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1 Introduction

The basic problem in diophantine analysis is to solve polynomial equations in
rational integers, but this is recognized as hopelessly difficult even in relatively
simple situations. For example at present there is no known algorithm to deter-
mine if the equation

x4 − 2y4 + xy − x = 2013 (1.1)

has a solution in integers x, y. Or whether the equation

x3 + y3 + z3 = 3 (1.2)

has any solutions with x 6= −5, 1, 4.
The problem changes if we restrict the unknowns, and for example it has

been known for nearly 800 years that the line x + y = 1 (and now we are in
diophantine geometry) has exactly two points with x a power of 2 and y a power
of −3. And there are algorithms to determine if for example (1.1) has such a
point. It is known that for general curves there are at most finitely many points
except for trivial cases as for example the line x = 1.

The natural extension is to allow x and y to lie in multiplicative subgroups
of Q∗ which are finitely generated, and it is no loss of generality to take them
as the same group G, which in the example above would be generated by 2 and
−3. Such problems are associated with the names Mordell-Lang.

This sometimes allows the linearization of the problem; for example (1.1)
leads to an equation

1
2013

x1 −
2

2013
x2 +

1
2013

x3 −
1

2013
x4 = 1

with x1, x2, x3, x4 in the above group. We could even eliminate the coefficients
to get

x1 + x2 + x3 + x4 = 1

with unknowns in the bigger group generated by −3, 2, 2013; but in practice
this can be a wasteful trick.

Another fruitful way of restricting the unknowns is to roots of unity whose
order is itself unknown. Such problems are associated with the names Manin-
Mumford. For (1.1) it is clear at once that there are no points, and for the line
x + y = 1 a moment’s thought involving the intersection of two circles shows
that there are exactly two points. And (1.2) is a borderline case, but also one
sees quickly that there are exactly 27 points. Again for general curves there are
at most finitely many points except for trivial cases like x = 1 above or also like
xy = 1.

A way of combining these situations is to take the unknowns in the radical√
G of G, defined as the set of γ for which there exists a positive integer s with

γs in G. So the radical of the trivial group in C is the set of all roots of unity
ζ. And the radical of the group generated by 2 and −3 is the set of all 2α3βζ
with α, β rational.

We now discuss in more detail a linearized equation in arbitrarily many un-
knowns over an arbitrary field.

Let K be a field and let G be a finitely generated subgroup of the multi-
plicative group K∗. As we have seen, equations of the form

a1x1 + · · ·+ anxn = 1, (1.3)
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to be solved with unknowns x1, . . . , xn in G, play a central role in number theory
and diophantine geometry. Here a1, . . . , an are considered constants in K, and
for convenience we take them in K∗. We can clearly suppose n ≥ 2.

Much is known about (1.3). Here it is necessary to divide into two cases
depending on the characteristic of K.

In zero characteristic a simple example is given by the field K = Q and the
multiplicative subgroup G consisting of all elements 3a5b7c with integers a, b, c
together with the equation x+y−z = 1. Here we certainly see an infinite family

(1, y, y) (y ∈ G) (1.4)

and the similar (x, 1, x) (x ∈ G). But in addition we find for example 172
solutions over G with |a|, |b|, |c| ≤ 2 coming from

6 = 1 + 51 = 31 + 31

8 = 1 + 71 = 31 + 51

10 = 1 + 32 = 51 + 51

10 = 1 + 32 = 31 + 71

10 = 51 + 51 = 31 + 71

12 = 51 + 71 = 31 + 32

14 = 71 + 71 = 32 + 51

16 = 1 + 3151 = 32 + 71

22 = 1 + 3171 = 3151 + 71

26 = 1 + 52 = 51 + 3171

28 = 71 + 3171 = 31 + 52

30 = 51 + 52 = 32 + 3171

36 = 1 + 5171 = 3151 + 3171

46 = 1 + 3251 = 52 + 3171

50 = 1 + 72 = 51 + 3251

50 = 1 + 72 = 52 + 52

50 = 1 + 72 = 3151 + 5171

52 = 31 + 72 = 3251 + 71

54 = 51 + 72 = 32 + 3251

64 = 1 + 3271 = 3151 + 72

70 = 71 + 3271 = 3251 + 52

70 = 21 + 72 = 3251 + 52

84 = 5171 + 72 = 32 + 3152

246 = 1 + 5172 = 3252 + 3171

The huge number here may of course be due to the small exponents a, b, c, but
also when restricting to exponents having absolute value at most 10 for example
we find 892 additional solutions anyhow.

Let us return to the general case (1.3) in zero characteristic. It was proved
independently by Evertse [E] in 1984 and van der Poorten and Schlickewei [PS]
in 1991 that there are at most finitely many solutions of (1.3) which satisfy the
subsum restriction

∑
i∈I aixi 6= 0 for every non-empty subset I of {1, . . . , n}.

This is a minor restriction because if it fails, then we may use induction to
reduce the number of variables. In particular for three-term equations it shows
that there are at most finitely many solutions, and for more terms it leads easily
to a complete structure.

For our example above it shows there are at most finitely many solutions in

5



addition to the two infinite families from (1.4). Thus for example, there are at
most finitely many solutions to the equation

3a + 5b − 7c = 1 (1.5)

in non-negative integers a, b, c and indeed we will prove in Appendix D (which
we published as [Le1]) that the only solutions of (1.5) are a = b = c = 0 and
a = b = c = 1.

However, as far as we know no-one has yet succeeded in giving the full set
of solutions for the above example with x + y − z = 1 and G the subgroup
generated by 3,5 and 7 in Q.

A compensation may be that the number of solutions when finite can be
explicitly estimated from above. But the work [ESS] of Evertse, Schlickewei
and Schmidt provides only the upper bound exp(4.189) ≈ 10344585380964, which
is little use in actually finding the solutions. The same can be said even for the
great improvement 241944 ≈ 102683 by Amoroso and Viada [AmVi].

Now suppose that K has positive characteristic p. The result of Evertse, van
der Poorten and Schlickewei then becomes false. The simplest counterexample
comes from the equation

x+ y = 1 (1.6)

over the function field K = Fp(t) with G = 〈t, 1 − t〉 generated by t and 1 − t.
Namely if q = 1, p, p2, . . . then

x = tq, y = (1− t)q = 1− tq (1.7)

clearly supply infinitely many solutions unrestricted by subsums.
A less simple counterexample was observed in 2004 by Masser [Mas1] for the

equation
x+ y − z = 1 (1.8)

with the same K and G. Namely there is a doubly infinite family of solutions

x = t(q−1)q′ , y = (1− t)qq
′
, z = t(q−1)q′(1− t)q

′
(1.9)

with q, q′ ranging independently over 1, p, p2, . . .
The situation here had been clarified in 1992 by Abramovich and Voloch

[AbVo] who showed (in a much more general semiabelian context) that such
counterexamples can arise only when the equation (1.3) is essentially defined
over a finite field; of course (1.6) and (1.8) are literally defined over Fp. See also
the papers of Voloch [Vol1] and especially [Vol2] for n = 2 in the context of our
Appendix C.

A full structure theorem was found at about the same time by Moosa and
Scanlon [MS1],[MS2] (also in the more general context). Independently Derk-
sen and Masser [DM] have given an alternative proof in the present context
(amounting to that of the multiplicative group Gn

m) which is completely ef-
fective in the logical sense. As is well-known, this is not yet possible in zero
characteristic. However, see our result on (1.5) in Appendix D.1 published in
[Le1]. But as hinted above there are many effective results about counting; for
brevity we mention here just [ESS] of Evertse, Schlickewei and Schmidt on (1.3)
and the paper [HP] of Hrushovski and Pillay for transcendental points in the
more general context.

6



In Theorem 1(G) and Theorem 2(G) of the present thesis we give all solu-
tions of (1.6) and (1.8) respectively with x, y, z in the above G = 〈t, 1− t〉. And
indeed we follow broadly the strategy of [DM] in our proof. Things are naturally
simpler for the special equation. But what is also new in the present thesis is a
uniformity in the characteristic. The results of the authors quoted above are all
for fixed p. Thus our work is in tune with an existing vague philosophy that the
solution set should not depend too much on p. Indeed Hrushovski [H] (p.669),
who substantially generalized the work of [AbVo], has expressed the expectation
that ”quantifier elimination and elimination of imaginaries hold already in the
differential language, without the distinguished basis, and in this language the
proof should become entirely uniform with respect to the characteristic.” As far
as we know, our work is a first confirmation of this expectation, albeit at an
elementary level. In fact we show that the solution set has a uniform shape
independently of the prime p ≥ 5 (and we also treat fully the cases p = 2, 3).

Actually our result for p = 2 can also be found in the article [ABB] of
Arenas-Carmona, Berend and Bergelson. Thus our Theorem 1(G) for p = 2 is
essentially their Lemma 5.6 (p.348) and our Theorem 2(G) for p = 2 is essen-
tially their Proposition 4.1 (p.345). Here the S4-symmetry with 24 elements has
reduced our set T2 with 24 points to the quadrangle Q1 (compare the point Π∗

in Proposition 3) and our set T with 216 points to 9 quadrangles Q2, . . . , Q10

(compare the points Π1, . . . ,Π9 in Proposition 3).
But before presenting Theorem 1(G) and Theorem 2(G) we state one of the

main results of [DM] for general K and G, for simplicity in affine rather than
projective form. Some preliminary definitions are needed.

We define a G-automorphism ψ of Kn by an equation

ψ(x1, . . . , xn) = (g1x1, . . . , gnxn) (1.10)

with g1, . . . , gn in G (this is group translation in Gn
m disguised).

For a power q of the characteristic p we denote by ϕ = ϕq the Frobenius with
ϕ(x) = xq. Let ψ1, . . . , ψh be G-automorphisms. Then we imitate commutator
brackets by defining the operator

[ψ1, . . . , ψh] = [ψ1, . . . , ψh]q =
∞⋃
e1=0

· · ·
∞⋃

eh=0

(ψ−1
1 ϕe1ψ1) · · · (ψ−1

h ϕehψh),

(1.11)
with of course the identity interpretation if h = 0.

For example with q = p, h = 1 and ψ1 = ψ as the identity automorphism,
we have for a point Π

[ψ]pΠ =
∞⋃
e=0

ϕeΠ = {Π,Πp,Πp2 , . . .}

as in (1.7) with Π = (t, 1 − t). Or with q = p, h = 2 and again ψ1 as the
identity automorphism, [ψ1, ψ2]pΠ is the union over q = pe2 and q′ = pe1 of the(
ψ−1

2 (ψ2Π)q
)q′

. For suitable ψ2,Π (see (1.13) below) this reduces to (1.9).
We will need the radical

√
G = K

√
G as above; it is the group of γ in K for

which there exists a positive integer s such that γs lies in G.
We generalize (1.3) by treating linear varieties V defined by the vanishing of

linear polynomials of degree at most 1 in x1, . . . , xn. Thus the object of study
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is V ∩Gn, which we abbreviate to V (G). A special role is played when all the
equations have the form xi = a or xi = axj (a 6= 0, i, j = 1, . . . , n); these we
call cosets (they are in fact particular sorts of group cosets in Gn

m). A point is
of course a coset.

Theorem (Derksen-Masser, 2012). Let K be a field of positive characteris-
tic p, let V be a linear variety defined over K, and suppose that G in K∗ is a
finitely generated group. Then there is a power q of p such that V (G) is an effec-
tively computable finite union of sets [ψ1, . . . , ψh]qT (G) with

√
G-automorphisms

ψ1, . . . , ψh (0 ≤ h ≤ n− 1), and cosets T contained in V .

This follows immediately from Theorem 1 (p.1049) of [DM] on noting that
V is defined over a finitely generated extension of Fp inside which the radical is
also finitely generated.

Here are our main results for (1.6) and (1.8) over G, in which ψ0 denotes
the identity automorphism. The results are already published in [Le2]. First
for (1.6), whose statement (and proof) is relatively simple.

Theorem 1(G). Suppose k = Fp(t), G = 〈t, 1−t〉 and that the line L is defined
by x+ y = 1. Then L(G) is

[ψ0]pΠ+ ∪ [ψ0]pΠ−

for the points
Π+ = (t, 1− t), Π− = (1− t, t)

provided p ≥ 3, and is

[ψ0]pΠ+ ∪ [ψ0]pΠ− ∪ [ψ0]pΠ+
1 ∪ [ψ0]pΠ−1 ∪ [ψ0]pΠ+

2 ∪ [ψ0]pΠ−2

for the additional points

Π+
1 =

(
1
t
,

1− t
t

)
, Π−1 =

(
1− t
t

,
1
t

)
,

Π+
2 =

(
1

1− t
,

t

1− t

)
, Π−2 =

(
t

1− t
,

1
1− t

)
when p = 2.

Thus for p ≥ 3 we get not only (1.7) corresponding to Π+ but also the extra
solutions x = (1− t)q, y = tq corresponding to Π−. The reason is of course the
symmetry of the equation in x, y. For p = 2 we get even more solutions, but
these can be considered as coming from more symmetry which arises by writing
the equation in homogeneous form as X + Y + Z = 0.

It is precisely this sort of symmetry which is responsible for the much more
complicated situation in (1.8). Define the cosets Tx, Ty and Tz by

Tx : x = 1, y = z, Ty : y = 1, x = z, Tz : z = −1, y = −x. (1.12)

Theorem 2(G). Suppose k = Fp(t), G = 〈t, 1 − t〉 and that the plane P is
defined by x+ y − z = 1. Then P (G) is

Tx(G) ∪ Ty(G) ∪
⋃

Π∈T
[ψ0, ψΠ]pΠ
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for a set T of 40 points Π in G3 with G-automorphisms ψΠ provided p ≥ 5, and
is

Tx(G) ∪ Ty(G) ∪
⋃

Π∈T ′3

[ψ0]pΠ ∪
⋃

Π∈T
[ψ0, ψΠ]pΠ

for a set T of 40 points Π in G3 with G-automorphisms ψΠ and a set T ′3 of 8
points Π in G3 when p = 3, and is

Tx(G) ∪ Ty(G) ∪ Tz(G) ∪
⋃

Π∈T2

[ψ0]pΠ ∪
⋃

Π∈T
[ψ0, ψΠ]pΠ

for a set T of 216 points Π in G3 with G-automorphisms ψΠ and a set T2 of 24
points Π in G3 when p = 2.

For example T (for every p) includes the point Π = (1, 1− t, 1− t), with

ψΠ(x, y, z) =
(
tx, y,

t

1− t
z

)
, (1.13)

and then [ψ0, ψΠ]pΠ is exactly the set (1.9). But there are in all 40 such classes
of solutions when p ≥ 3, and even 216 when p = 2.

As hinted above, the large numbers here arise essentially from the symmetry
of the special equation x+y−z = 1, which in homogeneous form X+Y = Z+W
has a natural dihedral D4-action. When p = 2 this is even an S4-action. But in
addition the nature of the special group G = 〈t, 1− t〉 can be exploited through
field automorphisms, which yield an independent S2-action and for p = 2 even
an S3-action.

In view of the effectivity of [DM] our own results may not seem too signifi-
cant, and things are naturally simpler for the special equation. Also the work of
[DM] includes explicit estimates for everything appearing, and so at first sight
it may seem that only a computer is needed. But in fact the matter is more
complicated, for two main reasons.

First, the estimates in [DM] are not very small. For example equation (12.1)
there involves an upper bound which in our situation is

B =
(

144.310
(
270.515

)7)43

p86 > 104185p86.

It follows, for example, that each of the gi in (1.10) is a quotient of polynomials
in t of degree at most B. Thus even for p = 2 a very large computer would be
needed.

Second, in [DM] there is no uniformity in the characteristic p; the coefficients
in the polynomials above lie in Fp and we get no algorithm for treating all p,
even if the bound above were independent of p.

Let us now say a few words about the proof. As already mentioned we follow
broadly the strategy of [DM], which in general uses differential operators to
replace the study of V (G) by that of W (G) for finitely many proper subvarieties
W of V . Here we need only d

dt . For Theorem 1(G) about a line, we get at once
points. But for Theorem 2(G) about a plane we have to cope with lines. Now
there is no reason to suppose that these lines will be defined over finite fields,
and so one might expect to encounter equations ax+ by = 1 more general than
(1.6). These might easily have caused problems. But by carefully estimating we
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are in fact able to reduce to (1.6) itself.
So much for V (G). But what about V (

√
G) = V ∩ (

√
G)n, the subject of

Theorem 1(
√
G) and Theorem 2(

√
G)? The radical

√
G is of course no longer

finitely generated, so at least this condition in the Theorem of Derksen and
Masser fails.

In zero characteristic however the radical makes no difference; for example
the result of Evertse, van der Poorten and Schlickewei for (1.3) remains true.

But in positive characteristic the results on V (G) cannot persist for V (
√
G).

In fact for r = p−1, p−2, . . . any γr is uniquely defined and then

x = tr, y = (1− t)r = 1− tr (1.14)

as in (1.7) remain solutions of (1.6). And since
√
G in K = Fp(t) contains Fp

∗

we even get solutions
x = a, y = 1− a (1.15)

for any a 6= 0, 1 in Fp. Both (1.14) and (1.15) involve quantities of arbitrarily
large degree over Fp(t), and as the only T in (1.6) are points, they cannot be
contained in finitely many [ψ1, . . . , ψh]qT (G) or even [ψ1, . . . , ψh]qT (

√
G).

Nevertheless we will give in our Theorems 1(
√
G) and 2(

√
G) the full solu-

tion set of (1.6) and (1.8) respectively in the radical (or division group) of G in
the algebraic closure K of Fp(t).

In the more general semiabelian context, the earlier works [AbVo] of Abramovich
and Voloch and [H] of Hrushovski on radicals were restricted to the ”prime-to-p”
radical (consisting of all γ in K for which there exists a positive integer s prime
to p such that γs lies in G). This restriction was broken for the first time by
Voloch [Vol2] for n = 2 (see Theorem 2 p.198) and more generally by Scanlon
in [Sc] regarding problems of Manin-Mumford type. It was Ghioca and Moosa
[GM] (p.20) who first treated the full radical (with an isotriviality condition).
Their Theorem 3.20 explains the new solutions (1.14) and (1.15). It mentions
no cosets T as above, but it is consistent with a statement of the following kind
for linear V . Taking into account (1.14), we extend the single brackets in (1.11)
to double brackets by

[[ψ1, . . . , ψh]] = [[ψ1, . . . , ψh]]q =
∞⋃

e1=−∞
· · ·

∞⋃
eh=−∞

(ψ−1
1 ϕe1ψ1) · · · (ψ−1

h ϕehψh),

with again the identity interpretation if h = 0. And taking into account (1.15)
we introduce more linear varieties W , with a similar abbreviation W (Fp

∗
) =

W ∩ (Fp
∗
)n. Then Masser has suggested that perhaps V (

√
G) is an effectively

computable finite union of sets

W (Fp
∗
) · [[ψ1, . . . , ψh]]qT (

√
G)

with linear varieties W now defined over Fp,
√
G-automorphisms ψ1, . . . , ψh

(0 ≤ h ≤ n− 1), and cosets T , with W · T contained in V ; here the dot denotes
the product in Gn

m. We shall at any rate verify this statement for V as in (1.6)
and (1.8) with G = 〈t, 1− t〉. We now describe our precise results, already
submitted for publication as [Le3].

Here is our first result for (1.6) over
√
G, in which ψ0 denotes the identity

automorphism.
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Theorem 1(
√
G). Suppose K = Fp(t), G = 〈t, 1− t〉 and that the line L is

defined by x+ y = 1. Then L(
√
G) is

L(Fp
∗
) ∪

⋃
Π

[[ψ0]]pΠ

for the following six points Π

(t, 1−t), (1−t, t),
(

1
t
,−1− t

t

)
,

(
−1− t

t
,

1
t

)
,

(
1

1− t
,− t

1− t

)
,

(
− t

1− t
,

1
1− t

)
.

