Cleavage Factor Im as a key regulator of 3' UTR length

Andreas R. Gruber, Georges Martin, Walter Keller, Mihaela Zavolan
Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland.

Keywords: cleavage factor Im, CF Im, CPSF5, CPSF6, CPSF7, alternative polyadenylation, 3’ end processing, mRNA processing

Abbreviations: CF Im, cleavage factor Im; CP, cleavage and polyadenylation; UTR, untranslated region; CPSF, cleavage and polyadenylation specificity factor; CstF, cleavage stimulation factor; RRM, RNA recognition motif; CLIP, cross-linking and immunoprecipitation

Abstract

In eukaryotes, the 3’ ends of RNA polymerase II-generated transcripts are generated in the majority of cases by site-specific endonucleolytic cleavage, followed by the addition of a poly(A) tail. Through alternative polyadenylation, a gene can give rise to multiple mRNA isoforms that differ in the length of their 3’ UTRs and hence in their susceptibility to post-transcriptional regulatory factors such as microRNAs. A series of recently conducted, high-throughput studies of poly(A) site usage revealed an extensive tissue-specific control and drastic changes in the length of mRNA 3’ UTRs upon induction of proliferation in resting cells. To understand the dynamics of poly(A) site usage, we recently identified binding sites of the major pre-mRNA 3’ end processing factors - cleavage and polyadenylation specificity factor (CPSF), cleavage stimulation factor (CstF), and cleavage factor Im (CF Im) - and mapped polyadenylation sites in HEK293 cells. Our present study extends previous findings on the role of CF Im in alternative polyadenylation and reveals that subunits of the CF Im complex generally control 3’ UTR length. More specifically, we demonstrate that the loss-of-function of CF Im68 and CF Im25 but not of CF Im59 leads to a transcriptome-wide increase of the use of proximal polyadenylation sites.
Introduction

Generation of mature eukaryotic mRNAs from pre-mRNAs includes addition of a 7-methylguanosine cap, splicing out of introns and cleavage and polyadenylation of the 3’ end [1, 2, 3, 4]. Most of these processes are carried out co-transcriptionally by a number of protein complexes and are completed before the transcription complex reaches the end of the gene. The process of cleavage and polyadenylation which is the focus of our work, involves a complex that contains up to 85 proteins [5]. At the core however, are a few smaller subcomplexes: the cleavage and polyadenylation specificity factor (CPSF), cleavage stimulation factor (CstF), cleavage factors Im and II (CF Im and CF II), a poly(A) polymerase (PAP) [4], and the nuclear poly(A) binding protein 1 (PABPN1) [6].

CF Im is a tetramer composed of two 25 kDa (CF Im25) subunits and two proteins of either 59 or 68 kDa (CF Im59 or CF Im68) [7, 8]. It was previously shown through SELEX analysis to preferentially bind UGUA subsequences in the pre-mRNAs [9]. The molecular basis of this interaction emerged from recently solved crystal structures of CF Im25 in complex with the RNA recognition motif (RRM) of CF Im68 [10, 11]. Surprisingly, it is the Nudix hydrolase domain of CF Im25 that specifically recognizes UGUA, whereas CF Im68 appears to increase the binding affinity of the complex. These structure models further revealed that a CF Im25 dimer binds two UGUA sequences in an antiparallel manner forcing the looping of the RNA sequence between the UGUA motifs. Yang and colleagues proposed that looping might facilitate alternative polyadenylation via CF Im [10]. The composition of individual CF Im complexes that bind pre-mRNA molecules is not known and it is unclear whether CF Im59 and CF Im68 are functionally interchangeable. CF Im25, CF Im59 and CF Im68 share many interaction partners and structures of the CF Im25/CF Im59-RRM and CFIm25/CFIm68-RRM complexes suggest a nearly identical overall domain architecture [12]. However, subtle differences between the sequences of CF Im59 and CF Im68 or amino acid modifications not obvious in the structure could enable these proteins to establish distinct interactions with target RNAs and carry out somewhat different functions. Consistent with this hypothesis are observations that CF Im59 and CF Im68 also have distinct interaction partners. CF Im68 has been shown to
interact with the SR proteins hTra2b, Srp20 and 9G8 [13] and CF Im59 with U2AF65 [14]. In both cases these interactions take place via serine/arginine rich (SR) domains. In addition, CF Im59 interacts with the arginine methyltransferase PRMT2 [15, 16].

