Deuterium NMR studies of the interactions of polyhydroxyl compounds and of glycolipids with lipid model membranes

Bechinger, B. and Macdonald, P. M. and Seelig, J.. (1988) Deuterium NMR studies of the interactions of polyhydroxyl compounds and of glycolipids with lipid model membranes. Biochimica et biophysica acta, Vol. 943, H. 2. pp. 381-385.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5257483

Downloads: Statistics Overview


The physical properties of bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in the presence of four water-soluble polyhydroxyl compounds, trehalose, sorbitol, glycerol, and ethyleneglycol, and three neutral glycolipids – monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and nonhydroxy fattyacyl-cerebrosides (NHFA-Cer) – were investigated using 2H-NMR. All four polyhydroxyl compounds induced small, but comparable concentration-dependent changes in the choline headgroup conformation which were consistent with the presence of a small negative charge being conferred upon the bilayer surface. The latter may be explained by dipolar interactions brought about by changes in the long-range order of the water layer at the membrane surface. Trehalose had a small ordering effect on the hydrophobic interior of the membrane while ethyleneglycol induced a disordering, at both the head group level and in the hydrophobic interior. The presence of high amounts of carbohydrate at the membrane surface was ensured when POPC was mixed with various proportions of one of three glycolipids, MGDG, DGDG and NHFA-Cer. In these cases the conformation of the choline headgroup was only marginally altered when not masked by macroscopic phase changes. The headgroup conformational changes observed in the presence of any of the above-mentioned compounds were modest in comparison to the effects induced by charged substances.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Biophysical Chemistry (Seelig J)
UniBasel Contributors:Seelig, Joachim
Item Type:Article, refereed
Article Subtype:Research Article
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:20
Deposited On:22 Mar 2012 13:18

Repository Staff Only: item control page