This result extends Theorem 1(G) on L(G), the new features being L(Fp
∗
)

and the double brackets. As in the proof of Theorem 1(G) we will take advantage
of the symmetry of the equation in x, y. In fact using −1 in

√
G its homogeneous

form is not just X +Y = Z but we even obtain X +Y +Z = 0, so an S2-action
becomes an S3-action.

Here is our second result for (1.8) over
√
G with again ψ0 as the identity

automorphism.

Theorem 2(
√
G). Suppose K = Fp(t), G = 〈t, 1− t〉 and that the plane P is

defined by x+ y − z = 1. Then P (
√
G) is

P (Fp
∗
) ∪ Tx(

√
G) ∪ Ty(

√
G) ∪ Tz(

√
G)

∪
⋃

Π∈T ′
MΠ(Fp

∗
) · [[ψ0]]pΠ ∪

⋃
Π∈Tp

[[ψ0]]pΠ ∪
⋃

Π∈T
[[ψ0, ψΠ]]pΠ

for a set T ′ of 36 points Π in (
√
G)3 with lines MΠ, a set Tp of points Π in

(
√
G)3, and a set T of 216 points Π in (

√
G)3 with

√
G-automorphisms ψΠ.

Further if p ≥ 5 then Tp contains 96 points, if p = 3 then 72 points, and if p = 2
then just 24 points.

This result extends Theorem 2(G) on P (G), the new features being lines
MΠ(Fp

∗
) and the double brackets. For example T ′ (for every p) includes the

point Π = (t, 1− t, 1− t), with MΠ parametrized by (1, 1 + a, a), giving rise to
solutions

(x, y, z) = (tq, (1 + a)(1− t)q, a(1− t)q)

for q = . . . , p−2, p−1, 1, p, p2, . . . and a 6= −1 in Fp
∗
. But there are in all 36 such

classes of solutions.
As for Theorem 2(G) we may take advantage of the natural dihedral D4-

action coming from the homogeneous form X + Y = Z + W of x + y − z = 1.
But using −1 in

√
G this even becomes an S4-action. In addition the nature of

the special group 〈t, 1− t〉 can be exploited through field automorphisms, which
then yield an independent S3-action.

We should mention that it is comparatively easy to deduce the results of
Theorem 1(G) and Theorem 2(G) from the corresponding Theorems over

√
G.

And as there, the results over
√
G are essentially uniform in p.

Let us now say a few words about the proof. Rather than follow [GM], which
contains some model theory, we again follow the strategy of [DM] and again it
turns out that just d

dt is needed. But while the function f(t) = t1/p implicit in
(1.14) is especially well-behaved in characteristic p, it is far from differentiable.

11



So we have to begin with a study of the set of all differentiable functions in
K = Fp(t), which is just the separable closure S of Fp(t). Given any u in K
not in Fp, there is a minimal q = . . . , p−2, p−1, 1, p, p2, . . . such that uq lies in
S. We apply this for example to x + y − z = 1 to get a differentiable solution
xq + yq − zq = 1 to which the methods from Theorem 2(G) can be applied. It
turns out that the MΠ(Fp

∗
) in Theorem 2(

√
G) arise from the L(Fp

∗
) in Theo-

rem 1(
√
G).

The present thesis is arranged as follows. After studying the separable clo-
sure and giving some preliminary tools in chapter 2, we prove Theorem 1(

√
G)

and Theorem 1(G) in chapter 3. Then we treat the equation x+ y− z = 1 over
G in chapter 4. A critical role is played by the field of constants C in S, which
is used to define for each solution (x, y, z) in S3 a quantity

d = d(x, y, z) = dimC(Cx+ Cy + Cz)

Here we split into the two cases d = 2 and d = 3. We give the proof of Theorem
2(G) in chapter 5. For the case over

√
G, which we treat in chapter 6, we prefer

to work with the equivalent equation x+ y+ z+ 1 = 0 or even the homogenized
X + Y + Z +W = 0, which shows more clearly the S4-symmetry. Throughout
this chapter we closely follow the earlier argumentation of chapter 4. Finally,
we prove Theorem 2(

√
G) in chapter 7.

There are also four appendices A, B, C, D. In the first two of these we have
segregated for the reader’s convenience certain parts of the proofs of Theorems
2(G) and 2(

√
G).

In Appendix C we go briefly into the new topic of unlikely intersections,
which vastly generalizes the viewpoints of the thesis so far; in particular now
the group G itself is no longer fixed. The resulting problems are associated with
the names Zilber-Pink.

Finally in Appendix D we solve fully the equation (1.5) and also the equation

y2 = 3a + 2b + 1

mentioned as a problem by Corvaja and Zannier, in which also y2 no longer lies
in a fixed group.

I would like to thank my research supervisor David Masser for suggesting the
problems treated here. Throughout my long time at the mathematical institute
in Basel I was allowed to get to know the wide world of number theory from
him. I am very grateful for his good advice and his valuable support for this
PhD thesis.
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2 Preliminaries

2.1 Separability and derivations

For the rest of the thesis we now identify k = Fp(t) and K = Fp(t) the algebraic
closure of k. Throughout this section F is an arbitrary subfield of K.
We then start with the following lemma.

Lemma 1. Let f 6= 0 in F [x]. Then f has distinct zeros in K if and only if f
and f ′ have no common zero in any extension field of F .

For the proof see for example Proposition 1.11 of [La3] (p.179).
We may now introduce the concept of separability. A non-zero polynomial

f in F [x] is said to be separable over F if each irreducible factor of f in F [x]
has distinct zeros in K.

Let E be a field extension over F . Then an element α in E, algebraic over
F , is said to be separable over F if its minimal polynomial is separable over F
or, equivalently, has distinct zeros in K. Otherwise α is said to be inseparable.

Thus we may state the following useful remark due to the considerations
above.

Lemma 2. Suppose that some polynomial f over F vanishes at some α but its
derivative does not. Then α is separable over F .

Proof. Of course we may assume f = gDα for some polynomial g over F and
Dα the minimal polynomial of α over F . Then 0 6= f ′(α) = g(α)D′α(α) and
Lemma 1 implies that Dα has distinct zeros in K, hence α is separable over F
and this completes the proof.

We already noted that not everything in K can be differentiated with respect
to t. This can be remedied by restricting to the separable closure S of k defined
by

S = {α ∈ K ; α is separable over k} .

It is known that d
dt extends uniquely to S (cf. [St] Proposition IV.1.4(a) p.156).

We write α̇ = dα
dt for short.

For any q = pe (e ∈ Z) we write F q for the set of αq with α in F . It too is
a field. It is then clear that α̇ = 0 for any α in Sp. The converse is probably
well-known, but we include a short proof.

Lemma 3. The set C of all α in S with α̇ = 0 is Sp.

Proof. It suffices to show that if α̇ = 0 then α is in Sp. Consider F = Fp(t, α).
It is clear that F p ⊆ F ∩ C ⊆ F . By [St] Proposition III.10.2c(1) (p.144) we
have [F : F p] = p. So F ∩ C is F p or F . But ṫ 6= 0 so F ∩ C 6= F . Thus
F ∩ C = F p. In particular α in F ∩ C lies in F p so in Sp, and this completes
the proof.

Lemma 4. We have K =
⋃∞
e=0 S

1/pe

.

Proof. It is known that K is purely inseparable over S (see for example [St]
p.329 or [La3] Proposition 6.6 p.250), and this implies the lemma.

13



We also need to know that elements of S cannot be simultaneously pth

powers, p2th powers, and so on, unless they are constants. In Fp(t) this is clear
from

∞⋂
e=0

Fp(t)p
e

=
∞⋂
e=0

Fp(tp
e

) = Fp. (2.1)

As S contains all of Fp, we are after the following result.

Lemma 5. We have
⋂∞
e=0 S

pe

= Fp.

The proof seems to require hyperderivations, so we pause for a discussion.
On a general field K these are maps ∂i : K → K (i = 0, 1, 2, . . . ) satisfying

∂i(α+ β) = ∂i(α) + ∂i(β), ∂i(αβ) =
∑
r+s=i

∂r(α)∂s(β)

with ∂0 the identity map (see also [GV]).
The last of these generalizes immediately to

∂i(α1 · · ·αm) =
∑

r1+···+rm=i

∂r1(α1) · · · ∂rm
(αm).

If α1 = · · · = αm = α then this is a sum of various ∂0(α)s0 · · · ∂i(α)si for

s0 + s1 + · · ·+ si = m, s1 + 2s2 + · · ·+ isi = i (2.2)

multiplied by the multinomial coefficients(
m

s0

)(
m− s0

s1

)(
m− s0 − s1

s2

)
· · ·
(
m− s0 − s1 − · · · − si−1

si

)
=
(

m

s0, s1, . . . , si

)
.

These are also the coefficients of Xs0
0 Xs1

1 · · ·X
si
i in (X0 +X1 + · · ·+Xi)m. So

if further m = q ≥ 1 is a power of the characteristic p > 0 of K then we get
a non-zero coefficient only if some sj = q and all others are zero. Then (2.2)
implies jq = i. If in addition 1 ≤ i ≤ q this means i = q, j = 1. We conclude

∂i(αq) =

{
∂1(α)q (i = q),
0 (1 ≤ i < q).

(2.3)

Now for K = k the ∂i satisfying ∂i(tm) =
(
m
i

)
tm−i are a system of hyperderiva-

tives. This is a ”generalized derivation of K with coefficients in K” in the sense
of [G] (p.27). By Corollary 1.3.8 there it extends to the separable closure S,
and therefore so do the ∂i.

We can now prove Lemma 5, wherefore we use the following diagram.
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Fp(t) = K
...

S1/p2

S1/p

S

Sp = C

Sp
2

...

k = Fp(t) Fp

Fp

Q
QQ

�
��

Proof of Lemma 5. As Fp = Fp
pe

is in Sp
e

, it suffices to verify that any α in
S∞ =

⋂∞
e=0 S

pe

is in Fp. It satisfies a minimal equation

αd + a1α
d−1 + · · ·+ ad = 0 (2.4)

over k. Now for any β in S∞ and any s ≥ 1 there is a power q > s of p, and
then (2.3) shows that ∂s(β) = 0. Then for any γ in S we deduce

∂i(γβ) =
∑
r+s=i

∂r(γ)∂s(β) = ∂i(γ)β.

Applying this to (2.4) with β as the various powers of α we find

∂i(a1)αd−1 + · · ·+ ∂i(ad) = 0 (i = 1, 2, . . . ).

These seem to have smaller degree in α. The only way out is ∂i(a) = 0 (i =
1, 2, . . .) for every a = aj .

But we see quickly that this forces each a, already in k, to be in Fp. For
example, just taking i = 1 gives a = bp for some b in k. Then taking i = p gives
0 = ∂p(a) = ∂1(b)p by (2.3), so ∂1(b) = 0 and b = cp for some b in k. Then
i = p2, and so on; so that each a = aj lies in (2.1).

Referring back to (2.4) we conclude that α lies in Fp, and this completes the
proof.

Lemma 6. Given any α in K but not in Fp there is e in Z such that αp
e

lies
in S but not in C.

Proof. By Lemma 4 any α in K belongs to some S1/pi

(i ≥ 0). If i > 0 we
choose i minimal and put e = i. If αp

i

were in C then Lemma 3 shows that
αp

i−1
would be in S, contradicting the minimality of i. Otherwise i = 0 and
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(provided α is not in Fp) by Lemma 5 there is some maximal j ≥ 0 with α in
Sp

j

. Here we put e = −j. Now if αp
−j

were in C then we could deduce that
αp
−(j+1)

would be in S, a contradiction again.

2.2 Wronskians

For the equation (1.8) we require to deal with Wronskians. For us the wronskian
W(x1, . . . , xn) of elements x1, . . . , xn in S is given by the determinant

W(x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣
x1 · · · xn

D(x1) · · · D(xn)
...

...
Dn−1(x1) · · · Dn−1(xn)

∣∣∣∣∣∣∣∣∣
where we use Dj(x) to abbreviate the jth derivative of x with respect to t.

Lemma 7. Let x1, . . . , xn be in S and α1, . . . , αn be in the field of differential
constants C in S. Then

W(α1x1, . . . , αnxn) = α1 · · ·αnW(x1, . . . , xn).

Proof. The proof results straight from the definition of the Wronskian as well
as the fact that α1, . . . , αn are differential constants, namely

W(α1x1, . . . , αnxn) =

∣∣∣∣∣∣∣∣∣
α1x1 · · · αnxn

D(α1x1) D(αnxn)
...

...
Dn−1(α1x1) · · · Dn−1(αnxn)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
α1x1 · · · αnxn

α1D(x1) αnD(xn)
...

...
α1D

n−1(x1) · · · αnD
n−1(xn)

∣∣∣∣∣∣∣∣∣ = α1 · · ·αnW(x1, . . . , xn).

Lemma 8. For y, x1, . . . , xn in S we have

W(yx1, . . . , yxn) = ynW(x1, . . . , xn).

Proof. Trivially, the result holds for y = 0 and hence we may assume y 6= 0. We
then define Am (1 ≤ m ≤ n) to be the matrix with entries

aij =
{
yDi−1(xj), i ≤ m
Di−1(yxj), i > m.

Thus we see

W(yx1, . . . , yxn) =

∣∣∣∣∣∣∣∣∣
yx1 · · · yxn

D(yx1) · · · D(yxn)
...

...
Dn−1(yx1) · · · Dn−1(yxn)

∣∣∣∣∣∣∣∣∣ = detA1.
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Writing ej for the jth row unit vector the row m of Am−1 (2 ≤ m ≤ n) turns
out to be

n∑
j=1

ejD
m−1(yxj) =

n∑
j=1

ej

m−1∑
i=0

(
m− 1
i

)
Di(y)Dm−1−i(xj)

=
n∑
j=1

ejyD
m−1(xj) +

m−1∑
i=1

(
m− 1
i

)
Di(y)
y

n∑
j=1

ejyD
m−1−i(xj).

This is row m of Am modified by linear combinations of the rows m − 1, . . . , 1
of Am. Since the two matrices Am−1 and Am are equal except for row m, it
follows that

detAm−1 = detAm (2 ≤ m ≤ n).

Therefore W(yx1, . . . , yxn) = detA1 = · · · = detAn = ynW(x1, . . . , xn), which
completes the proof of the present lemma.

Lemma 9. For x1, . . . , xn in S we have W(x1, . . . , xn) = 0 if and only if
x1, . . . , xn are linearly dependent over the field of differential constants C in S.

Proof. At first we assume the existence of α1, . . . , αn in C not all zero with
α1x1 + · · ·+ αnxn = 0. Applying D to this equation we get

0 = D(α1x1 + · · ·+ αnxn) = α1D(x1) + · · ·+ αnD(xn)

and reapplying D we finally see that the columns of W(x1, . . . , xn) are linearly
dependent over C; hence W(x1, . . . , xn) = 0.

For the other direction we use induction on n. For n = 1 we have 0 =
W(x1) = x1 and all is trivial. So we consider n > 1. If the subdeterminant
W(x1, . . . , xn−1) is zero, then x1, . . . , xn−1 are linearly dependent over C and
so are x1, . . . , xn. Else W(x1, . . . , xn−1) 6= 0 and the first n − 1 columns in
W(x1, . . . , xn) are linearly independent over K. Now W(x1, . . . , xn) = 0 shows
that the last column in W(x1, . . . , xn) is a linear combination of the first n− 1
columns of W(x1, . . . , xn); hence there are α1, . . . , αn−1 in S and αn = 1 with

α1D
j(x1) + · · ·+ αnD

j(xn) = 0 (0 ≤ j ≤ n− 1). (2.5)

Applying D to (2.5) and remembering αn = 1 we deduce

0 =
n∑
i=1

αiD
j(xi) =

n∑
i=1

αiD
j+1(xi) +

n∑
i=1

D(αi)Dj(xi).

For 0 ≤ j ≤ n− 2 the first sum is zero because of (2.5) and so we get

D(α1)Dj(x1) + · · ·+D(αn−1)Dj(xn−1) = 0 (0 ≤ j ≤ n− 2),

a system of equations with variables D(α1), . . . , D(αn−1) and the determinant
W(x1, . . . , xn−1) 6= 0. Thus D(α1) = · · · = D(αn−1) = 0 and so α1, . . . , αn−1

are in C. On account of (2.5) with j = 0 we see that x1, . . . , xn are linearly
dependent over C and this completes the proof of the present theorem.
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2.3 More about
√

G

In this section we will procure some of the main tools we will need to prove the
theorems.

Henceforth we write k
√
G and S

√
G for the radical of G in k and S respectively.

Lemma 10. The radical k
√
G =

√
G ∩ k is generated by G together with the

elements of F∗p.

Proof. For u in
√
G we have s in N such that us is in G. Let A be any irreducible

polynomial of Fp[t], which is not a constant multiple of t, 1 − t. Then the
corresponding order function satisfies ordAus = 0, which implies ordAu = 0.
Since this holds for all such A we see that u must lie in the set generated by G
and F∗p. Conversely, we have G ⊂

√
G and further ap−1 = 1 for a in F∗p shows

that F∗p ⊂
√
G, which completes the proof.

Lemma 11. Suppose that q is a power of p, and that u is in k with uq in G.
Then u is in G.

Proof. By definition u lies in k
√
G, so that as we have seen in Lemma 10 u = ag

for a in F∗p and g in G. But then a = aq = uq

gq lies in G, so a = 1.

Lemma 12. Let u be in the radical S
√
G =

√
G ∩ S. Then there is s in N not

divisible by p with us in G. Further

u̇

u
=

a0 + a1t

t(1− t)
and

ü

u
=

b0 + b1t+ b2t
2

t2(1− t)2

for some a0, a1, b0, b1, b2 in Fp.

Proof. There is s in N with us in G. We claim that if s is chosen minimally,
then it is not divisible by p. Otherwise with

us = ti(1− t)j (2.6)

for integers i, j and m = s
p we get

um = ti/p(1− t)j/p = (t1/p)i(1− t1/p)j . (2.7)

If for example i ≥ 0 and j ≥ 0 then this is a polynomial equation A(t1/p) = 0
with A(X) = Xi(1 − X)j − um. Here the derivative (no dot now) A′(X) =
iXi−1(1−X)j−jXi(1−X)j−1 vanishes only ifX = 0 orX = 1 or i(1−X) = jX.
If i, j in Fp are not both zero, then the derivative does not vanish at t1/p. It
would then follow from Lemma 2 that t1/p is separable over S. But this is
absurd, as S is the largest separable extension of k and does not contain t1/p.
It follows that i = j = 0 in Fp. But now (2.7) would contradict the minimality
of s. Similar arguments work for other sign possibilities; for example if i ≥ 0
but j < 0 then we use the polynomial A(X) = Xi−um(1−X)−j and then note
that at any point where A = A′ = 0 but X 6= 1 then we also have f = f ′ = 0
for f(X) = A(X)(1 − X)j = Xi(1 − X)j − um (which is now only a rational
function). This settles the first part of the lemma.
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Now the second part of the lemma follows on logarithmically differentiating
(2.6) to get

u̇

u
=

1
s

(
i

t
− j

1− t

)
and then differentiating to get

ü

u
=
(
u̇

u

)2

+
1
s

(
− i

t2
+

j

(1− t)2

)
.

Lemma 13. We have Sp ∩ k = kp.

Proof. It suffices to show that Sp ∩ k ⊆ kp. If u is in Sp then u̇ = 0. But from
u in k this means that u is in kp (cf. [La1] p.185-186).

Lemma 14. Let u be in S and suppose u1 6= 0 in k of degree at most 1 is such
that up

u1
is in

√
G. Then there is a in F∗p such that au1 belongs to the list

1, t, 1− t, 1
t
, − 1− t

t
,

1
1− t

, − t

1− t
. (2.8)

Further, if 1− u1 lies in
√
G but not in Fp then a = 1 and hence u1, 1− u1 are

both in the sublist

t, 1− t, 1
t
, − 1− t

t
,

1
1− t

, − t

1− t
. (2.9)

Proof. Let s in N be as in Lemma 12 not divisible by p and such that
(
up

u1

)s is
in G. Now usp is in Sp ∩ k = kp due to Lemma 13 and so us lies in k.

