edoc

Calcium binding to mixed cardiolipin-phosphatidylcholine bilayers as studied by deuterium nuclear magnetic resonance

Macdonald, P. M. and Seelig, J.. (1987) Calcium binding to mixed cardiolipin-phosphatidylcholine bilayers as studied by deuterium nuclear magnetic resonance. Biochemistry, Vol. 26, H. 19. pp. 6292-6298.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5257492

Downloads: Statistics Overview

Abstract

Calcium binding to bilayer membranes containing cardiolipin (CDL) mixed with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was investigated by using phosphorus-31 and deuterium nuclear magnetic resonance (NMR) spectroscopy. The destabilizing effect of Ca2+ on CDL bilayers, including the formation of hexagonal H11 and isotropic phases, was eliminated when CDL was mixed with sufficiently large proportion of POPC. Thus, for the mixture CDL-POPC (1:9 M/M), 31P NMR spectra retained a line shape typical of fluid bilayer lipids even in the presence of 1.0 M Ca2+. Specifically head-group-deuteriated CDL or POPC showed in this mixture 2H NMR spectra indicating that both lipids remained in a fluidlike bilayer at Ca2+ concentrations up to 1.0 M. Any phase separation of Ca2-CDL clusters could be excluded. The residence time of Ca2+ at an individual head group binding site was shorter than 10(-6) s. The deuterium quadrupole splitting, delta nu Q, of POPC deuteriated at the alpha-methylene segment of the choline head group was found to be linearly related to the number of bound calcium ions, X2, for the CDL-POPC (1:9 M/M) mixture. The effective surface charge density, sigma, could be determined from the measured amount of bound Ca2+. Subsequently, the surface potential, psi 0, and the concentration of free Ca2+ ions at the plane of ion binding were calculated by employing the Gouy-Chapman theory. Various possible models of the equilibrium binding of Ca2+ could then be tested.(ABSTRACT TRUNCATED AT 250 WORDS)
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Biophysical Chemistry (Seelig J)
UniBasel Contributors:Seelig, Joachim
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Chemical Society
ISSN:0006-2960
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:20
Deposited On:22 Mar 2012 13:18

Repository Staff Only: item control page