By cross-linking and immunoprecipitation (CLIP) followed by deep sequencing we recently mapped the transcriptome-wide binding sites of RNA-binding proteins of the core polyadenylation machinery including CF Im25, CF Im59, and CF Im68 [17]. By further quantifying cleavage and polyadenylation (CP) site usage in HEK293 cells in which we mapped the binding sites, we showed that binding of CF Im is predictive for the choice of a polyadenylation site, and that knock-down of CF Im68 causes a transcriptome-wide increase in proximal CP site use. Here we report the results of follow-up experiments, in which we explored the effects of CF Im25 and CF Im59 knock-down, and discuss the general question of how CF Im acts in the regulation of polyadenylation.

Transcriptome-wide analyses reveal extensive alternative polyadenylation

Alternative polyadenylation is a fundamental mechanism underlying eukaryotic mRNA diversity. Both computational and biochemical approaches have been used to map pre-mRNA 3’ ends and to characterize the proteins involved in 3’ end formation (for reviews, see [18, 19]). The recent work of Sandberg and colleagues [20], demonstrating that proliferating cells express transcripts whose 3’ UTRs are systematically shorter compared to those of resting cells, incited an upsurge of interest in this field. Several protocols to capture polyadenylation sites via deep sequencing have been developed, including 3SEQ [21], direct RNA sequencing (DRS) [22], 3P-Seq [23], MAPS [24], PAS-Seq [25], SAPAS [26], A-seq [17], and PolyA-Seq [27]. A systematic effort to combine the data generated in all of these studies has not been undertaken. However, the recent study of Babak and colleagues [27] alone resulted in a list of 280,000 human CP sites compared to a mere 150,000 sites that were known from previous work. The advantage of these deep sequencing-based methods is that they enable us to move away from a binary (present/absent), EST-based description [28], or a semi-quantitative, microarray-based measurement [29]
of polyadenylation site usage in specific libraries or tissues, towards precise quantification of alternative polyadenylation site use. This in turn allows exploration of the processing mechanism in various conditions and for various classes of transcripts such as the still poorly understood noncoding RNAs.

Relationship between tissue-specific alternative polyadenylation and proliferation rate

Babak and colleagues [27] were the first to quantitatively determine CP site usage over a broad set of tissues as well as in actively proliferating cells. To determine whether differences in CP site use between individual tissues follow a systematic pattern, we obtained pre-processed read mappings from the NCBI GEO archive (GSE30198), and inferred CP sites using our computational pipeline that was previously described [17]. In total, we identified 1,047 genes with two tandem CP sites that show expression of at least 5 tags per million in each sample investigated. Following the approach of Sandberg et al. [20], we further computed a cell type-specific “proliferation index”. For a given sample, the proliferation index was defined as the median z-score of the expression level of a cell cycle-associated gene [20] in the respective sample relative to all others. The scatter plot of the proximal/distal site usage ratio against the proliferation index for the samples in Fig. 1A shows the expected trend. First, replicate samples prepared from the same type of cells have very similar proliferation index as well as proximal/distal CP usage. Further, tissues with a low proliferation index such as the brain have low proximal/distal CP usage ratios compared with samples prepared from cells with high proliferation index such as the mixture of ten human cancer cell lines (MAQC-UHR samples from the Stratagene Universal Human Reference RNA). The correlation is however far from perfect. Proximal/distal CP site usage ratio differs quite strongly for tissues that have a comparable proliferation index (median log₁₀ proximal/distal ratio of -0.53 for the brain and -0.31 for liver). Strikingly, the tissue-to-tissue differences appear to be systematic. This is illustrated more clearly in Fig. 1B, which shows that the scatter of proximal/distal CP site usage ratios for individual genes in pairs of brain samples forms a narrow band around the diagonal, while the brain against liver scatter shows a clear off-diagonal shift. This systematic, transcriptome-wide shift in CP site usage would be most parsimoniously explained by a “master regulator” that alters the CP site usage of most genes, rather than by many individual regulators that operate on small subsets of genes. The simplest lead to follow is the
core polyadenylation machinery or a factor that directly interacts with it. We recently demonstrated that knock-down of CF Im68, a key component of the mammalian polyadenylation apparatus, induces a systematic, transcriptome-wide shift to increased proximal CP site usage [17]. In this report, we further explore the role of the individual components of CF Im in alternative polyadenylation.