Let now A be any irreducible polynomial of Fp[t] not associate with t, 1− t.
Then the corresponding order function satisfies

0 = ordA
ups

us1
= p ordAus − s ordAu1.

But as |ordAu1| ≤ 1 and p does not divide s this implies ordAu1 = 0. Since this
holds for all such A we see that u1 is associate to one of the list (2.8), which
completes the first part of the proof.

If further 1−u1 lies in
√
G then Lemma 10 shows that 1−u1 is associate to

one of the list (2.8). Suppose now a in F∗p is such that au1 is in the list (2.8) then
it is easily checked that a = 1 and that u1, 1− u1 are in the sublist (2.9).
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3 Proofs of Theorem 1(G) and Theorem 1(
√

G)

Lemma 15. Let x, y in
√
G satisfy x+ y = 1 and assume that x and y are in

S but not both in C. Then (x, y) is one of the six points Π in Theorem 1(
√
G).

Proof. First, we mention that neither x nor y are in C owing to x+ y = 1.
Now, the derivation with respect to t leads from x+ y = 1 to the new equation(

ẋ

x

)
x+

(
ẏ

y

)
y = ẋ+ ẏ = 0. (3.1)

Hence we have a linear system(
1 1
ẋ
x

ẏ
y

)(
x
y

)
=
(

1
0

)
with determinant

∆ =
ẏ

y
− ẋ

x
.

Suppose now ∆ = 0. Then, since ẋ 6= 0, we can divide the equation (3.1) by ẋ
x

getting 0 = x+ y = 1, a contradiction! Thus we conclude ∆ 6= 0 and we get in
the usual way the identities

x =
ẏ
y

ẏ
y −

ẋ
x

, y =
− ẋx
ẏ
y −

ẋ
x

. (3.2)

Further, Lemma 12 implies that x and y are of the form

a0 + a1t

b0 + b1t
(a0, a1, b0, b1 ∈ Fp). (3.3)

Thus by Lemma 14 with u = 1 and u1 = x there is a in F∗p such that ax belongs
to the list (2.8). And then the fact that 1−x = y lies in

√
G but not in Fp ⊂ C

shows that x and y are in the sublist (2.9). In the end we find that (x, y) is one
of the six points in Theorem 1(

√
G) as requested.

We are now prepared to prove Theorem 1(
√
G).

Proof of Theorem 1(
√
G). We clearly have L(Fp

∗
) ∪
⋃

Π[[ψ0]]pΠ ⊂ L(
√
G).

Let now x, y be in
√
G with x+y = 1. If x is not in Fp, then Lemma 6 provides

e in Z such that x̃ = xp
e

is in S but not in C. Further ỹ = yp
e

= 1− xpe

is in
S and Lemma 15 shows that (x̃, ỹ) is one of the six points in Theorem 1(

√
G),

which settles the first part of the proof.
Otherwise x 6= 1 is in Fp

∗ ⊂
√
G. Then, of course, y = 1 − x is in Fp

∗
as

well and therefore (x, y) = (a, 1− a) with a 6= 1 in Fp
∗
; and this completes the

proof.

It is comparatively easy to deduce Theorem 1(G) on G in k from Theorem
1(
√
G). To illustrate this we prove the following result on the radical S

√
G of G

in S, which will be applied in section 4. Compare also Lemma 15.

Lemma 16. Suppose Π0 is in L( S
√
G). Then either Π0 is in L(Fp

∗
) or it has

the form Πq for one of the six points Π in Theorem 1(
√
G) with q = 1, p, p2, . . . .
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Proof. By Theorem 1(
√
G) it suffices to check that if x is in the list (2.9) and

xq is in S
√
G for q = pe (e ∈ Z) then e ≥ 0. But certainly xp

−1
is not even in S

because then x would be in Sp ∩ k = kp by Lemma 13, an absurdity. And now
xp

e

cannot be in S for any e ≤ −1, else (xp
e

)p
−1−e

= xp
−1

would also be in S.
This completes the proof
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4 The equation x + y − z = 1 over G

Now we want to investigate x, y and z in G with x+ y − z = 1.
We have to exploit the symmetry, which becomes clearer by writing formally

x =
X

W
, y =

Y

W
, z =

Z

W
(4.1)

Then the equation (1.8) becomes

X + Y = Z +W (4.2)

and we note that this equation is invariant under the action of the dihedral
group D4 with eight elements acting on the square with vertices X,Z, Y,W in
an anti-clockwise direction. This group therefore acts on the solutions of (4.2)
and this means that there is a D4-action on P (G).

Let now X,Y, Z,W in k satisfy (4.2). We then define d as

d = d(X,Y, Z,W ) = dimC CX + CY + CZ + CW, (4.3)

which is of course stable under D4 in (4.2); and indeed it is easily checked that
this is the dimension d(x, y, z) of Cx+Cy+Cz. Actually, if we further assume
that not all of x, y, z are in C, then d = 2 or 3.

In the following sections we first focus on the case d = 3 and then treat the
case d = 2.

4.1 The case d = 3

Let H be the set of polynomials

tr(1− t)s (r ≥ 0, s ≥ 0, r + s ≤ 3) (4.4)

in Fp[t]. For A in Fp[t] let r(A) be the number of (X,Y ) in H2 with A = X+Y .
The following is the basic reason for our uniformity in p.

Lemma 17. Suppose p ≥ 5. Then r(A) = 0, 1, 2 apart from r(A) = 4 for the
following

A = 1− t+ t2 = t2 + (1− t) = (1− t)2 + t,

A = t(1− t+ t2) = t3 + t(1− t) = t(1− t)2 + t2,

A = (1− t)(1− t+ t2) = t2(1− t) + (1− t)2 = (1− t)3 + t(1− t).

Proof. The analogous assertion for the corresponding set H̃ defined by (4.4) in
Z[t] is readily checked by machine. This means that an equation Ã = X̃ + Ỹ =
Z̃+W̃ with X̃, Ỹ , Z̃, W̃ in H̃ implies Z̃ = X̃ or Z̃ = Ỹ except as indicated when
Ã is the canonical pullback of one of the three A shown above.

But now suppose A = X + Y = Z +W in with X,Y, Z,W in H. Each term
tr(1− t)s has a canonical pullback tr(1− t)s to H̃ with coefficients of absolute
values at most 3. Then the polynomial P = X̃ + Ỹ − Z̃ − W̃ lies in pZ[t] and
its coefficients have absolute values at most 12. So if p ≥ 13 this forces P = 0.
Now the conclusion for H̃ immediately implies the conclusion for H.

One can cover p = 11 by noting that the only element of H̃ with a coefficient
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of absolute value 3 is (1− t)3. So if P has a coefficient of absolute value bigger
than 10 then at least three of X̃, Ỹ , Z̃, W̃ must be (1 − t)3; and this forces
r(A) ≤ 2.

The cases p = 5, 7 can be checked by hand.

Proposition 1. Suppose p ≥ 5. Then the set P ∗(G) of solutions of the equation
x+ y − z = 1 with d = 3 is D4(Π) with

Π =
(
t,

1− t
t

,
(1− t)2

t

)
.

Proof. We write down x+ y− z = 1 and its derivative ẋ
xx+ ẏ

yy−
ż
z z = 0 as well

as the second derivative ẍ
xx+ ÿ

yy−
z̈
z z = 0. There is an associated determinant

∆ =

∣∣∣∣∣∣
1 1 −1
ẋ
x

ẏ
y − żz

ẍ
x

ÿ
y − z̈z

∣∣∣∣∣∣ ,
and by multiplying by −xyz we get the Wronskian of x, y, z. Since these latter
are linearly independent over our field C of differential constants, Lemma 9
provides that ∆ 6= 0. It follows that

x =
∆x

∆
, y =

∆y

∆
, z =

∆z

∆
(4.5)

for

∆x =

∣∣∣∣∣∣
1 1 −1
0 ẏ

y − żz
0 ÿ

y − z̈z

∣∣∣∣∣∣ , ∆y =

∣∣∣∣∣∣
1 1 −1
ẋ
x 0 − żz
ẍ
x 0 − z̈z

∣∣∣∣∣∣ , ∆z =

∣∣∣∣∣∣
1 1 1
ẋ
x

ẏ
y 0

ẍ
x

ÿ
y 0

∣∣∣∣∣∣ .
Then Lemma 12 implies that each of ∆,∆x,∆y,∆z has the form

a0 + a1t+ a2t
2 + a3t

3

t3(1− t)3

for a0, a1, a2, a3 in Fp. Therefore each of x, y, z is a rational function of t of
degree at most 3.

In (3.3) with a rational function of degree at most 1 it was easy to see when
it lies in G. To deal with higher degree we note that tr(1 − t)s has degree
max{|r|, |s|, |r+s|}. This leads to 37 possibilities for (r, s) in Z2. So all we have
to do is check the 373 = 50653 possibilities for (x, y, z) in x + y − z = 1 (not
forgetting d = 3).

To reduce this work we use (4.1), now with X,Y, Z,W in Fp[t] having no
common factor. Each can be chosen to lie in the set H defined by (4.4). Now
there are only 10 possibilities for (r, s), so 104 = 10000 < 50653 in all. However
Lemma 17 implies Z = X or Z = Y or A = X + Y is one of the list of
three. But Z = X means z = x contradicting d = 3, and similarly Z 6= Y .
Thus X,Y, Z,W are as in the list. This actually reduces to a single projective
(X,Y, Z,W ) under the action of D4, which can be taken as (t2, 1− t, (1− t)2, t).
So dividing by W = t we get our (x, y, z) = Π; and for this the case d = 3 is
quickly checked.
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4.2 The case d = 2

Let N be the set of solutions (X,Y, Z,W ) of (4.2) in G4 with d 6= 1 and

{X,Y } 6= {Z,W}. (4.6)

We mention that N is stable under the D4-action from there.
Next, we define an equivalence relation on k∗ by two elements having their

quotient in C. We then state the following simple lemma.

Lemma 18. Suppose p ≥ 3. Then every D4-orbit in N contains a point where
the equivalence classes in {X,Y, Z,W} are described by one of

(1) {X,Y }, {Z}, {W},

(2) {Y,W}, {X}, {Z}.

(3) {X}, {Y }, {Z}, {W},

Proof. Take any (X,Y, Z,W ) inN , and h be the number of classes in {X,Y, Z,W}.
Then h 6= 1 due to the condition that d 6= 1 in (4.6).

If h = 4 then we are in case (3) at once.
If h = 3 then there must be two singletons and one pair. Under D4 we can

assume that the pair is either {X,Y } (opposite points of the square) or {Y,W}
(adjacent points), leading to cases (1) and (2).

It remains only to exclude h = 2. This could arise from one singleton and
one triplet; but then the equation (4.2) would destroy the singleton. Or we could
have two pairs. Under D4 these could be taken as either {X,Y }, {Z,W} (op-
posite points equivalent) or {X,Z}, {Y,W} (adjacent points). The first means
X = αY,Z = βW for α, β in C, but then (1 + α)Y = (1 + β)W forcing
α = X

Y = −1 and β = Z
W = −1 which however are not in G as p ≥ 3. The

second means similarly X = αZ, Y = βW but then (1 − α)Z + (1 − β)W = 0
forcing α = β = 1 and X = Z, Y = W contrary to the second condition in (4.6).
This completes the proof.

For the following proposition we need a small modification of our notation.
Our coset Tx is the set of (1, y, y) in k3; we define T ∗x as the subset with y not
in C. Similarly for T ∗y . Further we define

[ψ]∗p =
∞⋃
e=1

ψ−1ϕeψ

as in (1.11) for h = 1 but omitting e = 0.

Proposition 2. Suppose p ≥ 3. Then the set P ∗∗(G) of solutions of the equa-
tion x+ y − z = 1 with d = 2 is

T ∗x (G) ∪ T ∗y (G) ∪
⋃
Π

D4([ψΠ]∗pΠ)
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with the following five points and automorphisms

Π =
(

1,
1− t
t

,
1− t
t

)
, ψΠ(x, y, z) =

(
tx, ty,

t

1− t
z

)
,

Π =
(

1,
1
t
,

1
t

)
, ψΠ(x, y, z) =

(
1− t
t

x, y, (1− t)z
)
,

Π =
(

t2

(1− t)2
,

1
1− t

,
t

(1− t)2

)
, ψΠ(x, y, z) =

(
1− t
t

x, y, (1− t)z
)
,

Π =
(

1,
1

1− t
,

1
1− t

)
, ψΠ(x, y, z) =

(
t

1− t
x, y, tz

)
,

Π =
(

(1− t)2

t2
,

1
t
,

1− t
t2

)
, ψΠ(x, y, z) =

(
t

1− t
x, y, tz

)
.

Proof. Let (x, y, z) be in P ∗∗(G), and use (4.1) with X,Y, Z,W also in G. Then
{X,Y } = {Z,W} would mean we are not just in Tx(G) ∪ Ty(G) but even in
T ∗x (G) ∪ T ∗y (G) because d 6= 1. Thus we can assume all of (4.6).

So after adjusting by D4 we can assume by Lemma 18 that we are in one of
the cases (1),(2),(3). We distribute these over the next three subsections.

4.2.1 The case (1) of Lemma 18

In case (1) we have x = αy for some α in C. It follows that

(1 + α)y − z = 1. (4.7)

Further α is in G so α 6= −1. Since 1 +α is a differential constant we can easily
differentiate, and since z

y = Z
Y is not in C the arguments in section 3 yield

(1 + α)y =
ż
z

ż
z −

ẏ
y

, − z =
− ẏy
ż
z −

ẏ
y

as in (3.2). In particular Lemma 12 shows that u1 = (1 + α)y has degree at
most 1. This gives only finitely many possibilities for z = u1 − 1, thus reducing
to finitely many lines M on the plane P . In the context of a general variety V ,
these are the W mentioned at the end of section 1 [Adjust!]. However their
number may depend on the characteristic p.

To cut down this dependence we note that 1+α
u1

= 1
y lies in G. Further

1−u1 = −z lies in
√
G but not in Fp because z = Z

W is not in C. So by Lemma
14 we conclude that u1 lies in (2.9). But actually u1 − 1 = z lies in G, which
reduces the choice to

u1 =
1
t

or u1 =
1

1− t
. (4.8)

Take first u1 = 1
t . Now temporarily with general coordinates x, y, z the line

M is defined by the equations x+ y − z = 1 and z = 1−t
t , or equivalently

x+ y =
1
t
, z =

1− t
t

.
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So M ′ = ψ(M) is defined over Fp, where

ψ(x, y, z) =
(
tx, ty,

t

1− t
z

)
is as in the first in the list of Proposition 2; in fact if we call this (x′, y′, z′) then
the equations become

x′ + y′ = 1, z′ = 1. (4.9)

Here we see a copy of the line L, and so M ′ has the points (x′, y′, z′) = (t, 1−t, 1),
(1− t, t, 1). These give rise via ψ−1 to points

Π =
(

1,
1− t
t

,
1− t
t

)
,

(
1− t
t

, 1,
1− t
t

)
on ψ−1(M ′) = M so on P ; note that the first Π here is also as in the first in
the list of Proposition 2.

Now return to our point (x, y, z) of P ∗∗(G), here in M(G). Then ψ(x, y, z)
is in M ′(G) and from the equations (4.9) and Theorem 1(G) we see that this is
one of

(tq, (1− t)q, 1), ((1− t)q, tq, 1) (q = pe, e = 0, 1, 2, . . .). (4.10)

The first of these is, in the notation of (1.11), just ϕeψ(Π) with the first ψ
above. So we get the family

(x, y, z) = ψ−1ϕeψ(Π) =
(
tq−1,

(1− t)q

t
,

1− t
t

)
. (F1)

Taking the union over all e gives precisely [ψ]p(Π). But in fact x
y = α lies in

C, so q = 1 is excluded and we end up in [ψ]∗p(Π) as in Proposition 2. The D4-
action (which may however take us out of case (1) of Lemma 18) then provides
us with the whole D4([ψ]∗p(Π)).

But what if ψ(x, y, z) is the second of (4.10)? Then it is easily seen, in fact
through the interchange of x and y, that we get something in the same D4-orbit.

We can deal with u1 = 1
1−t in (4.8) by noting that k has an automorphism

ω taking t to 1− t which preserves P and G and therefore acts on P (G). It also
preserves C ∩ k = kp and so acts on P ∗∗(G). Now if u1 = z + 1 = 1

1−t then
ω(z) + 1 = 1

t and so for ω(x, y, z) we are in the case just considered. Therefore
ω(x, y, z) lies in D = D4([ψ]∗p(Π)); and by applying ω−1 = ω we see that (x, y, z)
lies in ω(D). However ω(D) = D; for example we get from (F1) the point(

(1− t)q−1,
tq

1− t
,

t

1− t

)
.

But in terms of (4.2) already (F1) says

tq + (1− t)q = (1− t) + t

and so dividing this by 1− t gives again the same orbit.
Thus case (1) of Lemma 18 therefore leads to only the first in the list of

Proposition 2.
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4.2.2 The case (3) of Lemma 18

We next treat the third case from Lemma 18 temporarily taking in the second
case as well. Now x, y are linearly independent over C and because d = 2 there
are α, β in C with

z = αx+ βy. (4.11)

We note that α 6= 0 because y, z are linearly independent over C; similarly we
see that β 6= 0. Then for xz = x

z , yz = y
z we get

αxz + βyz = 1. (4.12)

Here yz

xz
= y

x is not in C and so with the same arguments as in section 3 we get

αxz =
ẏz

yz

ẏz

yz
− ẋz

xz

, βyz =
− ẋz

xz

ẏz

yz
− ẋz

xz

(4.13)

as in (3.2). Further x1 = αxz 6= 0, y1 = βyz 6= 0 and in particular Lemma 12
guarantees that they are in k with degree at most 1. Note however that α = 1
or β = 1 are not yet excluded (see below).

Substituting (4.11) into x+ y − z = 1 gives

(1− α)x+ (1− β)y = 1, (4.14)

and the same arguments give

(1− α)x =
ẏ
y

ẏ
y −

ẋ
x

, (1− β)y =
− ẋx
ẏ
y −

ẋ
x

(4.15)

with u1 = (1− α)x, v1 = (1− β)y of degree at most 1.
Now we have

u1 = x− x1z, v1 = y − y1z (4.16)

(adding up to our original 1 = x+ y − z) which again reduces to finitely many
lines in P . Again we must cut down the dependence on p.

Using Lemma 14 on β
y1

provides a in F∗p such that ay1 is in the list (2.8).
Further α

x1
= z

x is in G ⊂
√
G and by Lemma 10 1 − x1 = a−1(ay1) is in

√
G

but not in Fp because y1 = β YZ is not in C. Thus Lemma 14 implies that x1, y1

lie in the sublist (2.9).
So far we could do the cases (2) and (3) from Lemma 18 at once. But now

we restrict to the case (3).
Then (4.14) yields α 6= 1, β 6= 1 because y = Y

W and x = X
W are not in C.

So Lemma 14 on 1−β
v1

provides b in F∗p such that bv1 is in the list (2.8). Further
1+α
u1

= 1
x is in G ⊂

√
G and Lemma 10 shows that 1 − u1 = b−1(bv1) is in

√
G

but not in Fp because v1 = (1 − β) YW is not in C. So Lemma 14 implies that
u1, v1 belong to the sublist (2.9).

In particular x1, y1, as well as u1, v1, lie in the sublist (2.9). This eliminates
completely the dependence in the equations (4.16) on p. Still, the lines don’t
look like L.

