Crystal structure of osmoporin OmpC from E. coli at 2.0 A

Baslé, Arnaud and Rummel, Gabriele and Storici, Paola and Rosenbusch, Juerg P. and Schirmer, Tilman. (2006) Crystal structure of osmoporin OmpC from E. coli at 2.0 A. Journal of molecular biology, Vol. 362, H. 5. pp. 933-942.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5258239

Downloads: Statistics Overview


Porins form transmembrane pores in the outer membrane of Gram-negative bacteria with matrix porin OmpF and osmoporin OmpC from Escherichia coli being differentially expressed depending on environmental conditions. The three-dimensional structure of OmpC has been determined to 2.0 A resolution by X-ray crystallography. As expected from the high sequence similarity, OmpC adopts the OmpF-like 16-stranded hollow beta-barrel fold with three beta-barrels associated to form a tight trimer. Unlike in OmpF, the extracellular loops form a continuous wall at the perimeter of the vestibule common to the three pores, due to a 14-residues insertion in loop L4. The pore constriction and the periplasmic outlet are very similar to OmpF with 74% of the pore lining residues being conserved. Overall, only few ionizable residues are exchanged at the pore lining. The OmpC structure suggests that not pore size, but electrostatic pore potential and particular atomic details of the pore linings are the critical parameters that physiologically distinguish OmpC from OmpF.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Structural Biology & Biophysics > Structural Biology (Schirmer)
UniBasel Contributors:Schirmer, Tilman
Item Type:Article, refereed
Article Subtype:Research Article
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:07 Aug 2015 12:05
Deposited On:22 Mar 2012 13:20

Repository Staff Only: item control page