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ABSTRACT  

Objective. As compared to knee chondrocytes (KC), talar chondrocytes (TC) have superior 

synthetic activity and increased resistance to catabolic stimuli. We investigated whether these 

properties are maintained after TC are isolated and expanded in vitro. 

Methods. Human TC and KC from 10 cadavers were expanded in monolayer and then 

cultured in pellets for 3 and 14 days or in hyaluronan meshes (Hyaff®-11) for 14 and 28 days. 

Resulting tissues were assessed biochemically, histologically, biomechanically and by real-

time RT-PCR. The proteoglycan and collagen synthesis rates in the pellets were also 

measured following exposure to IL-1β. 

Results. After 14 days of pellet culture, TC and KC expressed similar levels of types I and II 

collagen mRNA and the resulting tissues contained comparable amounts of 

glycosaminoglycans (GAG) and displayed similar staining intensities for type II collagen. 

Also proteoglycan and collagen synthesis were similar in TC and KC pellets, and dropped to a 

comparable extent in response to IL-1β. Following 14 days of culture in Hyaff®-11, TC and 

KC generated tissues with similar amounts of GAG and types I and II collagen. After 28 days, 

KC deposited significantly larger fractions of GAG and type II collagen than TC, although the 

trend was not reflected in the measured biomechanical properties.  

Conclusion. After isolation from their original matrices and culture expansion, TC and KC 

displayed similar biosynthetic activities, even in the presence of catabolic stimuli. These in 

vitro data suggest a possible equivalence of TC and KC as autologous cell sources for the 

repair of talar cartilage lesions.  

 

Running headline: human knee and talar chondrocytes comparison 
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INTRODUCTION 

Among the many surgical options for the treatment of symptomatic chondral and 

osteochondral lesions of the talus in the ankle joint1, implantation of autologous chondrocytes 

is gaining increasing popularity, especially for critically sized defects1-3. For direct or matrix-

associated autologous chondrocyte implantation (ACI) in the talar cartilage, cells are typically 

harvested from a low weight bearing area of the ipsilateral knee joint, since it is easier 

accessible and can guarantee larger size biopsy as compared to the affected ankle joint2-5. On 

the other hand, following substantiated considerations related to cell density in ankle cartilage 

and to the still controversial issue of morbidity at the harvest site in the knee, Matricali et al. 

proposed that “the ankle should not be excluded a priori as a possible biopsy site” for 

chondrocyte isolation6. The authors further indicated that ankle cartilage specimens could be 

harvested arthroscopically at the posteromedial rim of the talar bone. The use of talar 

chondrocytes (TC) instead of knee chondrocytes (KC), which was introduced in a recent 

clinical study4, would also be supported by the potential advantage of deriving from a joint 

which is less susceptible than the knee to degenerative processes and has greater capacity for 

repair in response to damage7. Indeed, there is a general consensus on the fact that – as 

compared to KC –  TC have higher synthesis rates of cartilaginous matrix proteins7-9, as well 

as the capacity to organize a denser extracellular matrix, providing an increased resistance to 

loading and decreased sensitivity to mechanical damage10.  

 For ACI-based treatment of talar lesions, TC or KC would need to be isolated from their own 

microenvironment and expanded in vitro, which is typically associated with cell 

dedifferentiation and loss of the original chondrocyte phenotype11,12. Thus, in order to 

advocate potential biological advantages in the use of TC as compared to KC as a source for 

autologous cell-based talar cartilage repair, it is necessary to assess whether following 

dedifferentiation TC and KC will retain the differences in biosynthetic activity and tissue 

forming capacity displayed in the native tissue. So far, to the best of our knowledge, only two 
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studies have compared isolated TC and KC, with controversial findings. Huch et al. reported 

that TC, following isolation and culture in alginate beads, maintained a higher synthetic 

activity as compared to KC9, whereas Aurich et al., using the same culture system,  found that 

isolated TC and KC displayed similar rates of glycosaminoglycan synthesis13. Importantly, 

both studies have been limited to the use of freshly harvested chondrocytes, and thus do not 

provide an indication on the biosynthetic activity and chondrogenic capacity of the cells 

following culture expansion, which would be relevant in the context of ACI procedures.  