Cleavage factor I as a key regulator of 3' UTR length

New advances in high-throughput technologies also fueled the investigation of binding patterns of RNA-binding proteins. UV crosslinking and immunoprecipitation followed by sequencing of the bound RNA fragments allow the identification of RNA molecules targeted by the protein of interest. These methods enable the mapping of binding sites with nucleotide level resolution, either by exploiting crosslink-diagnostic mutations (in PAR-CLIP [30, 31] and HITS-CLIP [32]) or the propensity of reverse transcriptase to stop at crosslinked sites [33].

We recently mapped by PAR-CLIP the transcriptome-wide binding sites for CF Im25, CF Im59, and CF Im68 proteins in HEK293 cells. We found that all components of CF Im exhibit very specific positioning 40-50 nucleotides (nt) upstream of cleavage and polyadenylation sites. The underlying cause of this positional specificity seems to be two-fold. In half of the CP sites investigated the binding profile of CF Im components can be explained by the density profile of UGUA sequence motifs, which also peaks 40-50 nt upstream of the CP site. However, even CP sites that do not have any UGUA within the 100 upstream nucleotides exhibit the same peak in the CF Im read density at 40-50 nt. This suggests that positioning of CF Im on the pre-mRNA is not only governed by sequence-specific binding, but also by interactions with other factors such as CPSF. Motif analysis revealed that CF Im CLIP reads were enriched in the UGUA tetramer. Detailed investigation of the cross-linking pattern further showed a positional bias of individual components of CF Im with respect to the crosslinked nucleotide. Despite the presence of two U residues that could act as crosslinking sites when replaced by 4-thio-U in the UGUA motif, none of the CF Im components cross-linked efficiently directly to UGUA. The weak crosslinking efficiency of CF Im59 and
CF Im68 to UGUA may be explained in terms of the mode of interaction of CF Im inferred from recent structural studies [10, 11], that rather suggests that CF Im25 specifically recognizes UGUA. However, the reason for the rather weak cross-linking of CF Im25 to UGUA remains unclear; a possible explanation may be that the substitution of U with 4-thio-U decreases the affinity of interaction between the UGUA sequence and CF Im25. In a comparison of CF Im59 and CF Im68 in complex with CF Im25 and RNA Yang and colleagues describe the overall architecture of both complexes as nearly identical, but also point out that the minor differences observed could lead to different ways RNA is bound by each of these complexes [12]. Indeed, we observed differences in the cross-linking patterns of CF Im59 and CF Im68 as well. CF Im68 was most efficiently cross-linked immediately downstream of UGUA motifs, whereas CF Im59 cross-linking at this position was only slightly above background. Intersection of binding profiles of 3’ end processing factors with CP site usage showed CF Im68 and CstF-64 as the most predictive factors for CP site choice. We used A-seq to quantify the effect of the knock-down of these two factors on CP site choice and found that CF Im68 but not CstF-64 loss-of-function led to a transcriptome-wide increase in the use of proximal CP sites (Fig. 2A) [17]. To further clarify the role of CF Im in the regulation of 3’UTR length, we generated four additional A-seq libraries from HEK293 cells that were either grown under standard conditions without treatment, treated with a control siRNA, or treated with siRNAs directed against the CF Im25 and CF Im59 components of CF Im. We also obtained an additional A-seq sample from a more efficient CF Im68 knock-down relative to our initial study [17] (Fig. 2D) as well as a paired A-seq sample from cells treated with control siRNA.