But when we write these equations as

x

u1
+
(
−x1z

u1

)
= 1,

y

v1
+
(
−y1z

v1

)
= 1, (4.17)
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then we do after all observe two points on L( k
√
G). But by Lemma 16 this means

that there are integral powers qx, qy of p and points Πx = (ξ, ζx), Πy = (η, ζy)
in either L(Fp

∗
) or among the six points in Theorem 1(

√
G) such that

x = u1ξ
qx , z = − u1

x1
ζqx
x , y = v1η

qy , z = − v1

y1
ζqy
y . (4.18)

In particular comparing the z-values gives

ζqx
x

ζ
qy
y

=
x1v1

u1y1
. (4.19)

The right-hand side w here certainly has degree at most 4; but in fact (4.13)
and (4.15) show that

w =
ẋ
x

(
ẏ
y −

ż
z

)
ẏ
y

(
ẋ
x −

ż
z

) . (4.20)

So w has degree at most 2 due to Lemma 12. Furthermore it cannot be in Fp,
because then w = 1 (see the last table in Appendix A), and this would lead at
once to

ż

z

(
ẋ

x
− ẏ

y

)
= 0

which is ruled out in our current case (3). In particular, it follows that Πx, Πy

cannot both lie in L(Fp
∗
).

Next, we derive from (4.18) that

α = x1
z

x
=
(
ζx
ξ

)qx

, β = y1
z

y
=
(
ζy
η

)qy

. (4.21)

Suppose now that Πx = (ξ, ζx) is one of the six points in Theorem 1(
√
G). Then

one easily sees that (4.21) forces qx > 1 because α is in C. If now Πy = (η, ζy)
were in L(Fp

∗
) then the degree of w would be at least p ≥ 3, a contradiction.

And the same argument shows that there are no solutions in the case with Πx

in L(Fp
∗
) and Πy one of the six points in Theorem 1(

√
G).

Finally, we have the situation with Πx, Πy both among the six points in
Theorem 1(

√
G). As above it follows that qx > 1 and (by the same argument)

qy > 1. Since p ≥ 3 we then have on one hand qx = qy, which implies that
either w = ζqx

x

ζ
qy
y

has degree at least 3 (see the first two tables in Appendix A)
or w = 1; both are impossible. And if on the other hand qx 6= qy, then w has
degree at least 6, which is ruled out again.

This means that we find no points of P ∗∗(G) in this case (3).

4.2.3 The case (2) of Lemma 18

We finally turn to case (2), which we left halfway through the discussion above
and which implies that y = Y

W is in C. So by (4.15) we have α = 1 and hence
u1 = 0, v1 = 1. Strangely enough it is this somewhat degenerate-looking case
which provides most of the points of P ∗∗(G).

From (4.16) we see now that x1 = x
z lies in G. Inspection of (2.9) shows that

x1 must be in the sublist

t, 1− t, 1
t
,

1
1− t

(4.22)
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of (2.9). We look at each of these in turn.
Suppose first that x1 = t, so that y1 = 1− t. Thus from (4.16) we are now

on the line M defined by the equations

x = tz, y − (1− t)z = 1. (4.23)

So M ′ = ψ(M) is defined over Fp, where

ψ(x, y, z) =
(

1− t
t

x, y, (1− t)z
)

(4.24)

is as in the second and third in the list of Proposition 2; in fact also with
(x′, y′, z′) then the equations become

x′ = z′, y′ − z′ = 1. (4.25)

Here we don’t see exactly the line L. However,(
1
t
,−1− t

t

)
and

(
1

1− t
,− t

1− t

)
from Theorem 1(

√
G) lead to the following solutions over G

(x′, y′, z′) =
(

1− t
t

,
1
t
,

1− t
t

)
,

(
t

1− t
,

1
1− t

,
t

1− t

)
.

These give rise via ψ−1 to points

Π =
(

1,
1
t
,

1
t

)
,

(
t2

(1− t)2
,

1
1− t

,
t

(1− t)2

)
on ψ−1(M ′) = M so on P ; note that these are also as in the second and third
in the list of Proposition 2.

Now return to our point (x, y, z) of P ∗∗(G). Then ψ(x, y, z) is on M ′(G)
and from the equations (4.25) and Theorem 1(

√
G) we see that this is one of(

(1− t)q

tq
,

1
tq
,

(1− t)q

tq

)
,

(
tq

(1− t)q
,

1
(1− t)q

,
tq

(1− t)q

)
(q = pe, e = 0, 1, 2, . . .).

Again these are just ϕeψ(Π). The first gives

(x, y, z) = ψ−1ϕeψ(Π) =
(

(1− t)q−1

tq−1
,

1
tq
,

(1− t)q−1

tq

)
, (F2)

and the second gives

(x, y, z) = ψ−1ϕeψ(Π) =
(

tq+1

(1− t)q+1
,

1
(1− t)q

,
tq

(1− t)q+1

)
. (F3)

Taking the union over all e gives again the [ψ]p(Π). But this time y lies in C,
so q 6= 1 and we end up with the [ψΠ]∗p(Π) as in Proposition 2. The D4-action
(which as before may take us out of case (2) of Lemma 18) then provides us
with the whole D4([ψΠ]∗p(Π)).
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Suppose next that x1 = 1
t in (4.22), so that y1 = − 1−t

t . Thus from (4.16)
we are now on the line M defined by the equations

x =
1
t
z, y +

1− t
t

z = 1.

So M ′ = ψ(M) is defined over Fp, where

ψ(x, y, z) =
(

(1− t)x, y, 1− t
t

z

)
now is not in the list of Proposition 2; anyway with (x′, y′, z′) then the equations
become

x′ = z′, y′ + z′ = 1.

Now return to our point (x, y, z) of P ∗∗(G). Then ψ(x, y, z) is on M ′(G)
and from the equations immediately above and Theorem 1(G) we see that this
is one of

(x′, y′, z′) = (tq, (1− t)q, tq), ((1− t)q, tq, (1− t)q) (q = pe, e = 0, 1, 2, . . .).

And via ψ−1 they give(
tq

1− t
, (1− t)q, t

q+1

1− t

)
,
(
(1− t)q−1, tq, t(1− t)q−1

)
,

again with q = 1 excluded because y is in C.
However these result in the same D4-orbits as the second and third respec-

tively above, which is easily seen considering (F2) and (F3) respectively in terms
of (4.2), namely

t(1− t)q−1 + 1 = (1− t)q−1 + tq,

tq+1 + (1− t) = tq + (1− t)q+1.

Finally we deal with the remaining x1 = 1− t, 1
1−t in (4.22) simply by applying

our automorphism ω, which yields on (F2), (F3)

(x, y, z) =
(

tq−1

(1− t)q−1
,

1
(1− t)q

,
tq−1

(1− t)q

)
, (F4)

(x, y, z) =
(

(1− t)q+1

tq+1
,

1
tq
,

(1− t)q

tq+1

)
, (F5)

corresponding to the fourth and fifth in Proposition 2. This is thereby proved.
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5 Proof of Theorem 2(G)

We are now prepared to prove Theorem 2(G). However, we preferably give the
proof for p = 2 in the later chapter 7 as it can be deduced from Theorem 2(

√
G)

in a comparatively easy way.
We could also do this for p ≥ 3 as we did for Theorem 1(G) in chapter 3,

but we have preferred to arrange the exposition of this thesis so that the reader
can first follow the situation for G, already complicated enough, without getting
into the technicalities of

√
G in K and the separable closure S of k. Furthermore

it turns out that the deduction for p ≥ 3 is less simple than the deduction for
p = 2.

5.1 Proof of Theorem 2(G) for p ≥ 5

We first prove Theorem 2(G) for p ≥ 5. Take a point (x, y, z) in P (G), with as
above d = d(x, y, z) = dimC(Cx+Cy+Cz). We already treated the cases d = 3
and d = 2. The case d = 1 is treated as in the proof of Theorem 1(

√
G). For

then x, y, z lie in C. If they are all in F∗p, then also in F∗p ∩G, so x = y = z = 1
and we are certainly in Tx(G) ∪ Ty(G). Otherwise Lemma 6 provides ex, ey, ez
in Z such that xp

ex , yp
ey , zp

ez lie in S but not in C. Therefore we conclude
that with e = max{ex, ey, ez} the triple

(x̃, ỹ, z̃) = (xp
e

, yp
e

, zp
e

)

is in S3 but not in C3. In our current situation however, this means that x̃,
ỹ, z̃ are all in k with x̃ + ỹ − z̃ = 1 and d(x̃, ỹ, z̃) ≥ 2. Due to Lemma 11
x̃, ỹ, z̃ are still in G and it follows from the above discussion that (x̃, ỹ, z̃) is as
in Proposition 1 or Proposition 2.

Now in Proposition 2 we see T ∗x , T
∗
y , which on raising to power q′ (q′ =

1, p, p2, . . .) end up in Tx, Ty as in Theorem 2(G).
We also see various δ([ψΠ]∗pΠ) for δ in D4. But by going back to projective

X,Y, Z,W it is not difficult to see that this is [ψΠ,δ]∗pΠδ for some ψΠ,δ and
Πδ = δ(Π). This is [ψΠ,δ]pΠδ with just Πδ removed. And the set of q′th powers
of elements of [ψΠ,δ]pΠδ is nothing else than [ψ0, ψΠ,δ]pΠδ. So we get all the
[ψ0, ψΠ]pΠ in Theorem 2(G) except that it seems that the q′th powers of the Πδ

are missing. However these are supplied by Proposition 1, because the Π there
has the same D4-orbit as the third and fifth Π in Proposition 2.

What about the first, second and fourth Π in Proposition 2? These belong
anyway in Tx, which we have already taken into account. This completes the
proof.

5.2 Proof of Theorem 2(G) for p = 3

We can follow the arguments of the preceding section, noting that Proposition 2
has been proved for p = 3 as well. However, Proposition 1 fails because Lemma
17 fails. Hand computation yields exactly six further examples with r(A) = 4,
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which come from

1 + t(1− t) = (1− t)2 + t2,

t+ t2(1− t) = t(1− t)2 + t3,

(1− t) + t(1− t)2 = (1− t)3 + t2(1− t),
1 + t2(1− t) = (1− t)3 + t2,

1 + t(1− t)2 = (1− t)2 + t3,

t+ (1− t) = (1− t)3 + t3.

Here the second and third equations give rise to the same projective points as
the first, so we may ignore them. Further the fourth, fifth and sixth equations
do not have d = 3. The first equation produces the point(

1
t2
,

1− t
t

,
(1− t)2

t2

)
,

and its D4-orbit accounts for the extra set T ′3 in Theorem 2(G).
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6 The equation x + y + z = −1 over
√

G

Dealing with the equation

x+ y + z = − 1 (6.1)

over
√
G we follow almost the same line of argumentation as we did for the

equation x+ y − z = 1 over G in section 4.
We start our investigations by considering the projective form of (6.1), which

is
X + Y + Z +W = 0. (6.2)

Here we immediately see an S4-action. And with (4.1) it is clear that S4 acts
as well on solutions (x, y, z) of (6.1).

Let now X,Y, Z,W in K satisfy (6.2). We then consider the dimension d as
in (4.3) which is of course stable under S4 in (6.2). Again this is the dimension
d(x, y, z) of Cx+ Cy + Cz and d = 2 or 3 as long as not all of x, y, z are in C.

Contrary to section 4 we first focus on the case d = 2 and then treat the
case d = 3.

Furthermore, we mention that two quadruples over K satisfying (6.2) give
rise to the same S4-orbit, if one of them can be obtained from the other by
multiplying some non-zero factor and ordering its elements by S4. It is just this
consideration which helps us to avoid counting the same S4-orbit twice.

6.1 The case d = 2

We start with the analogue of Lemma 18 while as there we define an equivalence
relation on K∗ by two elements having their quotient in C.

Lemma 19. Let (X,Y, Z,W ) in
√
G

4
be a solution of (6.2) with d = 2. Then

its S4-orbit contains a point where the equivalence classes in {X,Y, Z,W} are
described by one of

(1) {X,Z}, {Y,W},

(2) {Y,W}, {X}, {Z},

(3) {X}, {Y }, {Z}, {W}.
Proof. Of course, d = 2 implies that there are at least two classes due to (6.2).
If we have just two classes, this could not arise from one singleton and one
triplet, because then (6.2) would destroy the singleton. Thus there must be two
pairs and our S4-action allows us to take {X,Z}, {Y,W}. If there are three
classes, then we have two singletons and one pair, which by S4 can be chosen
as {X}, {Z}, {Y,W}. Finally, if the number of classes is four we see {X}, {Z},
{Y }, {W} and this completes the proof.

For the following proposition we define in a similar manner as in (1.12) the
cosets T̃x, T̃y and T̃z by

T̃x : x = −1, y+ z = 0, T̃y : y = −1, x+ z = 0, T̃z : z = −1, x+ y = 0.

Further, if Γ is a subgroup of
√
G then T̃x(Γ) denotes the set of all (−1, y,−y)

in Γ3 and we define T̃ ∗x (Γ) as the subset with y not in C. Similarly we define
T̃ ∗y (Γ) and T̃ ∗z (Γ) respectively.
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Proposition 3. Let x, y, z in S
√
G satisfy x + y + z = −1 and assume that

d = dimC Cx+ Cy + Cz = 2. If p ≥ 3 then (x, y, z) is in the set

T̃ ∗x ( S
√
G) ∪ T̃ ∗y ( S

√
G) ∪ T̃ ∗z ( S

√
G) ∪

⋃
a∈Fp

∗

a 6=1

3⋃
i=1

S4(Πi(a)) ∪
9⋃
j=1

S4([ψj ]∗pΠj)

with
Π1(a) = (−t, (a− 1)(1− t),−a(1− t)) ,
Π2(a) = (−(1− t), (a− 1)t,−at) ,
Π3(a) = (−a(1− t), a− 1,−at) ,

and the following points and
√
G-automorphisms

Π1 = (t,−t,−1) , ψ1(x, y, z) =
(

1− t
t

x,−y,−(1− t)z
)
,

Π2 =
(

(1− t)2

t
,−t,−1− t

t

)
, ψ2(x, y, z) =

(
t

1− t
x,−y,−tz

)
,

Π3 =
(
−(1− t)2,−t,−t(1− t)

)
, ψ3(x, y, z) =

(
− 1

1− t
x,−y,−1

t
z

)
,

Π4 = (1− t,−(1− t),−1) , ψ4(x, y, z) =
(

t

1− t
x,−y,−tz

)
,

Π5 =
(
−1− t

t
,

1− t
t

,−1
)
, ψ5(x, y, z) =

(
− 1

1− t
x,−y,−1

t
z

)
,

Π6 =
(

t2

1− t
,−(1− t),− t

1− t

)
, ψ6(x, y, z) =

(
1− t
t

x,−y,−(1− t)z
)

Π7 =
(
− 1
t(1− t)

,
1− t
t

,
1

1− t

)
, ψ7(x, y, z) =

(
−(1− t)x,−y, 1− t

t
z

)
,

Π8 =
(

t2

1− t
,− 1

1− t
, t

)
, ψ8(x, y, z) =

(
−1
t
x,−y,− 1

1− t
z

)
,

Π9 =
(
− 1
t(1− t)

,
t

1− t
,

1
t

)
, ψ9(x, y, z) =

(
−tx,−y, t

1− t
z

)
.

And if p = 2 then (x, y, z) is in the set

T̃ ∗x ( S
√
G) ∪ T̃ ∗y ( S

√
G) ∪ T̃ ∗z ( S

√
G) ∪

⋃
a∈Fp

∗

a6=1

3⋃
i=1

S4(Πi(a)) ∪ S4(Π∗) ∪
9⋃
j=1

S4([ψj ]∗pΠj)

for the additional point

Π∗ =
(
t(1− t), (1− t)3, t3

)
.

Proof. First, we mention that not all of x, y, z lie in C because otherwise d = 1.
Now, taking the projective form we may assume that X,Y, Z,W are in S

√
G

satisfying (6.2) and (4.1). Next, after adjusting by S4, we can assume that we
are in one of the three cases of Lemma 19 above.

In the first case we have Z = αX and W = βY with α, β in C. Thus

0 = X + Y + Z +W = (1 + α)X + (1 + β)Y
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and because X
Y is not in C we conclude α = β = −1. Therefore (4.1) gives rise

to the set T̃ ∗y ( S
√
G) and S4 provides the additional sets T̃ ∗x ( S

√
G) and T̃ ∗z ( S

√
G)

respectively.
The second and third case are treated in the following two subsections.

6.1.1 The case (3) of Lemma 19

Turning to the third case from Lemma 19 we temporarily take in the second case
as well. Here x, y are linearly independent over C and since d = 2 we see (4.11)
with α, β in C leading again to (4.13) with x1 = αxz 6= 0 and y1 = βyz 6= 0 in
k of degree at most 1.

Substituting (4.11) into x+ y + z = −1 we now get the slightly different

(1 + α)x+ (1 + β)y = − 1 (6.3)

leading to

(1 + α)x =
− ẏy
ẏ
y −

ẋ
x

, (1 + β)y =
ẋ
x

ẏ
y −

ẋ
x

(6.4)

with u1 = (1 + α)x, v1 = (1 + β)y in k of degree at most 1 again.
Similar to (4.16) above we then have

u1 = x+ x1z, v1 = y + y1z. (6.5)

We now restrict to the case (3). Again we can cut down the dependence of
(6.5) on p by deducing from Lemma 14 that x1, y1 and −u1,−v1 belong to the
sublist (2.9).

Similar to (4.17) we write these equations as

x

u1
+
x1z

u1
= 1,

y

v1
+
y1z

v1
= 1.

Then Lemma 16 provides integral powers qx, qy of p and points Πx = (ξ, ζx),
Πy = (η, ζy) in either L(Fp

∗
) or among the six points in Theorem 1(

√
G) such

that
x = u1ξ

qx , z =
u1

x1
ζqx
x , y = v1η

qy , z =
v1

y1
ζqy
y . (6.6)

Again, comparing the z-values gives (4.19) and we get w from (4.20) of degree
at most 2 not in Fp. Therefore Πx, Πy cannot both lie in L(Fp

∗
).

Further, for Πx = (ξ, ζx) one of the six points in Theorem 1(
√
G) we deduce

qx > 1 from (4.21). But if now Πy = (η, ζy) is in L(Fp
∗
) we conclude by

considering the degree of w that qx = 2. With the last table in Appendix A
we then deduce from ζ2

x = ζ
qy
y w that ζqy

y = 1 and so ζy = 1, a contradiction to
Πy ∈ L(Fp

∗
).

The same argument shows that there are no solutions in the case with Πx

in L(Fp
∗
) and Πy one of the six points in Theorem 1(

√
G).

Finally, we have the situation with Πx, Πy both among the six points in
Theorem 1(

√
G). Again we have qx > 1 and qy > 1 and if p ≥ 3 this leads to a

contradiction by degrees.
Therefore qx, qy are powers of 2 in Z; and since w = ζqx

x

ζ
qy
y

has degree at
most 2 it is the square of an element which by inspection of the last table of
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Appendix A we see must lie in (2.9). Further it is easily seen from (4.19) and
the calculations in Appendix A that (qx, qy) = (2, 2), (2, 4), (4, 2). But on a
closer look we actually see that the last two cases lead to the same solutions
with just x and y exchanged. Although our (x, y, z) has already been adjusted
in its S4-orbit, we stay in this orbit and also in the current case (3) of Lemma
19 if we interchange x and y; and therefore we can restrict to qx = 2.

Next, we note that for each ξ in the list (2.9) there is an automorphism ωξ
of Fp(t) taking t to ξ. Further ωξ preserves

√
G ∩ Fp(t) as well as each of the

cases (2), (3). We get an automorphism group Σ3 isomorphic to S3.
Now the action of Σ3 allows us to assume ζx = t. Nevertheless we still have

the six possibilities for ζy in the list (2.9) each with an exponent qy = 2, 4.
Taking first ζy = t we conclude that qy 6= 2 because w 6= 1. And comparing

the last table in Appendix A we find that x1 = 1
1−t , u1 = t

1−t for qy = 4. This
provides the point

Π∗ =
(
t(1− t), (1− t)3, t3

)
.

Actually, the three cases ζy = 1
t ,

1
1−t ,

1−t
t are ruled out at once because here

the degree of w is bigger than 2. And further the same considerations for the
remaining values ζy = 1−t, t

1−t lead to points in the orbit S4(Π∗). Furthermore,
we note that the S4-orbit of Π∗ is even invariant under Σ3, and hence only
S4(Π∗) turns up in our current case (3) when we reverse the Σ3-action.