In the present study, we aimed at comparing TC and KC with respect to features which could 

have a direct implication for cell-based cartilage repair procedures, for which an in vitro cell 

expansion phase is required. Thus, we investigated their proliferation rate and post-expansion 

biosynthetic activity, capacity to generate cartilaginous tissues and response to IL-1β, a 

catabolic factor normally present in injured joints. For this purpose, considering the typically 

large inter-individual variability in chondrocyte function14, TC and KC were isolated from 

different sites of the same individuals. Cells were expanded in monolayers and transferred to 

different 3D systems which have previously been used as standard models to investigate 

chondrocyte re-differentiation and synthesis of cartilage-specific extracellular matrix proteins, 

namely culture in micromass pellets and into 3D porous scaffolds. 

 

MATERIALS AND METHODS 

 

Cartilage biopsies, chondrocyte isolation and expansion 

Adult human TC and KC were collected post-mortem from full-thickness biopsies of the 

femoral condyle or of the talus of 10 individuals (mean age: 55 years, range 32-79 years) 

without macroscopic signs of arthritis, following informed consent by relatives and in 

accordance with the Local Ethical Committee. Cartilage tissues were weighed, minced in 

small pieces and digested with 0.15% type II collagenase (10 mL solution/g tissue) for 22 
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hours. The isolated chondrocytes were expanded for two passages with Dulbecco’s Eagle’s 

Medium (DMEM) containing 4.5 mg/mL D-glucose, 0.1 mM nonessential amino acids, 1 mM 

sodium pyruvate, 100 mM HEPES buffer, 100 U/mL penicillin, 100 µg/mL streptomycin and 

0.29 mg/mL L-glutamate and supplemented with 10% of foetal bovine serum (complete 

medium-CM), and 1 ng/mL of Transforming Growth Factor β1 (TGFβ-1), 5 ng/mL of 

Fibroblast Growth Factor 2 (FGF-2), and 10 ng/mL of Platelet-Derived Growth Factor type 

BB (PDGF-BB) (all from R&D Systems, 6 Minneapolis, MN), as previously described15. 

Chondrocytes were subsequently cultivated in pellets or in 3D scaffolds as described below.  

Pellet culture 

The chondrogenic capacity of post-expanded human TC and KC was investigated using a 

simple and broadly used model, namely pellet cultures in a defined serum-free medium15. 

Briefly, TC and KC were suspended in DMEM supplemented with ITS+1 (Sigma Chemical, 

St. Louis, MO), 0.1 mM ascorbic acid 2-phosphate, 1.25 mg/mL human serum albumin, 10-7 

M dexamethasone and 10 ng/mL TGFβ1. Aliquots of  5 x 105 cells/0.5 mL were centrifuged 

at 1000 rpm for 2 minutes in 1.5 mL polypropylene conical tubes (Sarstedt, Nümbrecht, 

Germany) to form spherical pellets, which were placed onto a 3D orbital shaker (Bioblock 

Scientific, Frenkendorf, Switzerland) at 30 rpm. Pellets were cultured for 3 or 14 days, with 

medium changes twice per week, and subsequently processed for histological, 

immunohistochemical, biochemical and mRNA analysis, as well as for the proteoglycan and 

collagen synthesis, as described below. In some experiments, pellets generated by TC and KC 

from 3 donors were also exposed to 1 ng/mL human recombinant Interleukin-1 beta (IL-1β) 

(Roche Diagnostics GmbH, Mannheim, Germany) for the last 72 hours. The IL-1β 

concentration was selected based on preliminary studies from a range of 0.05 to 10 ng/mL, as 

the one inducing a visible and reproducible loss of accumulated glycosaminoglycans (GAG) 

in the pellets, up to about 50% of the controls. Each analysis was performed independently in 

at least two entire pellets for each primary culture and expansion condition.  
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Culture on porous 3D scaffolds 

The ability of expanded human TC and KC to generate neo-cartilage was also investigated by 

cultures in esterified hyaluronic acid non-woven meshes (Hyaff®-11, Fidia Advanced 

