reported phenotypes (Tables S3, S5, S9) as well as the

experimentally determined Salmonella wildtype in vivo generation

time of 6.4 h [34] using the new MATLAB function nutrientU-

tilization() (Script S1). Specifically, uptake of each nutrient was

varied and glucose was added to achieve the wildtype growth rate

(in case of glucose as the nutrient of interest, we compensated with

glycerol; in case of arginine that we modeled as a nitrogen source,

we used ammonium for compensation). We then determined the

nutrient uptake rate that matched the Competitive Index of a

mutant that was unable to utilize this specific nutrient. After

completing this procedure for each nutrient, we incorporated all

first round nutrient uptake rates in an updated model. We then

adjusted the maintenance costs to ensure a normal wildtype

growth rate. We repeated this procedure a few times until values

converged. We report these as final uptake rates in Table S9. We

determined simulation error margins by analyzing error propaga-

tion from the experimental data (for examples, see Fig. S3). We

used the calculated median uptake rate for 14 amino acids to

estimate uptake of amino acids alanine, asparagine, aspartate,

glutamate, glycine, and serine, for which we lacked informative

mutant data. Biomass requirements suggested uptake rates for

additional 13 inorganic components (Table S9).

We also explored the possibility of Salmonella access to excess

nutrients using the new MATLAB function excess() (Script S2).

Specifically, we increased the growth rate to higher values than

experimentally observed. For these scenarios, we determined

uptake rates for the six major carbon/energy sources and adjusted

maintenance costs as described above. To calculate the corre-

sponding nutrient excess, we then compared the total nutrient

uptake for these scenarios to what would be needed for normal

growth at the experimentally determined rate.

We predicted flux states with ‘‘minimal total flux’’ at maximal

rates for biomass generation (‘‘objective function’’) using the

respective options in the optimize() function. We determined flux

variability in alternative solutions using the fluxVariability()

function. This flux variability analysis was performed without

assuming lowest overall metabolic activity to obtain the full range

of possible flux states compatible with optimal Salmonella growth.

We predicted biomass generation (which we used as an

approximation for growth throughout this study) for all single

gene deletions using the deleteModelGenes() function. Genes were

defined as essential if predicted mutant growth rates were below

60% of wildtype (based on experimental growth data [34] for the

avirulent aroA mutant [65]), contributing if mutants growth rates

were between 60% and 98%, and non-detectable if mutants had

growth rates higher than 98% of wildtype. We performed

parsimonious FBA using the pFBA() function of the COBRA

toolbox.

To validate these predictions, we examined reported experi-

mental Salmonella colonization phenotypes and classified genes

again as essential (lethal dose 1000fold higher than wildtype, or CI

after four days below 0.005), contributing (significant colonization

defect below thresholds for essential genes), or non-detectable (no

significant difference to wildtype). We also used large-scale mutant

phenotypes from two recent high-throughput studies [97,99]. In

these cases, we converted the reported mutant phenotype scores to

growth rates and estimated confidence intervals based on the data

provided (their Table S3 [97]; their Table S3 [99]) and the

Salmonella in vivo generation time of 6.4 h in susceptible mice [34].

In cases where conflicting data had been reported, we preferen-

tially used data from studies with low infection dose.

Metabolic network comparisons
Metabolic Pathway predictions for 909 genomes were generated

by the MetaCyc consortium [62] and kindly by provided Tomer

Altman and Peter Karp on November 22, 2010. We identified 287

mammalian pathogens and 367 environmental organisms in this

data set. We merged multiple strains belonging to the same species
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resulting in data for 154 pathogen species and 316 environmental

species (Table S11). We then determined how many organisms in

each group were capable to degrade a specific nutrient, or to

synthesize a certain biomass component.

