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heximide, causes yeast cells to arrest in early Gl
(Hartwell and Unger, 1977; Johnston et al., 1977;
Pringle and Hartwell, 1981; Hanic-Joyce et al., 1987;
Brenner et al., 1988; Hubler et al., 1993; Barnes et al.,
1995). Third, and most important, allowing transla-
tion initiation of an appropriate, cell cycle-control-
ling transcript is sufficient to suppress the rapamy- -
cin-induced G1 arrest. Fourth, TOR in mammalian
cells probably activates translation initiation and G1
progression in response to mitogens (Downward,
1994; see INTRODUCTION). Thus, the TOR path-
way in yeast appears to control translation initiation
and, thereby, early G1 progression.

The observation that phosphorylation of the yeast
equivalent of S6 (S10) is not important for growth
(Zinker and Warner, 1976; Kruse et al., 1985; Johnson
and Warner, 1987) suggests that TOR is not regulat-
ing translation initiation in yeast through S6 (see
INTRODUCTION). One alternative possibility is
that the TOR pathway controls translation initiation
through the initiation factor elF-4E (or an associated
subunit). elF-4E is the cap-binding subunit of the
elF-4F complex, which also contains elF-4A, an
RNA helicase, and elF-4y, a protein of unknown
function (Rhoads, 1988; Lanker et al., 1992; Linder,
1992; Goyer et al., 1993; Redpath and Proud, 1994).
elF-4F binds to the 5’ cap structure of mRNA and
promotes unwinding of 5’ secondary structure, fa-
cilitating binding of the 43S ribosomal preinitiation
complex to the mRNA. Several observations suggest
that TOR could control elF-4E. First, analyses of
CDC33 (encodes elF-4E) and TOR mutants indicate
that elF-4E and TOR have remarkably similar roles.
Both have essential functions required for general
translation initiation (Altmann et al., 1989; Kunz et
al., 1993; see RESULTS). Furthermore, both have an
early Gl-specific function and an essential function
that is not G1 specific (Johnston et al., 1977; Pringle
and Hartwell, 1981; Brenner et al., 1988; Kunz et al.,
1993); protein synthesis is required at several points
in the cell cycle but is most limiting in G1 (Burke
and Church, 1991). Second, in mammalian cells,
elF-4E is the rate-limiting protein in translation
(Duncan et al., 1987) and a target for regulation.
Growth factors activate protein synthesis by trigger-
ing the phosphorylation and release of the elF-4E-

Figure 8. The UBI4-CLN3 fusion confers starvation sensitivity and
an inability to arrest in GO. (A) Growth curve of NB36 cells (closed
circles) expressing UBI4-CLN3 and NB37 cells (open squares) ex-
pressing the UBI4 5' region alone. (B) Viability curve of NB36
(closed circles) and NB37 (open squares) strains. Cells reached
stationary phase after 3 days of growth. Strains were grown in SD
medium minus leucine for the indicated times. Viability was as-
sessed by plating 10® cells on YPD medium and counting colony-
forming units. (C) Percentage of budded cells in cultures of NB36
(closed circles) and NB37 (open squares).
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Figure 9. Model of the TOR pathway in cell cycle control. Rapa-
mycin (R) forms a complex with FKBP to inhibit TOR (Heitman et
al., 1993; Kunz et al., 1993). TOR is TOR1 and TOR2. PI is phosphati-
dylinositol. See DISCUSSION for further details. Because TOR is
required for general translation (see RESULTS), the role of TOR in
cell cycle control is just part of a greater role in general growth
control; the model proposed here focuses exclusively on that part of
TOR'’s role in general growth control that affects progression
through the G1 phase of the cell cycle.

inhibiting factor 4E-BP1/PHAS-I (Haystead et al.,
1994; Hu et al., 1994; Lin et al., 1994; Pause et al.,
1994). Importantly, rapamycin blocks the phosphor-
ylation of 4E-BP1 and inhibits cap-dependent initi-
ation of translation (Beretta et al., 1996). Third, in
proliferating yeast and mammalian cells, eIF-4E and
an associated subunit are phosphorylated and there-
fore potentially subject to regulation by this type of
modification (Duncan et al., 1987; Joshi-Barve et al.,
1990; Morley et al., 1991; Rhoads et al., 1993; Redpath
and Proud, 1994; Zanchin et al., 1994). Fourth, trans-
lation of UBI4 appears to have, at least, reduced
dependence on elF-4E (Brenner et al., 1988). Thus,
the block in translation initiation caused by loss of
TOR function may be due to a down regulation of
elF-4E.
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