edoc

Mechanism of endoplasmic reticulum retention of mutant vasopressin precursor caused by a signal peptide truncation associated with diabetes insipidus

Beuret, N. and Rutishauser, J. and Bider, M. D. and Spiess, M.. (1999) Mechanism of endoplasmic reticulum retention of mutant vasopressin precursor caused by a signal peptide truncation associated with diabetes insipidus. Journal of Biological Chemistry, Vol. 274, H. 27. pp. 18965-18972.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5258063

Downloads: Statistics Overview

Abstract

Autosomal dominant neurohypophyseal diabetes insipidus is caused by mutations in the gene encoding the vasopressin precursor protein, prepro-vasopressin-neurophysin II. We analyzed the molecular consequences of a mutation (DeltaG227) recently identified in a Swiss kindred that destroys the translation initiation codon. In COS-7 cells transfected with the mutant cDNA, translation was found to initiate at an alternative ATG, producing a truncated signal sequence that was functional for targeting and translocation but was not cleaved by signal peptidase. The mutant precursor was completely retained within the endoplasmic reticulum. The uncleaved signal did not affect folding of the neurophysin portion of the precursor, as determined by its protease resistance. However, formation of disulfide-linked aggregates indicated that it interfered with the formation of the disulfide bond in vasopressin, most likely by blocking its insertion into the hormone binding site of neurophysin. Preventing disulfide formation in the vasopressin nonapeptide by mutation of cysteine 6 to serine was shown to be sufficient to cause aggregation and retention. These results indicate that the DeltaG227 mutation induces translation of a truncated signal sequence that cannot be cleaved but prevents correct folding and oxidation of vasopressin, thereby causing precursor aggregation and retention in the endoplasmic reticulum.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Growth & Development > Biochemistry (Spiess)
UniBasel Contributors:Spiess, Martin
Item Type:Article, refereed
Article Subtype:Research Article
Bibsysno:Link to catalogue
Publisher:American Society of Biological Chemists
ISSN:0021-9258
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:20
Deposited On:22 Mar 2012 13:19

Repository Staff Only: item control page