edoc

Proprotein convertase PC3 is not a transmembrane protein

Stettler, H. and Suri, G. and Spiess, M.. (2005) Proprotein convertase PC3 is not a transmembrane protein. Biochemistry, Vol. 44, H. 14. pp. 5339-5345.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5258041

Downloads: Statistics Overview

Abstract

Proprotein convertase PC3 (also known as PC1) is an endopeptidase involved in proteolytic processing of peptide hormone precursors in granules of the regulated secretory pathway of endocrine cells. Lacking any extended hydrophobic segments, PC3 was considered to be a secretory protein only peripherally attached to the granule membrane. Recently, evidence has been presented that PC3 is a transmembrane protein with a 115-residue cytoplasmic domain and a membrane-spanning segment containing eight charged amino acids [Arnaoutova, I., et al. (2003) Biochemistry 42, 10445-10455]. Here, we analyzed the membrane topology of PC3 and of a PC3 construct containing a conventional transmembrane segment of 19 leucines. Alkaline extraction was performed to assess membrane integration. Exposure to the cytosol or to the ER lumen was tested by addition of C-terminal tags for phosphorylation or glycosylation, respectively. Protease sensitivity was assayed in permeabilized cells. The results show that the C-terminus of PC3 is translocated across the endoplasmic reticulum membrane. Furthermore, the proposed transmembrane segment of PC3 and a similar one of carboxypeptidase E did not stop polypeptide translocation when inserted into a stop-transfer tester construct. PC3 is thus not a transmembrane protein. These results have implications for the mechanism of granule sorting of PC3 as well as for the topology of PC2 and carboxypeptidase E, which have been reported to span the lipid membrane by homologous charged sequences.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Biochemistry (Spiess)
UniBasel Contributors:Spiess, Martin
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Chemical Society
ISSN:0006-2960
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:20
Deposited On:22 Mar 2012 13:19

Repository Staff Only: item control page