Biopolymers, Abano Terme, IT), since (i) the system was previously described as a reliable 

model for chondrocyte re-differentiation16, (ii) the model allows more extensive cartilaginous 

tissue maturation than in pellets over prolonged culture times17 and (iii) the resulting cell-

scaffold constructs are currently in clinical use for cartilage repair18. Chondrocytes were 

loaded statically on the scaffolds (6 mm diameter, 2 mm thick disks) at a density of 4x106 

cells/scaffold. Cell-scaffold constructs were cultured in CM supplemented with 0.1 mM 

ascorbic acid, 10 µg/mL Insulin and 10 ng/mL Transforming Growth Factor-β3, TGFβ3, with 

medium was changes twice a week, as previously described19. After 14 or 28 days of static 

culture, the resulting Engineered Cartilage generated by Talar chondrocytes (ECT) and 

Engineered Cartilage generated by Knee chondrocytes (ECK) were analysed histologically, 

immunohistochemically, biochemically and biomechanically, as described below.  

Measurement of [35S]SO4 and [3H]proline incorporation  

The proteoglycan and collagen synthesis of the cultured pellets was measured by assessing the 

incorporation of [35S]SO4 and [3H]proline for a period of 24h as described previously20. 

After 3 or 14 days of culture, pellets were incubated in the presence of both [35S]SO4 (1 

µCi/culture) to label proteoglycans and [3H]proline (1.5 µCi/culture) to label collagen. Since 

synthesized ECM components can either be incorporated into the culture or released to the 

media, matrix synthesis was determined by measuring both fractions. For the assessment of 

the released ECM fraction, radiolabeled proteoglycan and collagen were precipitated 

overnight at 4°C using respectively 100% ethanol and 70% ammonium sulphate. 

Subsequently, samples were centrifuged at 14,000 rpm for 30 min and the pellets resuspended 

in 4 M guanidine hydrochloride or 10% sodium dodecyl sulphate in Tris buffer (0.1 M, pH 

7.0) respectively for proteoglycan and collagen. For the assessment of the incorporated ECM 
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fraction, tissue pellets were gently washed three times with PBS to remove the unincorporated 

isotopes. Pellets were then digested for 15 hours at 56°C with protease K (0.5 mL of 1 mg/mL 

protease K in 50 mM Tris with 1mM EDTA, 1 mM iodoacetamide and 10 µg/mL pepstatin-

A, respectively). The incorporation of [35S]SO4 and [3H]proline in culture pellet and in 

conditioned medium were measured in a Packard β-liquid scintillation counter with 

scintillation fluid (Ultima Gold, Perkin Elmer). The amount of synthesised molecules was 

calculated relative to the DNA content of the tissue. For this analysis cells from 3 donors were 

used, with triplicate pellets for each condition.  

Biochemical Analyses 

ECT and ECK were lyophilized and weighed. Pellets of TC and KC, ECT and ECK were then 

digested with protease K (0.5 mL and 1 mL of solution respectively for pellets and scaffold-

based constructs) as indicated above. GAG amounts were measured spectrophotometrically 

after reaction with dimethylmethylene blue21, with chondroitin sulfate as a standard. DNA 

was measured spectrofluorometrically using the CyQuant cell proliferation assay Kit 

(Molecular Probes, Eugene, OR), with calf thymus DNA as a standard22. GAG contents were 

reported as % GAG/ dry weight tissue (for ECT and ECK) or GAG/DNA (for pellets). 

For the determination of collagens type I and II, constructs were lyophilized. The dried 

samples were fully solubilised by digestion with 2 mg/mL Tosylamide-2-phenylethyl 

chloromethyl ketone-treated bovine pancreatic trypsin in 50 mM Tris-HCl, pH 7.6, containing 

1mM iodoacetamide, 1mM EDTA and 10 µg/mL pepstatin A, using an initial incubation of 

15 h at 37ºC followed by a further 2 h incubation at 65ºC after the addition of fresh trypsin. 