6.1.2 The case (2) of Lemma 19

We now get back to case (2) of Lemma 19, which we left halfway through the
discussion above. Here y = Y

W is in C and hence by (6.4) we have α = −1 and
so u1 = 0, v1 = −1. Again it is this second case which provides most of the
points.

However, recalling that x1 + y1 = 1 with x1 in the list (2.9) the equations in
(6.5) become

x = − x1z, − y − (1− x1)z = 1;

and moreover, with the
√
G-automorphism ψ defined by

ψ(x, y, z) =
(

1− x1

x1
x,−y,−(1− x1)z

)
and (x′, y′, z′) = ψ(x, y, z) we see

x′ = z′, y′ + z′ = 1.

Here Theorem 1(
√
G) shows that (y′, z′) is either in L(Fp

∗
) or is a qth power of

one of the six points there because y′ in C.

Suppose first (y′, z′) = (1 − b, b) with b 6= 1 in Fp
∗
. Then by Σ3 we may

assume that x1 = t, which by ψ−1 leads to the point

(x, y, z) =
(

bt

1− t
, b− 1,− b

1− t

)
with projective form

(bt, (b− 1)(1− t),−b, 1− t) . (6.7)
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Then with a = 1
b 6= 1 in Fp

∗
and applying S4 we may replace this point by

Π1(a) = (−t, (a− 1)(1− t),−a(1− t)) .

However, the application of Σ3 to (6.7) gives rise to the additional projective
quadruples (up to S4)

(b(1− t), (b− 1)t,−b, t)
and

(−b(1− t), b− 1,−bt, 1) .

These lead (by S4 and with a = 1
b and a = b respectively) to the points

Π2(a) = (−(1− t), (a− 1)t,−at)

and
Π3(a) = (−a(1− t), a− 1,−at)

respectively.

Suppose next that (y′, z′) is a qth power of one of the six points in Theorem 1.
Due to Σ3 we may assume that (y′, z′) = (tq, (1 − t)q) with q = pe and since
y′ = −y is in C we have e ∈ N. We find

(x, y, z) = ψ−1(x′, y′, z′) =
(
x1(1− t)q

1− x1
,−tq,− (1− t)q

1− x1

)
where x1 is in the list (2.9). Taking each of these in turn we find three families
of solutions (up to S4). The first is

(x, y, z) = (ψ−1
1 ϕeψ1)Π1 =

(
t(1− t)q−1,−tq,−(1− t)q−1

)
with

Π1 = (t,−t,−1) and ψ1(x, y, z) =
(

1− t
t

x,−y,−(1− t)z
)
,

the second is

(x, y, z) = (ψ−1
2 ϕeψ2)Π2 =

(
(1− t)q+1

t
,−tq,− (1− t)q

t

)
with

Π2 =
(

(1− t)2

t
,−t,−1− t

t

)
and ψ2(x, y, z) =

(
t

1− t
x,−y,−tz

)
,

and the third is

(x, y, z) = (ψ−1
3 ϕeψ3)Π3 =

(
−(1− t)q+1,−tq,−t(1− t)q

)
with

Π3 =
(
−(1− t)2,−t,−t(1− t)

)
and ψ3(x, y, z) =

(
− 1

1− t
x,−y,−1

t
z

)
.

Again we have to reverse the Σ3-action. As above we consider the projective
form of each new family to prevent counting the same S4-orbit twice. All in all
we find the following six additional families.
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1.
(x, y, z) = (ψ−1

4 ϕeψ4)Π4 =
(
tq−1(1− t),−(1− t)q,−tq−1

)
with Π4 = (1− t,−(1− t),−1) and ψ4 = ψ2.

2.

(x, y, z) = (ψ−1
5 ϕeψ5)Π5 =

(
−1− t

tq
,

(1− t)q

tq
,− 1

tq−1

)
with Π5 =

(
− 1−t

t ,
1−t
t ,−1

)
and ψ5 = ψ3.

3.

(x, y, z) = (ψ−1
6 ϕeψ6)Π6 =

(
tq+1

1− t
,−(1− t)q,− tq

1− t

)
with Π6 =

(
t2

1−t ,−(1− t),− t
1−t

)
and ψ6 = ψ1.

4.

(x, y, z) = (ψ−1
7 ϕeψ7)Π7 =

(
− 1
tq(1− t)

,
(1− t)q

tq
,

1
tq−1(1− t)

)
with Π7 =

(
− 1
t(1−t) ,

1−t
t ,

1
1−t

)
and ψ7(x, y, z) =

(
−(1− t)x,−y, 1−t

t z
)
.

5.

(x, y, z) = (ψ−1
8 ϕeψ8)Π8 =

(
tq+1

(1− t)q
,− 1

(1− t)q
,

tq

(1− t)q−1

)
with Π8 =

(
t2

1−t ,−
1

1−t , t
)

and ψ8(x, y, z) =
(
− 1
tx,−y,−

1
1−tz

)
.

6.

(x, y, z) = (ψ−1
9 ϕeψ9)Π9 =

(
− 1
t(1− t)q

,
tq

(1− t)q
,

1
t(1− t)q−1

)
with Π9 =

(
− 1
t(1−t) ,

t
1−t ,

1
t

)
and ψ9(x, y, z) =

(
−tx,−y, t

1−tz
)

.

Thus everything in Proposition 3 turned up and its proof is thereby completed.

6.2 The case d = 3

Proposition 4. Let x, y, z in S
√
G satisfy x + y + z = −1 and assume that

d = dimC Cx+ Cy + Cz = 3. If p ≥ 5 then (x, y, z) is in the set

S4(Π2) ∪ S4(Π3) ∪ S4(Π8) ∪
3⋃
i=0

S4(Π∗i )

for the points Π2, Π3, Π8 from Proposition 3 and

Π∗0 =
(
−t3,−3t(1− t),−(1− t)3

)
, Π∗1 =

(
−t2,−2t(1− t),−(1− t)2

)
,

Π∗2 =
(
t2,−2t,−(1− t)2

)
, Π∗3 =

(
(1− t)2,−2(1− t),−t2

)
.
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If p = 3 then (x, y, z) is in the set

S4(Π2) ∪ S4(Π3) ∪ S4(Π8) ∪
3⋃
i=1

S4(Π∗i ).

Further there are no solutions for p = 2.

We need a preliminary lemma in which we use the set H from (4.4).

Lemma 20. Suppose X0, Y0, Z0,W0 are coprime in H with X0, Y0, Z0 linearly
independent over C. If the space of (a0, b0, c0, d0) in F4

p with

a0X0 + b0Y0 + c0Z0 + d0W0 = 0 (6.8)

contains a point with a0b0c0d0 6= 0 then this space has dimension 1 and(
a0X0

d0W0
,
b0Y0

d0W0
,
c0Z0

d0W0

)
is S4-equivalent to one of Π2,Π3,Π8,Π∗1,Π

∗
2,Π

∗
3 and (only if p 6= 3) Π∗0.

Proof. It is clear that the space has dimension at most 1 and that X0, Y0, Z0,W0

in H are different, otherwise X0, Y0, Z0 would be linearly dependent over Fp and
so over C.
We arrange the 10 elements of H in some order and consider the 210 quadruples
(X0, Y0, Z0,W0) with different X0, Y0, Z0,W0 in ascending order. Forgetting
for the moment about the last entry W0 we calculate for each of these the
WronskianW(X0, Y0, Z0) considered in Z. We reject those where this Wronskian
is zero mod p (if p ≥ 5 this turns out to be equivalent to being zero in Z), else
X0, Y0, Z0 would be linearly dependent over C due to Lemma 9. Further we
sort out all the quadruples where X0, Y0, Z0,W0 are not coprime. There remain
169 quadruples (X0, Y0, Z0,W0) provided p ≥ 5 and just 144 provided p = 3.
For each of these we equate coefficients in (6.8) to obtain a system of four
homogeneous linear equations in a0, b0, c0, d0. We calculate the determinant
in Z, and we reject those with determinant non-zero mod p (again if p ≥ 5
this turns out to be equivalent to being non-zero in Z). For the remaining
systems we calculate a generator (a0, b0, c0, d0) in Z4 and we reject those with
a0b0c0d0 zero mod p (again automatic if p ≥ 5). We find 7 different quadruples
(a0X0, b0Y0, c0Z0, d0W0) provided p ≥ 5 and just 6 provided p = 3 (See however
our calculations in Appendix B). The lemma follows.

Proof of Proposition 4. First of all we mention that p ≥ 3 because [S : C] =
p = 2 would imply that x, y and z are linearly dependent over C.

Similar to the proof of Proposition 1 we start by taking x + y + z = −1 as
well as its first and second derivative. We then see an associated determinant

∆ =

∣∣∣∣∣∣∣
1 1 1
ẋ
x

ẏ
y

ż
z

ẍ
x

ÿ
y

z̈
z

∣∣∣∣∣∣∣
and multiplying by xyz yields the Wronskian of x, y, z. Due to d = 3 these
latter are linearly independent over our field C of differential constants and we
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deduce by Lemma 9 that ∆ 6= 0. Therefore we get in the usual way (4.5) with
now

∆x =

∣∣∣∣∣∣∣
−1 1 1
0 ẏ

y
ż
z

0 ÿ
y

z̈
z

∣∣∣∣∣∣∣ , ∆y =

∣∣∣∣∣∣∣
1 −1 1
ẋ
x 0 ż

z
ẍ
x 0 z̈

z

∣∣∣∣∣∣∣ , ∆z =

∣∣∣∣∣∣∣
1 1 −1
ẋ
x

ẏ
y 0

ẍ
x

ÿ
y 0

∣∣∣∣∣∣∣ .
Again Lemma 12 then implies that x, y, z are in k of degree at most 3. And by

Lemma 10 we know that k
√
G is generated by G together with the elements of

F∗p. Thus we may assume that in terms of (4.1) we have

a0X0 + b0Y0 + c0Z0 + d0W0 = 0

with a0, b0, c0, d0 in F∗p and X0, Y0, Z0,W0 in H. Furthermore Lemma 7 and
Lemma 8 imply

0 6= W(x, y, z) = W
(
a0X0

d0W0
,
b0Y0

d0W0
,
c0Z0

d0W0

)
=

a0b0c0
d3

0W
3
0

W(X0, Y0, Z0).

Therefore X0, Y0, Z0 are linearly independent over C, and by (4.1) it is also clear
that X0, Y0, Z0,W0 can be assumed to be coprime. Now the proof of Proposition
4 follows by Lemma 20.
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7 Proof of Theorem 2(
√

G)

We start with the analogue of Theorem 2(
√
G) for (1.8).

Theorem 2̃(
√
G). Suppose K = Fp(t), G = 〈t, 1− t〉 and that the plane P̃ is

defined by x+ y + z = −1. Then P̃ (
√
G) is

P̃ (Fp
∗
) ∪ T̃x(

√
G) ∪ T̃y(

√
G) ∪ T̃z(

√
G)

∪
⋃

Π∈T̃ ′

M̃Π(Fp
∗
) · [[ψ0]]pΠ ∪

⋃
Π∈T̃p

[[ψ0]]pΠ ∪
⋃

Π∈T̃

[[ψ0]]p[ψΠ]pΠ

for a set T̃ ′ of 36 points Π in (
√
G)3 with lines M̃Π, a set T̃p of points Π in

(
√
G)3, and a set T̃ of 216 points Π in (

√
G)3 with

√
G-automorphisms ψΠ.

Further if p ≥ 5 then T̃p contains 96 points, if p = 3 then 72 points, and if p = 2
then just 24 points.

Proof. We first show that P̃ (
√
G) is contained in the above union. Accordingly

let x, y, z in
√
G satisfy x+ y + z = −1. If they are all in Fp

∗ ⊂
√
G, then it is

rather clear that we may write

(x, y, z) = (α, β,−1− α− β)

with α, β in Fp
∗

satisfying α+ β 6= −1. Otherwise Lemma 6 provides ex, ey, ez
in Z such that xp

ex , yp
ey , zp

ez lie in S but not in C. Therefore we conclude
that with e = max{ex, ey, ez} the triple

(x̃, ỹ, z̃) = (xp
e

, yp
e

, zp
e

)

is in S3 but not in C3. Furthermore, we note that x̃+ ỹ+ z̃ = −1 and that the
dimension d of Cx̃+Cỹ+Cz̃ is either 2 or 3. Thus (x̃, ỹ, z̃) is as in Proposition
3 or Proposition 4; and we then get back to our original (x, y, z) by raising to
the power p−e. We shall look at these two Propositions in more detail now.

First, it is easily seen that from the set T̃ ∗x ( S
√
G) we get the set T̃x(

√
G) of

Theorem 2̃(
√
G) and similarly for the sets T̃ ∗y ( S

√
G) and T̃ ∗z ( S

√
G).

Next, supposing (x̃, ỹ, z̃) = Π∗0 provided p ≥ 5 we clearly get the set [[ψ0]]Π∗0
as well as its S4-orbit; and similarly for the points Π∗1, Π∗2, Π∗3 provided p ≥ 3
as well as Π∗ provided p = 2. Then the S4-orbits of these points lead to the set⋃

Π∈T̃p

[[ψ0]]pΠ

in Theorem 2̃(
√
G) with T̃p a set of 96 points in

√
G

3
provided p ≥ 5 and T̃3 a

set of 72 points in
√
G

3
as well as T̃2 a set of 24 points in

√
G

3
.

In almost the same manner we can deal with (x̃, ỹ, z̃) = Π1(a) (a 6= 1 in Fp
∗
).

First we see Π1(a) = M̃Π ·Π with Π = (t, 1−t, 1−t) and a line M̃Π parametrized
by (−1, a − 1,−a). Here it is rather clear that the S4-orbit of the point Π has
just |S4|/2 = 12 elements, because its second and third coordinate are equal.
However, this does not hold for the S4-orbit of M̃Π. But taking b = 1 − a in
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Fp
∗

we see M̃Π = (−1,−b, b− 1). Thus (x̃, ỹ, z̃) is in the union of M̃Π(Fp
∗
) · Π

for 12 points Π; and going back to (x, y, z) we get a first subset of⋃
Π∈T̃ ′

M̃Π(Fp
∗
) · [[ψ0]]pΠ.

A second subset comes from (x̃, ỹ, z̃) = Π2(a) (a 6= 1 in Fp
∗
) by the exactly

same considerations.
In a similar way we can handle (x̃, ỹ, z̃) = Π3(a) (a 6= 1 in Fp

∗
). Here we

see a point Π = (1− t, 1, t) with a line M̃Π = (−a, a− 1,−a). Then the second
and fourth coordinate of the projective Π are both 1. And taking b = a

a−1 6= 1

in Fp
∗

in the projective M̃Π = (−a, a− 1,−a, 1) we see M̃Π = (−b, 1,−b, b− 1).
This completes the union over T̃ ′ in Theorem 2̃(

√
G).

Finally, we have the situation where (x̃, ỹ, z̃) is in the set

9⋃
j=1

S4([ψj ]∗pΠj)

from Proposition 3. First we consider the missing case e = 0 in [ψj ]∗p there.
Here we note that the points Π1,Π4,Π5 are in the set T̃z(

S
√
G) of Proposition 3

and the points Π2,Π3,Π6,Π7,Π8,Π9 turn up in Proposition 4 while S4(Π6) =
S4(Π2), S4(Π7) = S4(Π3), and S4(Π9) = S4(Π8). Therefore one may expect the
set

9⋃
j=1

S4([[ψ0]]p[ψj ]pΠj) (7.1)

in Theorem 2̃(
√
G).

But for e in N for example the point

(x̃, ỹ, z̃) = (ψ−1
1 ϕ−eψ1)Π1 =

(
t(1− t)p

−e−1,−tp
−e

,−(1− t)p
−e−1

)
satisfies x̃+ ỹ + z̃ = −1 as well. So why do we not get [[ψ0, ψj ]]p in (7.1)?
Actually, applying ϕe yields

ϕe(ψ−1
1 ϕ−eψ1)Π1 =

(
tp

e

(1− t)pe−1
,−t,− 1

(1− t)pe−1

)
,

which is in S4((ψ−1
1 ϕeψ1)Π1); and thus we see that

S4

(
(ψ−1

1 ϕ−eψ1)Π1

)
= S4

(
ϕ−e[ψ1]∗pΠ1

)
.
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And similarly we find

S4

(
(ψ−1

2 ϕ−eψ2)Π2

)
= S4

(
ϕ−e[ψ6]∗pΠ6

)
,

S4

(
(ψ−1

3 ϕ−eψ3)Π3

)
= S4

(
ϕ−e[ψ7]∗pΠ7

)
,

S4

(
(ψ−1

4 ϕ−eψ4)Π4

)
= S4

(
ϕ−e[ψ4]∗pΠ4

)
,

S4

(
(ψ−1

5 ϕ−eψ5)Π5

)
= S4

(
ϕ−e[ψ5]∗pΠ5

)
,

S4

(
(ψ−1

6 ϕ−eψ6)Π6

)
= S4

(
ϕ−e[ψ2]∗pΠ2

)
,

S4

(
(ψ−1

7 ϕ−eψ7)Π7

)
= S4

(
ϕ−e[ψ3]∗pΠ3

)
,

S4

(
(ψ−1

8 ϕ−eψ8)Π8

)
= S4

(
ϕ−e[ψ9]∗pΠ9

)
,

S4

(
(ψ−1

9 ϕ−eψ9)Π9

)
= S4

(
ϕ−e[ψ8]∗pΠ8

)
.

Therefore, it turns out that [[ψ0, ψj ]]p is not needed in (7.1) above.
Nevertheless, (7.1) still does not look like the corresponding set in Theorem

2̃(
√
G). But going back to the projective form of some σ([[ψ0]]p[ψj ]pΠj) for

σ ∈ S4 it is not difficult to see that this is [[ψ0]]p[ψj,σ]pΠj,σ for some point Πj,σ

and some
√
G-automorphism ψj,σ. Therefore we get the set⋃

Π∈T̃

[[ψ0]]p[ψΠ]pΠ

as requested and this settles the first part of the proof.
It remains to show that all these sets above are contained in P̃ (

√
G).

First, it is obvious that P̃ (Fp
∗
), T̃x(

√
G), T̃y(

√
G) and T̃z(

√
G) are in P̃ (

√
G).

Next, if some Π is in P̃ (
√
G), then because P̃ is defined over Fp clearly [[ψ0]]pΠ

is in P̃ (
√
G). Finally, if some Π is in P̃ (

√
G) and there is a line L defined

over Fp and a
√
G-automorphism ψ with ψ(Π) ∈ L ⊂ ψ(P ), then [[ψ0, ψ]]pΠ

is in P̃ (
√
G). This is because any ϕeψ(Π) lies in ϕe(L) = L so ψ−1ϕψ(Π)

lies in ψ−1(L) and so in P̃ thus also in P̃ (
√
G). This can be checked for the

Πi, ψi (i = 1, . . . , 9) and in fact all the lines L that arise are the one in (6.5).
This completes the proof of Theorem 2̃(

√
G).

Proof of Theorem 2(
√
G). Finally, one can quickly deduce Theorem 2(

√
G) from

Theorem 2̃(
√
G). For example P = ψ̃(P̃ ) and P̃ = ψ̃(P ) with ψ̃(x, y, z) =

(−x,−y, z). And because ψ̃ (like any automorphism) commutes with any ψ and
also (like any F∗p-automorphism) commutes with ϕ, it suffices just to change T̃x
to Tx = ψ̃(T̃x) and similar for Ty, Tz as well as for the other occurrent sets in
Theorem 2̃(

√
G). Thereby Theorem 2(

√
G) is proved.

7.1 Proof of Theorem 2(G) for p = 2

We finally prove Theorem 2(G) on G for p = 2 which now can be easily deduced
from Theorem 2(

√
G). Since P (G) is a subset of P (

√
G) we just have to put

out all the points not lying in G3.
First, we mention that the set P̃ (Fp

∗
) provides no solutions over G because

F2
∗∩G is empty. Next, the sets Tx(

√
G), Ty(

√
G) and Tz(

√
G) become of course
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Tx(G), Ty(G) and Tz(G) respectively.
Turning to the set ⋃

Π∈T ′
MΠ(F2

∗
) · [[ψ0]]pΠ

we obtain no solutions over G again because F2
∗ ∩G is empty.