We found that reduced levels of CF Im25 and CF Im68, but not of CF Im59 lead to a transcriptome-wide increase in proximal CP site usage. These findings generalize the results of [34] to the entire transcriptome (Fig. 2A,B) and demonstrate that the CF Im25/CF Im68 complex globally controls 3’ UTR length by suppression of proximal CP sites. The precise molecular mechanism underlying these observations remains to be elucidated.
Master regulators of 3’ UTR length

The search for master regulators of 3’UTR length has revealed additional candidates. In a recent report, Berg and colleagues [35] proposed that the U1 snRNP, that normally protects pre-mRNAs from premature cleavage and polyadenylation [36], becomes limiting when cells divide rapidly, leading to a general shortening of 3’ UTRs. They illustrated this phenomenon in neurons, in which the rapid transcriptional boost induced by activation led to a relative decrease in U1 snRNP availability, which in turn caused increased usage of proximal CP sites. The mechanism behind this effect remains, like in the case of CF Im, to be characterized.

Another recent study found that knock-down of the nuclear poly(A) binding protein PABPN1 leads to increased usage of proximal CP sites transcriptome-wide [37]. The authors proposed a model whereby under normal conditions, PABPN1 competes with the polyadenylation machinery for weak or non-canonical CP sites, which in the absence of PABPN1 are unmasked and processed. To investigate this hypothesis and more specifically to test whether the CF Im component of the cleavage and polyadenylation machinery specifically increases the selection of weak CP sites, we grouped genes according to the relative strength of the most proximal relative to the most distal CP site (Fig. 2C; for the calculation of the hexamer score, see [17]). In our previous work [17] we showed that distal sites are on average, stronger and they are preferentially used in polyadenylation. We determined the change in proximal/distal ratio that different categories of genes undergo upon CF Im68 and CF Im25 knock-down and found that the knock-downs induce a similar increase in proximal/distal ratio irrespective of the relative strength of the proximal sites. This indicates that suppression of proximal CP sites by the CF Im25/CF Im68 complex is not biased by the “strength” of the CP site, as has been proposed for PABPN1.

Is 3’UTR length actively regulated?

The question now arises how downregulation of CF Im25/68, U1 snRNP or PABPN1 promotes selection of the proximal instead of distal poly(A) sites for cleavage.
One explanation may be that cleavage is the default behavior of the 3’ end processing machinery, most of the factors in the complex serving to mask polyadenylation sites or to prevent the interaction of the cleavage factor with the putative polyadenylation site. This hypothesis is consistent with observations that systematic shifts in polyadenylation sites are induced by the knock-down of several, very different factors, but it is difficult to reconcile with observations that binding of many factors of the 3’ end processing complex occurs predominantly at the sites where 3’ end reads are also most abundant. To explain this paradox, we proposed in our previous study [17] that the cleavage sites that are used for cleavage under normal conditions promote formation of specific 3’ end processing complex conformations that allow cleavage in spite of the fact that cleavage-inhibitory factors are present. It will be very interesting to determine whether the different factors that have been shown to suppress the use of proximal CP sites act on different subsets of genes, whose expression is thereby coordinately regulated in specific conditions.

Possible mechanisms by which CF Im alone may modulate alternative polyadenylation are depicted in Fig 3. One alternative is that the composition of the CF Im complex is condition-dependent. Data collected so far suggest that CF Im is a heterotetramer consisting of a CF Im25 dimer in complex with either CF Im59 or CF Im68. Coimmunoprecipitation of FLAG-CF Im59 or FLAG-CF Im68 indicates that CF Im59 and CF Im68 can be present in the same complex (Fig. 3D) with a CF Im25 dimer. In addition, a 72 kDa alternatively spliced form of the CF Im68 protein (CF Im72) [7] found in mammals could also take part in and change the functionality of the CF Im complex. Thus, one way to modulate the choice of poly(A) sites could be by changing the composition of the CF Im complex.