Supporting Information

Figure S1 Metabolic capabilities of Salmonella enterica serovar

Typhimurium in infected mouse spleen. Symbols represent

metabolites (squares, carbohydrates; triangles, amino acids; circles,

other metabolites; filled symbols, phosphorylated metabolites) and

proteins (diamonds). The connecting lines present metabolic

reactions. The brown lines represent the inner and outer

membranes. Feasible reaction rates were calculated from in vivo

enzyme abundance data and previously reported turnover

numbers. An interactive version of this map with detailed

descriptions for all reactions is available at http://www.

biozentrum.unibas.ch/personal/bumann/steeb_et_al/index.html.

(TIF)

Figure S2 Salmonella mutant phenotypes in genetically resistant

129/Sv mice. Spleen colonization data are represented as

competitive indices vs. wildtype Salmonella. A log2(CI) value of 0

(equivalent to a CI value of 1) indicates identical colonization of

mutant and wildtype. Significance of attenuation was tested with t-

test (*, P,0.05; **, P,0.01).

(TIF)

Figure S3 Determination of nutrient uptake rates which are

consistent with corresponding mutant colonization phenotypes.

Results for three mutants that were informative for access to

proline, glycerol, and gluconate are shown.

(TIF)

Figure S4 Density plot of protein abundance for enzymes

classified by parsimonious enzyme usage flux-balance analysis

(pFBA) (ess, essential enzymes; optima, enzymes predicted to be

used for optimal in vivo growth; ELE, enzymatically less efficient

enzymes that will increase flux if used; MLE, metabolically less

efficient enzymes that will impair growth rate if used; zeroFlux,

enzymes that can not be not used in vivo). Abundance levels of

undetected proteins were set to an arbitrary value of 10 copies per

cell. Statistical significance of differences between essential

enzymes and other classes was determined using the Mann-

Whitney test.

(TIF)

Figure S5 Simulated rates for active reactions for which we

detected the catalyzing enzyme(s) or not. The lines represent the

medians. Statistical significance was determined using the Mann-

Whitney test.

(TIF)

Figure S6 Presence of degradation pathways for various

nutrients in pathogenic and non-pathogenic microbes. Nutrients

that were shown to be utilized by Salmonella in infected mouse

spleen are labeled with red crosses.

(TIF)

Table S1 Enzyme abundance in Salmonella sorted from infected

mouse spleen as determined by quantitative proteomics.

(XLS)

Table S2 Feasible metabolic reaction rates in Salmonella during

infection based on enzyme quantities and previously reported

turnover numbers.

(XLS)

Table S3 Mouse spleen and liver colonization phenotypes of

Salmonella mutants.

(XLS)

Table S4 In vitro growth characteristics of Salmonella auxotro-

phic mutants in chemically defined minimal M9 medium with or

without supplementation.

(XLS)

Table S5 Evidence for Salmonella access to host nutrients based

on mutant phenotypes.

(XLS)

Table S6 Novel metabolites included in an updated genome-

scale Salmonella metabolic network reconstruction.

(XLS)

Table S7 Changed reactions in the Salmonella metabolic network

reconstruction.

(XLS)

Table S8 Changed biomass components in the Salmonella

metabolic network reconstruction.

(XLS)

Table S9 Simulated nutrient uptake rates and maintenance

costs.

(XLS)

Table S10 Comparison of predicted and experimental mutant

colonization phenotypes.

(XLS)

Table S11 Lists of pathogenic and environmental organisms

included in metabolic network comparisons.

(XLS)

Table S12 Isotope labeled AQUA peptides for calibration of

absolute enzyme quantities.

(XLS)

Model S1 Genome-scale metabolic in silico model of Salmonella

in infected mouse spleen in SBML (Systems Biology Markup

Language) format.

(TXT)

Script S1 MATLAB function for determination of nutrient

uptake rates and maintenance costs from mutant colonization

data.

(TXT)

Script S2 MATLAB function for determination of maintenance

costs that are consistent with experimental data and nutrient

excess scenarios.

(TXT)
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