Samples were boiled for 15 min to inactivate the enzyme23. Amounts of type II collagen (CII) 

were assayed by inhibition ELISA using a mouse IgG monoclonal antibody to denatured 

CII24. Amounts of type I collagen (CI) were assayed by inhibition ELISA using a rabbit anti-

peptide antibody to CI23. 

Real-time quantitative RT-PCR assays 
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RNA of pellets for TC and KC was extracted using Trizol (Life Technologies, Basel, 

Switzerland), according to the Manufacturer’s protocol. Pellets cultured in chondrogenic 

medium were first sonicated for 1 minute while in Trizol. RNA was treated with DNAseI 

using the DNA-freeTM Kit (Ambion, USA) and quantified spectrofluorimetrically. cDNA 

was generated from 3 μg of RNA by using 500 μg/mL random hexamers (Catalys AG, CH) 

and 1 μL of 50 U/mL StratascriptTM reverse transcriptase (Stratagene, NL), in the presence 

of dNTPs. PCR reactions were performed and monitored using the ABI Prism 7700 Sequence 

Detection System (Perkin-Elmer/Applied Biosystems, Rotkreuz, Switzerland). Cycle 

temperatures and times as well as primers and probes used for the reference gene (18-S 

rRNA) and the genes of interest (collagen type I and II), were as previously described15. For 

each cDNA sample, the threshold cycle (Ct) value of 18-S was subtracted from the Ct value 

of the target gene , to derive ∆Ct. The level of expression of type I and type II collagen was 

calculated as 2∆Ct. Each sample was assessed at least in duplicate for each gene of interest. 

Histological and immunohistochemical analyses 

Generated pellets and constructs were rinsed with PBS, fixed in 4% formalin, embedded in 

paraffin, and cross-sectioned (5 µm thick for pellets and 7 µm thick for constructs). Sections 

were stained with Safranin-O for sulfated glycosaminoglycans (GAG). 

Sections were processed for immuno-histochemistry using an antibody against type II 

collagen (II-II6B3, Hybridoma Bank, University of Iowa, USA), as previously described25. 

Biomechanical analysis 

Mechanical tests on constructs were conducted in a standard miniature test instrument in 

unconfined compression (Synergie 100, MTS Systems Corp., Eden Prairie MN, USA) to 

measure the Equilibrium modulus (EEQ) and the Pulsatile dynamic modulus (EPD), as 

previously described in detail19. Briefly, EEQ was determined from a linear regression of the 

data pairs of equilibrium stress / incremental strain, following application of five incremental 

strains of 5% and computation of the corresponding equilibrium stress. EPD was calculated as 
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the slope of the stress/strain curve, after exposing specimens to five cycles of  compressive 

loading/unloading at 0.17 mm/s, reaching a strain of 20% and with each strain period 

followed by a no-load period of time equal to that for loading / unloading.  

Statistical analysis 

Unless otherwise stated, values are presented as mean ± standard error of measurements from 

10 independent experiments, using cells from 10 donors. Statistical analyses were performed 

using the Sigma Stat software (SPSS Inc., Version13). Differences among experimental 

groups in the comparison between TC and KC were assessed by two tailed Wilcoxon test, and 

considered statistically significant with p < 0.05.  

 

RESULTS 

Proliferation rate of human ankle and knee chondrocytes.  

Although native ankle cartilage has been reported to have a higher cellularity than 

knee cartilage7,10,26, we found no significant difference between the cell yields of native 

cartilage harvested from the talus or the femoral condyle of the same individuals (3.3±0.68 × 

106 and 3.6 ±0.45 × 106 cells/g tissue respectively).  It is possible that other factors beyond the 

tissue cellularity (e.g., efficiency of cell extraction from the extracellular matrix, or survival 

capacity of the cells during enzymatic treatment) might have accounted for our finding.  

In the time required to reach the second confluence (i.e., 13-19 days), TC and KC displayed 

similar proliferation rates (0.55 ± 0.05 and 0.58 ± 0.03 doublings/day respectively) and 

underwent a similar number of doublings (7.7 ± 0.5 and 8.0 ± 0.2 respectively). At the end of 

the expansion phase, both TC and KC exhibited an elongated fibroblastic morphology, 

characteristic of de-differentiated chondrocytes (data not shown). 