Another related possibility is that binding of CF Im to its RNA targets or to protein-binding partners is modulated by posttranslational modifications. In fact, phosphorylation of a purified cleavage factor fraction (containing CF Im and CF IIIm) was found to be required for in vitro cleavage and polyadenylation [38]. Ser166 in the RRM of CF Im68 is subject to phosphorylation, and mutation studies replacing Ser166 by aspartate, a phosphate mimic, revealed a twofold increase in RNA binding affinity of the CF Im25/CF Im68 complex [12]. Moreover, CF Im68 from Hela cells, but not CF Im59, was found to contain
symmetrically dimethylated arginines and that it could be methylated at a glycine-arginine rich (GAR) motif \textit{in vitro} by the methyltransferase PRMT5 \cite{15}. CF I_m^{59} from Hela cell nuclei is more strongly modified by asymmetrical dimethylation than CF I_m^{68} and both proteins can be dimethylated by the methyltransferase PRMT1 \textit{in vitro} mainly at the C-terminus that is rich in arginines. However, no effects of these modifications on protein-protein interactions or RNA binding capacity of the CF I_m factors were so far identified \cite{15}.

CF I_m^{68} is not the only component of CF I_m that has been found to be post-translationally modified. Lysine residue 23 of CF I_m^{25} is acetylated by CREB-binding protein and knock-down of CF I_m^{68} reduced CF I_m^{25} acetylation suggesting that CF I_m^{68} is needed for efficient acetylation \cite{39}. Modulation of CF I_m binding affinity could be consistent with the RNA looping model proposed by Yang and colleagues \cite{10}. Reduced binding of CF I_m would prevent looping of alternative CP sites and enable the CP site to be recognized and cleaved by CPSF.

Finally, Shimazu et al. \cite{39} also found that acetylation of CF I_m^{25} decreases the interaction of CF I_m with poly(A) polymerase. This suggests that it may be the polyadenylation rather than the cleavage step that is modulated by CF I_m and other factors. Indeed, direct interactions of the U1 snRNP proteins U1A and U1-70K \cite{40, 41} as well as of the U2 snRNP-associated protein U2AF65 \cite{14} with poly(A) polymerase were shown to inhibit polyadenylation of the newly cleaved pre-mRNA. This suggests that the presence of factors that are involved in pre-mRNA processing steps that precede cleavage and polyadenylation suppresses polyadenylation of transcripts that were prematurely cleaved. This in turn would also suppress the export and translation of these abortive transcripts because they would lack poly(A) tails. Northern blots with total RNA upon RNAi-mediated knock-down of CF I_m^{68} appear to show shortening of the transcripts to proximal cleavage sites \cite{15}, although it can still be that the long, non-polyadenylated transcripts are unstable.

The availability of technologies for exploring the entire transcriptome of a cell at once brought a new appreciation of the complexity of regulation of gene expression. At the same time, they allow us to identify biologically relevant patterns, taking advantage of the possibly very small responses of a large
number of genes. It will be exciting to see new applications of this approach in the field of RNA 3’ end processing.

Methods

A-seq

A-seq was carried out as described [17] with the exception of the partial RNA fragmentation step, which consisted of alkaline hydrolysis instead of RNase I digestion. To this end, poly(A) containing RNA was released from (dT)_{25}-Dynabeads in 35 µl 5 mM Tris-Cl pH 8.0. 70 µl alkaline hydrolysis buffer was added. Hydrolysis buffer is 50 mM Na-CO_{3}, 1 mM EDTA, pH 9.2 and was prepared by mixing 1 ml 0.1 M Na_{2}CO_{3} with 9 ml 0.1 M NaHCO_{3}, adding EDTA to 1 mM, adjusting the pH to 9.2 and the volume to 20 ml with H_{2}O. The reactions are incubated for exactly 7 minutes at 95 °C. Reactions were chilled on ice and 500 µl lysis buffer of the mRNA-DIRECT kit (Invitrogen) were added. The Dynabeads from the first step were recycled to bind the fragmented RNA that still contains poly(A). After washing the beads with buffers A and B, the protocol continues with 5’ end phosphorylation as described [17]. The Gene Expression Omnibus (GEO) accession number for the A-seq data is GSEXXXX.

RNAi

Silencer Select siRNAs (Ambion) were used for knock-downs of CF I_{m25} (S224836) and CF I_{m59} (S21772). For RNAi with CF I_{m68} a double stranded RNA oligo with sequence 5’-NNG ACC GAG AUU ACA UGG AUA-3’ was obtained from Dharmacon. As a negative control the oligo 5’-AGG UAG UGU AAU CGC CUU GTT-3’ (1491991) from Microsynth was used. RNAiMax transfection agent (Invitrogen) was employed according to the forward transfection method of the supplier. Cells were harvested after 3 days.