For the last two sets⋃
Π∈T2

[[ψ0]]2Π and
⋃

Π∈T
[[ψ0, ψΠ]]2Π

we can argue similarly as we did in Lemma 16. It is then rather clear that the
double brackets become single brackets while the points in T2 and T as well as
the G-automorphisms ψΠ remain exactly the same. Theorem 2(G) for p = 2 is
thereby proved.
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A Tables for (4.19)

Here we present the calculations mentioned above in the sections 4.2.2 and 6.1.1
respectively.

In the first two tables below we calculate for all ζx, ζy in the list (2.9), however
without regarding the signs, the expression

ζqx
x

ζ
qy
y

from (4.19), while qx and qy are assumed to be powers of p in Z.

@
@@ζy
ζx t 1− t 1

t

t tqx−qy t−qy (1− t)qx t−qx−qy

1− t tqx(1− t)−qy (1− t)qx−qy t−qx(1− t)−qy

1
t tqx+qy tqy (1− t)qx t−qx+qy

1−t
t tqx+qy (1− t)−qy tqy (1− t)qx−qy t−qx+qy (1− t)−qy

1
1−t tqx(1− t)qy (1− t)qx+qy t−qx(1− t)qy

t
1−t tqx−qy (1− t)qy t−qy (1− t)qx+qy t−qx−qy (1− t)qy

@
@@ζy
ζx 1−t

t
1

1−t
t

1−t

t t−qx−qy (1− t)qx t−qy (1− t)−qx tqx−qy (1− t)−qx

1− t t−qx(1− t)qx−qy (1− t)−qx−qy tqx(1− t)−qx−qy

1
t t−qx+qy (1− t)qx tqy (1− t)−qx tqx+qy (1− t)−qx

1−t
t t−qx+qy (1− t)qx−qy tqy (1− t)−qx−qy tqx+qy (1− t)−qx−qy

1
1−t t−qx(1− t)qx+qy (1− t)−qx+qy tqx(1− t)−qx+qy

t
1−t t−qx−qy (1− t)qx+qy t−qy (1− t)−qx+qy tqx−qy (1− t)−qx+qy
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In the following table we calculate for all x1,−u1 in the list (2.9) the expression

x1v1

u1y1
= − x1(1 + u1)

u1(1− x1)

from (4.19) (recall that x1 + y1 = 1 and u1 + v1 = −1 from (4.12) and (6.3)
respectively).

@
@@−u1

x1 t 1− t 1
t − 1−t

t
1

1−t − t
1−t

t 1 (1−t)2
t2 − 1

t − (1−t)2
t − 1−t

t2 −(1− t)

1− t t2

(1−t)2 1 − t
(1−t)2 −t − 1

1−t − t2

1−t

1
t −t − (1−t)2

t 1 (1− t)2 1−t
t t(1− t)

− 1−t
t − t

(1−t)2 − 1
t

1
(1−t)2 1 1

t(1−t)
t

1−t

1
1−t − t2

1−t −(1− t) t
1−t t(1− t) 1 t2

− t
1−t − 1

1−t − 1−t
t2

1
t(1−t)

1−t
t

1
t2 1
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B Calculations for Lemma 20

Here we present the calculations we mentioned in the proof of Lemma 20.
First, we order the elements of H in the following way

1, t, 1− t, t2, t(1− t), (1− t)2, t3, t2(1− t), t(1− t)2, (1− t)3.

Taking the 210 quadruples (X0, Y0, Z0,W0) with different X0, Y0, Z0,W0 in
ascending order we reject those where the WronskianW(X0, Y0, Z0) is zero mod
p. Further we sort out all the quadruples where X0, Y0, Z0,W0 are not coprime.
For p = 3 there remain the following 144 quadruples (X0, Y0, Z0,W0).

1.
(
1, t, t2, t(1− t)

)
,

2.
(
1, t, t2, (1− t)2

)
,

3.
(
1, t, t2, t3

)
,

4.
(
1, t, t2, t2(1− t)

)
,

5.
(
1, t, t2, t(1− t)2

)
,

6.
(
1, t, t2, (1− t)3

)
,

7.
(
1, t, t(1− t), (1− t)2

)
,

8.
(
1, t, t(1− t), t3

)
,

9.
(
1, t, t(1− t), t2(1− t)

)
,

10.
(
1, t, t(1− t), t(1− t)2

)
,

11.
(
1, t, t(1− t), (1− t)3

)
,

12.
(
1, t, (1− t)2, t3

)
,

13.
(
1, t, (1− t)2, t2(1− t)

)
,

14.
(
1, t, (1− t)2, t(1− t)2

)
,

15.
(
1, t, (1− t)2, (1− t)3

)
,

16.
(
1, t, t2(1− t), t(1− t)2

)
,

17.
(
1, t, t2(1− t), (1− t)3

)
,

18.
(
1, t, t(1− t)2, (1− t)3

)
,

19.
(
1, 1− t, t2, t(1− t)

)
,

20.
(
1, 1− t, t2, (1− t)2

)
,

21.
(
1, 1− t, t2, t3

)
,

22.
(
1, 1− t, t2, t2(1− t)

)
,

23.
(
1, 1− t, t2, t(1− t)2

)
,

24.
(
1, 1− t, t2, (1− t)3

)
,

25.
(
1, 1− t, t(1− t), (1− t)2

)
,

26.
(
1, 1− t, t(1− t), t3

)
,

27.
(
1, 1− t, t(1− t), t2(1− t)

)
,

28.
(
1, 1− t, t(1− t), t(1− t)2

)
,

29.
(
1, 1− t, t(1− t), (1− t)3

)
,

30.
(
1, 1− t, (1− t)2, t3

)
,

31.
(
1, 1− t, (1− t)2, t2(1− t)

)
,

32.
(
1, 1− t, (1− t)2, t(1− t)2

)
,

33.
(
1, 1− t, (1− t)2, (1− t)3

)
,

34.
(
1, 1− t, t2(1− t), t(1− t)2

)
,

35.
(
1, 1− t, t2(1− t), (1− t)3

)
,

36.
(
1, 1− t, t(1− t)2, (1− t)3

)
,

37.
(
1, t2, t(1− t), (1− t)2

)
,

38.
(
1, t2, t(1− t), t3

)
,

39.
(
1, t2, t(1− t), t2(1− t)

)
,

40.
(
1, t2, t(1− t), t(1− t)2

)
,

41.
(
1, t2, t(1− t), (1− t)3

)
,

42.
(
1, t2, (1− t)2, t3

)
,

43.
(
1, t2, (1− t)2, t2(1− t)

)
,

44.
(
1, t2, (1− t)2, t(1− t)2

)
,

45.
(
1, t2, (1− t)2, (1− t)3

)
,

46.
(
1, t2, t(1− t)2, (1− t)3

)
,
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47.
(
1, t(1− t), (1− t)2, t3

)
,

48.
(
1, t(1− t), (1− t)2, t2(1− t)

)
,

49.
(
1, t(1− t), (1− t)2, t(1− t)2

)
,

50.
(
1, t(1− t), (1− t)2, (1− t)3

)
,

51.
(
1, t(1− t), t2(1− t), t(1− t)2

)
,

52.
(
1, t(1− t), t2(1− t), (1− t)3

)
,

53.
(
1, t(1− t), t(1− t)2, (1− t)3

)
,

54.
(
1, (1− t)2, t2(1− t), t(1− t)2

)
,

55.
(
1, (1− t)2, t2(1− t), (1− t)3

)
,

56.
(
1, t2(1− t), t(1− t)2, (1− t)3

)
,

57.
(
t, 1− t, t2, t(1− t)

)
,

58.
(
t, 1− t, t2, (1− t)2

)
,

59.
(
t, 1− t, t2, t3

)
,

60.
(
t, 1− t, t2, t2(1− t)

)
,

61.
(
t, 1− t, t2, t(1− t)2

)
,

62.
(
t, 1− t, t2, (1− t)3

)
,

63.
(
t, 1− t, t(1− t), (1− t)2

)
,

64.
(
t, 1− t, t(1− t), t3

)
,

65.
(
t, 1− t, t(1− t), t2(1− t)

)
,

66.
(
t, 1− t, t(1− t), t(1− t)2

)
,

67.
(
t, 1− t, t(1− t), (1− t)3

)
,

68.
(
t, 1− t, (1− t)2, t3

)
,

69.
(
t, 1− t, (1− t)2, t2(1− t)

)
,

70.
(
t, 1− t, (1− t)2, t(1− t)2

)
,

71.
(
t, 1− t, (1− t)2, (1− t)3

)
,

72.
(
t, 1− t, t2(1− t), t(1− t)2

)
,

73.
(
t, 1− t, t2(1− t), (1− t)3

)
,

74.
(
t, 1− t, t(1− t)2, (1− t)3

)
,

75.
(
t, t2, (1− t)2, t3

)
,

76.
(
t, t2, (1− t)2, t2(1− t)

)
,

77.
(
t, t2, (1− t)2, t(1− t)2

)
,

78.
(
t, t2, (1− t)2, (1− t)3

)
,

79.
(
t, t2, t3, (1− t)3

)
,

80.
(
t, t2, t2(1− t), (1− t)3

)
,

81.
(
t, t2, t(1− t)2, (1− t)3

)
,

82.
(
t, t(1− t), (1− t)2, t3

)
,

83.
(
t, t(1− t), (1− t)2, t2(1− t)

)
,

84.
(
t, t(1− t), (1− t)2, t(1− t)2

)
,

85.
(
t, t(1− t), (1− t)2, (1− t)3

)
,

86.
(
t, t(1− t), t3, (1− t)3

)
,

87.
(
t, t(1− t), t2(1− t), (1− t)3

)
,

88.
(
t, t(1− t), t(1− t)2, (1− t)3

)
,

89.
(
t, (1− t)2, t3, t2(1− t)

)
,

90.
(
t, (1− t)2, t3, t(1− t)2

)
,

91.
(
t, (1− t)2, t3, (1− t)3

)
,

92.
(
t, (1− t)2, t2(1− t), t(1− t)2

)
,

93.
(
t, (1− t)2, t2(1− t), (1− t)3

)
,

94.
(
t, (1− t)2, t(1− t)2, (1− t)3

)
,

95.
(
t, t3, t2(1− t), (1− t)3

)
,

96.
(
t, t3, t(1− t)2, (1− t)3

)
,

97.
(
t, t2(1− t), t(1− t)2, (1− t)3

)
,

98.
(
1− t, t2, t(1− t), (1− t)2

)
,

99.
(
1− t, t2, t(1− t), t3

)
,

100.
(
1− t, t2, t(1− t), t2(1− t)

)
,

101.
(
1− t, t2, t(1− t), t(1− t)2

)
,

102.
(
1− t, t2, t(1− t), (1− t)3

)
,

103.
(
1− t, t2, (1− t)2, t3

)
,

104.
(
1− t, t2, (1− t)2, t2(1− t)

)
,

105.
(
1− t, t2, (1− t)2, t(1− t)2

)
,
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106.
(
1− t, t2, (1− t)2, (1− t)3

)
,

107.
(
1− t, t2, t3, t2(1− t)

)
,

108.
(
1− t, t2, t3, t(1− t)2

)
,

109.
(
1− t, t2, t3, (1− t)3

)
,

110.
(
1− t, t2, t2(1− t), t(1− t)2

)
,

111.
(
1− t, t2, t2(1− t), (1− t)3

)
,

112.
(
1− t, t2, t(1− t)2, (1− t)3

)
,

113.
(
1− t, t(1− t), t3, t2(1− t)

)
,

114.
(
1− t, t(1− t), t3, t(1− t)2

)
,

115.
(
1− t, t(1− t), t3, (1− t)3

)
,

116.
(
1− t, (1− t)2, t3, t2(1− t)

)
,

117.
(
1− t, (1− t)2, t3, t(1− t)2

)
,

118.
(
1− t, (1− t)2, t3, (1− t)3

)
,

119.
(
1− t, t3, t2(1− t), t(1− t)2

)
,

120.
(
1− t, t3, t2(1− t), (1− t)3

)
,

121.
(
1− t, t3, t(1− t)2, (1− t)3

)
,

122.
(
t2, t(1− t), (1− t)2, t3

)
,

123.
(
t2, t(1− t), (1− t)2, t2(1− t)

)
,

124.
(
t2, t(1− t), (1− t)2, t(1− t)2

)
,

125.
(
t2, t(1− t), (1− t)2, (1− t)3

)
,

126.
(
t2, t(1− t), t3, (1− t)3

)
,

127.
(
t2, t(1− t), t2(1− t), (1− t)3

)
,

128.
(
t2, t(1− t), t(1− t)2, (1− t)3

)
,

129.
(
t2, (1− t)2, t3, t2(1− t)

)
,

130.
(
t2, (1− t)2, t3, t(1− t)2

)
,

131.
(
t2, (1− t)2, t3, (1− t)3

)
,

132.
(
t2, (1− t)2, t2(1− t), t(1− t)2

)
,

133.
(
t2, (1− t)2, t2(1− t), (1− t)3

)
,

134.
(
t2, (1− t)2, t(1− t)2, (1− t)3

)
,

135.
(
t2, t3, t(1− t)2, (1− t)3

)
,

136.
(
t2, t2(1− t), t(1− t)2, (1− t)3

)
,

137.
(
t(1− t), (1− t)2, t3, t2(1− t)

)
,

138.
(
t(1− t), (1− t)2, t3, t(1− t)2

)
,

139.
(
t(1− t), (1− t)2, t3, (1− t)3

)
,

140.
(
t(1− t), t3, t2(1− t), (1− t)3

)
,

141.
(
t(1− t), t3, t(1− t)2, (1− t)3

)
,

142.
(
(1− t)2, t3, t2(1− t), t(1− t)2

)
,

143.
(
(1− t)2, t3, t2(1− t), (1− t)3

)
,

144.
(
t3, t2(1− t), t(1− t)2, (1− t)3

)
.

And for p ≥ 5 the following 25 quadruples (X0, Y0, Z0,W0) are added.

1.
(
1, t, t3, t2(1− t)

)
,

2.
(
1, t, t3, t(1− t)2

)
,

3.
(
1, t, t3, (1− t)3

)
,

4.
(
1, 1− t, t3, t2(1− t)

)
,

5.
(
1, 1− t, t3, t(1− t)2

)
,

6.
(
1, 1− t, t3, (1− t)3

)
,

7.
(
1, t2, t3, t2(1− t)

)
,

8.
(
1, t2, t3, t(1− t)2

)
,

9.
(
1, t2, t3, (1− t)3

)
,

10.
(
1, t2, t2(1− t), t(1− t)2

)
,

11.
(
1, t2, t2(1− t), (1− t)3

)
,

12.
(
1, t(1− t), t3, t2(1− t)

)
,

13.
(
1, t(1− t), t3, t(1− t)2

)
,

14.
(
1, t(1− t), t3, (1− t)3

)
,

15.
(
1, (1− t)2, t3, t2(1− t)

)
,

16.
(
1, (1− t)2, t3, t(1− t)2

)
,
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17.
(
1, (1− t)2, t3, (1− t)3

)
,

18.
(
1, (1− t)2, t(1− t)2, (1− t)3

)
,

19.
(
1, t3, t2(1− t), t(1− t)2

)
,

20.
(
1, t3, t2(1− t), (1− t)3

)
,

21.
(
1, t3, t(1− t)2, (1− t)3

)
,

22.
(
t, 1− t, t3, t2(1− t)

)
,

23.
(
t, 1− t, t3, t(1− t)2

)
,

24.
(
t, 1− t, t3, (1− t)3

)
,

25.
(
(1− t)2, t3, t(1− t)2, (1− t)3

)
.

For each of these we equate coefficients in (6.8) to obtain a system of four
homogeneous linear equations in a0, b0, c0, d0. We calculate the determinant in
Z, and we reject those with determinant non-zero mod p (again if p ≥ 5 this
turns out to be equivalent to being non-zero in Z).
Among the remaining systems we find in 16 cases a generator (a0, b0, c0, d0) in
Z4 for p = 3, namely

(X0, Y0, Z0,W0) (a0, b0, c0, d0)(
1, t, t2, t(1− t)

)
(0,−1, 1, 1)(

1, t, t2, (1− t)2
)

(−1, 2,−1, 1)(
1, t, t(1− t), (1− t)2

)
(−1, 1, 1, 1)(

1, 1− t, t2, t(1− t)
)

(−1, 1, 1, 1)(
1, 1− t, t2, (1− t)2

)
(1,−2,−1, 1)(

1, 1− t, t(1− t), (1− t)2
)

(0,−1, 1, 1)(
1, t2, t(1− t), (1− t)2

)
(−1, 1, 2, 1)(

1, t(1− t), t2(1− t), t(1− t)2
)

(0,−1, 1, 1)(
t, 1− t, t2, t(1− t)

)
(−1, 0, 1, 1)(

t, 1− t, t2, (1− t)2
)

(1,−1,−1, 1)(
t, 1− t, t(1− t), (1− t)2

)
(0,−1, 1, 1)(

t, (1− t)2, t(1− t)2, (1− t)3
)

(0,−1, 1, 1)(
1− t, t2, t(1− t), (1− t)2

)
(−1, 0, 1, 1)(

1− t, t2, t3, t2(1− t)
)

(0,−1, 1, 1)(
t2, (1− t)2, t3, t2(1− t)

)
(−1, 0, 1, 1)(

t2, (1− t)2, t(1− t)2, (1− t)3
)

(0,−1, 1, 1)

For p ≥ 5 the following four additional cases with a generator (a0, b0, c0, d0)
in Z4 arise.
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(X0, Y0, Z0,W0) (a0, b0, c0, d0)(
1, t2, t3, t2(1− t)

)
(0,−1, 1, 1)(

1, t(1− t), t3, (1− t)3
)

(−1, 3, 1, 1)(
1, (1− t)2, t(1− t)2, (1− t)3

)
(0,−1, 1, 1)(

(1− t)2, t3, t(1− t)2, (1− t)3
)

(−1, 0, 1, 1)

After rejecting those with a0b0c0d0 zero mod p (again automatic if p ≥ 5)
there remain the following quadruples (X0, Y0, Z0,W0) and (a0, b0, c0, d0) for
p ≥ 5.

(X0, Y0, Z0,W0) (a0, b0, c0, d0)(
1, t, t2, (1− t)2

)
(−1, 2,−1, 1)(

1, t, t(1− t), (1− t)2
)

(−1, 1, 1, 1)(
1, 1− t, t2, t(1− t)

)
(−1, 1, 1, 1)(

1, 1− t, t2, (1− t)2
)

(1,−2,−1, 1)(
1, t2, t(1− t), (1− t)2

)
(−1, 1, 2, 1)(

1, t(1− t), t3, (1− t)3
)

(−1, 3, 1, 1)(
t, 1− t, t2, (1− t)2

)
(1,−1,−1, 1)

These lead in this order to the points Π∗2,Π3,Π8,Π∗3,Π
∗
1,Π

∗
0 and Π2 respectively.

For p = 3 we obtain the same list, while however

(X0, Y0, Z0,W0) =
(
1, t(1− t), t3, (1− t)3

)
, (a0, b0, c0, d0) = (−1, 3, 1, 1)

is missing because here a0b0c0d0 = 0.
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C Intersection of curves in x+y−z = 1 with tori

When one intersects an algebraic variety V in affine space An (or equivalently
the multiplicative group Gn

m) with a set of the form Gn, where G is a finitely
generated multiplicative group, one is in the situation associated with the names
Mordell-Lang. This terminology is also sometimes applied when intersecting V
with (

√
G)n, where

√
G is rather the radical or division group inside some large

field of some finitely generated G. The special case when G is the trivial group
is sometimes associated with the names Manin-Mumford, and amounts to the
study of points on V whose coordinates are roots of unity (or in a broader con-
text torsion points in some ambient semiabelian variety).