Post-expansion chondrogenic capacity in pellets 

Accumulation of cartilage specific proteins 
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After 14 days of culture in pellets, expanded TC and KC generated hyaline-like cartilaginous 

tissues, with similar staining intensity for GAG and collagen type II in pellet pairs generated 

by the cells from the same donors (Fig. 1). Biochemical analysis quantitatively confirmed that 

pellets generated by TC contained GAG/DNA contents similar to those generated by KC 

(13.9 ± 3.2 and 12.1 ± 1.6 µg/µg respectively) (Fig. 2A). RT-PCR analysis further 

characterized that collagen type I and II mRNA expression was comparable in pellets 

generated by TC and KC (Fig. 2B). The relatively high expression of type I collagen is rather 

typical for chondrocytes cultured in this model for two weeks and should not be attributed to 

an unsuccessful cell re-differentiation, since the ratio of type I / type II collagen mRNA 

expression of post-expanded chondrocytes has previously been shown to strongly decrease 

following pellet culture27,28. 

Synthesis of cartilage specific proteins 

Proteoglycan and collagen synthesis increased between 3 and 14 days of pellet culture to a 

similar extent for TC (6.4-fold and 1.5-fold respectively) and KC (7.8-fold and 1.2-fold 

respectively), remaining at comparable levels (Fig 2C-D). The released fractions of 

proteoglycan and collagen were rather limited, averaging less than 5% of the total amount of 

the newly synthesized molecules.  

Response to IL-1β 

Pellets at different stages of maturation (i.e., after 3 and 14 days of culture) were exposed to 

IL-1β for 72 hours. In 3-day pellets, for both TC and KC, IL-1β treatment resulted in 

extensive tissue degeneration, as evidenced histologically by the reduction of extracellular 

matrix and the appearance of necrotic cells (Fig 3A), as well as biochemically by the reduced 

amounts of GAG and synthesis of proteoglycan and collagen, down to the minimal levels of 

detection (Fig 3B-D). In 14-day pellets generated by both TC and KC, the exposure to IL-

1β resulted in loss of cartilaginous matrix, as evidenced histologically by a reduced Safranin 

O staining intensity, as well as biochemically by a statistically significant reduction of GAG 
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contents (1.9- and 1.6-fold respectively), synthesis of proteoglycans (7.0- and 16.0-fold 

respectively) and synthesis of collagens (4.2- and 3.7-fold respectively) (Fig 4). Importantly, 

TC and KC pellets reacted in an almost identical fashion and extent to IL-1β, at both stages of 

maturation.  

Post-expansion chondrogenic capacity in 3D scaffolds 

After 14 days of culture in Hyaff-11® meshes, the resulting engineered cartilage based on talar 

chondrocytes (ECT) and engineered cartilage based on knee chondrocytes (ECK) were only 

faintly stained for GAG and collagen type II (data not shown). Instead, after 28 days of 

culture, ECT and ECK displayed regions intensely stained for GAG and collagen type II. At 

this stage, ECT appeared to be stained at lower intensity and uniformity for both extracellular 

matrix proteins as compared to ECK (Fig. 4). 

Biochemical analysis generally confirmed the histological observations. Following 14 days of 

culture, similar GAG, type I and type II collagen contents were measured in ECT and ECK 

(Fig. 5A). The increase in the GAG content  as a % of dry weight from 14 to 28 days of 

culture was larger for ECK than ECT (2.6- and 1.8-fold respectively), resulting in 

significantly higher final GAG contents (1.6-fold) in tissues formed by KC (Fig. 5A). 

Interestingly, type II collagen content did not increase with culture time in ECT, whereas it 

increased by 2.2-fold in ECK, resulting in double amounts in ECK than in ECT (Fig. 5A). 

Between 14 to 28 days of culture, type I collagen content increased to a similar extent in ECK 

and ECT, reaching similar levels at the latest time point (Fig. 5A). At 28 days, the type II / 

type I collagen ratio was 0.39 ± 0.16 and 0.92 ± 0.26 respectively in ECT and ECK, 

indicating a more fibrocartilaginous nature of the tissues generated by TC. 