Western blots

Fip-In-293 cells either without transgene or stably transformed with either Flag-CF I_{m59} or Flag-CF I_{m68} fusion constructs in pcDNA5 plasmids (Invitrogen) were grown to 70% confluency, harvested and frozen
at -80 °C as pellets. Pellets were lysed in PND buffer (1xPBS, 0.5% NP-40, 1 mM DTT and “cOmplete” protease inhibitor (Roche) and sonicated for 10-20 sec. 30 μg of protein from the lysates of was loaded onto 10% SDS gels. In addition, lysate containing 50 μg of protein was co-immunoprecipitated with anti-Flag antibody (M2 monoclonal from Sigma) coupled to magnetic protein-G Dynabeads (Invitrogen). Beads were washed 3x with PND buffer containing 0.1% NP-40. Bound proteins were released by heating to 90 °C in NUPAGE LDS sample buffer (Invitrogen) containing 0.1 M DTT. Lysates and supernates from co-IP after magnetic retention were loaded on the SDS gel, blotted to ECL membrane (GE Healthcare), filters were probed with anti-CFL1 antibody [7] and further processed with the ECL system (Invitrogen).

Acknowledgements
The work was supported by the University of Basel, the Louis-Jeantet Foundation for Medicine and the Swiss National Science Foundation (grant 31003A_133145 to W.K.). We acknowledge the technical support of Béatrice Dimitriades.

References

[38] Ryan K. Pre-mRNA 3’ cleavage is reversibly inhibited in vitro by cleavage factor dephosphorylation. RNA Biol 2007; 4:26–33.

Figure 1. Comparison of proximal/distal CP usage ratios of 1,047 human genes with two tandem CP sites in tissues covered by the data set of Derti and colleagues [27]. (A) Scatter plot relating proliferative index (x-axis) to CP site usage (y-axis) (see text for the computation of these quantities). (B) Scatter plots of proximal/distal CP usage ratios in brain, liver and MAQC-brain samples. The grey scale indicates the density of data points representing individual genes. Numbers in the insets represent the proportion of points above and below the diagonal that indicates identical proximal/distal CP usage ratio for a gene in the two tissues.

Figure 2. Changes in cleavage and polyadenylation site usage upon knock-down of CF Im components and of CstF-64 in HEK 293 cells. A total of 3,821 transcripts with 2, 3 or 4 tandem CP sites (inferred based on the A-seq sequence data [17] and located in the same 3’ UTR exon) whose expression was estimated to be at least five A-seq tags per million in both untreated samples were selected. (A) Data sets were described in [17]. An additional CF Im68 knock-down data set (marked by the asterisk) was generated in this study. (B) Comparison of CP site usage in CF Im25 and CF Im59 knock-down sample relative to a control siRNA. (C) Proximal shift in CP site usage under CF Im25 and CF Im68 knock-down conditions as a function of the relative strength of the proximal CP site. Genes were divided into three subsets based on the ratio of hexamer scores [17] of the most proximal and most distal CP sites. Within each subset, we computed the proximal/distal CP usage ratio in a knock-down compared to the corresponding control siRNA-treated sample. Box-plots summarize the distribution of proximal/distal CP usage ratio for all genes within a particular subset and a particular sample. P-values of the t-test comparing the means of the two distributions are shown above the box-plots. (D) Western blots showing the efficiency of CF Im25, CF Im68 and CF Im59 knock-downs.

Figure 3. Possible models of modulation of alternative polyadenylation by CF Im. (A) High concentration of CF Im68 relative to CF Im59 leads to suppression of proximal CP sites. (B) Overall low levels of CF Im and hence low abundance of CF Im25/CF Im68 promote cleavage and polyadenylation at proximal sites.
(C) Post-translational modifications modulate RNA and protein interactions of CF Im. (D) Co-immunoprecipitation experiments with FLAG-CF Im59 and FLAG-CF Im68 indicate that the FLAG-tagged CFIm proteins can randomly bind both CF Im59 and CF Im68 (and in addition CF Im72) and possibly also form dimers of the Flag-tagged versions. Asterisks mark FLAG-tagged proteins.