In zero characteristic these intersections are comparatively well-understood,
and are usually studied with the aid of the Subspace Theorem or generalizations
of it. This often results in lack of effectivity, especially if the dimension of V is
at least two.

In positive characteristic our knowledge is not so precise. Indeed the main
results for zero characteristic are usually no longer valid without some sort of
extra assumptions, and the proofs often involve tools from logic such as Model
Theory. This can also result in lack of effectivity.

Contrary to this we would like to remind of the work of Derksen and Masser
[DM] in 2012. There they gave an alternative approach to Mordell-Lang in pos-
itive characteristic, at least for linear varieties V , which does lead to effective
results. We stated their main Theorem in the introduction above and gave some
examples for it in the main part of the present work.

Now since the fundamental papers of Zilber [Zi] and Pink [P] it is recog-
nised that problems of Mordell-Lang type and Manin-Mumford type can be put
in a wider context sometimes known as that of Unlikely Intersections (see for
example the recent book [Za] of Zannier). Here we should mention the sets
V ∩G3 and even V ∩ (

√
G)3 from our Theorems 2 (G) and 2 (

√
G) respectively

when V is the plane in A3 defined by x + y − z = 1. These can be examined
in this context by somewhat artificially embedding V in A5 by means of two
extra variables u, v, which take constant values u = t, v = 1− t. Then between
the values of the five variables x, y, z, u, v there are at least three independent
multiplicative relations. The same trick can be performed when G is replaced
by any G′ with two generators, and for more generators we just have to increase
the embedding dimension.

Now in zero characteristic the problems for surfaces in A5 have not been
completely solved. So we will not attempt to investigate V ∩ (

√
G′)3 by these

methods. In fact in this Appendix C we will restrict ourselves to curves.
In zero characteristic the main conjecture for curves even in An has been

proved essentially by Maurin [Mau] (see also Bombieri-Habegger-Masser-Zannier
[BHMZ]). His result, when combined with the main result of Bombieri, Masser
and Zannier [BMZ], gives the following.

Let K be an algebraically closed field of zero characteristic and let C in Gn
m

be an absolutely irreducible curve defined over K. Assume that for any non-zero
(r1, . . . , rn) in Zn the monomial

xr11 · · ·xrn
n

in the function field K(C) is not 1. Then there are at most finitely many points
(ξ1, . . . , ξn) in C(K) for which there exist linearly independent (a1, . . . , an),
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(b1, . . . , bn) in Zn with

ξa1
1 · · · ξan

n = ξb11 · · · ξbn
n = 1.

However all this work on Unlikely Intersections is in zero characteristic, and
as might be guessed the conjectures for zero characteristic are no longer valid
in positive characteristic. Indeed for n = 2 the conditions on ξ1, . . . , ξn are
equivalent to them being roots of unity, and already the set L(Fp

∗
) in Theorem

1 (
√
G) for the curve x+ y = 1 gives a simple counterexample.

Masser [Mas1] has made a start on formulating some conjectures for general
V in Gn

m. Here is the version for curves, in which the non-constant condition
on a single monomial is replaced by a new algebraic independence condition on
a pair of monomials.

Conjecture. Let K be an algebraically closed field of positive characteristic p
and let C in Gn

m be an absolutely irreducible curve defined over K. Assume that
for any linearly independent (r1, . . . , rn), (s1, . . . , sn) in Zn the monomials

xr11 · · ·xrn
n , xs11 · · ·xsn

n

in the function field K(C) are algebraically independent over Fp. Then there are
at most finitely many points (ξ1, . . . , ξn) in C(K) for which there exist linearly
independent (a1, . . . , an), (b1, . . . , bn) in Zn with

ξa1
1 · · · ξan

n = ξb11 · · · ξbn
n = 1.

Masser has shown the necessity of the new condition (which of course breaks
down for x + y = 1), and given evidence for its sufficiency by proving the
conjecture for n = 2 and n = 3.

The main object of this Appendix C is again to work out some examples
when K is the algebraic closure K = Fp(t) of Fp(t) and n = 3. This time we
do not take a specific curve C, but we do make the assumption that C in G3

m

is contained in a plane defined over Fp. This is not quite as restrictive as it
looks. For example we can regard a curve over Fp(t) as a surface over Fp and
so there is certainly some non-trivial equation f(x, y, z) = 0 over Fp. We are
essentially assuming that f has degree 1 so this surface is a plane. If this plane
has a zero coefficient then Masser’s condition is not satisfied, so we shall assume
that all the coefficients are non-zero. Then after a simple change of coordinates
it can be assumed to be our old friend x+ y − z = 1. In that case it turns out
that Masser’s new condition can be slightly weakened, and then we will obtain
some quite strong explicit bounds for the cardinality of the finite set in the
above conjecture. They involve the degree deg C of C. It is not so easy to find
a treatment in the literature of this concept of degree in affine space. In two
dimensions it is simply the degree of the unique irreducible defining equation.
Already in three dimensions the defining equations are not unique. But in our
situation with C contained in the plane x + y − z = 1 we can project to the
(x, y)-plane; we get a curve C′ there, and as it can be shown that deg C = deg C′
it suffices here simply to define the former as the latter.

Here is our main result, which may remind one of Theorems 1 and 2 of
Voloch’s paper [Vol2].
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Theorem 3. Let C be an absolutely irreducible curve in G3
m defined over K and

lying in the plane P defined by x+ y − z = 1. Assume that x, y in the function
field K(C) are algebraically independent over Fp. Then there are at most

(deg C)2 + 2p2 deg C

points (ξ, η, ζ) in C(K) for which there exist linearly independent (a1, b1, c1),
(a2, b2, c2) in Z3 with

ξa1ηb1ζc1 = ξa2ηb2ζc2 = 1. (C.1)

This result becomes false when we consider a general plane P defined over
Fp. For a counterexample take the plane x + y = z and the curve defined by
y = t in this plane. Thus the curve is parametrized by (x, t, x+t) where the first
and the second coordinate are algebraically independent over Fp. But when we
take x = αt for any α in Fp we see the point (x, y, z) = (αt, t, (α + 1)t) and
there are of course two relations(x

z

)a1

=
(y
z

)b2
= 1 (C.2)

for suitable a1 and b2 in N, while (a1, 0,−a1) and (0, b2,−b2) are linearly inde-
pendent in Z3.

We prove Theorem 3 in section C.2 and also verify the necessity of the alge-
braic independence condition.

Of course we would prefer to know the finite set itself in Theorem 3 instead
of estimates for its cardinality. It is a familiar feature of these problems in zero
characteristic that this is usually impossible. But we already showed in this
work that in positive characteristic it is possible, at least in the Mordell-Lang
and Manin-Mumford situation. This carries over to Unlikely Intersections, and
to illustrate this we give the following example. It treats (in disguise) the line
C parametrized by x in

(x, y, z) = (x, x− t, 2x− t− 1),

lying in the plane P defined by x+ y − z = 1.

Theorem 4. Let x 6= 0, x− t 6= 0, 2x− t− 1 6= 0 be in K such that

xa1(x− t)b1(2x− t− 1)c1 = xa2(x− t)b2(2x− t− 1)c2 = 1

for linearly independent (a1, b1, c1), (a2, b2, c2) in Z3. Then x = 1, t+ 1 and in
addition x = 1

2 t provided p ≥ 3.

As there is hardly any dependence on p here this result suggests that the
dependence on p in Theorem 3 might be improved.

C.1 Preliminaries

We start with an effective version of the above Conjecture for n = 2 which
essentially involves roots of unity. It is also reminiscent of [Vol2].
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Proposition 5. Let K be an algebraically closed field of characteristic p and
let C be an absolutely irreducible curve in G2

m defined over K. Assume that
the variables x, y in the function field K(C) are algebraically independent over
Fp. Then there are at most (deg C)2 points (ξ, η) in C(K) for which there exist
linearly independent (a1, b1), (a2, b2) in Z2 with

ξa1ηb1 = ξa2ηb2 = 1. (C.3)

Proof. At first let (a1, b1), (a2, b2) in Z2 be linearly independent and let π =
(ξ, η) on C satisfy (C.3). We then claim that ξ, η are roots of unity. To see this
we first eliminate η from (C.3) to get

ξa1b2−b1a2 = 1

with a1b2 − b1a2 6= 0 because (a1, b1) and (a2, b2) are linearly independent; and
this means that ξ is a root of unity. The same argument works for η and hence
ξ, η are in Fp

∗
as claimed.

We may describe C by an equation f(x, y) = 0 where f 6= 0 is in K[x, y].
More precisely we have d = deg C in N and

f(x, y) =
∑
i,j≥0
i+j≤d

fijx
iyj

for fij in K. Next let π1 = (ξ1, η1), . . . , πl = (ξl, ηl) in Fp
2

be l points on C as
above. Consider the l ×m matrix

1 ξ1 η1 ξ2
1 ξ1η1 η2

1 · · · ξd1 · · · ηd1
1 ξ2 η2 ξ2

2 ξ2η2 η2
2 · · · ξd2 · · · ηd2

...
...

...
...

...
...

...
...

1 ξl ηl ξ2
l ξlηl η2

l · · · ξdl · · · ηdl


with m = 1

2 (d + 1)(d + 2). If the rank of this matrix is m then our equations
f(πi) = 0 (i = 1, . . . , l) would imply f = 0 which is not the case. So the rank
is strictly less than m. This means that we can find f0 6= 0 in Fp[x, y] of total
degree at most d such that f0(πi) = 0 (i = 1, . . . , l). Let C0 in G2

m be the curve
defined by f0(x, y) = 0.

Suppose that l > d2 ≥ deg f deg f0. We then deduce from the well known
theorem of Bézout (see for example Walker [W] p.59) that C∩C0 is again a curve
in G2

m. But C is assumed to be an absolutely irreducible curve and hence C is a
component of C0. In particular it follows that C is defined over Fp, which means
that the variables x and y are algebraically dependent over Fp in contradiction
to the assumption in the proposition. Therefore l ≤ (deg C)2 and this completes
the proof.

We can check the necessity of the independence condition in Proposition 5
as follows. Indeed if now x, y are not algebraically independent over Fp then
we can take f over Fp. We can assume that f involves y. Now the polynomial
f(x, 0) is not identically zero otherwise y would vanish identically on C. We can
therefore find infinitely many ξ in Fp

∗
with f(ξ, 0) 6= 0. We can further ensure

that f(ξ, y) involves y for infinitely many ξ. Pick one of these ξ. If every η in Fp

55



with f(ξ, η) = 0 (if any) satisfies also η = 0 then by the Nullstellensatz f(ξ, y)
would divide some power of y in Fp[y]. Thus f(ξ, y) = γyb for some γ in Fp

∗

and some non-negative integer b (possibly depending on ξ).
However y does not divide f(ξ, y) as f(ξ, 0) 6= 0. Therefore f(ξ, y) = γ,

contradicting one of the conditions above on ξ.
Thus for infinitely many ξ in Fp

∗
we can find η in Fp with η 6= 0. Now we have

infinitely many points (ξ, η) in C(K) with independent relations ξa1 = ηb2 = 1
for suitable non-zero integers a1, b2.

In other words, if C is defined over Fp then C(Fp
∗
) is infinite.

To give an extremal example for Proposition 5 let A,B be two sets each with
d elements in Fp

∗
, and pick t transcendental over Fp. Then∏

α∈A
(x− α) = t

∏
β∈B

(y − β)

defines a curve C not over Fp with degree d and exactly d2 torsion points
(α, β) (α ∈ A, β ∈ B). We show that C is irreducible by means of a trick
which actually uses Proposition 5. Suppose that C splits into irreducible com-
ponents C1 ∪ · · · ∪ Cr. Then none of these could be defined over Fp otherwise if
for example C1 was defined over Fp then C1(Fp

∗
) and so C(Fp

∗
) would be infinite

from the remark above. Thus by Proposition 5 applied to the components, say
of degrees d1, . . . , dr respectively, we would see that |C(Fp

∗
)| ≤ d2

1 + · · · + d2
r.

However |C(Fp
∗
)| = d2 = (d1 + · · · + dr)2; and this forces r = 1. Hence indeed

C is irreducible, and thus we see that Proposition 5 is the best possible result.
The next result, over K = Fp(t), is the main ingredient for the proof of

Theorem 3. But we specifically exclude torsion points. This enables us to get
by with a hypothesis of linear rather than algebraic independence.

Proposition 6. Let C be an absolutely irreducible curve in G3
m defined over K

lying in a plane P defined over Fp. Assume that any three of 1, x, y, z in the
function field K(C) are linearly independent over Fp. Then there are at most
(p2 + p+ 1) deg C points π = (ξ, η, ζ) in C(K), π /∈ (Fp

∗
)3, for which there exist

linearly independent (a1, b1, c1), (a2, b2, c2) in Z3 with (C.1).

Before we prove Proposition 6 we state the following lemma.

Lemma 21. Let π = (ξ, η, ζ) in K3 satisfy (C.1) with linearly independent
(a1, b1, c1), (a2, b2, c2) in Z3.

1. Then we always find another linearly independent pair (a1, b1, c1), (a2, b2, c2)
in Z3 such that (C.1) still holds and not all the minors

ρ = b1c2 − c1b2, σ = c1a2 − a1c2, τ = a1b2 − b1a2

are divisible by p.

2. If further π is not in Fp
3

and satisfies ξ+η−ζ = 1 then also ρξ+ση−τζ = 0
holds, i.e. π lies on P ∩ P ′ where P and P ′ are planes given by

P : x+ y − z = 1, P ′ : ρx+ σy − τz = 0. (C.4)
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Proof. Certainly, by Frobenius we may assume that not all of a1, b1, c1 are di-
visible by p. Similarly for a2, b2, c2.

Next, we show how to make sure that not all the minors are divisible by p.
Let Λ = Z(a1, b1, c1) + Z(a2, b2, c2) in Z3 be the corresponding two-dimensional
lattice. Its determinant ∆(Λ) is given by ρ2 + σ2 + τ2. Further by elementary
divisor theory there are a basis (λ1,λ2,λ3) of Z3 and positive integers d1, d2,
such that (d1λ1, d2λ2) is a basis of Λ. For Λ0 = Zλ1 + Zλ2 we can write

[Λ0 : Λ] = d1d2 = prs

with integers r, s ≥ 0 and p not dividing s. However, writing di = prisi (i = 1, 2)
in integers ri ≥ 0 and si not divisible by p we get a group

Λ′ = Zs1λ1 + Zs2λ2

in between Λ0 and Λ with [Λ0 : Λ′] = s1s2 = s and [Λ′ : Λ] = pr1+r2 = pr. We
further have ∆(Λ′) = s2 = ρ′2 +σ′2 + τ ′2 with ρ′, σ′, τ ′ the minors of the matrix
formed by s1λ1, s2λ2. Thus ρ′, σ′, τ ′ are not all divisible by p and these are the
new ρ, σ, τ .

Further for any λ′ = (λ′1, λ
′
2, λ
′
3) in Λ′ we see that prλ′ lies in Λ and so from

(C.1) we have
ξp

rλ′1ηp
rλ′2ζp

rλ′3 = 1.

Hence ξλ
′
1ηλ

′
2ζλ

′
3 = 1 for all (λ′1, λ

′
2, λ
′
3) in Λ′. So the effect is simply to increase

the Λ implicit in (C.1) to Λ′. This completes the first part of the proof with the
new (a1, b1, c1), (a2, b2, c2) as s1λ1, s2λ2.

Turning to the second part, we mention that due to our assumption that π
is not in Fp

3
Lemma 6 enables us to choose q = pe (e ∈ Z) minimal such that

ξq = ξq, ηq = ηq, ζq = ζq all lie in the maximal separable algebraic extension S
of Fp(t). We then have

ξa1
q η

b1
q ζ

c1
q = ξa2

q η
b2
q ζ

c2
q = 1

and we can differentiate logarithmically with respect to t to get

0 = a1
ξ̇q
ξq

+ b1
η̇q
ηq

+ c1
ζ̇q
ζq

= a2
ξ̇q
ξq

+ b2
η̇q
ηq

+ c2
ζ̇q
ζq
. (C.5)

Further from ξ + η − ζ = 1 we see by Frobenius that ξq + ηq − ζq = 1 and by
differentiating with respect to t we get ζ̇q = ξ̇q + η̇q. Together with (C.5) this
implies

0 =
(
a1

ξq
− c1
ζq

)
ξ̇q +

(
b1
ηq
− c1
ζq

)
η̇q

0 =
(
a2

ξq
− c2
ζq

)
ξ̇q +

(
b2
ηq
− c2
ζq

)
η̇q

a linear system in ξ̇q, η̇q with determinant say ∆.
Now ξ̇q, η̇q cannot both be zero; otherwise ξq, ηq and so ζq would all three

be in the field of constants C of S, which by Lemma 3 is Sp. But then ξq/p,
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ηq/p, ζq/p would all be in S, contradicting the minimality of q. Thus

0 = ∆ =
(
a1

ξq
− c1
ζq

)(
b2
ηq
− c2
ζq

)
−
(
b1
ηq
− c1
ζq

)(
a2

ξq
− c2
ζq

)

=
b1c2 − c1b2

ζqηq
+
c1a2 − a1c2

ξqζq
+
a1b2 − b1a2

ξqηq

and this emerges as ρξq + σηq − τζq = 0. Then reversing Frobenius yields the
requested relation. Indeed, the equation ρx+σy− τz = 0 stands for a plane P ′

because ρ, σ, τ are not all divisible by p (and hence are not all zero in Fp); this
completes the proof of the lemma.

Proof of Proposition 6. It is clear that P cannot go through the origin, because
otherwise its equation would force x, y, z to be linearly dependent over Fp. Thus
P is given by an equation

αx+ βy + γz = 1 (α, β, γ ∈ Fp).

We then would deduce from γ = 0 that 1, x, y are linearly dependent over
Fp. Similarly if α = 0 or β = 0; and therefore α, β, γ are all non-zero. After
a possible transformation of coordinates however (which does not affect the
hypotheses or conclusions of the proposition) we may assume that P is given
by x+ y − z = 1.

Let now π in C(K) satisfy (C.1). We then deduce from Lemma 21 that π
lies on P ∩ P ′ with (C.4). Write C ∩ P ′ as a union X1 ∪ · · · ∪ Xr of algebraic
sets. Suppose the dimension of X1∪· · ·∪Xr is 1. This means that Xi is a curve
for some i ∈ {1, . . . , r}. But then Xi ⊂ C implies Xi = C because the curve C is
assumed to be absolutely irreducible. Therefore C lies in the plane P ′ through
the origin implying that the variables x, y, z are linearly dependent over Fp; but
this is excluded by assumption. Therefore the dimension of C ∩ P ′ is zero. We
could further deduce from Bézout’s theorem that the intersection of our curve
C and the line P ′ ∩ P contains at most deg C points π; but actually in our
situation we can again reduce to the two-dimensional situation with f(x, y) = 0
and (τ − ρ)x+ (τ − σ)y = τ .

But where does the factor p2 + p + 1 in the proposition come from? Going
back to the equation ρx + σy − τz = 0 for P ′ in (C.4) we mention that there
are p3 − 1 possibilities to choose ρ, σ, τ because not all of them can be zero in
Fp at the same time. Thus we have to consider several planes depending on the
choice of ρ, σ, τ . Here two such equations define the same plane if and only if
one of them can be obtained from the other by multiplication with an element
in F∗p. This means that we have |P2(Fp)| = (p3−1)/(p−1) = p2 +p+1 different
planes and this completes the proof.

The condition that any three of 1, x, y, z in the function field K(C) are lin-
early independent over Fp is indeed crucial for the validity of Proposition 6 as
the following examples show.

Going back to the counterexample, which we gave right after Theorem 3
we mention that the coordinates x, y, z there are linearly dependent over Fp.
Further, for any α 6= −1 in Fp

∗
the point π = (αt, t, (α + 1)t) is not in (Fp

∗
)3

and satisfies the relations (C.2) for suitable a1, b2 in N.
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Next we give a counterexample when it is 1, x, y that are linearly dependent
over Fp. Consider the plane y = x + 1 over Fp and take the curve defined by
z = t in this plane. Thus the curve is parametrized by (x, x + 1, t) and cer-
tainly contains no points in (Fp

∗
)3. Then for any α 6= −1 in Fp

∗
and the point

π = (α, α + 1, t) we find the independent relations αa1 = (α + 1)b2 = 1 for
suitable a1, b2 in N.