Interestingly, the measured biomechanical properties of tissues did not capture the 

biochemical differences (Fig. 5B). In fact, equilibrium modulus (EEQ) and dynamic pulsatile 

modulus (Edyn) were comparable in ECT and ECK at 2 weeks culture, significantly increased 

between 14 and 28 days of culture to a similar extent in ECT and ECK (EEQ: 1.8- and 1.9-

 11 



fold, Edyn: 1.9- and 1.4- fold respectively) and thus reached similar levels at the end of the 

culture.  

 

DISCUSSION  

In this study we compared proliferation capacity, post-expansion biosynthetic activity, 

chondrogenic ability and response to the catabolic factor IL-1β of human talar chondrocytes 

(TC) and knee chondrocytes (KC) from the same individuals. Cells isolated from the different 

cartilage tissues proliferated at a similar rate in monolayer culture and, when induced to re-

differentiate in 3D pellets, synthesised and accumulated comparable amounts of GAG and 

type II collagen. Moreover, in response to IL-1β, TC and KC cultured in pellets reduced 

synthesis and accumulation of the main cartilage-specific macromolecules in a similar fashion 

and extent. Finally, following culture for 28 days in Hyaff® 11 scaffolds, TC formed 

cartilaginous tissues with lower GAG and collagen type II contents as compared to KC, but 

with similar biomechanical properties.  

Although in the present study the behaviour of chondrocytes from native talar and knee 

cartilage tissues was not investigated, other groups previously reported that primary, non-

expanded TC have a higher proteoglycan7,8 and collagen synthesis9 than KC, as well as a 

superior resistance to the catabolic cytokine IL-1β8,13. Together with those findings, our 

results (i) indicate that such differences are lost when chondrocytes, isolated from their 

original matrices, are de-differentiated by expansion and subsequently induced to re-

differentiate in pellet cultures, and (ii) suggest a potential critical role of the native tissue 

environment (e.g., composition and organization of the extracellular or pericellular matrix) in 

determining the properties of KC or TC.  

The capacity of de-differentiated TC and KC to generate 3D cartilaginous tissues was also 

tested in non-woven meshes made of esterified hyaluronic acid (Hyaff®-11), a model allowing 

more extensive tissue maturation than pellets17. Contrarily to the results obtained in pellets, 
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KC cultured in such scaffolds accumulated superior amounts of GAG and type II collagen 

than TC. Since this difference was not observed after 14 days in culture and appeared only 

after 28 days, the apparent discrepancy could highlight that – as compared to KC – expanded 

TC have an impaired capacity of extensive maturation, which cannot be discriminated in the 

pellet culture system. Considering the higher cell-to-cell contacts in pellets as compared to the 

scaffold-based cultures, the superior deposition of cartilage-specific proteins by KC as 

compared to TC in Hyaff®-11 meshes could alternatively be due to the fact that 

chondrogenesis of KC is less cell density-dependent. Yet another explanation could be related 

to the influence on KC by the Hyaff®-11 mesh properties, which have been previously 

reported to specifically modulate certain KC functions (e.g., the down-regulation of some 

catabolic factors involved in cartilage degeneration29).   

It is necessary to point out that in our experiments we compared TC and KC from healthy 

cadaveric joints. A similar investigation using TC and KC derived from biopsies of traumatic 

joints of patients would be more relevant for a target clinical application. In this regard, it 

should be considered that (i) in focally damaged ankle cartilage, an upregulation of matrix 

turnover was observed also at sites remote from the lesion30, which was not seen for the knee 

cartilage31; and that (ii) chondrocytes derived from the lesioned ankle cartilage have been 

proposed as a valid cell source in the treatment of cartilage defects in the talus32. 

We are also aware that the models used in the present study to characterize the post-expansion 

chondrogenic capacity of the TC and KC (i.e., static culture in the presence of chondrogenic 

factors), have not been validated to directly predict the reparative ability of the cell types 

when implanted in the talar lesions. In the absence of an orthotopic model where to test the 

performance of human chondrocytes for cartilage repair beyond the patient, further studies 

may investigate the matrix synthesis/production of expanded TC and KC under conditions 

better resembling the injured joint (e.g., with application of mechanical loading in the 

presence of pro-inflammatory/catabolic mediators). 
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In conclusion, our findings indicate that differences between human TC and KC observed 

when cells are in their original environments are not anymore detectable following monolayer 

expansion. Together with the recent evidences on the ability of expanded nasal19 and auricular 

chondrocytes33 to adapt to new environments, this study thus underlines the concept of 

extensive plasticity of chondrocytes following de-differentiation15. Moreover, from a clinical 

standpoint, despite the convincing body of literature on the metabolic, biochemical and 

biomechanical differences between talar and knee cartilage tissues, our results indicate a 

possible equivalence of TC and KC as autologous cell sources for the repair of cartilage 

lesions of the talus.  
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LEGEND TO FIGURES 

Figure 1. Histological properties of talar chondrocytes (TC) and knee chondrocytes 

(KC) pellets after 2 weeks of culture. 

(A - B) Safranin O and type II collagen immunohistochemical staining of representative 

pellets generated by TC and KC from the same donors and cultured for two weeks in 

chondrogenic medium. Bar = 100 µm.  

Figure 2.  Biosynthetic activity of talar chondrocytes (TC) and knee chondrocytes (KC) 

pellets after 2 weeks of culture.  

(A) Sulfate glycosaminoglycan content normalized to the amount of DNA. (B) Real time 

reverse transcriptase-polymerase chain reaction analysis of the expression of mRNA for type I 

(CI) and type II (CII) collagens. Values are mean ± SEM of measurements obtained from 10 

independent experiments. 

Newly synthesized amounts of collagen (C) and proteoglycan (D), measured by the 

incorporation of respectively [3H]proline and [35S]SO4 in pellet maintained in culture for 3 

and 14 days. The upper and lower parts of the columns are related respectively to the newly 

synthesized molecules released in the medium or accumulated in the extracellular matrix. 
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Values are mean ± SEM of measurements obtained from 3 independent experiments. * = 

significantly different from the earlier time point of the same cell source.  

Figure 3. Respose to IL-1β by tissues generated by talar chondrocytes (TC) and knee 

chondrocytes (KC) at different stages of maturation  

(A) Safranin O stainings of representative pellets generated by TC and KC from the same 

donors. Bars = 100 µm. (B) Sulfate glycosaminoglycan content normalized to the amount of 

DNA in pellets maintained in culture for a total of 14 days where the last 72 hours with (IL-1) 

or without (CTR) IL-1β. Newly synthesized amounts of collagen (C) and proteoglycan (D), 

measured by the incorporation of respectively [3H]proline and [35S]SO4, in pellets maintained 

in culture 14 days. The upper and lower parts of the columns are related respectively to the 

newly synthesized molecules released in the medium or accumulated in the extracellular 

matrix. Values are mean ± SEM of measurements obtained from 3 independent experiments. 

* = significantly different from CTR.  

Figure 4. Histological properties of the engineered cartilage generated by talar 

chondrocytes (ECT) and engineered cartilage generated by knee chondrocytes (ECK) 

tissue after 4 weeks of static culture  

(A - B) Safranin O and type II collagen immunohistochemical stainings of representative ECT 

or ECK. Bar = 100 µm.  

Figure 5. Biosynthetic activity and biomechanical properties of engineered cartilage 

generated by talar chondrocytes (ECT) and engineered cartilage generated by knee 

chondrocytes (ECK) tissues after 2 and 4 weeks of static culture. 

 (A) Amounts of glycosaminoglycan (GAG), type I and type II collagen accumulated, 

expressed as a percentage of tissue dry weight. (B) Equilibrium modulus and dynamic 

pulsatile modulus of ECT and ECK constructs. The plotted line indicates the biomechanical 

properties of the cell-free Hyaff-11 scaffold. Values are mean ± SEM of measurements 
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obtained from 10 independent experiments. * = significantly different from the earlier time 

point of the same cell source; ° = significantly different from ECT. 
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