On grounds of symmetry we find similar counterexamples with 1, x, z and
1, y, z linearly dependent over Fp.

We were not able however to find extremal examples which show that the
dependence on either p or deg C is necessary.

C.2 Proof of Theorems 3 and 4

We start with Theorem 3.

Proof of Theorem 3. We first mention that because x, y inK(C) are algebraically
independent over Fp then so are any two of the variables x, y, z. This is of course
due to the relation x+ y − z = 1.

Let π on C(K) be a point not in (Fp
∗
)3. Suppose now that x, y, z are linearly

dependent over Fp. Then substituting z = x+ y − 1 into this dependence rela-
tion would imply the forbidden algebraic dependence of x and y over Fp. And
furthermore any linear dependence relation between 1 and any two of x, y, z is
an algebraic dependence relation over Fp between these two variables. Thus we
may apply Proposition 6 giving rise to at most

(p2 + p+ 1) deg C ≤ 2p2 deg C

points π.
Now to the points π in (Fp

∗
)3. As x+y−z = 1 on the curve C it is clear that

the projection down to G2
m with coordinates x, y is also a curve C′, defined say

by an absolutely irreducible polynomial f in K[x, y]. In fact C is then defined
by the pair of equations

x+ y − z = 1, f(x, y) = 0 (C.6)

and as discussed above we have deg C = deg C′.
Furthermore x, y in K(C′) remain algebraically independent over Fp. Hence

all the conditions in Proposition 5 are satisfied and so we get at most (deg C′)2

points (ξ, η) in C′(Fp). But as we see from (C.6) there is a one-to-one correspon-
dence between the two sets C′(Fp) and C(Fp). This completes the proof.

Now we check the necessity of the algebraic independence condition in The-
orem 3, rather as we did for Proposition 5.

Indeed if now x, y are not algebraically independent over Fp then (C.6) con-
tinues to hold and now we can take f over Fp. We can assume that f involves
y. Now the polynomials f(x, 0) and f(x, 1 − x) are not identically zero oth-
erwise y or x + y − 1 = z would vanish identically on C. We can therefore
find infinitely many ξ in Fp

∗
with f(ξ, 0)f(ξ, 1 − ξ) 6= 0. We can further en-

sure that f(ξ, y) involves y for infinitely many ξ. Pick one of these ξ. If every
η in Fp with f(ξ, η) = 0 (if any) satisfies also η(η − 1 + ξ) = 0 then by the
Nullstellensatz f(ξ, y) would divide some power of y(y − 1 + ξ) in Fp[y]. Thus
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f(ξ, y) = γyb(y − 1 + ξ)c for some γ in Fp
∗

and some non-negative integers b, c
(possibly depending on ξ).

However y does not divide f(ξ, y) as f(ξ, 0) 6= 0; and similarly y−1 + ξ does
not divide f(ξ, y) as f(ξ, 1− ξ) 6= 0. Therefore f(ξ, y) = γ, contradicting one of
the conditions above on ξ.

Thus for infinitely many ξ in Fp
∗

we can find η in Fp
∗

with ζ = η−1+ξ 6= 0.
Now we have infinitely many points (ξ, η, ζ) in C(K) with independent relations
ξa1 = ηb2 = 1 for suitable non-zero integers a1, b2 (and even ζc3 = 1 too).

Now for Theorem 4.

Proof of Theorem 4. Here we deduce from Lemma 21

ξ + η − ζ = 1, ρξ + ση − τζ = 0

for (ξ, η, ζ) = (x, x− t, 2x− t− 1) while ρ, σ, τ are not all zero. Thus

0 = ρx+ σ(x− t)− τ(2x− t− 1) = (ρ+ σ − 2τ)x+ (τ − σ)t+ τ.

Here ρ+σ−2τ = 0 would immediately force τ−σ = τ = 0 and so ρ = σ = τ = 0,
which is impossible. Therefore it follows that x = αt+ β with α, β in Fp.

Now we can eliminate 2x− t− 1 = (2α− 1)t+ 2β − 1 from the relations in
Theorem 4 to get a non-trivial multiplicative relation between x = αt + β and
x− t = (α− 1)t+β. If α 6= 0, α− 1 6= 0 these have degree 1 in Fp[t]. By unique
factorization this implies that the polynomials are associate and thus

0 =
∣∣∣∣ α β
α− 1 β

∣∣∣∣ = β.

Similarly by eliminating x− t we find

0 =
∣∣∣∣ α β

2α− 1 2β − 1

∣∣∣∣ = − α+ β

if α 6= 0, 2α− 1 6= 0. And

0 =
∣∣∣∣ α− 1 β

2α− 1 2β − 1

∣∣∣∣ = − α− β + 1

if α− 1 6= 0, 2α− 1 6= 0. But these three equations are inconsistent.
If p ≥ 3 it follows that α = 0, 1, 1

2 .
If α = 0 then the third equation gives β = 1 and so x = 1 as in Theorem 4.
Similarly if α = 1, 1

2 we get the other two solutions x = t+1, 1
2 t respectively.

The case p = 2 is left to the reader.
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D Two exponential diophantine equations

In this section we find all solutions of the equation

3a + 5b − 7c = 1 (D.1)

in non-negative integers a, b, c, and also all solutions of the equation

y2 = 3a + 2b + 1. (D.2)

in integers y and non-negative integers a, b.
The equation (D.1) has been mentioned by Masser [Mas1] (p.203) as an

example for which there is still no algorithm to solve completely. It can be
interpreted as a special case of an S-unit equation, or, in a broader context, an
equation of the type covered by the classical results of Mordell-Lang type. The
structure of the solution set can be determined using the Subspace Theorem
applied to the more general S-unit equation

x0 + x1 + · · ·+ xn = 0 (D.3)

in non-zero rational integers x0, x1, . . . , xn with no common factor. When these
integers are composed of primes from a fixed finite set, the consequence is that
(1.3) has at most finitely many solutions satisfying∑

i∈I
xi 6= 0 (D.4)

for all non-empty subsets I of {1, . . . , n}. This (D.4) in our case (D.1) is hardly
any restriction, and one finds at once that the solution set of (D.1) is at most
finite. The general theory also provides an explicit estimate for the number
of solutions. But the recent Theorem 1 (p.808) of the paper [ESS] of Evertse,
Schlickewei and Schmidt gives only the upper bound exp(4.189) ≈ 10344585380964,
which is little use in actually finding the solutions. The same can be said even
for the improvement 241944 ≈ 102683 by Amoroso and Viada [AmVi]. And it is
notorious that in general there are no effective estimates at all for the sizes of the
solutions of (D.3). Here we will use a relatively simple method of congruences
to show that the only solutions are in fact a = b = c = 0 and a = b = c = 1.

The equation (D.2) has been mentioned by Zannier [Z1] (pp.61,62) and [Z2]
(p.1) and Corvaja and Zannier [CZ2] (p.296), [CZ3] (pp.168,169) (see also [Z3]
(p.434), [CZ1] and [C] (p.130)) in the context of the Lang-Vojta Conjecture (see
for example [HS] (p.486)). Here the term y2 prevents the use of the Subspace
Theorem as above. And indeed they remark that it is not even known whether
the solution set is finite or not, unless one assumes such a conjecture. One can
also assume a version for (D.3) which was formulated in elementary terms by
Vojta [Voj] (p.7). Namely, for every λ > 1 there is a constant C and a non-
zero homogeneous polynomial F , each depending only on n and λ, such that all
solutions of (D.3) in coprime integers satisfy

max{|x0|, |x1|, . . . , |xn|} ≤ CPλ (D.5)

where P is the product of all the primes dividing the x0, x1, . . . , xn; however
(D.4) now has to be replaced by

F (x1, . . . , xn) 6= 0. (D.6)
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For n = 2 this is of course the intractable abc-conjecture.
With (D.2) we get at once y2 ≤ C(6|y|)λ in (D.5) and so it suffices to fix

λ < 2. Now the failure of (D.6) is not so trivial; but (with x0 = y2) it would
lead to a point (x1, x2) = (3a, 2b) on one of a finite set of fixed curves. Now since
3 and 2 are multiplicatively independent a well-known result of Liardet (see for
example Theorem 7.3 (p.207) of [L]) implies that there are at most finitely many
such points unless x1 or x2 is constant on one of the curves. But when a or b
is constant in (D.2) then it is easy to establish the finiteness, for example with
n = 2 in Vojta’s Conjecture.

Thus a fortiori there is no algorithm for the complete solution. Nevertheless
we will use the same congruence method to show that the set is indeed finite and
in fact that the only solutions are y = ±2, a = 0, b = 1 and y = ±6, a = 1, b = 5
and y = ±6, a = b = 3.

Because both equations do actually have solutions, it may seem impossible
that we can use congruences to prove the finiteness. And indeed it would be
impossible for equations that are polynomial in all the variables. Here we have
exponential terms like 3a. The values of this for example modulo 12 at a =
0, 1, 2, 3, 4, . . . are 1, 3, 9, 3, 9, . . .; of course eventually periodic but not at once.
So if we can show that 3a must be 1 modulo 12, then we deduce a = 0 and
not just a congruence for a. It is this principle that we shall exploit, for various
moduli the largest of which is 1820. In fact the various moduli could be taken
together to show that we get no more solutions of (D.1) modulo 27927900 (and
even 20475); however this kind of simplification seems not to be possible for
(D.2).

Of course our method is far too special to be considered as a contribution
to the theory of either the S-unit equation or the Vojta Conjecture. See also
the remark in the footnote of [Z1] (p.57). But its success with the fairly natural
equations (D.1) and (D.2) perhaps gives hope that it can be applied to other
interesting equations of the same sort. This is certainly true of y2 = 10a+6b+1
also mentioned in [Z1] (p.60), for example; and already there the same is noted
for the two-variable equation y2 = 5a + 2a + 7.

D.1 The equation 3a + 5b − 7c = 1

In this section we prove the following result.

Theorem 5. Let a, b, c in N0 = N∪{0} satisfy (D.1); then either a = b = c = 0
or a = b = c = 1.

Proof. We need one simple observation.

Lemma 22. Let a, b, c be in N0 with (D.1) and abc = 0; then a = b = c = 0.

Proof. At first let a = 0. Then (D.1) appears as 5b = 7c which forces b = c = 0.
Similarly if we start with b = 0. Finally, c = 0 leads to 3a + 5b = 2 and so again
a = b = c = 0, which completes the proof of the present lemma.

Lemma 22 shows that either a = b = c = 0 or a, b, c ∈ N and hence in the
following we may assume a, b, c ∈ N.

Let us consider the following table, where we calculate values of 3n, 5n, 7n
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modulo 1820
n 1 2 3 4 5 6 7 8 9 10 11 12 13

3n (mod 1820) 3 9 27 81 243 729 367 1101 1483 809 607 1 3

5n (mod 1820) 5 25 125 625 1305 1065 1685 1145 265 1325 1165 365 5

7n (mod 1820) 7 49 343 581 427 1169 903 861 567 329 483 1561 7

Here we get the same values for n = 1 and n = 13, hence we see a period of
length 12 when we calculate the table above for all n in N.

Now, for m, k in N0 we define {m}k = m + kN0. Then the values of n for
which the triple (3n, 5n, 7n) lies in various congruence classes modulo 1820 form
subsets {1}12, . . . , {11}12 of N.

Perhaps with the help of a computer we now look for (a, b, c) with 1 ≤
a, b, c ≤ 12 such that

3a + 5b − 7c ≡ 1 (mod 1820)

In fact we find that (a, b, c) = (1, 1, 1) is the only triple as required and this
proves that a, b, c lie in the set {1}12, which means that

a ≡ b ≡ c ≡ 1 (mod 12) (D.7)

However, we rerun the procedure above modulo 341. Due to (D.7) we just
consider values with n ≡ 1 (mod 12) and get the table

n 1 13 25 37 49 61
3n (mod 341) 3 148 254 141 136 3
5n (mod 341) 5 191 67 36 284 5
7n (mod 341) 7 112 87 28 107 7

Here we see a period of length 60 and, as before, we find that (1, 1, 1) is the only
solution of (D.1) modulo 341 from the table above. This implies that

a ≡ b ≡ c ≡ 1 (mod 60)

Let us continue with the following table modulo 50

n 1 61 121
3n (mod 50) 3 3 3
5n (mod 50) 5 25 25
7n (mod 50) 7 7 7

Here we have only the two classes {1}0 = {1} and {61}60, in which the first class
is finite because the sequence 5n (mod 50) is not periodic but only eventually
so. Now looking for solutions of (D.1) modulo 50 forces b = 1.

Thus with (D.1) we get the new equation

7c − 3a = 4. (D.8)

And here
n 1 61 121

7n (mod 9) 7 7 7
3n (mod 9) 3 0 0

which forces in a similar way a = 1. Now (D.8) implies that c = 1 and this
completes the proof of Theorem 5.
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D.2 The equation y2 = 3a + 2b + 1

In this section we prove the following result.

Theorem 6. Let y in Z and a, b in N0 satisfy (D.2); then either y = ±2 and
a = 0, b = 1 or y = ±6 and a = 1, b = 5 or a = b = 3.

At first we note that y 6= 0 and hence we may assume y ∈ N without loss of
generality.

Lemma 23. Let y in N and a, b in N0 with ab = 0 satisfy (D.2); then y = 2
and a = 0, b = 1.

Proof. At first let a = 0. Then b 6= 0 because 3 is not a square. Further b = 1
leads to y2 = 4 and so y = 2. If now b ≥ 2 then 4 | 2b and so

y2 ≡ 2 (mod 4),

impossible because y2 ≡ 0, 1 (mod 4).
Otherwise we have a in N and b = 0 which leads to

y2 ≡ 2 (mod 3),

impossible because y2 ≡ 0, 1 (mod 3). This completes the proof.

Therefore we may assume that a, b are in N.

Lemma 24. Let y, a, b in N satisfy (D.2); then 6 divides y.

Proof. We calculate (D.2) modulo 2. Then

y2 ≡ 3a + 2b + 1 ≡ 1 + 0 + 1 ≡ 0 (mod 2),

hence y2 is even and so is y.
Similarly we consider (D.2) modulo 3. Here

(y + 1)(y − 1) ≡ y2 − 1 ≡ 3a + 2b ≡ 2b 6≡ 0 (mod 3).

So neither y+1 nor y−1 is divisible by 3 and hence 3 divides y, which completes
the proof of the present lemma.

Lemma 24 shows that y = 6x for some x in N and thus (D.2) appears as

36x2 = 3a + 2b + 1. (D.9)

Lemma 25. Let x, a, b in N satisfy (D.9). Then exactly one of the following
holds:

1. x = 1 and either a = 1, b = 5 or a = b = 3,

2. x is odd, a ≡ 1 (mod 8), and b ≡ 3 (mod 6) with a 6= 1, b 6= 3.

Proof. Considering (D.9) modulo 36 we get

0 ≡ 3a + 2b + 1 (mod 36). (D.10)
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Further we calculate in the table below 3n and 2n modulo 36 for 1 ≤ n ≤ 8.

n 1 2 3 4 5 6 7 8
3n (mod 36) 3 9 27 9 27 9 27 9
2n (mod 36) 2 4 8 16 32 28 20 4

Here we note that we get the same values for n = 2 and n = 8. Hence we see a
period of length 6 when we calculate the table above for all n in N or rather we
get a partition of N with the classes

{1}0 = {1}, {2}6 = 2 + 6N0, . . . , {7}6 = 7 + 6N0. (D.11)

We now look for all (a, b) with 1 ≤ a, b ≤ 7 satisfying (D.10) and with the table
above we find

(a, b) = (1, 5), (3, 3), (5, 3), (7, 3).

Together with (D.11) this implies that for a, b ∈ N we have either a = 1 and
b ∈ {5}6 or a is in one of the sets {3}6, {5}6, {7}6 and b ∈ {3}6.

Consider first a = 1. Then (D.9) appears as

36x2 = 2b + 4

and hence
(6x+ 2)(6x− 2) = 2b.

Thus 6x + 2 and 6x − 2 are powers of 2 and (6x + 2) − (6x − 2) = 4 yields
6x+ 2 = 8 and 6x− 2 = 4 respectively; so x = 1 and b = 5.

Otherwise a 6= 1 is odd and b ≡ 3 (mod 6). Now b = 3 in (D.9) leads to

36x2 = 3a + 9

and similar to above we see that 6x+ 3 and 6x−3 are powers of 3 with (6x+ 3)
−(6x − 3) = 6; hence x = 1 and a = 3, which completes the first part of the
lemma.

Let now b 6= 3. Since a is odd (D.9) yields

36x2 ≡ 3 + 0 + 1 ≡ 4 (mod 8)

and thus x is odd. So x = 2z + 1 and now

36x2 = 288
z(z + 1)

2
+ 36 ≡ 4 (mod 32)

Therefore (D.9) leads to
3 ≡ 3a (mod 32).

For the values of 3n (mod 32) we consider the following table

n 1 3 5 7 9
3n (mod 32) 3 27 19 11 3

Here we see a period of length 8 and hence that a ≡ 1 (mod 8). Therefore the
present lemma is proved.
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Lemma 26. There are no x, a, b in N with (D.9) which satisfy the conditions
of the second part of Lemma 25.

Proof. Suppose that we have such x, a, b in N. We then consider (D.9) modulo
120. Therefore we use the table

n 3 5 7
3n (mod 120) 27 3 27
2n (mod 120) 8 32 8

Similar to above we see a period of length 4 and a ≡ 1 (mod 8) with a 6= 1
implies that a is in the set {5}4 = 5 + 4N0. Further we note that

36x2 ≡

 36 (mod 120), x ≡ ±1 (mod 10),
84 (mod 120), x ≡ ±3 (mod 10),
60 (mod 120), x ≡ 5 (mod 10).

Therefore we find that b ∈ {5}4 as well because 36x2 6≡ 12 (mod 120). So the
left side of (D.9) is 36 (mod 120) and hence we have x = ±1 (mod 10). Further
b ∈ {5}4 implies that b ≡ 9 (mod 12) because b ≡ 3 (mod 6).

Next we consider (D.9) modulo 560. Therefore we use the following table

n 5 9 13 17
3n (mod 560) 243 83 3 243
2n (mod 560) 32 512 352 32

Thus we see a period of length 12. Now a ≡ 1 (mod 8) with a 6= 1 means that
a is in one of the sets {5}12, {9}12, {13}12 and b ≡ 9 (mod 12) shows b ∈ {9}12.
Further, x ≡ ±1 (mod 10) and we get

36x2 ≡


36 (mod 560), x ≡ ±1,±29 (mod 70),

116 (mod 560), x ≡ ±9,±19 (mod 70),
436 (mod 560), x ≡ ±11,±31 (mod 70),
196 (mod 560), x ≡ ±21 (mod 70);

and thus we see that a is not in the set {13}12.
Finally, let us consider (D.9) modulo 208. Here we have a table

n 5 9 13 17
3n (mod 208) 35 131 3 35
2n (mod 208) 32 96 80 32

Again we see a period of length 12 and as above it follows that a is in one of
the sets {5}12, {9}12, {13}12 and b ∈ {9}12. And x ∈ N is odd so we find

36x2 ≡



36 (mod 208), x ≡ ±1 (mod 26),
116 (mod 208), x ≡ ±3 (mod 26),
68 (mod 208), x ≡ ±5 (mod 26),

100 (mod 208), x ≡ ±7 (mod 26),
4 (mod 208), x ≡ ±9 (mod 26),

196 (mod 208), x ≡ ±11 (mod 26),
52 (mod 208), x ≡ 13 (mod 26).
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But this forces a ∈ {13}12, which is a contradiction to above; and this completes
the proof of the present lemma.

Now the proof of Theorem 6 follows directly from the lemmas above.
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